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Abstract

The problem studied in this paper is that of distributed controller design for interconnected systems using
abstraction-based techniques. Controller synthesis for each subsystem uses local distributed sensor infor-
mation from other subsystems. Such partial information in an abstraction will be characterized in terms of
ranking functions which can be deemed as level sets of Lyapunov functions. An effective procedure is pro-
posed for the computation of ranking functions in the case of reach and stay specifications. A step-by-step
algorithmic procedure implementing the proposed approach is presented for controller synthesis based on
partial information. A numerical example is provided to illustrate the implementation.

Keywords: Control system synthesis; persistency specifications; symbolic control; compositional method.

1. Introduction

1.1. Context

The basic problem addressed in this paper is that of distributed control for interconnected systems.
Many engineered systems such as electrical grids and power networks, or mechatronic systems, are modular
subsystems, i.e. interacting networks of smaller dynamically coupled components which are interconnected5

through their inputs and outputs, where the interaction between control software with physical processes are
present. Symbolic control is a computational approach to controller synthesis for nonlinear systems (see e.g.
[1, 2] and the references therein). The main concept of symbolic control is that of the symbolic model, also
called discrete abstraction, which is a finite state/input approximation of a general continuous dynamical
system. When a symbolic model is related to the original system by some formal behavioral relationship10

such as alternating simulation [1] approximate bisimulations [3, 4, 5] or feedback refinement [6], controllers
designed for the symbolic model can be refined into controllers for the original system. This makes it
possible to use automatic controller synthesis techniques for finite state dynamical systems to synthesize
controllers for continuous systems (see e.g. [2]). Symbolic control can be applied to general classes of
continuous systems with state and input constraints and subject to bounded disturbances. Also, it enables15

the automatic synthesis of controllers that are “correct-by-design” for various type of specifications such as
safety, reachability, attractivity or more complex properties such as those described in Linear Temporal Logic
[2] that go beyond the traditional specifications (stabilization, output tracking or disturbance rejection) in
control theory. Symbolic methods have spurred on substantial research efforts over the last two decades,
these are often focused on different type of dynamics or different techniques for behavioral relationships20

between abstracted and original systems: dealing with the nondeterminism dynamic [7], non linear systems
[8, 9], switched systems [10], stochastic systems [11], interconnected systems [12, 13, 14].

Note that a critical issue with existing symbolic control techniques is that they do not scale well, [15].
Some recent research works dealing with this issue are [16, 17, 18]. For example, [16] provides multiscale
symbolic models that describe transitions by a sequence of embedded lattices approximating the state-space25

for incrementally stable switched systems, [17] proposes an optimization criterion for state-space grids based
on a prediction of the computational effort for the abstraction to be computed for non linear systems. In
[18], a compositional construction based in a small gain type condition for approximate abstractions of
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interconnected control systems. Software tools are now available for the computation of abstractions, for
example, PESSOA [19], CoSyMa [20], TuLiP [21], or SCOTS [22].30

Our paper extends the work of [13] on small gain results and distributed control to an algorithmic ap-
proach for controlling arbitrary many interconnected components with respect to reach-and-stay objectives.

1.2. Related work

Several methods to design distributed control laws already exist in the literature (see [23] and the
references therein). For interconnected systems, the compositional approach is very appealing for achieving35

tractable distributed control solutions which satisfy global system specifications, [18]. A similar problem
occurs in formal verification where implementations of computer programs are checked for correctness. Here,
compositional and assume-guarantee reasoning provides strategies to decompose a verification task, [24]. The
notions of compositional abstractions are reported in some recent papers, usually to extend the range of
physical systems that can be addressed. Among others, the interested reader can refer to [25, 26, 14, 18, 27]40

and the references therein. The paper [25] presents a compositional approach for approximate abstraction
which performs a model order reduction from one continuous system to another continuous system with
fewer state variables. In [26, 14] and [18], a compositional abstraction technique is proposed for networked
continuous systems based on approximate bisimulation. The paper [27] introduces the so called disturbance
bisimulation, as the basis for compositional symbolic abstractions.45

1.3. Contributions

The developments offered in this paper have initially been motivated by the work reported in [13] that
made use of small gain results from control theory and assume-guarantee reasoning from formal methods in
two interconnected systems. The extension from two to n interconnected systems is not immediate due to
the lack of explicit proofs, constructive algorithms and illustrative examples. These aspects were introduced50

and analyzed in a preliminary work reported in the conference communication [28] but without providing a
complete solution yet.

As in the work of [13], this work considers the problem of enforcing a persistency specification of the form
“reach a set of states P and remain there for all future time”, which is denoted in Linear Temporal Logic
(LTL) by ♦�P , meaning “eventually always”, see [2]. The main contributions of this paper are: Firstly,55

the key feature of the proposed approach is that controller synthesis is based on local distributed sensor
information from other subsystems. Such partial information is characterized in terms of Lyapunov-like
ranking functions as introduced for the first time in [13], who also provided an algorithm to find the minimum
cardinality of ranking function codomains in the case of n = 2 interconnected systems. Unfortunately, in
many cases, codomains of minimal cardinality will not be sufficient to construct a controller enforcing the60

required specifications. Secondly, beyond the results in [13] and, to the best of our knowledge, beyond
subsequent works, this paper develops a generic algorithm for constructing such ranking functions and a
distributed controller provenly enforcing the satisfaction of a persistency specification by the abstracted
interconnected system. The algorithm uses an original well-order to that purpose. Thirdly, the generic
procedure is applied to a numerical example for which the method from [13] cannot be applied directly.65

Finally, those three contributions make it possible to explicitly compute lower and upper bounds for the
minimum cardinality of ranking function codomains. In the proposed framework, the inequalities related to
these lower (resp. upper) bounds correspond to necessary (resp. sufficient) conditions making it possible to
enforce the local reach and stay specifications.

The paper is organized as follows. Some preliminary definitions are given in Section 2. Section 3 is70

devoted to the problem statement. In Section 4, a procedure based on Lyapunov-like (or ranking) functions
for building a reduced discrete abstraction of the original interconnected system is proposed. In Section
5, an algorithm is proposed to explicitly compute those ranking functions and ensure that the persistency
specification is satisfied. Section 6 presents a numerical example and some concluding remarks are given in
Section 7.75
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2. Preliminaries

2.1. Notation.

The cardinality of a set A is denoted by |A|. The relative complement of the set A in the set B is denoted
by B \ A. Given a relation R ⊆ A × B and A0 ⊆ A, we define R(A0) = {b ∈ B | ∃ a ∈ A0, (a, b) ∈ R}.
f : A → B denotes an ordinary map, and f−1(b) := {a ∈ A : f(a) = b} for b ∈ B. The symbols R, Z, N080

denote the set of real numbers, integers, natural numbers including the zero, respectively. [a; b] denotes a
discrete interval with a and b as lower and upper bound, respectively. Given numbers i, n ∈ N with i ≤ n,
the following sets are defined where the element positions are given in ascending order with respect to their
values; I = [1;n] ⊂ N, Ĩi = I \ {i}. Given two sets A and B, the product A × B denotes the Cartesian
product, and for a collection of sets {Aj}j∈Ĩi , indexed by the set Ĩi, the product

∏
j∈Ĩi Aj denotes the85

Cartesian product keeping the order in Ĩi, i.e.
∏

j∈Ĩi Aj := A1×· · ·×Ai−1×Ai+1×· · ·×An. Given a vector

x = (x1, ..., xn) ∈ Rn, xi denotes the i-th component of x, and x̃i is defined as x̃i = (x1, ..., xi−1, xi+1, ..., xn).

2.2. Transition systems.

Abstractions are dynamical systems with finitely many states and input values, each of which symbolizes
aggregates of states and inputs of the original system. Abstractions are mathematically modeled as transition90

systems [1].

Definition 1 (Transition system). A transition system S is a tuple (XS , US , FS , Y,H), where XS is a
set of states, US is a set of control inputs, FS ⊆ XS×US×XS is a transition relation, Y is a set of outputs,
and H : XS → Y is an output map. When Y = XS and the output map H is the identity function, then the
transition system is reduced to a tuple S = (XS , US , FS).95

Relation FS says when a transition can occur from state x to state x′ upon control input u. A transition
(x, u, x′) ∈ FS is also denoted by x

u−→ x′. The notation Postu(x) = {x′ ∈ XS : (x, u, x′) ∈ FS} denotes the
set of successors of x upon control input u.

Definition 2 (Alternating simulation relation). Given two transition systems Sa = (Xa, Ua, Fa) and
Sb = (Xb, Ub, Fb), a relation R ⊆ Xa×Xb is an alternating simulation relation from Sa to Sb if the following
condition is satisfied:

∀(xa, xb) ∈ R, ∀ua ∈ Ua, ∃ub ∈ Ub, ∀x′b ∈ Postub
(xb),∃x′a ∈ Postua

(xa), (x′a, x
′
b) ∈ R.

Alternating simulation relation allows the designer to work with the abstract system Sa instead of the
concrete system Sb. For example, in the case of a reach-and-stay specification, if there is a suitable controller100

in Sa then there is one in Sb provided every state in Sb has a successor, i.e. ∀xb ∈ Sb, Postub
(xb) 6= ∅. Note

also that the abstraction should not be too coarse: the states to reach-and-stay, as given by a specification,
should be separated from other states in the abstraction. Under this condition, a controller for the abstract
system Sa can be refined to a controller on the concrete system Sb, see [1].

The Feedback Refinement Relation as in [6] is a special case of alternating simulation relations:

• Ua ⊆ Ub;

• ∀(xa, xb) ∈ R,∀u ∈ Ua, R(Postu(xb)) ⊆ Postu(xa).

It ensures that when the abstract controller is applied to the original system, the temporal logic specifications105

are satisfied.
A dynamical system evolving in continuous-time can be modeled as a transition based on a τ -sampled

behavior, τ > 0, see e.g. [1]. We refer to [1] for other basic notions and the relation between bisimulation
and the control synthesis problem. The interested reader can also refer to [4] for the notion of approximate
simulation and bisimulation relations and functions, where the authors provide upper-bounds on the approx-110

imation metrics. Approximate bisimulation is a symmetric version of alternating simulation. The symbolic
model can be constructed without stability assumptions [29]. It is shown in [30] that bisimulation unifies the
concepts of state-space equivalence and state-space reduction. Moreover, the notion of bisimulation relation
for general linear differential-algebraic systems is formulated in [31].
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3. Problem statement115

Consider a discrete interconnected system:

x+1 ∈ f1(x1, x2, x3, ...xn, u1) (1)

x+2 ∈ f2(x2, x1, x3, ...xn, u2)

...

x+n ∈ fn(xn, x1, x2, ...xn−1, un)

with xi ∈ Xi and ui ∈ Ui for some finite setsXi, Ui, i ∈ I. The system (1) is discrete, however, it encompasses
sampled versions and abstractions of continuous-time systems, possibly subject to disturbances, see [6, 32].
The system (1) is non-deterministic in the sense that if an input is applied in a state, several next states
are possible. The trajectories of the system (1) are denoted by ∀i ∈ I, xi(k, x0, ci) with initial condition
xi(0, x0, ci) = x0, discrete time k ∈ N0, and control ci : Xi ×

∏
j∈Ĩi Xj → Ui.120

Consider specifications of the form “reach P and stay there”, where P = P1 × P2 × · · · × Pn for some
sets Pi ⊆ Xi, using linear temporal logic notations these are written as ♦�P . The control problem is to
find controllers ci : Xi ×

∏
j∈Ĩi Xj → Ui for each i ∈ I, such that the system described by (1), under the

state feedback controls ui = ci(xi, x̃i), satisfies

♦�P : ∀x0 ∈ X,∃ ki ∈ N0,∀k ≥ ki, xi(k, x0, ci) ∈ Pi (2)

Our objective is to design a controller ci for the subsystem i in a domain Xi ×
∏

j∈Ĩi Dj ×Ui of smaller

cardinality than Xi×
∏

j∈Ĩi Xj ×Ui by using a reduced knowledge about other subsystems. Our approach is
based on ranking functions that characterize partial information about the sensed states of other subsystems.
Alternating simulation relation will be used to infer the existence of a controller for (1) from the existence
of a controller for a reduced discrete abstraction.125

4. Construction of reduced discrete abstractions

The construction of reduced discrete abstractions are based mainly on controllable predecessors CPi (Ui, E, Si),
where Ui is the input set, E ⊆

∏
j∈Ĩi Xj and Si ⊆ Xi, as

CPi (Ui, E, Si) =
{
xi ∈ Xi : ∃ui ∈ Ui,∀x̃i ∈ E, fi(xi, x̃i, ui) ⊆ Si

}
, (3)

which will be particularized using similar notations for specific purposes later.
The controllable predecessor (3) describes the states inXi for which the controlled system i is able to reach

the target set Si despite the local influences, expressed by E, from other interconnected systems (robustness
property). E may be inferred on some available partial knowledge about states of other components.130

The transition system modeling the system (1) is denoted S = (XS , US , FS) where XS =
∏

i∈IXi,
US =

∏
i∈I Ui, and FS is given by

FS =
{

(x, u, x′) ∈ XS × US ×XS : ∀ i ∈ I, x′i ∈ fi(xi, x̃i, ui)
}
. (4)

The construction of a reduced discrete abstraction T based on ranking functions is done as follows.
Consider ranking functions defined in each subsystem i ∈ I by Vi : Xi → Di, where Di = {0, 1, 2, ..., di}, for
some di ∈ N0, and |Di| ≤ |Xi|; and given a subset Z ⊂ Xi define VM

i as

VM
i (Z) = max{Vi(z) | z ∈ Z}. (5)

Intuitively, the ranking functions represent some notion of distance to the set V −1i (0) ⊆ Xi. In principle,
they can be freely proposed, but we will give a constructive way to build them when considering persistency
specifications in the next section.
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To start with, adapt the functions fi of (1) from the domain Xi ×
∏

j∈Ĩi Xj × Ui to the domain Xi ×∏
j∈Ĩi Dj × Ui as follows

∀i ∈ I, Fi(xi, ṽi, ui) =
⋃

x̃i ∈
∏
j∈Ĩi

V −1j (vj)

fi(xi, x̃i, ui). (6)

The controllable predecessor based on values of ranking functions for each subsystem i ∈ I from a set Si ⊆ Xi

under the influence of ṽi ∈
∏

j∈Ĩi Dj is defined as

CPreṽii (Si|Ui) =
{
xi ∈ Xi : ∃ui ∈ Ui, Fi(xi, ṽi, ui) ⊆ Si

}
. (7)

Intuitively, ṽi is a value characterizing some partial information about the states of components other
than i. The definition of predecessor (7) relies on the ranking functions {Vi}i∈I and its relation with the
generic definition (3) is given by (8):

CPreṽi
i (Si|Ui) = CPi

Ui,
∏
j∈Ĩi

V −1j (vj), Si

 . (8)

To simplify the notations, V −1i (≤ vi) will denote a shorthand for
⋃

k≤vi V
−1
i (k) with k ∈ N0. Consider

the function V+
i : Di ×

∏
j∈Ĩi Dj → Di defined with the controllable predecessor:

∀i ∈ I, V+
i (vi, ṽi) = min

{
k ∈ N0 : V −1i (vi) ⊆ CPreṽii

(
V −1i (≤ k)

∣∣Ui

) }
. (9)

For such V+
i , consider the abstraction T given by T = (XT , UT , FT ), where XT =

∏
i∈IDi, UT = {uT } for

some control input uT , and

FT =
{

(v, uT , v
′) ∈ XT × {uT } ×XT : ∀ i ∈ I, v′i ≤ V+

i (vi, ṽi)
}
. (10)

Lemma 1. The relation R ⊆ XT ×XS given by

R =
{

(v, x) ∈ XT ×XS : ∀ i ∈ I, vi = Vi(xi)
}
, (11)

is an alternating simulation relation from T to S.135

Proof. We show that the condition of Definition 2 is satisfied. For all (v, x) ∈ R, the equality

∀ i ∈ I, vi = V (xi), (12)

is satisfied. Define V+
i (vi, ṽi) as in (9), which implies

∀ i ∈ I, V −1i (vi) ⊆ CPreṽii
(
V −1i

(
≤ V+(vi, ṽi)

)∣∣Ui

)
. (13)

From (12), ∀i ∈ I, xi ∈ V −1i (vi) is ensured. By (13) we get xi ∈ CPreṽii
(
V −1i

(
≤ V+(vi, ṽi)

)∣∣Ui

)
. The

controllable predecessor CPre in (7) implies the existence of a control u ∈ US such that

∀ i ∈ I, Fi(xi, ṽi, ui) ⊆ V −1i

(
≤ V+

i (vi, ṽi)
)
. (14)

Through equations (1) and (6), one gets that ∀x′ ∈ Postu(xi, x̃i); meaning x′i ∈ Fi(xi, ṽi, ui) for each i ∈ I.
By inclusion (14) one obtains

∀ i ∈ I, x′i ∈
⋃

k≤V+
i (vi,ṽi)

V −1i (k), (15)

which implies the existence v′ ∈ PostuT
(v) such that 0 ≤ v′i ≤ V+

i (vi, ṽi) and x′i ∈ V
−1
i (v′i), i.e. Vi(x

′
i) = v′i

for each i ∈ I. Consequently (v′, x′) ∈ R by (11). �
The next Theorem 1 extends Theorem 3.4 in [13] from two to n interconnected systems: it gives the

domain of admissible controllers for T satisfying the persistency specification.
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Theorem 1. Suppose that T satisfies the specification ♦�PT , for some set PT ⊆ XT . Then there exists
a controller c = (c1, ..., cn), where ci has domain Xi × D1 × · · · × Di−1 × Di+1 × · · · × Dn enforcing the
specification ♦�PS given by

PS = {x ∈ X : (V1(x1), V2(x2), ..., Vn(xn)) ∈ PT }. (16)

In this case, the controller can be chosen as follows

ci(xi, ṽi) ∈
{
ui ∈ Ui : max

x̃i∈
∏

j∈Ĩi V −1
j (vj)

VM
i (fi(xi, x̃i, ui)) ≤ V+

i (Vi(xi), ṽi)
}

(17)

Proof. First we show that the condition in (17) is well defined. Let (xi, ṽi) ∈ Xi ×
∏

j∈Ĩi Dj and define

V+
i (Vi(xi), ṽi) as in (9). The inclusion (18) results from (9) by considering the minimal value of k, i.e.

k = V+
i (vi, ṽi), and vi = V (xi):

V −1i (Vi(xi)) ⊆ CPreṽii
(
V −1i

(
≤ V+

i (Vi(xi), ṽi)
)∣∣Ui

)
. (18)

Note that xi ∈ V −1i (Vi(xi)) and consequently

xi ∈ CPreṽii
(
V −1i

(
≤ V+

i (Vi(xi), ṽi)
)∣∣Ui

)
.

From (7), ∃ui ∈ Ui, Fi(xi, ṽi, ui) ⊆ V −1i (≤ V+
i (V (xi), ṽi)), i.e. ∃ui ∈ Ui, V

M
i (Fi(xi, ṽi, ui)) ≤ V+

i (V (xi), ṽi).140

From (6), ∃ui ∈ Ui, ∀x̃i ∈
∏

j∈Ĩi V
−1
j (vj), V

M
i (fi(xi, x̃i, ui)) ≤ V+

i (Vi(xi), ṽi).
Now, consider a sequence

x
u(1)−−−→ x(1)

u(2)−−−→ · · · u(k)−−−→ x(k)
u(k+1)−−−−→ x(k + 1) · · · (19)

using controllers defined as in (17) for XS , take the sequence

v
uT−−→ v(1)

uT−−→ · · · uT−−→ v(k)
uT−−→ v(k + 1) · · · (20)

defined from (19) by vi(k) = Vi(xi(k)) for i ∈ I and k ∈ N. By the assumption, T satisfies the specification
♦�PT , then there exists N ∈ N such that v(k) ∈ PT for all k ≥ N . As a consequence of Lemma 1, x(k) ∈ PS

for k ≥ N . �
145

Theorem 1 gives an explicit admissible set of controllers only when the system T satisfies ♦�PT . This
property can be checked by analyzing cycles in T .

Definition 3. A directed graph G = (V, E) consists of a vertex set V and an edge set E ⊆ V × V. A cycle
is a sequence of vertices c(1), c(2), ..., c(m) ∈ V such that c(1) = c(m) and (c(i), c(i+ 1)) ∈ E for all i. A
cycle is called self-cycle when m = 2, i.e. (c(1), c(1)) ∈ E.150

The system T defined by (9)-(10) can be considered as a directed graph G = (XT , ET ), where (v, v′) ∈ ET
if and only if (v, uT , v

′) ∈ FT for the unique uT . A necessary and sufficient condition under which system T
enforces the specification ♦�PT , for some set PT ⊆ XT , can be obtained in terms of cycle properties:

Proposition 1. Consider T defined in (9)-(10), and a target set PT ⊆ XT . T satisfies the specification
♦�PT if and only if all cycles in G = (XT , ET ) are included in PT .155

Proof. Necessary condition: assume that T satisfies ♦�PT and consider a cycle v(1), v(2), ..., v(m) = v(1)
that is reachable from some initial state w(1), through a path w(1) → w(2) → ... → w(k) = v(1). Since
the infinite path w(1) → w(2) → ... → v(1) → ... → v(m − 1) → ... reaches PT and stays there forever, all
vertices of the cycle must belong to PT .

Sufficient condition, this is proved by contradiction: assume that all reachable cycles are included in PT ,160

and consider an infinite path from some initial state. If this path does not satisfy ♦�PT then some vertex
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that appears infinitely often on this path does not belong to PT . But this means that some reachable cycle
is not included in PT , a contradiction. �

The following proposition gives sufficient conditions under which the system T defined by (9)-(10) satisfies
♦�PT specification. Recall that the domain of T is a set of tuples of natural numbers, XT =

∏
i∈IDi. The165

proposition uses a particular ordering on these tuples.
We write v @ w if either:

1. the maximal value in v is smaller than that in w, max{vi : i = 1, . . . , n} < max{wi : i = 1, . . . , n}; or

2. the maximal values are the same, say k, and the last occurrence of k in v is before that in w, max{i :
vi = k} < max{j : wj = k}.170

Observe that @ is a strict well-order on XT (@ is transitive and anti-symmetric), namely, there is no infinite
sequence v1, v2, . . . with vi+1 @ vi, for i = 1, . . .

Proposition 2. Take a system T = (XT , UT , FT ) defined by (9)-(10). Let PT ⊆ XT be a @-downward
closed set, i.e. a set such when v ∈ PT and w @ v then w ∈ PT . Consider two properties:

i) (V+
1 (v1, ṽ1), . . . ,V+

n (vn, ṽn)) @ v, for all v ∈ XT \ PT ;175

ii) (V+
1 (v1, ṽ1), . . . ,V+

n (vn, ṽn)) ∈ PT , for all v ∈ PT .

System T satisfies the specification ♦�PT if conditions i), ii) are satisfied.

Proof. From the definition (10) of the transition relation in T , we get that if v → w then w(i) ≤ V+
i (vi, ṽi)

for all i = 1, . . . , n. Hence, by property i), w @ v. As we have remarked above, @ is a well order so every
sequence v1 → v2 → · · · must eventually reach a state from PT . This shows that T satisfies ♦PT .180

Using the same observation, since PT is @-downwards closed, from property ii) we deduce that if v ∈ PT

and v → w then w ∈ PT . So T satisfies ♦�PT . �
In this section, we have shown that it is possible to build reduced discrete abstractions from the ranking

functions. Moreover, these can provide an explicit admissible set of controllers provided some conditions
on the transition relation are satisfied. In the next section, the problem of constructing ranking functions185

ensuring that the reduced system satisfies these conditions will be considered.

5. Ranking functions and persistency specifications

An important result in [13] is to find a minimum cardinality of the codomain of the ranking functions, for
the dimension n = 2. The first step in this section is to extend this result to multiple systems. Unfortunately,
in many cases the resulting domains of minimal cardinality will not be sufficient to construct a desired190

controller. Namely, the reduced system T may not satisfy reach-and-stay specification. In order to tackle
these restrictions, the first step in this section consists in extending the minimum cardinality result to an
arbitrary number of subsystems (n ≥ 2). Then, in the second subsection, an algorithm is presented for
building ranking functions satisfying the (reach-and-stay) specifications that solves more control instances
than [13].195

5.1. Specifications and lower bound on codomain cardinality of the ranking functions

The lower bound on codomain cardinality of the ranking functions, such that the system T defined from
(9)-(10) may satisfy the specification ♦�PT , is found through the controllable predecessor parameterized by
the input defined as in (21), which is an extension to multiple subsystems of the definition proposed in [13]:

CPrei

Si

∣∣∣∣∣∣
∏
j∈Ĩi

Xj , Ui

 =

{
xi ∈ Xi : ∃x̃i ∈

∏
j∈Ĩi Xj ,

∃ui ∈ Ui, fi(xi, x̃i, ui) ⊆ Si

}
. (21)

Note that the controllable predecessor definition given in (21) does not require information about ranking
functions unlike the definition (8).
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The controllable predecessor given in (21) can be used to define a sequence of sets Hk
i ⊆ Xi, i ∈ I,

k ∈ N0 as200

Hi(0) = Pi, (22)

Hi(k + 1) = CPrei
(
Hi(k)

∣∣∣∏j∈Ĩi Xj , Ui

)
.

The ranking functions V H
i : Xi → N0, i ∈ I defined from the sets Hi(k)’s are given by

V H
i (x) = min{k ∈ N0 : x ∈ Hi(k)}. (23)

Note that the image of V H
i , denoted by Dmin

i , has finite cardinality, due to the finite cardinality of Xi and
Ui. The function V H

i provides the minimum number of sequence of controls and states to reach the target
set Pi by considering that the exact knowledge of the elements of the other subsystems Xj , j ∈ Ii would
be required. Though useful to obtain the searched lower cardinality bounds, the functions V H

i ’s are not
necessarily good candidates for defining ranking functions that satisfy the conditions of Theorem 1, which205

motivates the search for techniques to define ranking functions as described in the next section 5.2.
In [13], a proposition about the minimum number of distinct values taken by the ranking functions

(i.e. minimum cardinality of Di) is given in the case of two subsystems. Its extension to n subsystems is
straightforward. To avoid duplicating materials, the proof is omitted here.

Proposition 3. Consider any function Vi : Xi → N0 satisfying V −1i (0) = Pi and whose image Di has210

a cardinality strictly less than |Dmin
i |. For this Vi and arbitrary functions Vj, j 6= i, construct V+

i as in
(9), and construct the abstraction T in accordance with (10). Then T does not enforce the specification
♦�

∏
i∈I{0}.

One can define ranking functions such that |Dmin
i | ≤ |Di|, e.g. V H

i in (23), but this is not sufficient to
guarantee that the system T satisfies the specification ♦�PT since there is no guarantee that all cycles have215

vertices solely in PT , see Proposition 1, is necessarily satisfied by any set of n ranking functions Vi with
cardinality higher than |Dmin

i |, i ∈ I.

5.2. Ranking functions for satisfying specifications

An algorithm is presented for constructing distributed controllers that works in more cases than the
procedure described in the previous subsection 5.1. It constructs a sequence of sets Zi(k), for i ∈ I and220

k ∈ N0. These sets will be used to define ranking functions. These in turn determine an abstract transition
system T as in (9)-(10). Theorem 2 will show that T satisfies the specification ♦�PT for the target set PT

containing only the zero vector. Then, it will be possible to use Theorem 1 to obtain a distributed controller.
A rough idea behind Algorithm 1 is the following. The target sets Pi’s are defined as initial sets of the

algorithm in the step 1, where sets Zi(0)’s guarantee that there are controllers enforcing the system to stay225

in target states. We assume that the system itself should satisfy stay specification in the target set, which
implies the existence of controls enforcing it, step 1 identifies the sets Zi(0)’s where the stay specification
is satisfied, which are contained in the target sets Pi’s. In step 2, for every i, we compute a set of states
Ti for which there is a control input permitting to reach the set Zi(≤ k − 1). The information available at
this point is that each component j 6= i is in a state from the set Zj(`j). The unsafe condition in step 2230

verifies that the new set Zi(k) does not influence unfavorably other components, namely there is a way to
keep them in sets Zj computed previously (see Fig. 1).

From the sets Zi(k) computed by the algorithm, ranking function for every i ∈ I can be defined as:

Vi(x) = min{k ∈ N0 : x ∈ Zi(k)}, (24)

The domain of this n-tuple of functions is

CD =
∏
i∈I

Zi(≤ kmax), (25)
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Algorithm 1: Sets for building Ranking Functions

Input: Target sets Pi ⊆ Xi, i = 1, ..., n;
Output: Sequence of sets Zi(k) ⊆ Xi, for i ∈ I, and k ∈ N0

// PART 1: Stay specification

1 Z1(0)← P1, ..., Zi(0)← Pi, ..., Zn(0)← Pn;
2 for i=1,n do
3 Q← ∅;
4 while Zi(0) 6⊆ Q do
5 Q← Zi(0);
6 Zi(0)← Q ∩ CPi(Ui,

∏
s∈Ĩi Zs(0), Q);

// PART 2: Reach specification

7 while ∃i ∈ I, Zi(k) 6= ∅ do
8 k ← k + 1;
9 for i← 1, n do

10 L(i)← {0, 1, ..., k}(i−1) × {k} × {0, 1, ..., k − 1}(n−i);
11 Ti ← Xi;
12 for ` ∈ L(i) do
13 Ti ← Ti ∩ CPi

(
Ui,
∏

s∈Ĩi Zs(`s), Zi(≤ (k − 1))
)
; // `s is the s-th component of `

14 Zi(k)← Ti \ Zi(≤ (k − 1));
15 unsafe← false;
16 for ` ∈ L(i) and j ∈ {1, . . . , n} − {i} do
17 if j < i then
18 b← k else b← (k − 1);

19 if Zj(≤ b) 6⊆ CPj(Uj ,
∏

s∈Ĩi Zs(`s), Zj(≤ b)) then
20 unsafe ← true

21 if unsafe then
22 Zi(k)← ∅;

which coincides with the domain of the distributed controller, where kmax is the value of k at the end of the
algorithm. Since the sets Zi(k) are pairwise disjoint, it comes:

V −1i (vi) = Zi(vi). (26)

Theorem 2. Consider the system as in (1), the sets Zi(k) computed by Algorithm 1, and ranking functions
Vi as in (24). Let T be the system defined according to (9)-(10), and let PT = {0} be a singleton set
consisting of the zero vector. Then, system T satisfies the specification ♦�PT .235

Proof. We use Proposition 2: it is enough to show that the two conditions of the proposition hold. These
are treated in the two claims below.

Claim 1: For all v ∈ XT \ PT , (V+
1 (v1, ṽ1), . . . , (V+

n (vn, ṽn)) @ v.
Let v ∈ XT \ PT , then ∃ i ∈ I such that vi > 0, define

k∗ = max{vs : s ∈ I}, i∗ = max{s ∈ I : vs = k∗}, (27)

where vi∗ = k∗ > 0 holds. From now on, consider the k∗-th iteration of Algorithm 1, line 10 ensures the
next holds {

vi ≤ k∗, if i ≤ i∗;
vi < k∗, if i > i∗.

(28)
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Figure 1: Description of the k-th iteration of Algorithm 1. The arrows illustrate the possible behaviour of Z’s: i) the new set

Ti reaches Zi(≤ k− 1) despite the interactions with all other subsets previously defined as Z′
js, j ∈ Ĩi, ii) the effect of the new

set Ti in the Zj ’s keeps them inside Zj(≤ k) for j < i and Zj(≤ k − 1) for i < j (safe condition).

Consider in Algorithm 1 (lines 8-9) the parameters k ← k∗, i← i∗ and `← v (line 10) to ensure

Ti∗ ← Ti∗ ∩ CPi∗(Ui∗ ,
∏

s∈Ĩi∗
Zs(vs), Zi∗(≤ (k∗ − 1))),

which implies (by lines 13-14)

Zi∗(k
∗) ⊆ CPi∗(Ui∗ ,

∏
s∈Ĩi∗

Zs(vs), Zi(≤ (k∗ − 1))) .

From (26), we have Z∗i (k∗) = V −1i∗ (k∗), then the above inclusion can then be rewritten as

V −1i∗ (k∗) ⊆ CPi∗(Ui∗ ,
∏

s∈Ĩi∗
V −1s (vs), V

−1
i∗ (≤ (k∗ − 1)))

From V+ definition given in (9), we have

V+
i∗(vi∗ , ṽi∗) ≤ k∗ − 1 < k∗ = vi∗ . (29)

Now, let j ∈ Ĩi
∗

and `← v in Algorithm 1 (lines 16-20) which imply, in terms of ranking functions (26),{
V −1j (≤ k∗) ⊆ CPj(Uj ,

∏
s∈Ĩj V

−1
s (vs), V

−1
j (≤ k∗)) if j < i∗

V −1j (≤ k∗ − 1) ⊆ CPj(Uj ,
∏

s∈Ĩj V
−1
s (vs), V

−1
j (≤ k∗ − 1)) if j > i∗

(30)

where the variable unsafe must be false due to that Zi∗(k
∗) 6= ∅. From (22), (30) and V + definition (9), we

obtain {
V+

j (vj , ṽj) ≤ k∗ if j < i∗

V+
j (vj , ṽj) ≤ k∗ − 1 if j ≥ i∗

(31)

with V −1j (vj) ⊆ V −1(≤ k∗) if j < i∗, and V −1j (vj) ⊆ V −1(≤ k∗ − 1) if j > i∗. Therefore, the inequalities in

(31) imply (V+
1 (v1, ṽ1), . . . , (V+

n (vn, ṽn)) @ v holds.240

Claim 2: V+
i (0,0) = 0 for all i = 1, . . . , n.

This claim ensures that PT is a @-downward closed set and condition ii) in Proposition 2 is satisfied. The
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inclusion Zi(0) ⊆ CPi(Ui,
∏

s∈Ĩi Ps(0), Zi(0)) holds by step 1 in Algorithm 1. This means in terms of ranking
functions:

V −1i (0) ⊆ CPi(Ui,
∏
s∈Ĩi

V −1s (0), V −1i (0)), (32)

where for each i = 1;n Zi(0) ⊆ Pi is satisfied. By (8), the above can be written as V −1i (0) ⊆ CPre0̃i
i

(
V −1i (0)|Ui

)
.

By definition of V+
i in (9), we get V+

i (0,0) = 0 as desired. �
Consequently, Theorem 2 provides a constructive way to satisfy the main assumptions of Theorem 1.

Therefore, it should be emphasized that the online implementation of the designed subsystem controllers
(17) indeed presents interesting features: instead of a unique centralized controller, significantly simpler245

subsystem controllers result from the proposed design. In particular, since only partial information (ranking
function values) is used from other subsystems, the number of symbolic state configurations to explore in
order to find an adequate control value is drastically reduced from |Xi ×

∏
j∈Ĩi Xj | to |Xi ×

∏
j∈Ĩi Dj |.

6. Example: Floor Heating

In this section, the theoretical results of this paper are illustrated with the temperature regulation in a
house with 3 rooms, two of them being equipped with a heater. This example is selected to illustrate the
management of continuous dynamics in a symbolic framework. It is assumed that the exterior temperature
remains constant during the simulations. For each room i ∈ {1, 2, 3}, the variations of the temperature Ti
are described by the following system adapted from the model presented in [33]:

Ṫ1(t) = A1,2(T2(t)− T1(t)) +B1(Tenv(t)− T1(t)) +H1(t)

Ṫ2(t) = A2,1(T1(t)− T2(t)) +A2,3(T3(t)− T2(t)) +B2(Tenv(t)− T2(t))

Ṫ3(t) = A3,2(T2(t)− T3(t)) +B3(Tenv(t)− T3(t)) +H3(t) (33)

where Ai,j is the heat exchange factor specific to walls and windows, Tenv is the current outside temperature250

(considered as a disturbance), Bi is the heat exchange coefficient between outside temperature and room i,
H1(t) ∈ {0, he1} and H3(t) ∈ {0, he3} are the power of the heaters in the rooms 1 and 3, respectively. The
numerical values are A1,2 = A2,1 = A2,3 = A3,2 = 0.004, B1 = B2 = B3 = 0.003, he1 = 0.2, he3 = 0.3, and
4oC ≤ Tenv ≤ 5oC.

The continuous-time dynamics of (33) is periodically sampled with period 12 seconds. We impose the255

state constraint Ti ∈ [0, 30], i = 1, . . . , 3 and the control objective is to stabilize the temperatures in the
intervals: T1, T3 ∈ [19, 23] and the allowed range of variation of T2 is selected to be looser T2 ∈ [10, 23].

The approach described in [32] is used to compute symbolic abstractions. For that purpose, we use
uniform partitions made of 60 sub-intervals for each of the three state intervals [0, 30]. Uniform discretizations
of the input Hj with 2 elements {hei} for j = 1, 3 are also considered, thus resulting in 4 distinct input260

symbols in the obtained abstraction.
The algorithm 1 is then used to synthesize ranking functions for the system. The algorithm stops after

12 iterations of the main loop. The total computation time is 297 seconds (CPU: 2.2 GHz Intel Core i7,
RAM: 16 Go 1600 MHz DDR3, Matlab R2019b), with 114 seconds spent on computing the abstraction, 62
seconds spent in defining the ranking functions iteratively, and 121 seconds spent on control synthesis. In the265

computation of sets Zi(k)’s, we obtain the values d1 = 11, d2 = 12, d3 = 11 corresponding to the maximum
values obtained for the codomain of the ranking functions. The state space can be decomposed using level
sets of ranking functions where the objective is to decrease in the level sets until reaching the target set, see
Figure 2. A better illustration of this decomposition of the state space can be obtained through a projection
in two dimensions, see Figure 3.270
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Figure 2: Level sets corresponding to the ranking functions, where the blue set in the center is the target set.
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Figure 3: A two-dimensional projection with T2 = 20oC from level sets corresponding to the ranking functions.

The proposed approach constructively builds ranking functions satisfying the acyclic property described
in Proposition 1 (and thus the reach and stay specification), see Fig. 4. Blue arrows represent the transition
relation of the resulting reduced discrete abstraction and red points highlight the states for which self-
cycles may occur. As expected to satisfy the reach and stay specification, no self-cycles occur except for
(0, 0, 0) which represents the target set. By comparison, the direct extension to multiple interconnected275

subsystems of the ranking functions defined in [13] to derive the minimum cardinality result (Proposition
3) leads to a reduced discrete abstraction that does not satisfy the required acyclic property (Proposition
3.5 in [13] and Proposition 1 in this paper). It is thus a contribution of this paper to propose an algorithm
constructively building Lyapunov-like discrete ranking functions satisfying reach and stay specifications in
an interconnected framework.280
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Figure 4: Reduced discrete abstraction resulting from Algorithm 1, it features no self-cycles except for (0, 0, 0) which represents
the target set.

.

Moreover, by combining the results of paragraphs 5.1 and 5.2, both a lower and an upper bound for
the minimum cardinality of ranking function codomains enforcing the reach and stay specification of n
interconnected subsystems is obtained. In the case of the numerical example developped in this section,
this gives1 the following integer intervals : d1 ∈ [7; 11] ∩ N, d2 ∈ [8; 12] ∩ N, d3 ∈ [6; 11] ∩ N. In the
proposed framework, the inequalities related to these lower (resp. upper) bounds correspond to necessary285

(resp. sufficient) conditions on the minimum cardinality of ranking function codomains making it possible
to satisfy the reach and stay specification.
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Figure 5: Simulated trajectories of system (33): (left side) evolution of the temperatures in each room, where the limits of
the target region are represented by dashed lines; (right side) the outside temperature (considered as a disturbance) and the
control inputs of room 2 and 3.

The implementation of the symbolic controller for system (33) is done through the controllers Ci defined
in Theorem 1. Figure 5 shows a simulation of system (33) in the following scenario: the initial values of

1Notice that the cardinality of the codomain Di of the ranking function Vi is indeed di + 1 since Di = {0, 1, . . . , di} ⊂ N
also contains 0.
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(T1, T2, T3) are (5, 7, 27). The outside temperature Tenv is considered as a disturbance: for the numerical290

simulation, Tenv(t) = (sin(t) + 9)/2. The plots represent the temporal evolution of the temperatures in each
room, the outside temperature and the control inputs. The trajectories reach the target set (limited by
dashed lines) after 100 seconds and stay in that region afterwards. Most of the computational effort is done
off-line at the design step. Indeed, the numerical simulation of the “on-line” closed-loop scenario is fast,
around 3 ms per sample for the example reported in Figure 5 and, as expected, the controllers resulting295

from the symbolic abstractions fulfill the specifications when applied to the concrete system.

7. Conclusions

The symbolic design of a distributed controller scheme enforcing persistency specification for n intercon-
nected non-deterministic systems is addressed in this work. The resulting local controllers do not require
the knowledge of the full state as they are based on ranking functions characterizing partial information300

used in the considered abstraction. This results in lower complexity controllers for each sub-system. We
have proposed an algorithm for constructing such controllers and applied it to a numerical example.

For future investigations, a major research line is to optimize the computation of the ranking functions
and to deal with robustness issues and uncertainty management. This will help substantiate the applicability
of the method to more complex real-life dynamics.305
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[16] A. Girard, G. Gössler, S. Mouelhi, Safety controller synthesis for incrementally stable switched systems using multiscale

symbolic models, IEEE Trans. on Aut. Cont. 61 (6) (2016) 1537–1549.340

14



[17] A. Weber, M. Rungger, G. Reissig, Optimized state space grids for abstractions, IEEE Trans. on Aut. Cont. 62 (11) (2017)
5816–5821.

[18] M. Rungger, M. Zamani, Compositional construction of approximate abstractions of interconnected control systems, IEEE
Transactions on Control of Network Systems 5 (1) (2018) 116–127.

[19] M. Mazo, A. Davitian, P. Tabuada, Pessoa: A tool for embedded controller synthesis, in: T. Touili, B. Cook, P. Jackson345

(Eds.), Computer Aided Verification, Springer Berlin Heidelberg, 2010, pp. 566–569.
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