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HODGE–GROMOV–WITTEN THEORY

JÉRÉMY GUÉRÉ

Abstract. We determine the all-genus Hodge–Gromov–Witten theory of a

smooth hypersurface in weighted projective space defined by a chain or loop

polynomial. In particular, we obtain the first genus-zero computation of
Gromov–Witten invariants for hypersurfaces in non-Gorenstein ambiant spaces,

where the convexity property fails. We eventually extend it to any weighted

projective hypersurface defined by an invertible polynomial.
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0. Introduction

Gromov–Witten theory has known a tremendous development in the last thirty
years. Originated from theoretical physics, it is mathematically formulated as an
intersection theory of complex curves traced on a complex smooth projective variety,
and provides invariants that one thinks of as a virtual count of these curves. The
most famous example is a full computation of the genus-zero invariants enumerating
rational curves on the quintic threefold [8, 22,39].

Gromov–Witten theory is well understood in all genus for toric varieties, or even
toric Deligne–Mumford (DM) stacks [24, 40]. Precisely, the moduli space of stable
maps inherits a torus action from the target space and the computation essentially
reduces to a calculation on the moduli space to the fixed locus. This is the content
of the virtual localization formula [24], which is an enhancement of the classical
Atiyah–Bott localization formula [3]. We also refer to [16] for an algebraic proof.

Smooth hypersurfaces in toric DM stacks are the next class of spaces to consider,
but little is known in this situation. The difficulty comes from the non-invariance
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2 GUÉRÉ

of the hypersurface by the torus action in general, so that there is no direct way
to apply a localization formula to decrease the complexity of the problem. Con-
sider the famous example of the quintic hypersurface in P4. As we mention above,
the genus-zero theory is fully determined [8, 22, 39]. The genus-one case is com-
pletely proven by Zinger [44] after a great deal of hard work, and nowadays several
approaches are solving it up to genus three [10, 18, 29]. It is worth noticing that
physicists have predictions up to genus 52 [32] and that Maulik–Pandharipande
[41] described a proposal working in any genus, although it is too hard to imple-
ment for practical use. We also mention a recent breakthrough proving the BCOV
holomorphic anomaly conjecture [5], see [10,29].

Even in genus zero the problem of computing Gromov–Witten invariants of
smooth hypersurfaces in toric DM stacks is far from being completely solved. Con-
sider the special case of hypersurfaces in weighted projective spaces. The genus-zero
theory is only known under a restrictive condition: the degree of the hypersurface
is a multiple of every weight. One refers to it as the Gorenstein condition, as it is
the condition for the coarse space of the hypersurface to have Gorenstein singulari-
ties. We recall that Gromov–Witten theory is invariant under smooth deformations,
hence we can choose any defining polynomial of degree d as long as the associated
hypersurface is a smooth DM stack. As a consequence, one can also rephrase the
Gorenstein condition as the existence of a Fermat hypersurface of degree d, that is
defined by a Fermat polynomial of the form xa1

1 + · · ·+ xaNN .
There is a substantial simplification for the genus-zero theory of hypersurfaces

in weighted projective spaces under Gorenstein condition; it is called the convexity
property, see [26, Introduction]. It implies that the virtual cycle of the theory,
which is the crucial object to handle, equals the top Chern class of a vector bundle
over the moduli space of stable maps to the weighted projective space. It is then
calculated by a Grothendieck–Riemann–Roch formula [13,33,37,43] and genus-zero
Gromov–Witten theory of the hypersurface is deduced from genus-zero Gromov–
Witten theory of the weighted projective space; one calls it Quantum Lefschetz
Principle [13,33,37,43]. Without the Gorenstein condition, the convexity property
may fail and the virtual cycle is not computable. Although Fan and Lee [18] obtain a
version of Quantum Lefschetz Principle in higher genus for projective hypersurfaces,
a general statement is false [12].

In this paper, we work on smooth hypersurfaces in weighted projective spaces,
under a mild condition. Precisely, we relax the existence of a Fermat hypersurface
to the existence of a chain hypersurface, that is defined by a chain polynomial of
the form xa1

1 x2 + · · ·+ x
aN−1

N−1 xN + xaNN , or to the existence of a loop hypersurface,

that is defined by a loop polynomial of the form xa1
1 x2 + · · · + x

aN−1

N−1 xN + xaNN x1.
This is more general than the Gorenstein condition and non-convex cases appear.
In genus zero, we are even more general as we can relax the condition on weights
and degree to the existence of an hypersurface defined by an invertible polynomial,
see the beginning of Section 3.3. We then prove two results for these hypersurfaces:

• a genus-zero Quantum Lefchetz Principle, Corollaries 3.6, 3.11, and Theo-
rem 3.13,
• a Hodge Quantum Lefchetz Principle in arbitrary genus, Theorems 3.3 and

3.8.

In the first, we express genus-zero Gromov–Witten theory of the hypersurface in
terms of genus-zero Gromov–Witten theory of the weighted projective space. In
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the second, we do the same in arbitrary genus, once we cap virtual cycles with the
Hodge class, that is the top Chern class of the Hodge bundle, see Definition 1.1.
As a consequence, this paper gives the first computation of genus-zero Gromov–
Witten theory of hypersurfaces in a range of cases where the convexity property
fails, see for instance Remark 3.17 for a discussion on Calabi–Yau 3-folds with
Euler characteristic equal to ±6. It also gives the first comprehensive computation
of Hodge integrals, that are Gromov–Witten invariants involving the Hodge class,
in arbitrary genus for chain or loop hypersurfaces.

In order to tackle non-convexity issues, we develop in this paper a method that we
phrase in a general framework, opening the way to further new results in Gromov–
Witten theory. We call it Regular Specialization Theorem 1.18 as it consists of
deforming a given smooth DM stack into a singular one in a regular way. It can be
understood as an enhancement of the invariance of Gromov–Witten theory under
smooth deformations. Precisely, given a regular A1-family X of DM stacks, that
is a flat morphism X → A1 with X smooth, the perfect obstruction theory on the
moduli space of stable maps to the total space X pulls back to a perfect obstruction
theory on every fiber and the associated virtual cycle is independent of the fiber,
we call it regularized virtual cycle. Furthermore, on smooth fibers, it equals the
cap product of the Gromov–Witten cycle with the Hodge class. Provided we have
a global torus action on the A1-family X , the regularized virtual cycle localizes to
the fixed locus in the central fiber, see Theorem 1.24.

Under special assumptions listed at the beginning of Section 2, we prove a version
of an equivariant Quantum Lefschetz theorem, see Theorem 2.6, relating for a
C∗-equivariant embedding X ↪→ P of DM stacks the equivariant virtual cycles
associated to X and to P. Moreover, if the ambient space P carries a torus action
of T = (C∗)r, e.g. if it is a toric DM stack, then we can relate the C∗-virtual cycle
associated to X to the T -virtual cycle associated to P. Together with the regular
specialization theorem, it yields Theorem 2.7.

Genus zero is a special interesting case, as the Hodge class equals the fundamental
class and the regularized virtual cycle equals the Gromov–Witten virtual cycle. Let
us call a DM stack regularizable, see Definition 3.18, if we can embed it as a fiber
of a regular affine family of DM stacks. Although a regularizable DM stack may
have bad singularities, we provide it a genus-zero Gromov–Witten theory via the
regularized virtual cycle, and we prove invariance of the genus-zero theory under
regular deformations, see Proposition 3.20. As a consequence, we can apply the
localization formula whenever we have a torus action on the fiber, not necessarily
on the total family. One strategy to compute genus-zero Gromov–Witten theory of
a DM stack is thus to take a regular specialization to another DM stack admitting
a torus action with sufficiently nice fixed locus, see below for more details.

At last, we highlight this paper is the Gromov–Witten counterpart of our pre-
vious results [26–28] on the quantum singularity (FJRW, [19, 20, 42]) theory of
Landau–Ginzburg orbifolds defined by chain polynomials. It enters the big picture
of the Landau–Ginzburd/Calabi–Yau (LG/CY) correspondence [11]. In particu-
lar, Theorem 3.6 should lead to a computation of the I-function using Givental’s
formalism [23] and eventually to a genus-zero mirror symmetry theorem without
convexity. Comparing with results in [26], we should then obtain the LG/CY cor-
respondence, extending the work of Chiodo–Iritani–Ruan [11]. We will discuss it
in another paper. We also observe that the knowledge of Hodge integrals is crucial
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for a computation of the hamiltonians of the Double Ramification (DR) hierar-
chy introduced by Buryak [6] and may lead to new insights on the structure of
Gromov–Witten invariants.

A note on tautological classes. A fundamental question about virtual cy-
cles is whether their pushforward to the moduli space of stable curves lies in the
tautological Chow ring. This question is largely open, e. g. it is unknown in the
case of the quintic threefold. A straightforward and yet noticeable consequence
of our results is that the product of the Hodge class λg with the virtual cycle is

tautological in the Chow ring of Mg,n in all the cases we study, e. g. for smooth
hypersurfaces defined by chain or loop polynomials. It follows from the virtual lo-
calization formula and from the fact that fixed loci in the target space are isolated
points.

Future works. This paper is the foundation stone of a strategy aiming at
computing all-genus Gromov–Witten invariants of projective hypersurfaces, and
possibly other projective varieties. The idea is the following: by Costello’s theorem
[14], genus-g Gromov–Witten invariants of a projective variety X are explicitely
expressed in terms of genus-0 Gromov–Witten invariants of the symmetric product
Sg+1X.

Let X be a projective variety and assume we have an A1-family X of DM stacks
admitting a torus action and whose fiber at 1 ∈ A1 is X. Taking the symmetric
fibered product over A1, we obtain an A1-family Xg of DM stacks admitting a torus
action and whose fiber at 1 ∈ A1 is Sg+1X. Precisely, we have

Xg = [X ×A1 · · · ×A1 X/Sg+1].

By Hironaka’s theorem [31] and its equivariant version (see e.g. [35]), there exists a

resolution of singularities X̃g of the DM stack Xg, which is an isomorphism outside
the singular locus of Xg and which preserves the torus action. In particular, we get a

morphism X̃g → A1 and the fiber at 1 ∈ A1 is still Sg+1X. Moreover, the birational

map X̃g → Xg is obtained by a sequence of blow-ups and the morphism Xg → A1

is flat, hence the morphism X̃g → A1 is flat as well, see for instance [21, Appendix

B.6.7]. As a consequence, the DM stack X̃g is a regular A1-family admitting a torus
action and whose fiber at 1 ∈ A1 is the symmetric product Sg+1X. According to
our genus-0 Regular Specialization Theorem, genus-0 Gromov–Witten invariants of
Sg+1X, and thus genus-g Gromov–Witten invariants of X, are expressed by the
localization formula in terms of genus-0 Gromov–Witten invariants of the torus-

fixed loci in (the fiber at 0 ∈ A1 of) X̃g.
Acknowledgement. The author is grateful to Alessandro Chiodo, Rahul Pand-

haripande, and Honglu Fan for many interesting discussions on this topic. He would
also like to thank his wife and daugthers for their help and understanding in final-
izing the paper.

1. Hodge–Gromov–Witten theory

In this section, we prove a general theorem on Hodge–Gromov–Witten theory,
that we call ‘Regular Specialization Theorem’. The context is the following.

Definition 1.1. Given a smooth DM stack Y, Gromov–Witten theory provides
a virtual fundamental cycle for the moduli space MY of stable maps to Y. We
call Hodge virtual cycle the cup product of the virtual fundamental cycle with
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the top Chern class of the Hodge bundle1. Hodge–Gromov–Witten theory is then
intersection theory on MY against this cycle.

Definition 1.2. A morphism f : X → Y between two DM stacks is called a family
when it is flat. We also say that X is a Y-family. Inverse images of geometric points
y ∈ Y are called fibers. A regular family is a family for which the DM stack X is
smooth.

Let p : X → A1 be a regular A1-family of DM stacks, and denote by X0 and X1

its fibers at 0 ∈ A1 and at 1 ∈ A1. We assume X0 and X1 to be proper, and X1 to
be smooth, but we do not impose any restriction on singularities of X0. Depending
on the purpose, we may also assume the A1-family X is equipped with a torus
action leaving X0 invariant.

Let MX0
and MX1

be the moduli spaces of stable maps to X0 and to X1,
with arbitrary genus, degree, number of markings, and isotropy type at markings.
Gromov–Witten theory for smooth DM stacks provides a perfect obstruction theory
and a virtual fundamental cycle for the moduli space MX1

, but not for MX0
.

In the first subsection, we construct perfect obstruction theories on the mod-
uli spaces MX0 and MX1 , and we call the associated virtual fundamental cycles
‘regularized virtual cycles’.

The Regular Specialization Theorem can be phrased as an equality between
regularized virtual cycles of MX0

and MX1
. Moreover, whenever the target space

is smooth, e.g. for X1, we show the regularized virtual cycle equals the Hodge–
Gromov–Witten virtual cycle, up to a sign.

Graber–Pandharipande’s virtual localization formula [24] applies to regularized
virtual cycles. Therefore, provided we have a torus action on the A1-family pre-
serving the central fiber X0 and since the fixed locus in X0 is smooth, we can
decompose the Hodge–Gromov–Witten cycle of MX1

into Hodge–Gromov–Witten
cycles of the fixed loci in MX0 .

1.1. Perfect obstruction theories.

Notation 1.3. For a DM stack Y, we denote by MY the moduli space of stable
maps to Y, by πY : CY → MY the universal curve, by fY : CY → Y the universal
map, and by ωπY the relative dualizing sheaf. In the special cases of X , X0, and
X1, we simplify notations of the maps as

π = πX , π0 = πX0
, π1 = πX1

, f = fX , f0 = fX0
, f1 = fX1

.

The flat morphism p : X → A1 induces a flat morphism

q : MX →MA1 ' A1 ×Mg,n.

Furthermore, we have fiber diagrams

MX0 MX

MA1Mg,n

j0

qq0

MX1 MX

MA1Mg,n

j1

qq1

1For a family π : C → S of genus-g curves, the Hodge bundle is a rank-g vector bundle on S
defined by the push-forward π∗ωC/S of the relative canonical sheaf.
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where bottom arrows are inclusions of 0 ∈ A1 and 1 ∈ A1. In particular, the maps
j0 and j1 are closed immersions, hence proper. We also introduce notations for
maps in the following fiber diagrams

X0 X

A10

i0

pp0

X1 X

A11

i1

pp1

The map i0 yields an exact triangle of cotangent complexes

i∗0LX → LX0
→ LX0/X → i∗0LX [1].

From the construction of obstruction theories on moduli spaces of maps, we obtain
a commutative diagram

(1)

j∗0EX EX0
EX0/X j∗0EX [1]

j∗0LMX LMX0
LMX0

/MX j∗0LMX [1]

where each row is an exact triangle and where obstruction theories are defined as

EX := Rπ∗ (f∗LX ⊗ ωπX ) ' (Rπ∗f
∗TX )

∨
,

EX0
:= Rπ0∗

(
f∗0LX0

⊗ ωπX0

)
,

EX0/X := Rπ0∗
(
f∗0LX0/X ⊗ ωπX0

)
' E[2]⊕O[1].

Note that for the second equality of the first line, we use that X is smooth. For
the second equality of the third line, we use that p is flat to compute LX0/X '
p∗0L0/A1 = O[1] and then E := π0∗(ωπX0

) is the Hodge bundle2.
In the exact same way, we use the map i1 to obtain a commutative diagram

(2)

j∗1EX EX1
EX1/X j∗1EX [1]

j∗1LMX LMX1
LMX1

/MX j∗1LMX [1]

where each row is an exact triangle and where obstruction theories are defined as

EX1
:= Rπ1∗

(
f∗1LX1

⊗ ωπX1

)
' (Rπ1∗f

∗
1TX1

)
∨
,

EX1/X := Rπ1∗
(
f∗1LX1/X ⊗ ωπX1

)
' E[2]⊕O[1],

where smoothness of X1 is used in the second equality of the first line.

Remark 1.4. Since the stacks X and X1 are smooth, obstruction theories EX
and EX1

are perfect, i.e. of amplitude in [−1, 0]. On the other hand, obstruction
theories EX0/X and EX1/X are of amplitude [−2,−1], hence they are not perfect,
and we do not know whether the obstruction theory EX0

is perfect, as X0 is not
assumed to be smooth.

Definition 1.5. The regularized obstruction theory forMX0 is defined as follows.
We first take the cone

FX0 := Cone (O → j∗0EX ) ,

2We do not specify the subscript X0 for the Hodge bundle because it is a pull-back from the
moduli space of stable curves Mg .
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where the map is the composition of the inclusion O → EX0/X [−1] = E[1]⊕O with
the connecting morphism EX0/X [−1]→ j∗0EX from the exact triangle (1). We then
obtain a map of cones

FX0
→ Cone

(
LMX0

/MX [−1]→ j∗0LMX

)
.

At last, from the exact triangle (1), we observe that the right-hand side above is
quasi-isomorphic to LMX0

, giving us a morphism

FX0 → LMX0
.

Remark 1.6. In genus zero, the Hodge bundle is the zero vector bundle and
the regularized obstruction theory FX0

is quasi-isomorphic to the Gromov–Witten
obstruction theory EX0 .

Definition 1.5 works as well for MX1
. However, smoothness of X1 yields the

following equivalent definition.

Definition 1.7. The regularized obstruction theory forMX1
is defined as follows.

We first take

FX1 := EX1 ⊕ E[1],

and then use the map EX1
→ LMX1

and the composed morphism

E→ (j∗1EX )
−1 → (j∗1LMX )

−1 → L−1
MX1

to get FX1
→ LMX1

. Clearly, it is a perfect obstruction theory on MX1
.

Lemma 1.8. The regularized obstruction theory FX0
→ LMX0

defines a perfect
obstruction theory on MX0

.

Proof. Since the complex EX has amplitude in [−1, 0], so does j∗0EX and thus so
does FX0 .

Since the map j0 : MX0
→MX is a closed immersion, then the cohomologies of

the relative cotangent complex are

h−1(LMX0
/MX ) = I/I2 and h0(LMX0

/MX ) = 0,

where I is the coherent sheaf of ideals defining j0. Since EX → LMX is an obstruc-
tion theory, then we have

h−1(j∗0EX ) � h−1(j∗0LMX ) and h0(j∗0EX ) ' h0(j∗0LMX ).

Moreover, we have a surjection

O � I/I2

between the (pullback of the) conormal sheaf of 0 ↪→ A1 and the conormal sheaf of
the closed immersion j0.

Furthermore, by unicity of the cone, we have the following commutative diagram

h−1(j∗0EX )⊕O h0(j∗0EX )

h−1(j∗0LMX )⊕ I/I2 h0(j∗0LMX )

f

g

'	
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where we introduce notations f : O → h0(j∗0EX ) and g : I/I2 → h0(j∗0LMX ).
Let U be an open subset of MX0 and x ∈ h−1(j∗0LMX ) and y ∈ I/I2 be two

sections over U , such that g(y) = 0. Then, there exist x′ ∈ h−1(j∗0EX ) and y′ ∈ O
such that x′ is sent to x and y′ is sent to y by the second vertical map from the
diagram. Then by the commutativity of the diagram, we have f(y′) = 0 and thus
f(x′ + y′) = 0, which proves surjectivity of ker(f)→ ker(g).

To prove that coker(f) ' coker(g), we apply the five lemma to the diagram

O h0(j∗0EX ) coker(f) 0 0

I/I2 h0(j∗0LMX ) coker(g) 0 0

f

g

' '

As a consequence, we have proved that the morphism

FX0
→ Cone

(
LMX0

/MX [−1]→ j∗0LMX

)
' LMX0

is an obstruction theory. �

Definition 1.9. We call regularized virtual cycle of MX0 (resp. of MX1) the vir-
tual fundamental cycle [MX0 , FX0 ] ∈ A∗(MX0) (resp. [MX1 , FX1 ] ∈ A∗(MX1)) ob-
tained by Behrend–Fantechi [4] from the perfect obstruction theory FX0

(resp. FX1
).

We also call Gromov–Witten virtual cycle ofMX1
the virtual fundamental cycle

[MX1
, EX1

] ∈ A∗(MX1
) obtained by Behrend–Fantechi from the perfect obstruc-

tion theory EX1 .

Lemma 1.10. In the smooth case, the regularized virtual cycle equals the Hodge–
Gromov–Witten virtual cycle up to a sign. Precisely, for the DM stack X1, we have
the relation

[MX1
, FX1

] = (−1)gλg · [MX1
, EX1

] ∈ A∗(MX1
),

where λg := ctop(E) is the top Chern class of the Hodge bundle and g is the genus
of curves involved in a given connected component of the moduli space.

Proof. The virtual fundamental class [MX1
, EX1

] is the intersection of the intrinsic
normal cone CMX1

of MX1 with the zero section of h1/h0(E∨X1
), and similarly for

[MX1 , FX1 ]. Since FX1 := EX1 ⊕ E[1], we get

h1/h0(F∨X1
) ' h1/h0(E∨X1

)× Spec(SymE).

Therefore, we have

[MX1
, FX1

] = 0!
h1/h0(F∨X1

)[CMX1
]

= 0!
Spec(SymE)0

!
h1/h0(E∨X1

)[CMX1
]

= 0!
Spec(SymE)[MX1 , EX1 ]

= ctop(E∨) ∩ [MX1
, EX1

].

�

1.2. Regular Specialization Theorem. First, we compare regularized virtual
cycles of MX0

and of MX1
.
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1.2.1. Pull-backs from the regular family.

Proposition 1.11. The regularized virtual cycle associated to a fiber of a regular
A1-family does not depend on the fiber. Precisely, we have equalities

j!
0[MX , EX ] = [MX0

, FX0
] ∈ A∗(MX0

),

j!
1[MX , EX ] = [MX1

, FX1
] ∈ A∗(MX1

).

Proof. Since the varieties 0 and A1 are smooth, by [4, Proposition 5.10], it is enough
to find a compatibility datum relative to 0→ A1 for EX and FX0

, see [4, Definition
5.8], that is a triple (φ, ψ, χ) of derived morphisms giving rise to a morphism of
exact triangles

j∗0EX FX0
q∗0L0/A1 j∗0EX [1]

j∗0LMX LMX0
LMX0

/MX j∗0LMX [1]

φ ψ χ

The existence of the compatibility datum follows from the exact triangles of cones

O → j∗0EX → Cone (O → j∗0EX )→ O[1]

LMX0
/MX [−1]→ j∗0LMX → Cone

(
LMX0

/MX [−1]→ j∗0LMX

)
→ LMX0

/MX

and from the quasi-isomorphism q∗0L0/A1 ' O[1]. The same holds for X1. �

Lemma 1.12. The morphism q : MX → A1 is proper. Moreover, we have commu-
tative diagrams

MX1 MX

XX1

j1

evXevX1

i1

	

MX1 MX

⋃
g,nMg,n

j1

rXrX1

i1

	

where the maps evX and evX1 are the evaluation maps and the maps rX and rX1

remember only the coarse curve and stabilize it. We also have the same commutative
diagrams when we replace X1 by X0.

Proof. Since every morphism from a nodal curve to the affine line is a contraction
to a point, then we have an isomorphism between the moduli space MX of stable
maps to X and the moduli space Mg,n(X/A1) of relative stable maps to the A1-
family p : X → A1. Therefore, by [2, Section 8.3], the morphism q : MX → A1 is
proper. Commutativities of the diagrams are obvious. �

Remark 1.13. In all moduli spaces above, we consider curves with arbitrary genus,
degree, number of markings, and isotropy type at markings. Hence, these moduli
spaces are disconnected. We write subscripts to indicate restrictions to a (bunch
of connected) component of the moduli space. For instance, the moduli space of
stable maps to X from genus-g n-marked curves is (MX )g,n.

Proposition 1.11 works as well when adding the subscript (g, n). Furthermore,
we can also add isotropies, since we have closed immersions of inertia stacks

IX0 ⊂ IX and IX1 ⊂ IX with IX =
⊔
ρ

Xρ.
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It does not compare isotropies for X0 and for X1. Nevertheless, in the case when
an isotropy ρ of X is contained in X1 but not in X0 (or in X0 but not in X1), then
the moduli space (MX0)ρ is empty and its regularized virtual cycle [MX0 , FX0 ]ρ is
zero. Proposition 1.11 is still valid.

Remark 1.14. It is not straightforward to compare curve classes for X , X0, and
X1, because we can have vanishing cycles. To solve this issue, we introduce an
ambient space which contains every fiber of X .

1.2.2. Ambient space. From now on, we assume we have a smooth proper DM stack
P with an embedding of A1-families X ↪→ P × A1, i.e. every fiber of X lies in P.
In particular, we have push-forward maps

H2(Xt)→ H2(P) , for every t ∈ A1.

We also have mapsMXt →MP , that we can decompose in terms of curve classes.
Precisely, for every β ∈ H2(P), we have⊔

β′∈H2(Xt) with
β′=β∈H2(P)

MXt(β
′)→MP(β).

As a consequence, Proposition 1.11 becomes the following.

Proposition 1.15. For every genus g, number of markings n, curve class β ∈
H2(P), and isotropies ρ = (ρ1, . . . , ρn) in X , we have

j!
0[MX , EX ]g,n,β,ρ =

∑
β0∈H2(X0) with
β0=β∈H2(P)

[MX0
, FX0

]g,n,β0,ρ ∈ A∗(MX0
),

j!
1[MX , EX ]g,n,β,ρ =

∑
β1∈H2(X1) with
β1=β∈H2(P)

[MX1
, FX1

]g,n,β1,ρ ∈ A∗(MX1
).

1.2.3. Gromov–Witten cycles. In this subsection, we fix a genus g, a number of
markings n, isotropies ρ = (ρ1, . . . , ρn) in X , and curve classes β ∈ H2(P), β0 ∈
H2(X0), and β1 ∈ H2(X1) satisfying

β0 = β ∈ H2(P) and β1 = β ∈ H2(P).

We also fix α1, . . . , αn ∈ A∗(IX ) such that

αi ∈ A∗(Xρi) ⊂ A∗(IX ),

where Xρi is the component of the inertia stack of X with isotropy ρi. Furthermore,
we denote by ψi the usual psi-class on the moduli space of stable curves, i.e. the
first Chern class of the cotangent line of the curve at the i-th marking, and by λg
the top Chern class of the (pull-back of the) Hodge bundle.

Definition 1.16. A Gromov–Witten cycle of X1 is

[α1, . . . , αn]
X1

g,n,β1
:= q1∗

(
[MX1

, EX1
]g,n,β1,ρ ·

n∏
i=1

j∗1ev∗X (αi)

)
∈ A∗

(
Mg,n

)
.

A Hodge–Gromov–Witten cycle of X1 is

[α1, . . . , αn]
X1,λg
g,n,β1

:= q1∗

(
λg · [MX1

, EX1
]g,n,β1,ρ ·

n∏
i=1

j∗1ev∗X (αi)

)
∈ A∗

(
Mg,n

)
.
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A relative Gromov–Witten cycle of p : X → A1 is

[α1, . . . , αn]
X ,rel
g,n,β := q∗

(
[MX , EX ]g,n,β,ρ ·

n∏
i=1

ev∗X (αi)

)
∈ A∗(MA1) ' A∗

(
Mg,n

)
.

A regularized Gromov–Witten cycle of X0 is

[α1, . . . , αn]
X0,reg
g,n,β0

:= q0 ∗

(
[MX0

, FX0
]g,n,β0,ρ ·

n∏
i=1

j∗0ev∗X (αi)

)
∈ A∗

(
Mg,n

)
.

A regularized Gromov–Witten cycle of X1 is

[α1, . . . , αn]
X1,reg
g,n,β1

:= q1 ∗

(
[MX1

, FX1
]g,n,β1,ρ ·

n∏
i=1

j∗1ev∗X (αi)

)
∈ A∗

(
Mg,n

)
.

Definition 1.17. We call ambient theory the special case where we take isotropies
ρ in P and insertions

αi ∈ A∗(Pρi) ⊂ A∗(IP)→ A∗(IX ),

where pull-back is taken under the map X ↪→ P × A1 → P.

From Lemma 1.10, we see that

[α1, . . . , αn]
X1,reg
g,n,β1

= (−1)g [α1, . . . , αn]
X1,λg
g,n,β1

,

and from Proposition 1.15, we obtain

[α1, . . . , αn]
X ,rel
g,n,β =

∑
β1∈H2(X1) with
β1=β∈H2(P)

[α1, . . . , αn]
X1,reg
g,n,β1

=
∑

β0∈H2(X0) with
β0=β∈H2(P)

[α1, . . . , αn]
X0,reg
g,n,β0

.(3)

We sum up with the following statement.

Theorem 1.18 (Regular Specialization Theorem). Let X be a regular A1-family
whose fibers are embedded in a smooth proper DM stack P. For every genus g,
number of markings n such that 2g − 2 + n > 0, isotropies ρ = (ρ1, . . . , ρn) in X1,
curve class β ∈ H2(P), and insertions α1, . . . , αn ∈ A∗(IX ) with αi ∈ A∗(Xρi), we

have in A∗
(
Mg,n

)∑
β1∈H2(X1) with
β1=β∈H2(P)

[α1, . . . , αn]
X1,λg
g,n,β1

= (−1)g
∑

β0∈H2(X0) with
β0=β∈H2(P)

[α1, . . . , αn]
X0,reg
g,n,β0

.

Remark 1.19. We might not have access to all insertions for X1, as it is possible
that the pull-back map A∗(X ) → A∗(X1) is not surjective. However, it is easy to
work with the ambient theory, i.e. insertions pulled-back from A∗(IP).

Corollary 1.20 (Regular Specialization Theorem in genus zero). Under the same
assumptions as before, we have in A∗

(
M0,n

)∑
β1∈H2(X1) with
β1=β∈H2(P)

[α1, . . . , αn]
X1

0,n,β1
=

∑
β0∈H2(X0) with
β0=β∈H2(P)

[α1, . . . , αn]
X0,reg
0,n,β0

.
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1.2.4. Torus action. In this subsection, we assume we have a torus action on the
A1-family X leaving the fiber X0 invariant. Denote by T the torus. Then, we get a
T -action on the moduli spacesMX andMX0 , and the perfect obstruction theories
EX on MX and FX0

on MX0
are also T -equivariant.

Notation 1.21. For a DM stack Y with a T -action, we denote by ι : YT ↪→ Y the
fixed locus. For a T -equivariant perfect obstruction theory EY on Y, we denote by
Nvir
T the moving part of the dual of its restriction to the fixed locus YT , and by ET

the fixed part, which is a perfect obstruction theory on the fixed locus YT .

Proposition 1.22 (Localization formula, [24, Equation (8)]). Let Y be a DM
stack with a T -action and a T -equivariant perfect obstruction theory E → LY . Let
AT∗ (Y) denote the T -equivariant Chow ring3 of Y and t denote the T -equivariant
parameters. Introduce the ring

AT∗ (Y)loc := AT∗ (Y)⊗Q[t] Q[t±1]

obtained by inverting equivariant parameters t. Then the virtual localization formula
is

[Y, E] = ι∗

(
[YT , ET ]

eT (Nvir
T )

)
,

where eT denotes the T -equivariant Euler class.

Remark 1.23. In our situation, the fixed locus XT lies in the central fiber X0 and
we have XT = X0T . Moreover, it is a smooth DM stack and we denote it by XT .

Theorem 1.24 (Equivariant Regular Specialization Theorem). Let X be a T -
equivariant regular A1-family whose fibers are embedded in a smooth proper DM
stack P and where the torus action leaves the central fiber invariant. For every
genus g, number of markings n such that 2g−2+n > 0, isotropies ρ = (ρ1, . . . , ρn) in
X1, curve class β ∈ H2(P), and insertions α1, . . . , αn ∈ A∗(IX ) with αi ∈ A∗(Xρi)
admitting a T -equivariant lifting, we have∑

β1∈H2(X1) with
β1=β∈H2(P)

[α1, . . . , αn]
X1,λg
g,n,β1

= lim
t→0

∑
β0∈H2(X0) with
β0=β∈H2(P)

(−1)g ×

∫
[MXT

,ET ]g,n,β0

∏n
i=1 ev∗T (αi)

e(Nvir
T )

,

where evT = evX ◦ j0 ◦ ιMXT
and rT = rX0

◦ ιMXT
, and [MXT , ET ] is the Gromov–

Witten virtual fundamental cycle of the moduli space of stable maps to the smooth
DM stack XT .

Remark 1.25. The Regular Specialization Theorem and its equivariant version
work as well with a regular family defined over an affine basis Am. Precisely, we
then have to multiply the virtual cycle by the m-th power of the Hodge class. Note
that it is only interesting in genus zero, see Section 3.3, as for positive genus the
power of the Hodge class vanishes.

2. Equivariant quantum Lefschetz theorem

In this section, we state an ‘equivariant quantum Lefschetz’ theorem which will
be useful for computations in the next section.

3We refer to [15] for a detailed construction of the equivariant Chow ring.
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2.1. C∗-localization versus torus-localization. Let X ↪→ P be an embedding
of smooth DM stacks equipped with a C∗-action. We assume that

• the C∗-fixed loci of X and of P are equal,
• P is equipped with a torus action T = (C∗)N , extending the C∗-action by

an embedding C∗ ↪→ T ,
• the normal bundle of X ↪→ P is the pull-back of a T -equivariant vector

bundle N over P,
• the vector bundle N is convex up to two markings, i.e. for every stable map
f : C → P where C is a smooth genus-0 orbifold curve with at most two
markings we have H1(C, f∗N ) = 0.

First, we look at the C∗-fixed loci of the moduli spaces of stable maps and we
find the following fibered diagram

M(X )C
∗ M(P)C

∗

M(P)M(X )

j

ι̃ι

j̃

Writing i : X ↪→ P, we have a C∗-equivariant short exact sequence

0→ TX → i∗TP → i∗N → 0

and it induces a distinguished triangle for the dual of the perfect obstruction theories
of M(X ) and of M(P)

(4) Rπ∗f
∗TX → Rπ∗f

∗TP → Rπ∗f
∗N → (Rπ∗f

∗TX ) [1].

The term E := Rπ∗f
∗N , pulled-back toM(P)C

∗
, has a fixed and a moving part,

that we denote respectively by Efix and Emov.

Proposition 2.1. The fixed part Efix is a vector bundle over the fixed moduli space
M(P)C

∗
.

Proof. Let f : C → P be a stable map belonging toM(P)C
∗
. We denote by ρ : C →

C the coarse map. It is enough to prove

H1(C, ρ∗f
∗N )fix = 0.

Take the normalization ν : Cν → C of the curves at all their nodes. We have

Cν =
⊔
i∈I

Cfix
i t

⊔
j∈J

Cnf
j ,

where the upperscripts refer respectively to fixed/non-fixed components of Cν under
the map f and the C∗-action. In particular, a non-fixed component is unstable and
maps to a one-dimensional C∗-orbit. By the normalization exact sequence, we
obtain an exact sequence⊕

nodes

H0(node, f∗N |node)→ H1(C, f∗N )→ H1(Cν , ν∗f∗N )→ 0,

with

H1(Cν , ν∗f∗N ) =
⊕
i∈I

H1(Cfix
i , ν∗f∗N )⊕

⊕
j∈J

H1(Cnf
j , ν

∗f∗N ).
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Since the normal bundle has a non-trivial C∗-action once restricted to the fixed
locus of X (or equivalently of P), then we have

H0(node, f∗N |node)fix = 0 and H1(Cfix
i , ν∗f∗N )fix = 0.

Therefore, it remains to see the vanishing of H1 for non-fixed unstable curves Cnf
j ,

j ∈ J . The curve Cnf
j is isomorphic to P1 with either one or two markings, hence

H1(Cnf
j , ν

∗f∗N ) = 0 by our assumption of convexity up to two markings. �

Denote by
[
M(P)C

∗]vir
the virtual fundamental cycle obtained by the C∗-fixed

part of the perfect obstruction theory Rπ∗f
∗TP .

Proposition 2.2. In the Chow ring of M(P)C
∗
, we have

j∗

[
M(X )C

∗
]vir

= eC∗ (Efix) ·
[
M(P)C

∗
]vir

.

Furthermore, in the localized equivariant Chow ring, we have

eC∗(N
vir
ι )−1 = j∗

(
eC∗(Emov)

eC∗(Nvir
ι̃ )

)
.

Proof. It follows from the standard proof using convexity and we recall here the
main arguments.

The variety X is the zero locus of a section of the vector bundle N over the
ambient space P. This section induces a map s from the moduli space of stable
maps to P to the direct image cone π∗f

∗N , see [9, Definition 2.1]. Since the moduli
space M(P)C

∗
is fixed by the action of C∗, then it maps to the fixed part of the

direct image cone, that is the vector bundle Efix. Hence we have the fibered diagram

M(X )C
∗ M(P)C

∗

EfixM(P)C
∗

j

s

0

where the bottom map is the embedding as the zero section. The fixed part of
the distinguished triangle (4) gives a compatibility datum of perfect obstruction
theories for the fixed moduli spaces. Functoriality of the virtual fundamental cycle
gives

0!
[
M(P)C

∗
]vir

=
[
M(X )C

∗
]vir

which is the desired result once we push-forward via the map j on both sides. The
second part of the statement follows from the moving part of the distinguished
triangle (4). �
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Eventually, by the virtual localization formula, the C∗-equivariant virtual cycle
satisfies

j̃∗ [M(X )]
vir,C∗

= j̃∗ι∗

( [
M(X )C

∗]vir

eC∗(Nvir
ι )

)

= ι̃∗j∗

([
M(X )C

∗
]vir

· j∗
(
eC∗(Emov)

eC∗(Nvir
ι̃ )

))

= ι̃∗

(
eC∗ (Efix) ·

[
M(P)C

∗
]vir

·
eC∗(Emov)

eC∗(Nvir
ι̃ )

)

= ι̃∗

(
eC∗ (E) ·

[
M(P)C

∗]vir

eC∗(Nvir
ι̃ )

)
,

where equalities happen in the C∗-localized equivariant Chow ring AC∗
∗ (M(P))loc.

Remark 2.3. If it were defined, the right-hand side would equal

eC∗ (Rπ∗f
∗N ) · [M(P)]

vir,C∗
,

using the virtual localization formula, but it is not clear that the C∗-equivariant Eu-
ler class ofRπ∗f

∗N is defined inAC∗
∗ (M(P))loc. However, we say that eC∗ (Rπ∗f

∗N )
is defined after localization4 to mean that its pull-back to the fixed locus is defined.

Now, we aim to extend the right-hand side of the equality to the torus-T action.
We denote by t1, . . . , tN the T -equivariant parameters and we have a push-forward
ring map

ξ∗ : AT∗ (M(P))→ AC∗
∗ (M(P))

expressing each t1, . . . , tN in terms of t using the embedding C∗ ↪→ T . Clearly, we
get

ξ∗
(
[M(P)]vir,T

)
= [M(P)]vir,C∗ .

Unfortunately, the map ξ∗ is only partially defined when we invert equivariant
parameters: it is defined as long as the denominators are non-zero when expressed
in terms of the variable t. It is easier to work out this issue on the fixed loci of the
moduli space.

Let M(P)T ↪→ M(P) denote the T -fixed locus of the moduli space. In par-
ticular, we have the inclusion ι̂ : M(P)T ↪→ M(P)C

∗
. We notice that the moduli

space M(P)C
∗

is stable under the T -action from M(P) and that the map ι̂ is
T -equivariant. Moreover, we have a T -equivariant virtual cycle[

M(P)C
∗
]vir,T

∈ AT∗ (M(P)C
∗
)

and the equality

ξ∗

([
M(P)C

∗
]vir,T

)
=
[
M(P)C

∗
]vir

∈ AC∗
∗ (M(P)C

∗
).

By the virtual localization formula, we have[
M(P)C

∗
]vir,T

= ι̂∗

( [
M(P)T

]vir

eT (Nvir
ι̂ )

)
∈ AT∗ (M(P)C

∗
)loc.

4We find this definition for the formal quintic, see [38].
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Furthermore, we have the following equality in K-theory on the space M(P)T

(5) Nvir
ι̃◦ι̂ = ι̂∗Nvir

ι̃ +Nvir
ι̂ .

Indeed, let F be the pull-back of Rπ∗f
∗TP to M(P)T . By definition, the virtual

normal bundle Nvir
ι̃◦ι̂ is the T -moving part Fmov, which decomposes as Fmov =

Fmov
fix +Fmov

mov , where the subscript denotes the C∗-fixed/moving part. By definition,
the virtual normal bundle ι̂∗Nvir

ι̃ is the C∗-moving part of F , i.e. Fmov
mov since there

is no C∗-moving T -fixed part in F . Eventually, the virtual normal bundle Nvir
ι̂

identifies with Fmov
fix .

Remark 2.4. The virtual normal bundle Nvir
ι̃ is defined on M(P)C

∗
and we have

a well-defined equality

ξ∗

(
eT
(
Nvir
ι̃

)−1
)

= eC∗
(
Nvir
ι̃

)−1 ∈ AC∗
∗ (M(P)C

∗
)loc.

We also have seen the C∗-decomposition E = Efix + Emov over M(P)C
∗

with Efix

being a T -equivariant vector bundle. Indeed, the vector bundle N over P is T -
equivariant, thus so are E and Efix. As a consequence, the following equality is
well-defined

ξ∗ (eT (E)) = eC∗(E) ∈ AC∗
∗ (M(P)C

∗
)loc.

Proposition 2.5. Consider the well-defined class

CT := ι̂∗ (eT (E)) ·
[
M(P)T

]vir

eT (Nvir
ι̃◦ι̂)

∈ AT∗ (M(P)T )loc.

Then its push-forward under the inclusion ι̂ equals

ι̂∗ (CT ) = eT (E) ·
[
M(P)C

∗]vir,T

eT (Nvir
ι̃ )

∈ AT∗ (M(P)C
∗
)loc.

In particular, we have

ξ∗ (ι̂∗ (CT )) = eC∗ (E) ·
[
M(P)C

∗]vir

eC∗(Nvir
ι̃ )

∈ AC∗
∗ (M(P)C

∗
)loc.

Proof. By the virtual localization above and Equation (5), we have

ι̂∗ (CT ) = eT (E) · ι̂∗

( [
M(P)T

]vir

eT (Nvir
ι̃◦ι̂)

)

= eT (E) · ι̂∗

( [
M(P)T

]vir

ι̂∗
(
eT (Nvir

ι̃ )
)
· eT (Nvir

ι̂ )

)

=
eT (E)

eT (Nvir
ι̃ )
· ι̂∗

( [
M(P)T

]vir

eT (Nvir
ι̂ )

)

=
eT (E) ·

[
M(P)C

∗]vir,T

eT (Nvir
ι̃ )

.

The last sentence follows from the following property of ξ∗. For any space Z with
a T -action and any localized classes A,B ∈ AT∗ (Z)loc and a, b ∈ AC∗

∗ (Z)loc, if
ξ∗(A) = a and ξ∗(B) = b are well-defined equalities, then ξ∗(AB) is well-defined
and equals the localized class ab. �
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Eventually, the push-forward maps ι̃∗ and ξ∗ commute when the later is well-
defined. Precisely, the map ι̃ is T -equivariant and for any localized class C ∈
AT∗ (M(P)C

∗
)loc such that ξ∗(C) is well-defined in AC∗

∗ (M(P)C
∗
)loc, then the local-

ized class ι̃∗(C) is well-defined under ξ∗ and we have

ι̃∗ξ∗(C) = ξ∗ι̃∗(C) ∈ AC∗
∗ (M(P))loc.

2.2. Equivariant quantum Lefschetz formula. Summarizing our discussion,
we obtain the following.

Theorem 2.6 (Equivariant quantum Lefschetz). Let X ↪→ P be a C∗-equivariant
embedding of smooth DM stacks satisfying assumptions listed at the beginning of
this section. Then we have

j̃∗ [M(X )]
vir,C∗

= ξ∗

(
eT (Rπ∗f

∗N ) · [M(P)]
vir,T

)
∈ AC∗

∗ (M(P))loc,

where j̃ is the embedding of moduli spaces and ξ∗ is the specialization of T -equivariant
parameters into the C∗-equivariant parameter. Here, the T -equivariant Euler class
eT (Rπ∗f

∗N ) is defined after localization, see Remark 2.3.

Proof. Using previous equalities, we get

j̃∗ [M(X )]
vir,C∗

= ι̃∗

(
eC∗ (E) ·

[
M(P)C

∗]vir

eC∗(Nvir
ι̃ )

)
,

= ξ∗ι̃∗ι̂∗

(
ι̂∗ (eT (E)) ·

[
M(P)T

]vir

eT (Nvir
ι̃◦ι̂)

)
.

Following Remark 2.3, the meaning of ‘defined after localization’ is precisely

ξ∗

(
eT (Rπ∗f

∗N ) · [M(P)]
vir,T

)
= ξ∗

(
eT (Rπ∗f

∗N ) · ι̃∗ι̂∗

( [
M(P)T

]vir

eT (Nvir
ι̃◦ι̂)

))

= ξ∗ι̃∗ι̂∗

(
ι̂∗ (eT (E)) ·

[
M(P)T

]vir

eT (Nvir
ι̃◦ι̂)

)
.

�

Eventually, we summarize Sections 1 and 2 in the following theorem.

Theorem 2.7. Let X ↪→ P be a C∗-equivariant embedding of regular A1-families.
We assume the fixed loci of X and of P are equal, the ambient space P carries

a T := (C∗)N -action, e.g. it is a toric DM stack, extending the C∗-action via an
embedding C∗ ↪→ T , the normal bundle N of X ↪→ P is a pull-back from a T -
equivariant vector bundle over P, and is convex up to two markings, e.g. it satisfies
some positivity condition.

Let X be a generic smooth fiber of X . Fix a genus g, a number of markings n such
that 2g− 2 +n > 0, isotropies ρ = (ρ1, . . . , ρn) in X, a curve class β ∈ H2(P), and
ambient insertions α1, . . . , αn ∈ A∗(IP) with αi ∈ A∗(Pρi) admitting T -equivariant
liftings. We set α :=

∏n
i=1 ev∗i (αi) to be the product of insertions.

Then we have the following equality in the Chow ring of Mg,n

[Mg,ρ(P, β)]vir,T · eT (Rπ∗f
∗N ) · α −−−→

t→0
e(E∨) · [Mg,ρ(X,β)]vir · α,
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where on the right hand side we take the sum over curve classes β1 ∈ H2(X)
such that β1 = β ∈ H2(P). Precisely, the class eT (Rπ∗f

∗N ) is only defined after
localization, so we first apply the virtual localization formula to the left-hand side,
then we compute it in AT∗ (Mg,n × A1) as a formal series in the T -equivariant
parameters and their inverse, then we specialize them to a single variable t using
C∗ ↪→ T and obtain a well-defined polynomial in t, and eventually we take the
constant coefficient and pull-it back from A∗(Mg,n × A1) to A∗(Mg,n).

Furthermore, if the regular family P is trivial, i.e. P = P × A1 for some T -
equivariant smooth DM stack P , then the formula simplifies as

eT (E∨) · [Mg,ρ(P, β)]vir,T · eT (Rπ∗f
∗N ) · α −−−→

t→0
e(E∨) · [Mg,ρ(X,β)]vir · α,

with the same meaning as above, except we work directly in AT∗ (Mg,n) instead of

AT∗ (Mg,n × A1).

Proof. By Theorem 2.6, we obtain

j̃∗ [M(X )]
vir,C∗

= ξ∗

(
eT (Rπ∗f

∗N ) · [M(P)]
vir,T

)
∈ AC∗

∗ (M(P))loc,

where j̃ is the embedding of moduli spaces and ξ∗ is the specialization of T -
equivariant parameters into the C∗-equivariant parameter, corresponding to the
specialization induced by C∗ ↪→ T . We recall that the T -equivariant Euler class
eT (Rπ∗f

∗N ) is only defined after localization, see Remark 2.3.
By Proposition 1.15 and Lemma 1.10, we get

e(E∨) · q1∗

(
[M(X)]

vir · α
)

= 1∗q∗

(
[M(X )]

vir · α
)
,

where q : M(X ) → A1 ×Mg,n, q1 : M(Xs=1) → 1 ×Mg,n, and 1: 1 ×Mg,n →
A1 ×Mg,n form a fibered diagram, see the beginning of Section 1.1. Using the

T -equivariant map 0: 0×Mg,n → A1 ×Mg,n, we have in A∗(Mg,n) the equality

1∗q∗

(
[M(X )]

vir · α
)

= 0∗q∗

(
[M(X )]

vir · α
)

and the right-hand side equals the non-equivariant limit of 0∗q∗

(
[M(X )]

vir,C∗ · α
)

.

Denoting q̃ : M(P) → A1 × Mg,n, we obtain e(E∨) · q1∗

(
[M(X)]

vir · α
)

as the

non-equivariant limit of

(6) 0∗q̃∗

(
ξ∗

(
eT (Rπ∗f

∗N ) · [M(P)]
vir,T

)
· α
)
,

where we recall that α consists of ambient insertions, so that it is a pull-back from
M(P). Since there exists a T -equivariant lift of α, it can be written as ξ∗(α), and
by ring properties of the pushforward ξ∗ (see the end of proof of Proposition 2.5),
and by commutativity of push-forwards, Equation (6) equals

(7) 0∗ξ∗

(
q̃∗

(
eT (Rπ∗f

∗N ) · [M(P)]
vir,T · α

))
,

yielding the first part of the statement.
For the second part, we assume that P = P × A1, so that the normal bundle

of P ⊂ P is the trivial line bundle O with a non-trivial T -action. Over the fixed
moduli space M(P)T , the term Rπ∗O = [O → E∨] then has no fixed part and we
get

[M(P)]
vir,T

= eT (Rπ∗O)
−1 · [M(P )]

vir,T
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after localization. Recall that Equation (7) is meant to be after localization as well,
so that the map q̃ is rather a map from the T -fixed moduli spaceM(P)T , and thus
factors through the map 0, as the fixed moduli space lies above the central fiber.
Thus we write q̃ = 0 ◦ q with q : M(P )→Mg,n. Hence, Equation (7) becomes

0∗ξ∗

(
0∗q∗

(
eT (Rπ∗f

∗N ) · eT (Rπ∗O)
−1 · [M(P )]

vir,T · α
))

= 0∗0∗ξ∗

(
q∗

(
eT (Rπ∗f

∗N ) · eT (Rπ∗O)
−1 · [M(P )]

vir,T · α
))

= eC∗(N0) · ξ∗
(
q∗

(
eT (Rπ∗f

∗N ) · eT (Rπ∗O)
−1 · [M(P )]

vir,T · α
))

= ξ∗

(
eT (N0) · q∗

(
eT (Rπ∗f

∗N ) · eT (Rπ∗O)
−1 · [M(P )]

vir,T · α
))

= ξ∗

(
eT (N0)

eT (O)
· q∗

(
eT (Rπ∗f

∗N ) · eT (E∨) · [M(P )]
vir,T · α

))
,

where N0 is the normal bundle of 0 : 0×Mg,n → A1×Mg,n and therefore equals the
trivial bundle O with the same non-trivial T -action as before. As a consequence,
we get the desired left-hand side

ξ∗

(
q∗

(
eT (Rπ∗f

∗N ) · eT (E∨) · [M(P )]
vir,T · α

))
.

�

3. Smooth hypersurfaces in weighted projective spaces

3.1. Hodge–Gromov–Witten theory for chain polynomials. Let w1, . . . , wN
be positive integers and denote by P(w) = P(w1, . . . , wN ) the weighted projective
space given by these weights. In this section, we assume the chain-type arithmetic
condition: there exist positive integers a1, . . . , aN and d such that

(8) ajwj + wj+1 = d for j < N and aNwN = d.

In particular, it gives the existence of a smooth (orbifold) hypersurface X of degree
d in P(w). Precisely, one such example is the vanishing locus of the chain polynomial

xa1
1 x2 + · · ·+ x

aN−1

N−1 xN + xaNN .

Moreover, since Gromov–Witten theory is invariant under smooth deformations,
we can refer to this example for our computations.

The weighted projective space P(w) carries the action of a torus T = (C∗)N . We
denote the equivariant parameters by t = (t1, . . . , tN ). For any integer d ∈ Z and
any character χ ∈ Hom(T,C), there is a T -equivariant line bundle Oχ(d).

Remark 3.1. In Theorem 3.3, we take the trivial character χ on O(1) and then

take its d-th power. It means that O(d) has weight −
dtj

wj
in the affine chart xj = 1.

We refer to Remark 3.4 below for another description of the action used on the line
bundle O(d).

Denote the T -equivariant virtual fundamental cycle by

[M(P(w))]vir,T ∈ AT∗ (M(P(w))),

so that its non-equivariant limit t → 0 gives back the virtual fundamental cycle.
Moreover, the derived object Rπ∗f

∗Oχ(d), where π is the projection map from the
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universal curve and f is the universal stable map, is also T -equivariant. Unfortu-
nately, the following expression

eT (Rπ∗f
∗Oχ(d)) · [M(P(w))]vir,T ∈ AT∗ (M(P(w)))loc,

which is defined after localization, does not admit a non-equivariant limit t → 0,
unless the convexity condition holds and thus Rπ∗f

∗O(d) = π∗f
∗O(d) is a vector

bundle.

Remark 3.2. Convexity holds in genus zero under the Gorenstein condition: wj |d
for all j. In that case, the non-equivariant limit t→ 0 gives back the virtual cycle
[M(X)]vir of the moduli space of stable maps to a smooth degree-d hypersurface
X ⊂ P(w).

In Theorem 3.3, we overcome the difficulty of non-convexity with the help of the
Hodge bundle E. First, we pull it back to the moduli space of stable maps to P(w)
and then we endow it with the following T -action: one rescales fibers of E by taNN .

Eventually, we use insertions of ambient cohomology classes of X, i.e. which are
pulled-back from the ambient space P(w). Theses classes are naturally expressed in
terms of hyperplane classes, so that there are T -invariant representatives of them.

As an application of our Regular Specialization Theorem, we prove the following.

Theorem 3.3 (Hodge–Gromov–Witten theory of chain hypersurfaces). We assume
condition (8) and we fix g, n ∈ N such that 2g − 2 + n > 0, β ∈ N, and isotropies
ρ = (ρ1, . . . , ρn) in P(w). Let X ⊂ P(w) be a smooth hypersurface of degree d and
α1, . . . , αn be ambient cohomology classes on X, i.e. pulled back from P(w). We
set α :=

∏n
i=1 ev∗i (αi) to be the product of insertions. Then we have the following

equality in the Chow ring of Mg,n

eT (E∨) · [Mg,ρ(P(w), β)]vir,T · eT (Rπ∗f
∗O(d)) · α −−−→

t→0
e(E∨) · [Mg,ρ(X,β)]vir · α.

Precisely, the class eT (Rπ∗f
∗O(d)) is only defined after localization, so we first

apply the virtual localization formula to the left-hand side, then we compute it in
AT∗ (Mg,n) as a formal series in the T -equivariant parameters and their inverse,
then we specialize them to

tj+1 = (−a1) · · · (−aj)t,
for all 1 ≤ j ≤ N and obtain a well-defined polynomial in t, and eventually we take
the constant coefficient.

Remark 3.4. The specialization of T -equivariant parameters in terms of a single
variable t can be rephrased as an embedding C∗ ↪→ T . Then by equation (8), there
is a C∗-invariant (singular) hypersurface of degree d

X0 =
{
xa1

1 x2 + · · ·+ x
aN−1

N−1 xN = 0
}
⊂ P(w),

and the line bundle O(d) in Theorem 3.3 is its normal line bundle. Therefore,
it comes with a C∗-action. To be more precise, look at the weights on fibers
over the fixed locus, which consists of all coordinate points in P(w). At the point

(0, . . . , xj = 1, . . . , 0) ∈ P(w), the C∗-action has weight −dtjwj , as was announced in

Remark 3.1.

Remark 3.5. Theorem 3.3 yields an explicit formula for Hodge–Gromov–Witten
invariants of X as a sum over dual graphs. Indeed, such a formula is known for
weighted projective spaces, e.g. in [40].
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Proof. As Gromov–Witten theory is invariant under smooth deformations, we can
take the degree-d hypersurface X to be the zero locus of the chain polynomial

P = xa1
1 x2 + · · ·+ x

aN−1

N−1 xN + xaNN .

Define the regular A1-family

X =
{
xa1

1 x2 + · · ·+ x
aN−1

N−1 xN + xaNN s = 0
}
⊂ P(w1, . . . , wN )× A1 =: P.

It is endowed with a C∗-action with weight pj on xj and pN+1 on s satisfying p1 = 1
and pj+1 = (−a1) · · · (−aj) for 1 ≤ j ≤ N . Moreover, the fiber X1 at s = 1 equals
the smooth hypersurface X and the fiber X0 at s = 0 has exactly one singular
point Sing(X0) = (0, . . . , 0, 1) ∈ P(w1, . . . , wN ). It is then enough to check the
assumptions of Theorem 2.7.

The C∗-fixed loci for X and for P are the same, i.e. it is given by all N coordinate

points in the central fiber s = 0. The DM stack P carries a T = (C∗)N action where
the action of T on A1 is the multiplication by t−aNN . The normal bundle of X ↪→ P
is the pull-back of the T -equivariant line bundle O(d) on P(w), with the trivial
character, as explained in Remarks 3.1 and 3.4. It remains to prove convexity up
to two markings.

Let f : C → P be a stable map where C is a non-contracted smooth genus-0
orbifold curve with two markings σ1 and σ2 (the case with one or zero markings
are similar). Then f∗O(d) is a line bundle over C and can be written as

f∗O(d) = O(m+ r1σ1 + r2σ2),

with 0 ≤ r1, r2 < 1 being the monodromies at the markings and m ∈ Z. Moreover,
we have the relation

m+ r1 + r2 = d · deg(f) ≥ 0.

Hence, we have m > −2, so m ≥ −1. Therefore, denoting by C = P1 the coarse
curve of C, we have H1(C, f∗O(d)) = H1(C,O(m)) = 0. �

As a special case of Theorem 3.3, we obtain a full genus-0 computation of
Gromov–Witten theory of chain hypersurfaces with ambient insertions, using the
simple fact that the Hodge class equals 1 in genus 0.

Corollary 3.6 (Genus-zero Gromov–Witten theory of chain hypersurfaces). Under
assumptions and notations of Theorem 3.3, but with g = 0, we have the following
equality in the Chow ring of M0,n

[M0,ρ(P(w), β)]vir,T · eT (Rπ∗f
∗O(d)) · α −−−→

t→0
[M0,ρ(X,β)]vir · α.

3.2. Hodge–Gromov–Witten theory for loop polynomials. In this section,
we assume the loop-type arithmetic condition: there exist positive integers a1, . . . , aN
and d such that

(9) ajwj + wj+1 = d for j < N and aNwN + w1 = d.

In particular, it gives the existence of a smooth (orbifold) hypersurface X of degree
d in P(w). Precisely, one such example is the vanishing locus of the loop polynomial

xa1
1 x2 + · · ·+ x

aN−1

N−1 xN + xaNN x1.

Moreover, since Gromov–Witten theory is invariant under smooth deformations,
we can refer to this example for our computations.
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Remark 3.7. In Theorem 3.8, we take the trivial character χ on O(1) and then

take its d-th power. It means that O(d) has weight −
dtj

wj
in the affine chart xj = 1.

We refer to Remark 3.9 below for another description of the action used on the line
bundle O(d).

As in Theorem 3.3, we overcome the difficulty of non-convexity with the help
of the Hodge bundle E, but we change the T -action to the following: one rescales
fibers of E by taNN t1. Furthermore, we change the ambient space by performing a
weighted blow-up.

Define a polynomial Q by

Q(x1, . . . , xN−1, s) = xa1
1 x2 + · · ·+ x

aN−1

N−1 + x1s.

Since Q is a chain polynomial, it is quasi-homogeneous with some positive weights
b1, . . . , bN−1, bs and degree δ ∈ N∗.

Let P̃ be the weighted blow-up of P(w)×A1 =: P at the point ((0, . . . , 0, 1), s = 0)
with weights b1, . . . , bN−1 on the variables x1, . . . , xN−1 in the chart xN = 1 and
weight bs on the variable s ∈ A1. We refer to [1] for the construction of the weighted
blow-up.

Let T = (C∗)N+1
be the natural torus action on P. Since the base locus

((0, . . . , 0, 1), s = 0) is fixed under the torus T , then the space P̃ also carries a
T -action, it is even a toric DM stack. Moreover, the line bundle O(d) defined in

Remark 3.7 pulls-back to a T -equivariant line bundle on P̃, which we again denote

by O(d). Let E be the exceptional divisor of P̃ → P. The line bundle O(d−E) is
also T -equivariant.

Furthermore, over A1−0, we have P̃ ' P, so that we can embed the hypersurface
X ⊂ P(w) defined by the loop polynomial in the fiber over s = 1, yielding

X ↪→ P̃.

Let α ∈ H∗(X) be a cohomology class which is a pull-back from P(w). It can
be represented by a T -equivariant cycle in P(w) which does not contain the point

(0, . . . , 0, 1). Therefore, we can view it as a T -equivariant cohomology class on P̃,
such that the pull-back to X of its non-equivariant limit equals α.

A curve class in P(w) is a non-negative multiple of a line, that we can choose to

avoid the point (0, . . . , 0, 1), so that it gives a curve class in P̃. We only consider
these curve classes in the following statement.

Theorem 3.8 (Hodge–Gromov–Witten theory of loop hypersurfaces). We assume
condition (9) and we fix g, n ∈ N such that 2g − 2 + n > 0, β ∈ N, and isotropies
ρ = (ρ1, . . . , ρn) in P(w). Let X ⊂ P(w) be a smooth hypersurface of degree d and
α1, . . . , αn be ambient cohomology classes on X, i.e. pulled back from P(w). We
set α :=

∏n
i=1 ev∗i (αi) to be the product of insertions. Then we have the following

equality in the Chow ring of Mg,n

[Mg,ρ(P̃, β)]vir,T · eT (Rπ∗f
∗O(d− E)) · α −−−→

t→0
e(E∨) · [Mg,ρ(X,β)]vir · α.

Precisely, the class eT (Rπ∗f
∗O(d − E)) is only defined after localization, so we

first apply the virtual localization formula to the left-hand side, then we compute
it in AT∗ (Mg,n × A1) as a formal series in the T -equivariant parameters and their
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inverse, then we specialize them to

tN+1 = ((−a1) · · · (−aN )− 1) t , tj+1 = (−a1) · · · (−aj)t,
for all 1 ≤ j ≤ N − 1, and obtain a well-defined polynomial in t, and eventually we
take the constant coefficient and pull-it back from A∗(Mg,n × A1) to A∗(Mg,n).

Remark 3.9. The specialization of the N first T -equivariant parameters in terms
of a single variable t is the same as in Theorem 3.3, but the last one is different,
i.e. the Hodge bundle is rescaled with weight ((−a1) · · · (−aN )−1) instead of weight
(−a1) · · · (−aN ). By equation (9), there is a C∗-invariant (singular) hypersurface
of degree d

X0 =
{
xa1

1 x2 + · · ·+ x
aN−1

N−1 xN = 0
}
⊂ P(w),

and the line bundle O(d) in Theorem 3.8 is its normal line bundle, with the same
C∗-action as in Theorem 3.3. The line bundle O(d−E) is also a normal bundle as
we see in the proof below.

Remark 3.10. Theorem 3.8 yields an explicit formula for Hodge–Gromov–Witten
invariants of X as a sum over dual graphs. Indeed, such a formula is known for

every smooth toric DM stack, e.g. in [40], and P̃ is one such item.

Proof. It is similar to the proof of Theorem 3.3. We take the degree-d hypersurface
X to be the zero locus of the loop polynomial

P = xa1
1 x2 + · · ·+ x

aN−1

N−1 xN + xaNN x1

and we define the A1-family

X =
{
xa1

1 x2 + · · ·+ x
aN−1

N−1 xN + xaNN x1s = 0
}
⊂ P(w1, . . . , wN )× A1.

It is endowed with a C∗-action with weight pj on xj and pN+1 on s satisfying p1 = 1
and pj+1 = (−a1) · · · (−aj) for 1 ≤ j ≤ N − 1 and pN+1 = (−a1) · · · (−aj) − 1.
Moreover, the fiber X1 at s = 1 equals the smooth hypersurface X. However, the
DM stack X is not smooth, as it is singular at the point (0, . . . , 0, 1) of the central
fiber s = 0. We thus need to resolve the singularities and that is why we use the
weighted blow-up.

Define the A1-family X̃ as the weighted blow-up of ((0, . . . , 0, 1), s = 0) with
weights (b1, . . . , bN−1) on the variables x1, . . . , xN−1 in the chart xN = 1 and weight

bs on s. We claim that the A1-family X̃ is regular.
Indeed, in the local chart where xN = 1, it is defined by the equation

xa1
1 x2 + · · ·+ x

aN−1

N−1 + x1s = 0.

The choice of weights b1, . . . , bN−1, bs is such that the polynomial

xa2
2 x3 + · · ·+ x

aN−1

N−1 + x1s

is quasi-homogeneous with these weights. In the blow-up chart associated to the
variable xk, we have new variables ẋ1, . . . , ẋN−1, u, and ṡ satisfying ẋk = 1 and

xk = ubk , xj = ubj ẋj , s = ubs ṡ

and the equation defining X̃ becomes

ua1b1+b2−δẋa1
1 ẋ2 + ẋa2

2 ẋ3 + · · ·+ ẋ
aN−1

N−1 + ẋ1ṡ = 0,

where the power a1b1 + b2 − δ = (a1 − 1)b1 + b2 is positive. In particular, we see
that we can change chart and assume k 6= N − 1. Therefore, the partial derivative,
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along ẋk+1 if k 6= 1 and along ṡ if k = 1, does not vanish. Similarly, in the blow-up
chart associated to the variable s, we take the partial derivative along ẋ1. Hence

X̃ is a smooth DM stack.
It remains to check the assumptions of Theorem 2.7 for the embedding X̃ ↪→ P̃.

The C∗-fixed loci for X and for P̃ are the same, i.e. it is given by 2N − 1 isolated

points at the central fiber. Indeed, outside the exceptional divisor E in P̃, fixed
points are the N − 1 coordinate points (1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0). The excep-
tional divisor E is isomorphic to the weighted projective space P(b1, . . . , bN−1, bs)
and carries the non-trivial C∗-action with weight tj − tN on the j-th variable and
tN+1 on the last variable. We check that

bs(ti − tN ) 6= bitN+1 and bj(ti − tN ) 6= bi(tj − tN ) , ∀1 ≤ i < j ≤ N − 1,

which implies that the fixed locus in the exceptional divisor consists of its N coor-
dinate points. We see that all these 2N − 1 points belong to X .

The normal bundle of X ↪→ P̃ is the pull-back of the T -equivariant line bundle

O(d − E) on P̃, see Remarks 3.7 and 3.9. It remains to prove convexity up to
two markings, which follows from the same positivity argument as in the proof of

Theorem 3.3. Indeed, any stable map f̃ : C → P̃ induces a stable map f : C →
P(w)× A1 and we have three cases:

• the image f(C) does not contain the base locus ((0, . . . , 0, 1), s = 0), so that

it is isomorphic to the image L := f̃(C) and O(d− E)L = OL(d),
• the image f(C) is a curve containing the base locus ((0, . . . , 0, 1), s = 0),

so that the image L := f̃(C) is its strict transform, in which case we have
O(d− E)L = OL(d− 1),
• the image f(C) equals the base locus ((0, . . . , 0, 1), s = 0), so that the image

L := f̃(C) is contained in the exceptional divisor E, in which case we have
O(d− E)L = O(−E)L = OL(1).

The degree of the line bundle on the image f̃(C) is non-negative in all three cases and

we have seen in the proof of Theorem 3.3 that it implies H1(C, f̃∗O(d−E)) = 0. �

As a special case of Theorem 3.8, we obtain a full genus-0 computation of
Gromov–Witten theory of loop hypersurfaces with ambient insertions.

Corollary 3.11 (Genus-zero Gromov–Witten theory of loop hypersurfaces). Under
assumptions and notations of Theorem 3.8, but with g = 0, we have the following
equality in the Chow ring of M0,n

[M0,ρ(P̃, β)]vir,T · eT (Rπ∗f
∗O(d− E)) · α −−−→

t→0
[M0,ρ(X,β)]vir · α.

3.3. Hodge–Gromov–Witten theory for invertible polynomials. A quasi-
homogeneous polynomial P is called invertible if it has as many monomials as
variables. By [36], an invertible polynomial has an isolated singularity at the ori-
gin if and only if it is the Thom–Sebastiani sum of chain and loop polynomials5.
Precisely, up to renaming variables, the polynomial P equals

P (x1, . . . , xN ) = P1(x1, . . . , xN1) + · · ·+ Pr(xNr−1+1, . . . , xN ),

where polynomials P1, . . . , Pr are either chain or loop polynomials. In this section,
we assume P is not a Fermat polynomial, i.e. we have r < N .

5A Fermat monomial is a special case of chain or loop polynomial.
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We introduce r affine variables s1, . . . , sr and we define a polynomial

P̂ (x1, . . . , xN , s1, . . . , sr) = P̂1(x1, . . . , xN1 , s1) + · · ·+ P̂r(xNr−1+1, . . . , xN , sr)

in the following way:

• if Pi is a chain polynomial of the form ya1
1 y2 + · · · + yaNN , then we set

P̂i = ya1
1 y2 + · · ·+ yaNN si,

• otherwise, Pi is a loop polynomial of the form ya1
1 y2 + · · ·+ yaNN y1 and we

set P̂i = ya1
1 y2 + · · · + yaNN y1si. In that case, we say that yN is the last

variable of P̂i and y1 is its first variable. Of course, there are N choices to
incorporate the variable si in Pi, and we fix one once for all.

Next, we define the Ar-family

X =
{
P̂ = 0

}
⊂ P(w)× Ar,

which is not regular. We first determine the singular locus of X and then we perform
weighted blow-ups to resolve it.

Let J ⊂ {1, . . . , N} be the set of indices j such that xj is the last variable of

some polynomial P̂i associated to a loop polynomial Pi. Moreover, we define a
function Φ: J → {1, . . . , N} which sends j to the index of the first variable in the
loop polynomial associated to j.

For any subset J ′ ⊂ J , we define the subspace

BJ′ ⊂ P(w)× Ar

where all variables xj with j /∈ J ′ are zero and all variables sj with j ∈ J ′ are zero.
We observe that the singular locus of X equals

Sing(X ) =
⋃
J′⊂J

BJ′ ⊂ P(w)× Ar.

Furthermore, we define the invertible polynomial

QJ′
(
{xj}j /∈J′ , {sj}j∈J′

)
= P̂ (x1, . . . , xN , s1, . . . , sr)|xj=1 ∀j∈J′

sj=1 ∀j /∈J′
−
∑
j∈J′

x
aΦ(j)

Φ(j) xΦ(j)+1,

which is then quasi-homogeneous of some degree δ ∈ N∗, with respect to some
positive weights bJ′ := (bJ′(1), . . . , bJ′(N)) on the variables xj , sj .

Consider the smooth DM stack P̃ obtained with the following recipe:

• for all subset J ′ ⊂ J of cardinality 1, we blow-up BJ′ in P(w) × Ar with
weights bJ′ on the respective variables,
• the strict transforms of the subspaces BJ′ with J ′ ⊂ J of cardinality 2 are

disjoint and we blow them up with weights bJ′ on the respective variables,
• . . . ,
• the strict transforms of the subspaces BJ′ with J ′ ⊂ J of cardinality #J −

1 are disjoint and we blow them up with weights bJ′ on the respective
variables,
• we blow-up the strict transform of BJ with weights bJ′ on the respective

variables.

We denote by X̃ ↪→ P̃ the strict transform of X under the birational map P̃ →
P(w)× Ar, and by E the sum of the exceptional divisors.
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Proposition 3.12. The Ar-family X̃ is regular. Moreover, the fiber at (s1, . . . , sr) =
(1, . . . , 1) equals the degree-d hypersurface X in P(w) defined by the invertible poly-
nomial P .

Proof. To simplify the exposition, we write the proof for an invertible polynomial
which is a sum of two loop polynomials, i.e. we take

P̂ (x, y) = xa1
1 x2 + · · ·+ xaNN x1s1 + ya1

1 y2 + · · ·+ yaNN y1s2.

The general proof follows the same arguments. Moreover, we consider only the
charts when xN 6= 0 or yN 6= 0, because otherwise X is already smooth.

Let us take the chart where xN = 1, and consider a point p = (x, y, s1, s2) in this
chart. We can assume x1, . . . , xN−1 = 0, y1, . . . , yN−1 = 0, s1 = 0, and yNs2 = 0,
otherwise X is smooth at p.

Let us first assume yN = 0, so that we blow-up the locus B{xN} first and then
the locus B{xN ,yN}. After the first blow-up, the equation defining X becomes

uε1 ẋa1
1 ẋ2 + · · ·+ ẋ1ṡ1 + ẏa1

1 ẏ2 + · · ·+ ẏaNN ẏ1s2 = 0,

in the new coordinates (see the proof of Theorem 3.8) and with ε1 some non-
negative integer. If one of the dotted variable other than ẏN is non-zero, then this
equation satisfies the smoothness criterion, and we are away the second blow-up
center B{xN ,yN}. Thus, we can assume they are all zero but ẏN = 1. After the
second blow-up, we then obtain

vε2uε1 ẍa1
1 ẍ2 + · · ·+ ẍ1s̈1 + vε3 ÿa1

1 ÿ2 + · · ·+ ÿ1s̈2 = 0,

in new coordinates defined in the same way as for the first blow-up and with some
non-negative integers ε2, ε3. Then this equation satisfies the smoothness criterion.

Eventually, let us consider the case where yN 6= 0 and s2 = 0. Then we are away
the first blow-up center B{xN} and we only need to perform the second blow-up.

The equation defining X̃ is then of the form

v′
ε2 (ẍ′1)

a1 ẍ′2 + · · ·+ ẍ′1s̈
′
1 + v′

ε3 (ÿ′1)
a1 ÿ′2 + · · ·+ yaNN ÿ′1s̈

′
2 = 0,

in new coordinates and it satisfies the smoothness criterion since yN 6= 0. �

Consider the natural torus action of T = (C∗)N+r
on the toric DM stack P(w)×

Ar. Since every subspace BJ′ is stable under the torus-action, then the weighted

blow-up P̃ is again a toric DM stack with T -action. Moreover, the normal bundle

of X̃ ↪→ P̃ is the pull-back of the T -equivariant line bundle O(d− E) on P̃.
Let T ′ := (C∗)r and define an embedding T ′ ↪→ T such that the polynomial

P̂ is T ′-equivariant. Precisely, if t1, . . . , tN , τ1, . . . , τr denote variables of T , then

we impose M(t, τ) = 1 for every monomial M of the polynomial P̂ . Equivalently,

we let T ′ act separately on each P̂i, where we take the C∗-action defined for chain
and loop polynomials in the previous sections. We can also consider a generic
embedding C∗ ↪→ T ′.

As a consequence, the regular Ar-family X̃ is C∗-equivariant (even T ′-equivariant),

and we check easily that the C∗-fixed loci in X̃ and in P̃ are equal and consist of
isolated fixed points in the central fiber (s1, . . . , sr) = (0, . . . , 0). Moreover, by the
same positivity argument as in the proof of Theorem 3.8, we see that the normal

bundle O(d−E) of X̃ ↪→ P̃ is convex up to two markings. We then conclude with
the following statement.
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Theorem 3.13 (genus-0 Gromov–Witten theory of invertible hypersurfaces). We
fix n ≥ 3, β ∈ N, and isotropies ρ = (ρ1, . . . , ρn) in P(w). We assume there exists a
degree-d hypersurface in P(w) defined by an invertible polynomial. Let X ⊂ P(w) be
any smooth hypersurface of degree d and α1, . . . , αn be ambient cohomology classes
on X, i.e. pulled back from P(w). We set α :=

∏n
i=1 ev∗i (αi) to be the product of

insertions. Then we have the following equality in the Chow ring of M0,n

[M0,ρ(P̃, β)]vir,T · eT (Rπ∗f
∗O(d− E)) · α −−−→

t→0
[M0,ρ(X,β)]vir · α.

Precisely, the class eT (Rπ∗f
∗O(d − E)) is only defined after localization, so we

first apply the virtual localization formula to the left-hand side, then we compute
it in AT∗ (M0,n × Ar) as a formal series in the T -equivariant parameters and their
inverse, then we specialize them via the embedding C∗ ↪→ T , and obtain a well-
defined polynomial in t, and eventually we take the constant coefficient and pull-it
back from A∗(M0,n × Ar) to A∗(M0,n).

Remark 3.14. Theorem 3.13 is also valid in higher genus, but it is not interesting
as the right-hand side is multiplied by the r-th power of the Euler class of the Hodge
bundle, and we know its square is zero for positive genus.

Remark 3.15. Theorem 3.13 yields an explicit formula for genus-0 Gromov–
Witten invariants of X as a sum over dual graphs. Indeed, such a formula is known

for every smooth toric DM stack, e.g. in [40], and P̃ is one such item. Moreover,

the complexity of the space P̃ only comes from loop polynomials. In particular,
when it is possible to represent the hypersurface X by a Thom–Sebastiani sum of
chain polynomials, we can simplify the formula to

[M0,ρ(P(w), β)]vir,T · eT (Rπ∗f
∗O(d)) · α −−−→

t→0
[M0,ρ(X,β)]vir · α,

in the Chow ring of M0,n.

Remark 3.16. There is a list of all 7555 Calabi–Yau 3-folds that are hypersurfaces
in weighted projective spaces, see [7, 30, 34] or on Kreuzer’s webpage. Among
them, there are about 800 hypersurfaces represented by a Fermat polynomial, hence
satisfying the convexity assumption. There are about 6000 hypersurfaces defined
by an invertible polynomial, hence computable via Theorem 3.13. The last 10%
correspond to non-degenerate polynomials with more than five monomials and are
not treated by this paper, e.g.

x15
1 + x5

2 + x5
3x5 + x2

4x5 + x9
5 + x2

3x2x4 = 0 in P(3, 9, 8, 20, 5).

Observe as well that the main difficulty in Theorem 3.13 comes from the sequence of

weighted blow-ups in the definition of the ambient space P̃. However, as we consider
3-folds, there is at most two loop polynomials in the Thom–Sebastiani sum, so that

the birational map P̃ → P(w)× Ar is defined by at most three blow-ups.

Remark 3.17. Calabi–Yau 3-folds with Euler characteristic equal to χ = ±6 are
especially important in string theory. The first instance is the Tian–Yau manifold,
defined as the quotient of a smooth complete intersection in P3 × P3 of degrees
(3, 0), (0, 3), and (1, 1) by a free action of Z/3Z. It appeared as one candidate for a
string theory’s potential solution to the universe, see [25, 30]. Other examples are
given by hypersurfaces in weighted projective space. A list of 40 items is given in
[34], among which 14 hypersurfaces are defined by an invertible polynomial. None
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of these 14 hypersurface satisfy the convexity assumption and only one involves a
loop polynomial, namely

x7
1x2 + x5

2x1 + x1
37x4 + x2

4x5 + x3
5 = 0 in P(6, 9, 2, 17, 17).

3.4. Regularizable stacks. As a by-product of Section 1, we extend genus-0
Gromov–Witten theory to a particular set of singular DM stacks that we call reg-
ularizable and we prove invariance under regular deformations.

Definition 3.18. A DM stack X is called regularizable if there is an embedding
X ↪→ X as a fiber in a regular Am-family X for some integer m. Genus-zero
Gromov–Witten theory of X is then defined using regularized virtual cycle. A
substack X ⊂ P of a smooth DM stack P is called regularizable inside P if we can
choose the family X above as a subfamily of the trivial family P × Am.

Examples. Smooth DM stacks are regularizable via a trivial family. The hyper-
surface X0 from Remark 3.4 is singular but it is regularizable inside P(w). Every
hypersurface in a projective space is regularizable inside the projective space. The
quartic orbifold curve {

x4y + y3z = 0
}
⊂ P(1, 1, 2)

is not regularizable inside P(1, 1, 2).

In the following proposition, we illustrate the fundamental role of hypersurfaces
defined by a Thom–Sebastiani sum of chain polynomials.

Proposition 3.19. Let X ⊂ P(w) be a regularizable hypersurface inside a weighted
projective space, such that there is a C∗-action on P(w) leaving X invariant and
whose fixed points are isolated. Then X is singular and there exists a smooth hy-
persurface in P(w) defined by a Thom–Sebastiani sum of chain polynomials. Con-
versely, if there exists a smooth hypersurface in P(w) defined by chain polynomials,
then there is a regularizable hypersurface stable under a C∗-action from P(w) with
isolated fixed points.

Proof. For every hypersurface X = {P = 0} ⊂ P(w), denoting by M the set of
monomials of P , we see easily that

(1, 0 . . . , 0) /∈ X ⇐⇒ ∃m ∈ N∗ , xm1 ∈M,

(1, 0 . . . , 0) ∈ X − Sing(X) ⇐⇒ ∃m ∈ N∗, j 6= 1 , xm1 xj ∈M.

Moreover, if (1, 0 . . . , 0) ∈ Sing(X), then we have

X is regularizable inside P(w) =⇒ w1|d.

Therefore, whenever X is regularizable inside P(w), we have, for every 1 ≤ j ≤ N ,
either wj |d or a monomial x

aj
j xk ∈M, with possibly k = j.

Furthermore, assume X is invariant under a C∗-action on P(w) with weights
p1, . . . , pN . If we have (1, 0, . . . , 0) /∈ X, then we get w1pj = wjp1 for all variable
xj involved in the polynomial P , and fixed points are not isolated (unless P is a
Fermat monomial). Thus, if the C∗-action has only isolated fixed points, there are
no Fermat monomials in M (unless P is itself a Fermat monomial and then there
is a smooth Fermat hypersurface in P(w)).
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As a consequence, if X is as in the statement, then it contains all coordinate
points. Introduce the set T ⊂ {1, . . . , N}2 defined by

(i, j) ∈ T ⇐⇒ ∃ai ∈ N∗ , xaii xj ∈M.

By the discussion above, T does not intersect the diagonal and for every i such that
wi does not divide d, there is at least one j such that (i, j) ∈ T . We view T as a
directed graph and we check easily that if we have a loop in T , i.e. j1, . . . , jm such
that (j1, j2), . . . , (jm, j1) are in T , then the C∗-action is trivial on P(wj1 , . . . , wjm) ⊂
P(w). Moreover, if we have two edges colliding, i.e. i, j, k such that (i, j) and
(k, j) are in T , then wjpk = wkpj and the C∗-action is trivial on P(wj , wk) ⊂
P(w). Therefore, there is a directed subgraph in T consisting of a disjoint union of
directed lines. Each line corresponds to a chain polynomial without its last Fermat
monomial, thus proving the statement.

Conversely, we take a Thom–Sebastiani sum of chain polynomials P̂ . Up to

renaming variables, we can assume Fermat monomials of P̃ are yb11 , . . . , y
bm
m . If P̂

is not a Fermat polynomial, i.e. m 6= N , then we define

P̃ = P̂ + (s1 − 1)yb11 + · · ·+ (sm − 1)ybmm and P = P̃|s1=...=sm=0.

Then the singular hypersurface X = {P = 0} ⊂ P(w) is invariant under a C∗-action

on P(w) whose fixed points are isolated and the family X =
{
P̃ = 0

}
⊂ P(w)×Am

is regular. If P̂ is the Fermat polynomial P̂ = yb11 + · · ·+ ybNN , then we define

P̃ = yb11 s1 + · · ·+ y
bN−1

N−1 sN−1 + ybNN

and P = ybNN .Then the singular hypersurface X = {P = 0} ⊂ P(w) is invariant
under a C∗-action on P(w) whose fixed points are isolated and the family X ={
P̃ = 0

}
⊂ P(w)× AN−1 is regular. �

Proposition 3.20. Let X be a regularizable DM stack and let X be a regular affine
family containing X as a fiber. Then every fiber is a regularizable DM stack and
the genus-zero Gromov–Witten theory is independent of the fiber. �

Remark 3.21. A special feature of genus-zero Gromov–Witten theory is that we do
not need a globally-defined torus action on the affine family to apply the Equivariant
Regular Specialization Theorem 1.24: a torus action on the central fiber is enough,
as soon as the normal bundle of the central fiber is torus-equivariant.
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