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Abstract

To respect their pledge to fulfill the 2015 Paris Agreement on climate change, many countries have
designed so-called Nationally Determined Contributions. One lever to reduce national greenhouse gases
emissions is to change the trade policy of the country, in order to import more from the current and future
least carbon-intensive economies. However, future carbon intensities reductions are uncertain, leading
to the production of emissions scenarios by several institutes. A fitting trade policy is then classically
obtained for each of such scenarios. By contrast with such perfect foresight (anticipative) approach, we
propose to take into account all the possible futures simultaneously, in order to determine a "robust-to-
uncertainty" trade policy. Using a two-stage stochastic optimization framework between 2015 and 2030,
we study the French case and we outline a method to design a robust trade policy in a highly uncertain and
constrained context. This optimal policy is then compared to optimal-by-scenario policies and to current
French imports.

Keywords. Optimal trade policy, Stochastic optimization, Import shares, Nationally Determined Contri-
bution, Carbon footprint, France

1 Introduction
The goal of the first French "Stratégie Nationale Bas Carbone" (SNBC1) was to decrease by 40%

territorial greenhouse gases between 1990 and 2030. This strategy did not take into account the carbon
footprint from imported emissions, that is, emissions that take place abroad in order to product goods
or services consumed in France. Carbon footprint equates indeed to the sum of non-exported territorial
emissions and imported emissions. France seeks now to control its carbon footprint, and not only its
territorial emissions.
In this context, the French government turned to the "Haut Conseil pour le Climat" (HCC) in 2020

with the following question: "What is the carbon footprint of goods that we import and how to reduce it
efficiently?". In its report (Le Quéré et al. [2020]), the HCC highlights that imported emissions amounted
up to half of the French carbon footprint in 2015. This observation is supported by evidence provided by
an OFCE report (Maillet [2020]). Reducing carbon footprint seems possible, among other solutions, by
controlling trade partners; fostering imports from economies with low carbon intensities is a possible lever.
In this paper, we transpose the objectives of SNBC1 in reduction of carbon footprint, instead of territorial

emissions, and seek to determine an optimal trade policy for France, under constraints and uncertainty, be
they ecological or economic. Constraints emerge from realism purposes, notably from the satisfaction of the
French demand of imported goods and services, and from the carbon footprint reduction goal. Uncertainty
arises from the trajectories of decarbonization of economies, i.e. from the fulfilling of their Nationally
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Determined Contributions (NDCs). Taking this uncertainty into account is crucial when it comes to add
robustness to an optimal trade policy. This robustness, when compared to optimal perfect foresight trade
policies obtained through deterministic optimization, is the key result of our study.
To our knowledge, there is no literature considering optimal trade policy regarding environmental criteria

and using import shares as (direct or indirect) decision variables. Most literature dealing with optimal trade
policy seems to fit into the context of specific aspects of neoclassical economics, e.g. oligopoly, monopolistic
competition and heterogeneous firms, or comparative advantage (e.g. Haaland and Venables [2016], Eaton
and Grossman [1986], Bhagwati and Srinivasan [1976], Costinot et al. [2020], or Costinot et al. [2015]).
Otherwise, most optimization problems under carbon footprint constraints deal with technical systems,
especially energy production ones (e.g. Pękala et al. [2010]).
The originality of our approach stems from the use of import shares as decision variables in a problem

of carbon footprint reduction, and from our explicit stochastic optimization framework.
We now position our contribution with respect to the literature. Diagnoses of the carbon footprints of

European countries have underlined the major part of indirect emissions. Similar studies have been done for
Germany (Destatis [2019]), the UK (Wiedmann et al. [2008]) and France (Maillet [2020], Le Quéré et al.
[2020]). They all emphasize the necessity of taking a consumer point of view to better account for the carbon
footprint of consumed goods and in the determination of suitable public policies. Among possible solutions,
the control of the carbon intensity of imported goods is highlighted for France in Le Quéré et al. [2020].
This approach is supported by previous research (Xu and Dietzenbacher [2014]) showing the growing role
of imported emissions in carbon footprint of developed countries due to the structure of the value chain.
It suggests to better keep track of the carbon impact of imports, and to use trade as a mitigation lever in
public policies. Moran et al. [2020] looked at changes in the composition of imports as a consequence of
carbon-friendly consumer spending choices. But they only considered individual consumer actions (though
massively adopted), whereas our approach takes the point of view of a regulator aggregating at a national
level a goal of explicitly controlling imported emissions. Thus, a certain interest for imports choices as a
mitigation lever of carbon footprint has been shown both in the literature and by governments, but we did not
find previous works effectively determining a trade policy based on a carbon target. In order to determine
such policy, we write the optimization problem of a regulator subject to a carbon constraint and explicitly
taking shares of French imports represented by each world region as decision variables.
Since we are interested in establishing a long term trade policy, our optimization problem has to take

into account not only present but also future carbon intensities of sourcing regions for French imports.
These future intensities are widely considered to be uncertain, though countries have provided NDCs after
the 21st Conference Of the Parties (COP) indicating a pledge for their future emissions. den Elzen et al.
[2019] pointed out the uncertainty of major countries (and greenhouse gases emitters) meeting their NDCs.
Benveniste et al. [2018] proposed a quantification of this uncertainty for every country, and assembled
estimates of Gross Domestic Products (GDP) and emissions in 2030 and 2050 for all countries produced
by the Organisation for Economic Co-operation and Development (OECD), the International Institute for
Applied Systems Analysis (IIASA), the Potsdam Institute for Climate Impact Research (PIK) and the
"Centre d’Études Prospectives et d’Informations Internationales" (CEPII). Thus we choose an optimization
framework where this uncertainty appears explicitly. We will see that this approach leads to more robust
trade policies than policies obtained under a perfect foresight approach, where the future emissions and
GDPs are supposed known in advance.
This paper is organized as follows. In Section 2, we explicitly present our notations, then link them

to the available data to finally formulate the stochastic optimization problem corresponding to least trade
cost minimization under constraints and uncertainties. In Section 3, we display different numerical results;
we compute optimal robust trade policies for 36 trading partners, also aggregated in 3 and 2 trading world
regions; we discuss the interest of our stochastic approach. We conclude in Section 4.

2 Data and method
The problem studied here is the determination of an optimal French trade policy in order to follow the

recommendation of the HCC in terms of carbon footprint reduction. This goal is a 40% decrease between
1990 and 2030. The framework used in this study is the so-called two-stage stochastic optimization (Shapiro
et al. [2009]). The two stages correspond to the years 2015 and 2030. Decisions taken in the first stage
(2015) are the import shares from each region. On the second stage, if the footprint target is not reached,
France has to buy emissions quotas in order to cover the difference between its footprint and the target.
The random aspect of the problem is to be found in the French demand in 2030, in the carbon intensities

of world economies in 2030 and in the price of the European carbon emission quotas in 2030.
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The monetary amount of quotas France has to buy to cover an excess of carbon footprint over the
reduction target is our penalization criterion. The estimation of the distribution of the random variables
presented in the following of this section is based on the work of Benveniste et al. [2018]. This study
generates GDP and emission data for all countries in 2030 based on Nationally Determined Contributions
announced by the countries on the occasion of Paris COP 21 and revised for COP 26.

2.1 GDP and greenhouse gases emissions in 2030
Data used in our study comes from the work of Benveniste et al. [2018]. In the latter paper, the authors

gather data and estimations of GDP and greenhouse gases (in CO2eq) for every country, for the years 2015,
2030 and 2050. These data and estimations are furnished by 4 organisms: CEPII, IIASA, OECD and PIK.
For future years, estimations of the distribution of emissions based on NDCs are proposed by each of these
organisms, based on Nationally Determined Contributions given by the states themselves. When no NDC is
given by a country, the organisms estimate themselves, as experts, the evolution of emissions of this country.
As a matter of fact, these estimations are done 5 times. Indeed, along with the IPCC reports it is

commonly accepted, in the literature dealing with climate change and its attenuation, to consider 5 stylized
(and standardized) possible versions of the world and its evolution: these are the Shared Socioeconomic
Pathways (SSP). These SSPs account for the diversity of consequences of climate change and of climate
policies. They are used by Benveniste et al. [2018] to build trajectories of greenhouse gases emissions
associated with different sets of climate policies. 5 SSPs are considered: Sustainability (SSP1), Middle of
the Road (SSP2), Regional Rivalries (SSP3), Inequalities (SSP4) and Fossil-fueled Development (SSP5).
Uncertainty arises from NDCs, for example on the capacity of a country to meet its own NDC or on the
reliability of the design of the NDC.
Thus Benveniste et al. [2018] build distributions of emissions for each country for each SSP and for each

GDP data source. In our study, we take advantage of this work and build 20 scenarios of carbon intensities
of world regions. A given scenario of ours is characterized by the choice of a tuple (SSP, GDP data source)
— e.g. (SSP1, CEPII). For every region, we compute the mean of the distribution of emissions produced by
Benveniste et al. [2018] for this region for this tuple (SSP, GDP data source). Finally, we divide this mean
by the GDP of the region given by the selected GDP data source. This yields a carbon intensity of each
region for this tuple (SSP, GDP data source).
Here below, we detail the mathematical formalization.

2.2 Notations for the decision problem
In order to write the two-stage optimization problem of a regulator— seeking to reach a carbon footprint

target by modifying French trade policy, while minimizing the value of emissions quotas bought — we take
the following notations, in which stage t = 0 refers to year 2015 and stage t = 1 refers to 2030.
As seen in §2.1, we use the estimations gathered by Benveniste et al. [2018] to derive 20 scenarios (one

per couple SSP×organism furnishing data) in order to account for uncertainty arising from NDCs. We
envision this set of scenarios to explore several possibilities of evolution of the variables presented below.
More generally, scenarios are supposed to form a finite set S, with the generic scenario being referred to
as s, and having probability πs ≥ 0 (with

∑
s∈S πs = 1). In the equiprobable case, the probability of any

scenario s is πs = 1/|S|, where |S| is the cardinality of the finite set S of scenarios.
The world regions with which France trades constitute the finite set R. The generic trading partner is

referred to as r. We consider a set of 36 sourcing regions that gather 90% of the French imports in 2015,
according to the French "Direction Générale des Douanes"1.
Let I0 be the vector of French demand fractions, that are imported by France from each world region

r ∈ R at stage t = 0, constituting the first decision variable as

I0 = {Ir0}r∈R . (1)

These decisions are taken at stage t = 0 (2015), hence the lower index in I0. Note that the region “France”
appears in the vector I0 in (1), so that the sum of the I0 coefficients equates to 1. The fraction associated
with the region France is blocked at its 2015 level: we do not account for the possibility of relocation, nor
of offshoring.
LetCs

1 denote the vector of carbon intensities of the different world regions r ∈ R at stage t = 1 (2030),
in the scenario s:

Cs
1 = {Cr,s

1 }r∈R . (2)

1https://lekiosque.finances.gouv.fr/site_fr/telechargement/telechargement_conjoncture.asp
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These uncertainties are supposed to be revealed at stage t = 1, hence the lower index in Cs
1 . The different

scenarios s ∈ S allow to account for uncertainty in NDCs implementations.
Let E1 = 249 MtCO2eq denote the 2030 carbon footprint target, which corresponds to a decrease of

40% from the French carbon footprint of 1990. Let Ds
1 be the total French demand of importations at

stage t = 1, which depends on the scenario s. Finally, we denote by Qs
1 the quantity of emissions quotas

bought by France at stage t = 1 and by P s
1 its unitary price at stage t = 1, in the scenario s. France has to

buy emissions quotas if its target E1 is not reached.

2.3 From data to ingredients for the decision problem
Estimates of the French GDP yield Ds

1, the value of the French demand of importations at stage t = 1
in scenario s. Imports are considered to represent the same part of Ds

1 at t = 1 as at t = 0, that is, 30%
according to INSEE. This is a strong hypothesis since this part has varied significantly in the past decades,
but it enables to isolate the effects of the modification of the trade policy on carbon footprint. Denoting by
gdpFR,s

1 the French GDP in 2030 in scenario s, we thus set

Ds
1 = 0.3× gdpFR,s

1 . (3)

On the other hand, intensities Cr,s
1 are obtained by dividing, for each region r, the GDP by the greenhouse

gases emissions. Denoting by ghgr,s1 the emissions of region r in 2030 in scenario s, Cr,s
1 is calculated as

Cr,s
1 =

ghgr,s1

gdpr,s1

, ∀(r, s) ∈ R× S . (4)

The price of a carbon quota is taken according to the conclusion of Commission Quinet (Quinet et al.
[2019]) which determined a long term carbon price scenario to use in France. Thus, the price of carbon is
fixed at 250€2018 per ton in 2030. This price is also in line with the approximate levels reached by the price
of an emission allowance on the EU-ETS permits market on the long run due to cap restriction.
To strengthen the economic realism of the derived trade policies, we suppose that, for each world

region r ∈ R, the demand fraction Ir0 is bounded above by

I
r

0 = δ × Ir,real0 , ∀r ∈ R , (5)

where Ir,real0 is the real French import share from region r in 2015, and where the value of δ is set to 1.6 as
explained below. The term δ limits the accessible variation in commercial exchanges between France and
a region, by encompassing all possible costs of such variation that are not explicitly modeled in this study.
These costs may arise from various reasons such as historical or geopolitical links between the region and
France, geographical distance or transport costs. It also reflects the limit of each region in production of
goods and services that it may export: France cannot possibly import more from a region than what it offers
to export. Finally, the parameter δ may also be seen as one of relative sensitivity to the carbon constraint:
an increased parameter increases the relative weight of the respect of the carbon constraint among the
factors that determine French trade policies. The arbitrary value of δ = 1.6 is the result of several tries.
Lower values (< 1.4) contract indeed the set of admissible policies very close to the current policy. These
values are relevant in worlds that do not care about carbon constraints. Since this study seeks precisely to
measure the impact of caring about imported carbon content when trading, low values of δ are not suitable.
Much higher δ values (> 1.8) yield trade policies where France exchanges with countries that could not
realistically export that much goods, or, in some scenarios, where France leaves completely its historical
partners. These high values make the carbon constraint prevail on other determinants of trade and, more
importantly, on the production limits of sourcing regions. Thus, higher values are not relevant either, and
we keep δ = 1.6which balances between a relative importance of the carbon constraint in the determination
of trade policies, and realistic variations from the 2015 situation with a 15 years horizon.

2.4 Formulation of a stochastic optimization problem
We consider 20 scenarios, one per couple (SSP × organism furnishing data), all equiprobables. With

the notation in §2.2, this means that |S| = 20 and that the probability of scenario s is πs = 1/|S| = 1/20.
First, we write the problem formulation in an extensive linear form, with recourse variables {Qs

1}s∈S in
addition to the original decision variables I0 in (1). Second, we write an equivalent problem in the original
decision variables I0, having the property to be a convex program.
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2.4.1 Extensive linear form (in initial and recourse decision variables)

With the notations in §2.2, we write the optimization problem of a regulator as

min
{Ir

0}r∈R
,{Qs

1}s∈S

∑
s∈S

πsP s
1Q

s
1 (6a)

0 ≤ Qs
1 , ∀s ∈ S , (6b)

0 ≤ Ir0 ≤ I
r

0 , ∀r ∈ R , (6c)∑
r∈R

Ir0 = 1 , (6d)

Ds
1

(∑
r∈R

Ir0C
r,s
1

)
−Qs

1 ≤ E1 , ∀s ∈ S . (6e)

In the optimization problem (6), the regulator seeks to minimize the expected cost (6a) of buying emissions
quotas at stage t = 1 (2030), under constraints that we comment right now. Constraint (6b) is a constraint
of nonnegativity of the quantity Qs

1 of emissions quotas. Constraint (6c) corresponds to the nonnegativity
of the French demand fractions Ir0 and to a maximal variation of Ir0 from the 2015 situation (t = 0). This
constraint of realism accounts for all the links between countries not explicitly taken into account in our
study that also influence trade between France and these countries. This maximum is a fixed parameter
detailed in (5): each region can export to France up to 1.6 times the part of French demand it represents at
stage t = 0. Constraint (6d) accounts for the satisfaction of French demand. Constraint (6e) represents the
achievement of the carbon footprint targetE1 for all scenarios s ∈ S, thanks to the possibility of recourse by
means of additional emissions quotasQs

1. Finally, note the difference in available information when the two
decision variables are determined. I0 is deterministic; this reflects a decision taken at stage t = 0. On the
contrary, the decision Qs

1 depends on the scenario s because it is a function of French demand and carbon
intensities of regions at t = 1, which all depend on the scenario s.

2.4.2 Convex form (in initial decision variables)

In case the price P s
1 of emission quotas bought by France at stage t = 1 is nonnegative for any scenario,

that is, when
P s
1 ≥ 0 , ∀s ∈ S , (7)

another interesting formulation is possible. Using the form of the objective function in (6a) and the
constraints (6e), it is easy to observe that the variableQs

1 is, at the optimum in the optimization problem (6),

fully determined as a function
(
Ds

1

(∑
r∈R Ir0C

r,s
1 − E1

))
+

of import shares, future French demand and

future carbon intensities, where x+ = max{x, 0}. Thus, in this setting, the optimization problem (6)
rewrites as

min
{Ir

0}r∈R

∑
s∈S

πsP s
1

(
Ds

1

(∑
r∈R

Ir0C
r,s
1 − E1

))
+

(8a)

0 ≤ Ir0 ≤ I
r

0 , ∀r ∈ R , (8b)∑
r∈R

Ir0 = 1 . (8c)

In this form, the objective function (8a) of problem (8) is clearly a convex function of the vector of import
shares {Ir0}r∈R thanks to the polyhedral convex (· · ·)+ terms in (8a). Constraints (8b)–(8c) are linear and
depend also only on variables {Ir0}r∈R. Thus, this form places problem (8) in the framework of convex
optimization, with the property that solutions are then expected to be (generally) inside their constraints
domain (whereas solutions of linear programs lie on the border). Thanks to such convex formulation, we
obtain robust solutions for the import shares {Ir0}r∈R.

3 Numerical results
Here, we solve numerically the optimization problem (8). For this purpose, we keep, for each country,

the mean of its emissions and GDP in 2030 given by the 4 organisms (OECD, IIASA, PIK, and CEPII) for
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each SSP. This yields 20 equiprobable scenarios (4 organisms × 5 SSPs), that are input data for the convex
optimization problem (8).
Once obtained the optimal solution {Ir0}r∈R — that we coin “robust optimal policy” (more evocative

than stochastic optimal policy) or “robust (stochastic) optimal policy” — we compare its performances with
other pre-determined policies:

• the current trade policy;

• the 20 “perfect foresight policies” that are solutions of problem (6) when all the probabilities πs, in
the family {πs}s∈S , are set to zero except for one scenario.

Let us be more specific regarding this last case. Condider a single scenario s̄ ∈ S (for instance, scenario
SSP1 estimated by IIASA). The perfect foresight policy associated with scenario s̄ solves the following
deterministic program:

min
{Ir

0}r∈R
,Qs̄

1

P s̄
1Q

s̄
1 (9a)

0 ≤ Qs̄
1 , (9b)

0 ≤ Ir0 ≤ I
r

0 , ∀r ∈ R , (9c)∑
r∈R

Ir0 = 1 , (9d)

Ds̄
1

(∑
r∈R

Ir0C
r,s̄
1

)
−Qs̄

1 ≤ E1 . (9e)

This is problem (6) with πs̄ = 1 (e.g. πIIASA-SSP1 = 1) and all other πs = 0, that is, we optimize thinking
that the future will be scenario s̄ for sure. These perfect foresight policies are solution of deterministic
optimization problems, as the scenario is known in advance at stage t = 0, that are linear programs; as a
consequence, they yield "corners" solutions, that are less robust to hazard. Indeed, resulting import shares
are closely associated with the scenario they are optimized for. For pessimistic scenarios, this gives policies
concentrated in few countries, thus closely associating the success of this policy — in reaching the carbon
footprint target — to the successful implementation of NDCs of these few countries. Other scenarios may
be very optimistic as they feature the completion of NDCs for countries that, in most other scenarios, fail
to reduce their emissions. Optimistic scenarios yield optimal policies that rely, at least partially, on such
countries. Thus resulting policies may also be considerably stretched between all world regions. In a policy
approach, the latter optimistic case is more detrimental. Indeed, if France imports from fewer countries
than in the current situation, and estimates that, in the end, these partners might not sufficiently reduce their
emissions— leading to supplementary needs for emissions quotas— France may decide to help them, if the
(social) cost of helping is lower than the final cost of supplementary emissions quotas and climate related
damages. On the contrary, such recourse is not an option when the decided trade policy has substantially
diversified regions of imports. This policy trap – bad trade policy choice and no possible recourse – exists
because of the cherry picking of the optimal solution when deterministic optimization along a particular
scenario is done. The robust (stochastic) optimal policy, that we advocate for, avoids this issue by taking all
scenarios into account altogether.

3.1 Results for 2 aggregate regions
To better perceive the robustness of decarbonization policies obtained through stochastic optimization,

we present a 2D case in Figure 1, where only 2 regions, apart from France, are considered: Europe and
the rest of the world. It can easily be seen that all the deterministic optimal solutions saturate some
constraints — they are all near corners — but the robust (stochastic) optimal solution is not in a corner of
the admissible polygon (a segment, here), which makes it more robust to hazard. The current situation is
clearly distinct from any of the presented optimal policies (deterministic or stochastic), but not that far from
the robust (stochastic) optimal policy. In the robust (stochastic) optimal solution, the European import share
is increased from 70% to roughly 80% compared to the current situation. This reflects that, even when
uncertainty is accounted for, European economies are significantly more decarbonized than those from the
rest of the world. However, this general trend does not apply to all scenarios, and this is why there exist
deterministic optimal solutions with a decreased European share when compared to the current situation:
these solutions are optimal in scenarios where the trend is not verified. In any case, the robust (stochastic)
optimal policy leads to a more balanced, more robust trade policy.
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Figure 1: Scatter plot of robust (stochastic) optimal policy, current policy and the 20 perfect foresight
policies (2 aggregate regions)

3.2 Results for 3 aggregate regions
Going on, we simplify the original problem with 36 countries to only 3 big world regions: Europe,

America and Asia. We then represent, in R3, the import shares for the robust (stochastic) optimal policy,
the current policy and the 20 perfect foresight policies. In Figure 2, we can see that the 20 “deterministic
optimal solutions” (perfect foresight) are spread wider in [0, 1]3 because they lie on corners of the polygon
of feasible solutions, as optimal solutions of a linear program. This explains the robustness of the robust
(stochastic) optimal policy: the spread of the deterministic optima reveals the diversity of possible futures.
Note that, as explained above, some perfect foresight solutions increase the balance between import shares
for all 3 regions, even though it appears that, in most scenarios (namely all scenarios except the few these
optima are optimized for), Asian and American emissions tend to be significantly higher than European
ones. Thus, the "wisest" option may not necessarily be to balance between regions. We insist therefore on
the fact that perfectly adapting to only one future may be detrimental if another future is in fact realized,
whereas the robust (stochastic) optimal policy balances all of these possible futures.

Figure 2: Scatter plot of robust (stochastic) optimal policy, current policy and the 20 perfect foresight
policies (3 aggregate regions)

7



3.3 Results for 36 world regions
Results with 36 world regions illustrate how the robust (stochastic) optimal policy is more robust to

randomness than other pre-determined policies. On the one hand, the optimal policies for a deterministic
problem fare better than the optimal solution of the stochastic problem for the particular futures they were
designed for. On the other hand, they are also less robust to randomness: their frequencies of necessary
recourse to additional carbon quotas — i.e. of failure to meet the carbon footprint target (event Q1 > 0) —
are significantly greater than what is obtained with the optimal solution of the stochastic problem (Figure 3).
In every scenario, the ratio between necessary emissions permits and imported carbon footprint amounts at
least to 50%, whatever the policy is. However, this ratio is systematically the lowest for the robust (stochastic)
optimal policy. Thus, this policy leads not only to the lowest probability of having to buy emissions permits
(Figure 3) and the most on the left distribution of final carbon footprint , but also to the lowest relative
importance of emission permits in the meeting of the carbon footprint target.

Figure 3: Comparison of frequencies of the event "No necessary supplementary quota" (i.e. Q1 = 0) for
the robust (stochastic) optimal policy, the current and mean policy and the 20 perfect foresight policies

We look at the actual import shares in the 36 regions framework (Figure 4), as they currently amount to
90% of French imports (French "Direction Générale des Douanes" data). The robust (stochastic) optimal
solution is characterised by higher shares devoted to European countries, notably Germany, Spain and the
UK. It is also noteworthy that the robust optimum policy leads to zero imports from China, Belgium,
or Poland, for instance. This notable difference with the current policy is explained by the projections
of the carbon intensities of these countries (see Figure 5 in Appendix A). Indeed, the robust (stochastic)
optimal policy concentrates on the countries that have the lowest carbon intensities across the different
SSPs. This entails the disappearance of China and Poland — that have clearly higher carbon intensities
— while we observe a significant increase of import shares from Germany, Italy, the United States, Spain,
Netherlands, the United Kingdom, or even Switzerland. All those latter countries have the relatively lowest
carbon intensities under uncertainty. In particular, Japan and Switzerland do not display GHG emissions
uncertainty, as experts are very confident in these countries implementing successfully their NDCs (see
Benveniste et al. [2018] for an explanation). Note that Belgium, that has a slightly higher carbon intensity
distribution, also drops almost to zero like Poland and China. As emissions distributions of countries
may clearly be separated in different classes, the robust (stochastic) optimal policy concentrates imports in
regions belonging to the class of low emissions countries, as these countries are more carbon-efficient in all
considered futures.
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Figure 4: Import shares from the current 36 biggest suppliers of France in the current policy (bottom left
in blue), robust (stochastic) optimal policy (bottom right in red) and a selection of 2 (among 20) perfect
foresight policies (upper, in black)

4 Conclusion and discussion
Using import shares as decision variables— and aiming to minimize the volume of carbon quotas bought

by France in 2030 — we have seen, in this study, that an explicitly stochastic optimization approach would
lead to a more robust trade policy than any deterministic one. When tested in various scenarios, the former
policy is less likely than the latter to miss the carbon footprint target — i.e. to necessitate the buying of
emissions permits — and, when it does, fewer permits are required. On the contrary, perfect foresight (that
is, anticipative) policies built to be optimal in a certain version of the future behave better in this version than
the robust solution, but worse in all other futures. The greater robustness of our stochastic optimal policy
advocates for the diffusion of stochastic optimization frameworks when dealing with scenarios of future,
rather than optimizing according to each scenario.
It appears, in Figure 4, that the current French policy is relatively close to the robust (stochastic) optimal

policy. This may be explained by the fact that France imports essentially from the European Union—which
is composed of countries that have, on the whole, lower carbon intensities of production than the rest of the
world. The distributions of GHG emissions provided for these countries by IIASA, CEPII, OECD and PIK
have also generally lower spread. It reflects the relative confidence of the experts in, at least, the design of
their NDCs and, perhaps, in their strategies to fulfill their NDCs. These lower centers and lower spreads of
distributions may explain why countries (mostly non-European) that represented low shares of French total
imports (namely less than 1%) or countries subject to debate between experts (such as Belgium) disappear
in the robust (stochastic) optimal policy (Figure 4).
It is noteworthy that trade policies are often determined through border tariffs, and not directly import

shares. The method we propose could be coupled with a general equilibrium calculation to derive the

9



optimal border tariffs associated with these import shares. Perhaps the trade policy could also be influenced
by non-tariff measures, such as suggested in Ederington and Ruta [2016]. Finally, the economic realism of
this study is obviously debatable: a real trade policy has to respect WTO agreements and, more generally, to
fit in a complex geopolitical and economic context. Still, the objective is to encourage the use of explicitly
stochastic frameworks to make decision-making more robust, rather than to yield an effective French optimal
trade policy.
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A Distributions of carbon intensity for 10 biggest sourcing regions
(except China)

Figure 5: Carbon intensity (in 2030) distributions of the 10 biggest (in 2015) sourcing regions (except
China) for the 4 organisms (CEPII, IIASA, OECD and PIK), averaged over the 5 SSPs.
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