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Simultaneous Pose and Posture Estimation with a Two-stage Particle
Filter for Visuo-inertial Fusion

Nima Mehdi1, Vincent Thomas1, Serena Ivaldi1, Francis Colas1

Abstract— We address the problem of human pose and
posture estimation without any high precision marker-based
motion capture systems, by merging inertial data from wearable
sensors and a single RGB camera. Our proposition is based on
a biomechanical model of the human body and two coupled
filters: the first filter takes advantage of the accurate posture
observations provided by wearable sensors and a factorization
of joints to estimate the human posture with a reduced
number of particles while the second filter uses RGB camera
observations to estimate the drift of the wearable sensor so
as to estimate the global state (pose and posture). In order to
combine those filters, the estimated human posture distribution
of the first filter is used as a proposal distribution for the second
fusion filter so as to focus on particles with an already high-
likelihood posture and to improve the efficiency of the pose
estimation. Results showed this approach can perform online
estimation of the human posture and the human pose (through
the drift of the wearable sensor) and performed better than
techniques relying only on inertial sensor or on direct pose
estimation.

I. INTRODUCTION

Human posture and pose estimation is a particular focus
in the computer vision and robotics communities. Much
progress has been made in tracking the human posture from
visual scenes [1]. However, the majority of these methods do
not seek to deliver a kinematics-consistent estimation of the
human posture where the plausible biomechanical properties
of the human body are considered from the body segments to
the joint angles. This is particularly critical for collaborative
robotics where precise estimation and of the human’s body
posture is necessary for the robot to plan accurate assistance
and estimate elements allowing it to access the human
movement such as dynamics or ergonomics [2]. Wearable
inertial measurement units (IMUs) have partially solved this
problem as they enable a rather precise posture tracking even
in industrial contexts [3], but they estimate poorly the 3D
pose, i.e, the location of the human in the 3D space as
they are subject to drift and often asymmetric and larges
errors due to error in odometry caused for instance by
irregular terrains, which limit their usability in case of mobile
robots operating in close vicinity of humans especially when
interacting actively with human agents. Motivated by these
observations, we address here the case where the mobile
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robots need both postural and locational information about
the human agent.

To do so, we propose to leverage both wearable sensors
and cameras. Our main contribution in this article consists in
the definition and evaluation of two coupled particle filters.
A first factorized filter constructs a posterior distribution over
the posture given inertial measurements, which is used as a
proposal distribution in a second filter which merges inertial
measurements and camera images to estimate the inertial
drift as well as the posture. The contribution proposed in
this paper relies on three key ideas: (1) estimating the drift
of the inertial sensor (instead of the actual pose of the human)
by using camera observations; (2) using the posture estimate
based on the inertial observations as a proposal for the fusion
estimation filter; (3), and, to reduce the amount of required
particles in the posture estimation process, factorize the pos-
ture space by taking advantage of independencies between
joints belonging to different kinematic chains. It allows
estimating robustly the human posture in a biomechanical
plausible state as well as locate the human agent in the 3D
space in the context of human-robot interaction. In section II,
we present related works on pose and posture estimation.
Then, in section III, we formally describe the addressed
problem, present an overview of our contribution and then
detail the assumptions, the models and the equations used
for each part of our contribution. The conducted experiments
and the obtained results are described in section IV before a
conclusion in section V.

II. RELATED WORKS

There are several directions that have been explored in the
literature to estimate the 3D pose and posture of a human.
They can be sorted based on the kind of sensor they use.

A. IMU-based

With their current size, inertial and magnetic sensors can
be easily integrated into wearable sensors with minimal
footprint at a relatively low cost. Both Yun et al.[4] and
Roetenberg et al.[5] track the human body using a Kalman
filter. A particle filter using directional distributions is pro-
posed to track the gait of a human operator by To et al.[6].

As small as IMUs can be, they are still intrusive. Hence,
solutions were proposed to learn to reconstruct the 3D human
pose from a sparse IMU configuration. Marcard et al.[7]
suggest a join optimization framework and make use of
an anthropomorphic constraint for a realistic human model.
Huang et al.[8] use a Recurrent Neural Network (RNN)-
based method to learn human pose with IMU data. Inertial-



based methods are especially adapted to retrieve a precise
3D posture as well as the body’s dynamics, but they suffer
from drift on the absolute pose since it is not observable.

B. Vision-based

Marker-less vision based systems have received major
attention as cameras allows low setup and cheaper costs than
other motion capture systems. Particle filters were proven to
be an effective means for visual tracking and many works
were aiming to adapt and perfect these methods to estimate
the articulated human body from images: Deutscher et al.[9]
use an annealed particle filter associated with a hierarchical
search framework over images to estimate the human pose.
Sedai et al.[10] suggest using a Gaussian-process-guided
particle filter to estimate a 3D model from a video sequence.

More recently, with the popularity and efficiency of deep
learning due to the increase of computational power and
dataset sizes, many approaches aim to solve 3D pose es-
timation with artificial neural networks applied on images.
Chen et al.[11] propose a Convolutional Neural Network to
generate a 2D pose and then match the generated 2D pose to
a 3D pose using a non-parametric nearest neighbor model.
Pavllo et al.[12] introduce a temporal convolution model
for neural networks to generate 3D poses from 2D poses.
Moon et al.[13] estimate the 3D pose using a single RGB
image by recovering the camera-centered coordinates using
a dedicated neural network. All these methods can be highly
effective but often need important amount of data and suffer
from occlusion in clustered environments. Furthermore, their
precision is often lower as it is easier for inertial units to
follow dynamic movement.

C. Hybrid approaches

IMU-based techniques are subject to drift while vision-
based ones can suffer from occlusions. Therefore, fusing
image data with inertial data allows to obtain a more robust
estimation of the human location and kinematics. Trumble
et al.[14] separately estimate 3D poses from IMUs and
images from multiple views cameras before merging them
using several neural networks to obtain the estimated pose.
Marcard et al.[15] assign 2D pose from images to 3D posture
estimated from IMUs through optimization before feeding
back camera poses to estimate the 3D posture and pose of
tracked humans.

We draw inspiration from these approaches and propose to
fuse inertial and camera measurements, but we do so using
Bayesian filtering. It allows us to avoid the large amount of
data needed in machine-learning-based methods and enables
us to work with a biomechanical constrained model which
can be personalized to the person tracked.

III. METHODS

A. Problem Statement

We want to estimate the full body pose (position, ori-
entation, and posture) of a human based on inertial and
camera measurements. Due to uncertainties, we formulate
this problem as a Bayesian filtering problem. That is, we aim

Fig. 1: Digital Human Model used to represent the posture.

to compute the probability distribution over the full pose xk

at time step k given the series of observations z1:k from the
beginning up to time step k:

p(xk | z1:k). (1)

The observations zk are composed of the inertial motion
capture measurements zx,k, which are the position and
orientation of all body segments with respect to an arbitrary
origin [5], and of the camera measurements zc,k, which,
preprocessed by OpenPose [1], are the 2D coordinates on
the image of the main joints.

The full body pose xk is composed of the pelvis pose
xP
k, as a position and quaternion for the orientation, and of

the posture θk. Our long-term aim is to use the posture for
activity recognition [16] as such, we need the posture to
be complete yet compact and expressed as joint angles. The
inertial motion capture system we use can output joint angles
but with 66 degrees-of-freedom and without biomechanical
constraints. We chose to represent our posture using a Digital
Human Model (DHM) composed of 13 segments linked by
20 revolute joints (see Figure 1). This choice is a trade-off
between a high fidelity biomechanical model and the size
of the state space. We refer to the review by Vianello et
al.[17] on the importance of biomechanical models in context
of Human-Robot collaboration. The mismatch between the
observation DHM and our state DHM requires a form of
retargeting, which will be taken care of by the estimation
algorithm.

In our case, we assume that we know the pose of the
camera. This can be obtained, for instance, through visual
odometry or visual SLAM algorithms [18].

B. Filter Overview

As our problem is neither linear nor Gaussian, we use
particle filtering (see tutorial from Arulampalam et al.[19])
for our inference of Equation 1. However, the large dimen-
sion of the state space (26) would require a huge number of
particles.

This can be solved traditionally in two manners. The first
one relies on leveraging the structure of the state space
by ways of conditional or marginal independencies (as, for
instance Djuric et al.[20]). However, all our observations



(inertial or visual) depend on the pelvis pose, which prevents
defining a partition of the state space. Our first key idea
is to preprocess the inertial observations to decouple the
postural state between each body part (arms, legs, and trunk).
Concretely, it amounts to computing the relative position
zr
x,i,k of each segment (e.g., the left hand) with respect to

the root of the body part (e.g., the left shoulder). This is
feasible with the inertial measurements since they contain
the 3D position and orientation of each segment with respect
to an arbitrary frame but this is not the case with the visual
observation.

The second solution to limit the number of particles need
is to optimize their location thanks to an adequate proposal
distribution [21]. Our second key idea is to use the output
of the individual segment filters as a proposal for a second
filter, which uses the camera observations.

Therefore, we design our filter in two parts:
1) a first one, which we call Multiple Posture Filter (MPF)

using only preprocessed inertial measurements which
splits the posture estimation into five body parts (the
left and right arms and legs and the trunk with the
head),

2) and a second part, which we call Fusion Filter with
the full state space but using a proposal distribution
from the MPF.

This is further justified by the observation that the inertial
measurements are quite accurate on the posture but suffer
from drift whereas the camera observation is less precise on
the posture but exempt from drift. The role of the fusion filter
is therefore to compensate for the drift ξk of the reference
frame of the inertial measurements as well as improve the
posture estimate with the camera.

We actually propose two variants of the second filter: Pose-
FF where the state is composed of the pelvis pose xP

k and the
posture θk, and the Drift-FF where the state is composed of
the drift ξk and the posture θk. In the latter filter, the pelvis
pose can be recovered by composing the estimated drift with
the inertial measurement of the pelvis zP

x,k.
The overall structure of our filter can thus be summarized

as in Figure 2. The remaining of this section details each of
those parts.

Fig. 2: Method Overview of the Drift-FF. TR transforms
inertial poses into relative position and Π computes the
join distribution for the proposal density. aIMU and ωIMU are
respectively the raw accelerations and angular rates from the
IMU.

C. Multiple Posture Filter

As explained above, the first part of the filter estimates
the posture by splitting it into five sub-filters, each for
a body part: left and right arms and legs and the trunk
including the head. Each of those sub-filters is a particle
filter estimating the joint angles θj,k, j ∈ 1 . . 5 based on the
inertial observations preprocessed into the relative position
of each segment with respect to the root of the part.

The transition model p(θj,k+1 | θj,k) is chosen to be
a multivariate normal distribution centered on the previous
joint angles. The next particle is then computed as follows:

θj,k = θj,k−1 +wj,k, wj,k ∼ N (0,Σθ,j) ∀j ∈ 1 . . 5.

We relate the state θj,k to the relative observation zr
x,j,k

through forward kinematics calculations. Therefore, the as-
sociated observation model is:

z̃x,j,k = hfk,j(θj,k), ∀j ∈ 1 . . 5

hfk,j being the forward kinematics transform associated to
the subtree j.

The associated likelihood for weight update p(zr
x,j,k |

θj,k) is defined as a multivariate normal distribution of mean
hfk,j(θj,k) and covariance Σx,j,k over zr

x,j,k. The weight
update for the particle θij,k is defined as follows:

wi
k+1 ∝ wi

k · p(zr
x,j,k|θij,k) ∀j ∈ 1 . . 5.

This weight update is then followed by a resampling
step allowing to minimize high variance in our particle
population and propagate more often particle with more
important weights [22].

Then, from our hypothesis of independence between each
body part, the belief over the whole posture is simply:

p(θk|zr
x,1:k) =

5∏
j

p(θj,k|zr
x,j,1:k) (2)

D. Pose Fusion Filter

The Pose Fusion Filter (Pose-FF) is a particle filter esti-
mating directly the posterior distribution on the pose of the
pelvis xP

k and the joint angles θk through a weighted set of
N particles:

p(xP
k, θk | z1:k) ≈

N∑
i

wi
kδ

(
xP
k − xP,i

k , θk − θik

)
, (3)

where δ is the Dirac delta function.
Rather than using the transition model to sample new

particles xP,i
k , θik as for the MPF, we rely on a proposal

distribution π(xP
k, θk). The aim of a proposal distribution

is to generate particles at the best locations to represent the
posterior p(xP

k, θk | z1:k). In particular, we can leverage our
estimation from the MPF (from Equation 2) to have a good
estimate on p(θk | z1:k). For the pose, we use a multivariate
normal transition function:

p(xP
k | xP

k−1) = N
(
xP
k−1,Σp

)
.



We can thus build our proposal as:

π(xP
k, θk)

= p(xP
k | z1:k)p(θk | zr

x,1:k+1)

= p(θk | zr
x,1:k+1)

∫
xP

k−1

p(xP
k | xP

k−1)p(x
P
k−1 | z1:k)

= p(θk | zr
x,1:k+1)

N∑
i

p(xP
k | xP,i

k−1)w
i
k−1δ

(
xP
k−1 − xP,i

k−1

)
(4)

where Equation 4 is obtained by substituting the previous
posterior according to Equation 3 and marginalizing on the
pose.

Sampling from this proposal amounts to:

• sampling from the output of the MPF according to
Equation 2 for the joint angles,

• sampling from p(xP
k | xP,i

k−1) for the pelvis pose.

Sampling the joint angles can be further simplified by reusing
the very same particle locations as the individual filters in
the MPF.

Now, the weights of the particles need to be computed
according to this proposal. More precisely, we have:

wi
k :=

p(xP
k, θk | z1:k+1)

π(xP
k, θk)

. (5)

If we substitute Equation 4 into Equation 5, we can simplify
the expression of the weights into:

wi
k ∝ wi

k−1p(zc,k | xP,i
k , θik), (6)

where p(zc,k | xP
k, θk) is defined as a multivariate normal

distribution centered on the 2D projection of the 3D positions
of each joint as computed by the forward kinematics and
with a covariance ΣC . With these weights, it is then possible
to compute an estimate as the mode or the average of the
weighted samples and to sample new particles for the next
time step.

E. Drift Fusion Filter

The pose fusion filter can estimate the pose but relies in
particular on a uninformed Gaussian transition model for
the pelvis. Without odometry, it needs to be wide enough
to account for the possible motions of the human and the
variance of the particles might be relatively high.

However, the inertial measurements do provide an estimate
of the pelvis position up to its global drift. An alternative
expression of fusion filter can thus be obtained by estimating
the drift ξk instead of the pelvis pose (Drift-FF).

The expressions are the same as for the pose fusion filter,
except that the covariance of the transition model Σd can
be assumed to be significantly smaller than Σp. A second,
minor, difference is that the observation function also now
depends on the inertial measurement of the pelvis zP

x,k.
Finally, the drift fusion filter is described in 1.

Algorithm 1 Drift Fusion Filter

Require: {xi
k−1, w

i
k−1}Ni=1,zx,k,zc,k

with xi
k−1 = [θik−1, ξ

i
k−1]

p(θk|zx,k) = MPF ({θj,k}j∈1..5 | zx,k)
for i ∈ 1 . . N do

θik ∼ p(θk | zx,k)
ξik ∼ p(ξk | ξik−1)
wi

k ← wi
kp(zc,k | ξik, θik, zP

x,k)
Resample with replacement {xi

k} using {wi
k}

end for
return {xi

k, w
i
k}Ni=1

IV. EXPERIMENTS AND RESULTS

A. Implementation and Experimental Setup

Setup: Experiments were conducted with 3 healthy
adults (3 males, 0 female, aged 24-26), recruited by word
of mouth in the University. Each participant had its height,
sole length as well as different anthropometric measurements
taken in order to parametrize the DHM corresponding to their
physiology.

The experiments were carried out inside an arena of
approximately 4×4 meters, whose area is completely tracked
by an OptiTrack Motion Capture system with 8 cameras.
Each participant was equipped with the Xsens MVN suit
with 17 embedded IMUs of the system. For ground truth, re-
flective markers from the OptiTrack Motion Capture system
were placed on the motion tracking suit in the locations of
pelvis, head, shoulder, elbows and wrists. A calibrated Intel
RealSense Camera (RGB-D), marked as well with reflecting
markers in order to retrieve its pose, was placed in the arena.

Tasks: The participants were instructed to perform a
5 to 10 minutes walk inside the arena, following rectangle
shaped path. They were also instructed various hand motions
both while standing still and walking.

Before each experimentation, the Xsens system was cali-
brated by walking forward and then back before staying put
in a neutral pose, as instructed by the Xsens software. Each
calibration was to be validated good enough to proceed by
the software.

Implementation: The algorithm was implemented in
Python 3.8 and run on a Ubuntu 20.04 with a 8-core Intel i7.
The kinematic human model was encoded using the Unified
Robot Description (URDF) which the angle joints defined in
the files will constitute the posture part of the state space
and the pose of the root frame will be used to estimate
the drift. Forward kinematics calculations were performed
using the Pinocchio library [23]. The 2D pose estimation by
OpenPose was ran on camera data from the experimentation,
on a Ubuntu 20.04 machine equipped with a NVIDIA 2070
RTX GPU. The captured data were downsampled at 5Hz and
run offline. But the current implementation has the capability
to run at 10Hz online for 1200 particles totals (200 for the
fusion filter and 1000 in total for the MPF). One of the
limiting elements is the 2D pose estimation, which can run
at maximum around 10fps on our system.



B. Results

To confirm that our method can estimate the pose and
posture while negating the drift, we carried different tracking
scenarios. These scenarios compare 3 main methods: (1) our
method, based on the sensor fusion and the proposal over
the posture distribution, using the coupled Multiple Posture
Filter (MPF) and estimating the drift, denoted Drift-FF, (2) a
similar method with the same exact architecture, but without
using the inertial odometry and tracking directly the pose
instead of the drift, denoted Pose-FF, and, (3) the inertial
based method corresponding to the raw Xsens observations
and denoted XS-IMU. It must be noted that the Xsens system
has already been designed to handle drift issues and to
provide an accurate estimate of its user pose, therefore, the
following experiments have the objective to assess if our
system can improve the already efficient Xsens solution,
which constitutes our baseline.

Drift Estimation and pose correction

As our system uses inertial based observations, we wanted
to confront the method’s resilience to drift. We ran both
the Pose-FF and the Drift-FF on data gathered during an
experiment where the human agent walked forward, circling
in the dedicated space. We then computed the root squared
error in position for all three previously enumerated methods.
The results corresponding to approximately 30 minutes total
of walking were compiled within Figure 3
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Fig. 3: Comparison in Positioning Error between 3 systems:
a hybrid system fusing information between camera and imu
(Drift-FF), a system based on vision alone (Pose-FF) and a
pure inertial method (XS-IMU)

From these results, Drift-FF provides an overall better esti-
mate than Pose-FF and XS-IMU. On the right of Figure 3, we
can notice that both fusion filters (Drift-FF and Pose-FF) pro-
vide better long-term results than XS-IMU with best results
when the drift is estimated (Drift-FF). It can also be noticed
that the error distribution of XS-IMU is very acceptable the 2
first cycles but this error and its interquartile range increase
with time. The significant (apparently linearly) increase of
the median value can be explained from the inertial drift. The
larger interquartile range of the XS-IMU error distribution
can be partially explained by the high sensitivity of the
observed error to the Xsens calibration. Nevertheless, our

method based on the drift estimate (Drift-FF) manages to
generate better results with the exact same data, being more
robust to the calibration step.The experiments, as illustrated
by Figure 4, showed the drift is large and asymmetrical,
expanding more significantly in a particular direction. Our
method (Drift-FF) computes a good estimate of the pose
through the drift, while not considering yet that assymetry.
Further investigations will be considered in order to improve
our drift estimate.
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Fig. 4: The drift is well visible from the trajectory estimated
from XS-IMU (inertial odometry)

Hand position and posture

One of the typical tasks in collaborative robotics is the
hand-over of an object. It requires a rather accurate estimate
of the position of the hand. The position of the head can also
be of interest to avoid particularly dangerous collisions or
even to estimate the human focus of attention. Both require
accurate estimates of the global pose of the pelvis and of
the position of the hand or head with respect to the pelvis.
In absence of ground-truth on the joint angles, checking
the accuracy of those positions is also an indirect means
to evaluate the quality of the posture estimate.

Figure 5 compares the errors on the position of the hand
for the three methods. On the left, we can see that the error
is not significantly different for both our fusion filters, which
is expected since they both use the same proposal from the
MPF corrected with the same observation. We can also see
that this error on the relative position is higher for our filters
than for the raw Xsens observation. This is due to additional
variance by the MPF in the retargeting process from the full
Xsens model to our more biomechanical 20-dof DHM. The
camera observation reduces a bit the variance but not enough
to reach the same accuracy as XS-IMU.

On the right of Figure 5, are compared the errors on the
absolute position of the hand. Those are the most meaningful
errors and, as expected from the results on the drift, we can
see that Drift-FF presents a significantly lower error than
XS-IMU.

V. CONCLUSION

We present an approach to estimate the full pose of a
human, including their pelvis position, pelvis orientation,
and joint angle. This approach is based on two first ideas:
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decoupling inertial observation to split the filtering, and using
the posture thus estimated as a proposal distribution for the
fusion particle filter. In addition, a third key idea consists in
estimating the drift instead of the pose to lower the variance
induced by the motion model.

The resulting algorithm, Drift-FF, is shown to be effec-
tive to estimate a drift-free pose of the pelvis and of the
hand. This was demonstrated on a collection of different
trajectories taken with an Xsens inertial motion capture suit
and a RGB camera. Due to its structure, it is also robust to
temporary occlusions such as when the human goes out of
the field of view of the camera.

We plan to use this system to estimate the activity of
the human in a collaborative robotics scenario. A remaining
challenge would be to reduce the number of inertial sensors
required by our method, so as to lower costs and ease
deployment.
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