Arithmétique sur divers systèmes embarqués aux ressources contraintes : les nombres à virgule fixe

J.-M Friedt, Université de Franche-

Introduction

Bien que le développement sur Raspberry Pi, Beagle Bone ou Redpitaya soit actuellement qualifié d'embarqué, la majorité des systèmes faibles coûts mais surtout faible consommation restent architecturés autour de processeurs aux performances bien plus modestes, ne serait-ce que comme gestionnaire d'énergie et de périphériques [START_REF][END_REF]. Nombre de ces processeurs ne sont pas équipés de périphériques de calcul matériel sur des nombres à virgule flottante dont les opérations doivent être émulées par logiciel. Cette représentation des nombres n'est pas naturelle pour une unité de calcul logique et arithmétique (ALU) qui est optimisée pour traiter des nombres entiers. La majorité des problèmes physiques permettent d'ajuster les unités pour manipuler des valeurs du même ordre de grandeur, qu'une simple homothétie permet de considérer comme des entiers. Il s'agit de l'arithmétique des nombres à virgule fixe. Cependant, contrairement à l'arithmétique des nombre entiers qui est exacte, l'arithmétique des nombres à virgule fixe va souffrir d'inexactitudes liées aux pertes des bits de poids faibles lors de certaines opérations. Rappel : nombre à virgule flottante L'Unité Arithmétique et Logique (ALU) d'un processeur sait naturellement exprimer des opérations logiques ou arithmétiques sur des nombres entiers, positifs ou éventuellement négatifs dans une représentation binaire en complément à deux. Dans cette représentation, la valeurs codées sur N bits sont restreintes à [0 : 2 N -1] en non-signé ou [-2 N -1 : 2 N -1 -1] en signé. La représentation en virgule flottante [START_REF]Floating-Point Arithmetic[END_REF] vise à représenter une gamme plus vaste de valeurs, au détriment de l'exactitude des calculs. Ainsi, les N bits d'un entier sont découpés en deux segments que son, dans une notation scientifique de la forme M × 2 E , une mantisse M < 1 et un exposant E. Si, comme c'est la cas en simple précision, un bit est dédié au signe, 8 bits à l'exposant et 23 bits à la mantisse, alors des grandeurs comprises entre 2 -128 à 2 127 peuvent être représentées (en réalité -126 et non -128), les fameux 10 ±38 . Les 11 bits d'exposant en double précision sont plus faciles à interpréter puisque 2 (2 10) = 2 1024 2 10×100 = (2 10) 100 (1000) 100 = (10 3) 100 = 10 300 . Malgré cette grande dynamique de représentation, les opérations sur les nombres à virgule flottante impliquent d'aligner la virgule -comme nous le ferions en posant une addition à la main -avec une perte de précision résultant du nombre fini de bits pour représenter la mantisse. Les exemples d'imprécisions des calculs en virgule flottante sont bien connus mais apparaissent dans des cas aussi simples que int main() {volatile float f1=0.1,f2=10.; volatile double d1=0.1,d2=10.; int k; for (k=0;k<1000;k++) {f2+=f1; d2+=d1;} printf("%f %lf %0.9lf\n",f2,d2,(double)(d2-f2)); } qui répond : 109.998894 110.000000 0.001106262, soit une différence de 10 -3 sur les mêmes calculs effectués en simple ou double précision (qui donne la bonne solution ici). L'erreur sera d'autant plus grande que les ordres de grandeurs manipulés sont importants, un cas classique de la moyenne glissante qui commence par sommer des termes du même ordre de grandeur mais finit avec un accumulateur important auquel on ajoute une petite valeur en fin de calcul. Ces problème deviennent dramatiques pour les systèmes chaotiques que nous avons volontairement proposé d'illustrer ici -le chaos étant défini par un système dans lequel les erreurs initiales croissent exponentiellement lors des itérations de calculs.

Nous allons aborder ces considérations pour traiter sur microcontrôleurs 8 bits et 32 bits le problème bien connu de la convergence de suites complexes qui donnent naissance aux factales de Mandelbrot et de Newton.

Dans le premier cas, la question est de savoir pour quelle condition sur c ∈ C la suite z n+1 = z 2 n + c converge, ou dans le cas de divergence quelle est la vitesse de divergence (i.e. au bout de combien de temps le module de la suite dépasse un seuil prédéfini). Dans le second cas, la question est de savoir vers laquelle des 3 racines possibles la méthode de Newton résolvant z 3 -1 converge en fonction de sa condition initiale (la méthode de Newton et la suite résultante seront explicitées en temps voulu). Le premier problème fait intervenir des sommes et produits de complexes sur des nombres de l'ordre de -1 à 1 avec une résolution de l'ordre de 10 -2 . Le second problème sera à peine plus compliqué car il fera intervenir une division (complexe).

Architecture du programme

Notre objectif sera de comparer un même algorithme sur une multitude de plateformes, donc nous pouvons réfléchir dès le début à architecturer le programme pour séparer la partie algorithmique, indépendante du matériel et le coeur de notre analyse, de l'initialisation et l'accès aux ressources de communication spécifiques à chaque plateforme (stdout sous unix, port série compatible RS232 pour processeurs ARM, USB pour processeur Atmel/Microchip). Nous choisissons donc de n'avoir qu'un unique code source contenant l'algorithme avec des stubs vers l'implémentation des initialisations et fonctions de communication dépendantes de chaque architecture (Fig. 1). Ces stubs présentent les mêmes prototypes mais implémentent la fonction recherchée différemment selon l'architecture visée, par exemple par une fonction vide tel que ce sera le cas sous unix pour l'initialisation des horloges. Séparer l'algorithme des accès bas niveau est une bonne pratique pour garantir la pérennité du coeur de compétence -l'algorithme -sans devenir dépendante d'une plateforme matérielle qui deviendra rapidement obsolète [START_REF] Vetter | Striving for Performance Portability of Software Radio Software in the Era of Heterogeneous SoCs, Free Software Radio Devroom[END_REF]. Nous lierons les stubs appropriés en sélectionnant le fichier contenant les codes sources associés à une architecture donnée lors de l'édition de liens par Makefile.

Nous html#Implicit-Variables), -l'inclusion de Makefile.inc dépendant de la cible définie en ligne de commande. Ainsi à coups de ifdef XXX ... else ... endif de make dépendants de la définition de la constante XXX voir de la génération dynamique du nom du greffon inclus include Makefile.$(XXX) il sera possible de dynamiquement modifier la définition du compilateur et de ses options de compilation en fonction de la cible visée. Nous pouvons nous convaincre de cette approche par le Makefile contenant include Makefile.$(XXX) qui peut appeler Makefile.1 ou Makefile.2 selon la valeur assignée à XXX lors de l'exécution en shell de XXX=1 make. Si nous définissons Makefile.1 par (noter que @ évite d'afficher la commande exécutée) all: @echo "1" } et Makefile.2 avec le même contenu en remplaçant le symbole affiché par la règle all, alors nous obtenons comme prévu $ XXX=1 make 1 $ XXX=2 make 2

Principe du nombre à virgule fixe

Travailler en nombre à virgule fixe tient simplement en l'idée d'effectuer une homothétie adéquate du problème pour le transformer en nombres entiers. Si un calcul se doit de fournir une température avec une résolution en 0,1 K, alors nous exprimons le problème sur 10 fois la température et nous manipulerons des entiers. Cependant, contrairement à l'arithmétique sur les nombres entiers, exacte car conservant les bits de poids faible au risque du dépassement de capacité sur les bits de poids fort, l'arithmétique en virgule fixe maintient constant le nombre de décimales après la virgule. Cela n'impacte pas la somme : la somme de deux nombres plaçant la virgule à une position connue de la représentation fournit un résultat avec la virgule à la même position. Donc si deux nombres a et b en virgule fixe ont effectué (en base 10 pour simplifier) une homothétie de 10 N , la somme s suit simplement s = a + b en gardant ce facteur d'homothétie 10 N (273,1 K+0,7 K=273,8 K et nous gardons toujours une décimale). Le produit est moins intuitif pour le physicien puisque l'unité de la grandeur manipulée n'est pas conservée (le produit de deux températures en K est exprimée en K 2) mais d'un point de vue arithmétique, l'opération diffère du calcul sur les entiers en ce que cette fois des bits de poids faible seront éliminés afin de conserver le même nombre de chiffres après la virgule, tronquant ainsi la précision du calcul. Par exemple 1, 1 × 2, 3 = 2, 53 qui s'exprime comme 2, 5 en ne conservant qu'une décimale : si les deux arguments du produit ont subi la même homothétie, le résultat du calcul doit être divisé par ce facteur. Dans notre expression en nombre entiers, 11 × 23 = 253 et il faut diviser (partie entière) par 10 pour ne conserver que la partie respectant notre représentation.

Nous concluons donc par deux fonctions d'addition et de multiplication que sont

La fractale de Mandelbrot

Fort de ces définitions et trois fonctions, efforçons nous de tracer la fractale de Mandelbrot sur microcontrôleur. La fractale [START_REF] Peitgen | Chaos and Fractals : New Frontiers of Science[END_REF][START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF] de Mandelbrot est une structure géométrique dans le plan complexe issue de l'analyse de la suite z n+1 = z 2 n + c pour chaque point c ∈ C du plan complexe en initialisant z 1 = c. Chaque point c est représenté par deux symboles, selon que la suite converge ou diverge, et en cas de divergence nous indiquerons au bout de combien d'itérations la condition de divergence a été atteinte -en pratique, un module de z n qui dépasse un seuil.

Nous nous inspirons, par soucis de rigueur scientifique des bornes exploitées dans [START_REF] Brooks | The dynamics of 2-generator subgroups of PSL(2,C)[END_REF] (Fig. 3, gauche), même s'il suffit de passer quelques minutes sur xaos [8] (Fig. 2) pour identifier les bornes intéressantes dans le plan complexe, du tracé de la publication [START_REF] Brooks | The dynamics of 2-generator subgroups of PSL(2,C)[END_REF] qui se focalise sur l'intervalle réel [-2; 0, 25] et l'intervalle imaginaire [-0, 96; 0, 96] pour rechercher des orbites périodiques. Ici nous allons nous intéresser à un ensemble un peu plus large avec une condition de divergence en établissant que si au bout de 16 itérations le carré du module de |z n | n'a pas dépassé 10, alors la suite converge probablement et nous afficherons le premier symbole. Dans le cas contraire, si le module dépasse ce seuil avant 16 itérations, nous afficherons le nombre d'itérations qu'il a fallu pour atteindre le seuil. L'objectif est de cartographier les valeurs de c pour lesquelles la suite converge et qui font appel aux trois stubs que sont clock setup() et usart setup() ainsi que mon putchar() dont les prototypes sont définis dans uart.h : ces fonctions seront spécifiques à chaque plateforme sur laquelle sera exécuté le code. Dans tous les cas, nous obtiendrons la Fig. 3 (droite).

Code générique

Cas du PC

Un ordinateur exécutant GNU/Linux n'a pas besoin d'initialiser l'horloge ou l'interface de communication puisque le système d'exploitation s'est chargé d'initialiser stdout : ainsi, les fonctions clock setup() et usart setup() sont vides et mon putchar(char c) se résume à {printf("%c",c);} qui aura nécessité d'inclure #include <stdio.h> pour éviter les avertissements de gcc. Nous pouvons ainsi rapidement tester le bon fonctionnement de l'implémentation de l'arithmétique en virgule fixe sans mettre en doute l'implémentation sur seront pas en accord avec simavr configuré pour simuler un coeur à 16 MHz). Dans le mode AVR109 compatible avec la bibliothèque Arduino, on prendra soin à désactiver l'interruption liée à la communication sur bus USB, même si ici les interruptions ne sont pas utilisées.

Nous pouvons nous interroger sur la pertinence d'utiliser des float dans la définition des bornes des boucles sur une architecture ne contenant pas de FPU. Nous allons constater que gcc est malin et précalcule toutes les constantes, même faisant intervenir les flottants, et n'inclut pas l'émulation du calcul sur nombre à virgule flottante si toutes les constantes (entières) peuvent être précalculées. Même en l'absence d'optimisation du code (option -O0 de avr-gcc) nous constatons (option -g3 pour avoir tous les symboles de déverminage lors de l'affichage du l'assembleur par avr-objdump -dSt executable.elf), que les bornes de

Temps d'exécution

Tous les temps d'exécution s'obtiennent en prenant soin d'éliminer toute communication -excessivement lente -et répéter chaque calcul itérations fois pour obtenir des temps d'exécution en seconde facilement mesurables. Compte tenu de la vaste différence de puissance de calcul des coeurs de processeurs considérés, le nombre de calculs de la fractale de Mandelbrot a été ajusté tel que indiqué en deuxième ligne (Tableau 1).

La fractale de Newton

Le cas de la fractale de Newton est l'opportunité d'appréhender le cas de la division en virgule fixe. La méthode de Newton permet d'efficacement trouver la solution d'une fonction dérivable f (x) = 0 en itérant la suite x n+1 = x n -f (x n)/f (x n) selon le principe de rechercher à chaque fois l'intersection de la dérivée avec l'axe des abscisses et ainsi converger petit à petit vers la solution. Cette méthode de résolution s'applique au cas f (x) ∈ C. L'étude de la solution vers laquelle converge la suite en fonction du point de départ x 0 ∈ C a donné lieu à la découverte de la fractale de Newton [START_REF] Peitgen | Chaos and Fractals : New Frontiers of Science[END_REF].

Nous allons nous intéresser au cas le plus simple de f (x) = x 3 -1, x ∈ C et tracer la racine vers laquelle la suite converge en fonction de la valeur initiale de x 0 dans le plan complexe compris entre [-1, 4; 1, 44] pour la partie réelle et [-0, 8 : 0, 8] pour la partie imaginaire par pas de 0, 02. Les racines de x 3 -1 sont évidemment exp(j2π/n), n ∈ [0..2] qui se distingueront pour la racine réelle par une partie réelle positive (+1) tandis que les deux racines complexes (-1 ± √ 3)/2 prśentent une partie réelle négative mais une partie imaginaire positive ou négative, fournissant des critères simples de discrimination. La dérivée de z 3 -1 est 3z 2 donc la suite est z → z -(z 3 -1)/(3z 2) = (3z 3 -z 3 + 1)/(3z 2) = (2z 3 + 1)/(3z 2). Le facteur d'homothétie est à peine plus subtil à sélectionner ici que dans le cas de la fractale de Mandelbrot puisque le numérateur est mis au cube, amplifiant les risques de dépassement de capacité de l'entier qui contient z si nous n'y prenons garde avec SCALE trop important.

La fonction qui nous manque dans la bibliothèque de calcul sur les nombres complexes implémentée auparavant est le quotient de deux nombres complexes. L'approche classique pour éliminer la partie imaginaire du dénominateur est de multiplier numérateur et dénominateur par le complexe conjugué * du dénominateur, sachant que z × z * = |z| 2 ∈ R. Le dernier point concerne le facteur d'homothétie : de même que le résultat du produit devait être tronqué des décimales ajoutées par la multiplication, nous devons ici d'abord multiplier le numérateur du facteur d'homothétie pour ne pas perdre de résolution lors du quotient. Le résultat est :

qui confirme que (1 + 8j)/(-2 -j) = -2 -3j et (1 + 6j)/(-1 -j) = -3, 5 -2, 5j.
La convergence sera déterminée par un module suffisamment proche de 1, condition vérifiée par les trois racines.

Figure 5 -Fractale de Newton calculée sur des nombres à virgule flottante pour une partie réelle comprise entre -1,4 et +1,44 par pas de 0,02 et une partie imaginaire de -0,8 à 0,8 par pas de 0,02. Développement de 1/z 2 en série de Taylor Quitte à effectuer des calculs un peu faux, pourquoi ne pas tenter une solution complètement fausse visant à éliminer le calcul de l'inverse 1/z 2 proche de la racine z 1. En effet, nous savons que 1/(1 -x) 2 s'exprime autour de x → 0 comme un développement de Taylor de la forme 1 + 2x + 3x 2 + ... = n n • x n-1 donc en posant z = 1 -x nous avons une solution proche de z → 1. Le calcul de la suite devient donc sous GNU/Octave de la forme

Conclusion

Nous avons proposé une architecture de programme facilement portable d'une architecture à une autre par l'utilisation de stubs implémentant les particularités de l'accès au matériel dans un fichier séparé du programme contenant la partie algorithmique qui reste portable. Nous sélectionnons l'implémentation appropriée lors de l'édition de liens par le Makefile. Ce faisant, nous avons proposé le calcul des fractales de Mandelbrot et de Newton sur architecture 8 bits Atmel/Microchip et sur architectures 32 bits ARM pour une comparaison des performances de calcul entre les implémentations des opérations arithmétiques en virgule fixe et en virgule flottante. Alors que la première solution est fondamentale pour tirer le meilleur parti des microcontrôleurs aux ressources les plus réduites, l'avènement d'unités de calcul flottant même dans des architectures modestes rend le choix délicat compte tenu du compromis entre le temps de développement, les risques de dépassement de capacité, le temps d'exécution et le coût unitaire du composant.

Les codes sources proposés dans cet article sont disponibles à https://github.com/jmfriedt/arithmetique.

Figure 1 -

 1 Figure1-Illustration de l'architecture d'un programme portable sur une multitude d'architectures en séparant clairement la partie algorithmique, portable et indépendante du matériel, de l'implémentation des appels aux ressources de bas niveau (communication, horloges, périphériques de communication) dépendante de chaque architecture. Le lien entre le code portable et l'implémentation spécifique à chaque architecture est faite par les stubs lors de l'édition de lien qui définit dans le Makefile quel fichier d'implémentation lier au code portable pour générer l'exécutable.

Figure 2 -

 2 Figure 2 -Plein de mini-Mandelbrot dans ce zoom sur le nez de l'ensemble de Mandelbrot, avec les coordonnées indiquant que nous manipulerons des valeurs de l'ordre de l'unité avec une résolution de l'ordre de la centaine.

Figure 3 -

 3 Figure 3 -Gauche : graphique publié dans [7] en 1978. Droite : la solution recherchée avec ce programme.

Table 1 -

 1 Temps d'exécution de itérations fractales de Mandelbrot selon le code fourni en section 4.1, en secondes. Droite : photo de famille des plateformes de test. L'Atmega32U4 et le STM32F103 sont montés sur des circuits dédiés, le STM32F407 sur le Discovery Board commercialisé par ST Microelectronics. dans le code de la section 4.1 nous avons préfixé les déclarations de variables du mot clé volatile pour interdire à gcc d'optimiser le code associé à ces variables et éliminer le code mort en l'absence d'affichage. En effet, avr-gcc élime (option -Os) purement et simplement tout le code si nous ne prenions pas ce soin, et une incertitude subsite sur l'interdiction d'optimisation sur volatile montype zr,zi,seuil; puisque le temps d'exécution diffère si ces variables, pourtant au coeur de l'algorithme, ne sont pas déclarées en volatile (colonne simavr, gauche). Le compromis entre optimisation sans éliminer le code utile reste donc subtile. Nous constatons que 1. l'utilisation de la représentation en virgule flottante, émulée en logiciel sur le Cortex M3 sur STM32F1, induit une augmentation dramatique du temps d'exécution en l'absence de FPU, 2. que flottant ou virgule fixe n'a qu'un impact marginal sur le temps d'exécution sur le Cortex M4 du STM32F4 avec un léger gain pour les entiers, 3. que le calcul flottant est plus rapide que le calcul sur 32 bits pour un Atmega32U4 émulé par simavr, une affirmation corroborée sur divers forums puisque ces deux modes de calcul doivent être émulés par logiciel sur le petit coeur 8 bits d'Atmel/Microchip. Les mesures sur simavr, en analysant la trace résultante de la simulation (Fig. 4) et sur microcontrôleur (allumage/extinction d'une LED en début et fin de calcul) ont été effectuées indépendamment, corroborant l'excellent respect du timing de simavr, avec ici les valeurs numériques pour un cadencement à 16 MHz, 4. alors que les coeurs ARM ne bénéficient pas significativement de remplacer la division par 1000 lorsque 3 décimales sont utilisées par rapport à un décalage logique de 10 bits à droite (10), le gain en performance dans simavr est significatif.

Figure 4 -

 4 Figure 4 -Trace mémorisée par simavr avec le registre de communication sur le port série et un port généraliste pour estimer le temps d'exécution de l'algorithme lors de la restitution par gtkwave. Les résultats sont en excellent accord avec la mesure sur plateforme matérielle.

Figure 6 -

 6 Figure6-Fractale de Newton calculée sur des nombres entiers sur 32 bits pour une partie réelle comprise entre -1,4 et +1,44 par pas de 0,02 et une partie imaginaire de -0,8 à 0,8 par pas de 0,02.

Figure 8

 8 Figure 8 -Haut : comparaison entre la racine atteinte par le calcul en virgule fixe pour 2 (gauche) et 3 (droite) décimales. Milieu : différence du nombre d'itérations nécessaires pour atteindre la condition de convergence pour la séquence 2z/3 + 1/(3z 2) entre le calcul en virgule fixe (gauche avec 2 décimales, droite avec 3 décimales) par rapport au calcul en virgule flottante. Bas : différence du nombre d'itérations nécessaires pour atteindre la condition de convergence pour la séquence (2z 3 + 1)/(3z 2) entre le calcul en virgule fixe (gauche avec 2 décimales, droite avec 3 décimales) par rapport au calcul en virgule flottante.

SCALE=1À

 néanmoins élégants et évoluent en fonction du nombre de termes du polynome inclus dans la suite, pour toujours donner une solution autour de 1 mais diverger plus ou moins rapidement en s'éloignant de 1 -ci-dessous la carte de la racine atteinte pour les ordres 2 à 5, avec bleu foncé indiquant l'absence de convergence et bleu-clair la racine 1 + 0j. Pour toutes ces figures, l'axe réel va de -0,2 à 1,4 et l'axe imaginaire de 0 à 1,2 : chaque fois la figure du haut est la solution atteinte avec le développement de Taylor et en bas la solution recherchée avec l'expression complète de la suite.

allons manipuler des complexes formés d'une partie réelle et une partie imaginaire donc il semble évident de définir une structure struct complexe {montype re; montype im;}; et puisque nous allons

 De cette façon, nous passerons dans Makefile en incluant le drapeau -Dfl l'activation ou non des nombres à virgule flottante, et faisons le choix d'utiliser la nomenclature des types étendus des entiers du C fournis dans stdint.h puisque la taille de l'int n'est pas normalisée et dépend de l'architecture sur laquelle s'exécute le code[START_REF]International Standard, Programming languages -C[END_REF] Architecture du MakefileReléguer au Makefile le passage de paramètres de configurations est aisé, mais se pose la question des diverses architectures possibles de Makefile permettant de compiler un même code à destination de diverses cibles, donc en précisant quelle déclinaison de gcc utiliser (pour quelle cible) et quelles options de compilation utiliser :-la solution la plus stupide que nous proposons par simplicité sur le dépôt github qui accompagne cet article : un fichier de configuration Makefile.xxx avec xxx la cible, et exécution par make -f Makefile.xxx. Ce faisant, nous ne profitons pas du dénominateur commun des divers Makefile mais nous contentons de copier-coller un motif de départ pour le décliner vers les diverses cibles, avec la nécessité de corriger tous les Makefile si une erreur est découverte ultérieurement, -un unique Makefile qui reçoit ses arguments du shell en ligne de commande. Ainsi si nous définissons non pas le compilateur par CC=avr-gcc dans le Makefile mais par CC?=avr-gcc, alors l'affectation ne sera effective que si CC n'est pas défini comme variable d'environnement. Ainsi, exécuter CC=arm-none-abi-gcc make écrasera la valeur par défaut de CC avec le nouveau compilateur et

	tantôt
	travailler sur des entiers représentant les nombres à virgule fixe par homothétie, tantôt des nombres à virgule
	flottante, nous proposons une définition conditionnelle
	#include "stdint.h"
	#ifdef fl
	typdef float montype;
	#define SCALE 1.
	#else
	typedef int32_t montype;
	#define SCALE 100
	#endif
	struct complexe {montype re;montype im;};

le binaire généré sera à destination d'un processeur ARM et non AVR. Cependant, cette méthode nécessite d'écraser toutes les variables que sont les drapeaux de compilation CFLAGS et d'édition de liens LDFLAGS, générant des lignes de commande relativement longues et fastidieuses à taper. C'est toutefois l'approche utilisée par Buildroot pour compiler un même code source à destination d'une multitude de cibles. On prendra cependant soin dans ce cas d'éviter la nomenclature de certaines constantes qui ont des valeurs prédéfinies si elles ne sont pas fournies en ligne de commande : c'est le cas de CC (qui vaut cc donc le compilateur à destination de l'hôte, CFLAGS, LDFLAGS ou CXX selon la liste fournie à https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.

 La partie algorithmique du code se résume à itérer la suite z 2 n + c en faisant trivialement appel aux deux fonctions que nous avons créées pour additionner et multiplier deux complexes, et de tester le carré du module pour vérifier si le seuil de divergence est atteint. Ce code se résume aux quelques lignes suivantes

	#include "uart.h"
	#include "stdint.h"
	int main()
	{
	volatile struct complexe tmp,current;
	volatile int n;
	volatile montype zr,zi,seuil;
	seuil=(montype)(10.*SCALE);
	clock_setup();
	usart_setup();
	for (zi=(type)(-1.2*SCALE);zi<(type)(1.2*SCALE);zi+=(type)(0.02*SCALE))
	{for (zr=(type)(-2.0*SCALE);zr<(type)(.85*SCALE);zr+=(type)(.02*SCALE))
	{n=0;
	current.re=zr;
	current.im=zi;
	tmp.re=zr;
	tmp.im=zi;
	do {
	tmp=addcomp(current,mulcomp(tmp,tmp));
	n++;
	}
	while ((modcomp(tmp)<seuil)&&(n<16));
	if (n<16) mon_putchar('0'+n); else mon_putchar(' ');
	}
	mon_putchar('\n');
	}
	}

 avec l'ajout dans denum des termes polynomiaux des plus élevés vers les plus faibles -ici nous avons volontairement commenté les termes d'ordre 4 et 5. Malheureusement cette solution diverge trop rapidement quand z s'éloigne de 1 et ne permet pas à la suite de converger vers une racine. Les figures ci-dessous présentent l'erreur entre le module de la série de Taylor aux 2, 3 et 4ème ordre, en 3D dans le plan complexe et en 2D selon l'axe réel (partie imaginaire nulle avec une solution exacte en 1 + 0j) et pour la cas extrême d'une partie imaginaire de -0, 5j (tracé toujours selon l'axe réel)

	denum=(tmp*2)/3;	% 2/3z
	tmp-=SC;	% 1/(1-x)^around x=0
	%denum=denum+mulcomp(mulcomp(mulcomp(tmp,tmp,SC),tmp,SC),tmp,SC)*5/3; % +4.z^3/3
	%denum=denum+mulcomp(mulcomp(tmp,tmp,SC),tmp,SC)*4/3; % +4.z^3/3
	denum=denum+mulcomp(tmp,tmp,SC); % +3.z^2/3
	denum=denum+2*tmp/3;	% +2z/3
	tmp=denum+SC/3;	% +1/3

int main() {struct complexe num,denum,current,tmp; int n; montype zr,zi;

Remerciements

Les ouvrages de la bibliographie qui ne sont pas librement disponibles sur le web ont été acquis auprès de Library Genesis à gen.lib.rus.ec, une ressource indispensable à nos activités de recherche et développement.

Références

microcontrôleur.

Cas du STM32F1

Le travail sur STM32 s'appuie sur la bibliothèque libre libopencm3 de https://github.com/libopencm3/ libopencm3 et le compilateur arm-none-eabi-gcc disponible en paquet binaire dans Debian/GNU Linux sous le nom de gcc-arm-none-eabi. Une fois ces dépendances installées, les stubs sont implémentés par #include <libopencm3/stm32/rcc.h> #include <libopencm3/stm32/gpio.h> #include <libopencm3/stm32/usart.h> void mon_putchar(unsigned char ch) {usart_send_blocking(USART1, ch);} void clock_setup(void) {rcc_clock_setup_in_hse_8mhz_out_72mhz(); rcc_periph_clock_enable(RCC_GPIOA); rcc_periph_clock_enable(RCC_USART1); } void usart_setup(void) {gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_USART1_TX); usart_set_baudrate(USART1, 115200); usart_set_databits(USART1, 8); usart_set_stopbits(USART1, USART_STOPBITS_1); usart_set_mode(USART1, USART_MODE_TX_RX); usart_set_parity(USART1, USART_PARITY_NONE); usart_set_flow_control(USART1, USART_FLOWCONTROL_NONE); usart_enable(USART1); } {gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9); //TX gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO10); //RX gpio_set_af(GPIOA, GPIO_AF7, GPIO9); gpio_set_af(GPIOA, GPIO_AF7, GPIO10); usart_set_baudrate(USART1, 115200); usart_set_databits(USART1, 8); usart_set_stopbits(USART1, USART_STOPBITS_1); usart_set_mode(USART1, USART_MODE_TX_RX); usart_set_parity(USART1, USART_PARITY_NONE); usart_set_flow_control(USART1, USART_FLOWCONTROL_NONE); usart_enable(USART1); } 4.5 Cas de l'Atmega32U4/simavr L'assembleur ARM est presque aussi obscur que l'assembleur x86 en mode protégé et l'analyse du code ne permet pas de facilement mettre en évidence les incroyables optimisations amenées par gcc. Au contraire, l'assembleur du petit coeur 8 bits d'Atmel est limpide et compatible avec une analyse des performances au niveau de l'instruction exécutée par l'ALU et donc au cycle d'horloge près. En particulier, l'analyse du code assembleur va nous permettre d'appréhender les opérations prises en charge par le pré-processeur afin de libérer les ressources du processeur au moment de l'exécution. // disable USB in Arduino AVR109 mode } Les premières lignes de code initialisent simavr en l'absence de matériel sur lequel exécuter le code mais ne seront pas inclus dans le firmware transféré au microcontrôleur si ce matériel est disponible. L'exécution dans simavr [START_REF] Friedt | Émulation d'un circuit comportant un processeur Atmel avec simavr[END_REF] s'effectue par simavr -f 16000000 -m atmega32u4 executable.elf avec la génération d'une trace contenant l'évolution du registre de communication sur le port série UDR1 si nous désirons analyser les temps d'exécution. L'initialisation de l'horloge est détournée pour initialiser au plus tôt les fonctionnalités de l'At-mega32U4 fourni en sortie d'usine en mode DFU, à savoir désactiver rapidement le chien de garde et désactiver la division par 8 de la fréquence de cadencement du coeur de processeur (faute de quoi les temps d'exécution ne Nous avons vu que le calcul du cube présente un réel risque de dépassement de capacité : à titre d'exemple, avec trois décimales significatives ma multiplication par 1000 des réels pour exprimer les entiers se traduit par 1000 3 = 10 9 qui nous rapproche dangeureusement des 2, 14 • 10 9 d'un entier 32 bits signé. Nous pouvons nous interroger sur la différence entre une expression de la suite de Newton comme z n+1 =

Cas du STM32F4

pour éviter le calcul du cube. Ce type de prototypage est bien plus simple à mettre en oeuvre sous GNU/Octave, version libre de Matlab, tel que proposé ci-dessous où les deux fonctions de multiplication et division en virgule fixe sont réimplémentées en profitant de ce que GNU/Octave connaisse la notion de complexe (j 2 = -1), tandis que le cas SC = 1 implémente le calcul flottant et SC > 1 la notation en virgule fixe, l'addition étant toujours faite avec les décimales car sans grande importance dans cette suite. Le programme ci-dessous itère sur la résolution (boucle sur SC et sur l'expression de la suite (boucle sur methode) : 49 end % methode

Nous omettons la figure qui compare les deux méthodes dans le cas de l'implémentation en virgule flottante : la racine sur laquelle les deux expressions de la suite et le nombre d'itérations pour converger sont strictement identiques dans les deux cas. Cependant, nous constatons en Figs. 7 et 8 une différence sur la racine identifiée ou le nombre d'itérations nécessaires pour converger selon la résolution de l'expression en virgule fixe et la méthode sélectionnée.