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Exploring space separation techniques for 3D elastic waves simulations

Introduction

The accurate description of wave propagation phenomena is important in many applications. Laser shock adhesion tests, for instance, consist in applying intense pressures, highly concentrated both in space and in time, on two opposite faces of a laminate target [START_REF] Ehrhart | Development of a laser shock adhesion test for the assessment of weak adhesive bonded CFRP struc tures[END_REF][START_REF] Sagnard | Development of the symmetrical laser shock test for weak bond inspection[END_REF][START_REF] Ecault | Laser shock adhesion test numerical optimization for composite bonding assessment[END_REF]. This latter consists in a stacking of Carbon Fiber Reinforced Polymer (CFRP) plies with different orientations, bonded together with epoxy resin. The scattered propagation of elastic waves in such a layered medium is complex, and numerical simulations are neces sary to understand experimental measurements embedding many phenomena (material behavior, scattering patterns, edge effects etc.).

Unfortunately, significant numerical difficulties arise when it cornes to solve a wave propagation problem. First, an important computational effort is required with three-dimensional spatial domains. A fine spatial discretization is indeed necessary to capture excited waves with small wave length (spatial resolution), and a fine time discretization must be used to observe high speed propagation (time resolution). These requirements easily lead to costly simulations, espe cially if the applied loading has very short duration (the frequency content is broader hence excited wavelengths are smaller), for instance when addressing laser shocks. Sec ond, standard solvers based on the finite element method exhibit poor dispersion properties [START_REF] Marfurt | Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[END_REF]. Numerical solutions computed with the finite element method may be polluted with spurious high frequency oscillations [START_REF] Ihlenburg | Dispersion analysis and error estima tion of Galerkin fini te element metl10ds for the Helmholtz equation[END_REF][START_REF] Schmicker | Wave propagation analysis using high-order finite element methods: spu rious oscillations excited by internai element eigenfrequencies[END_REF]. These latter are then bard to distinguish from physical waves when the medium is complex, especially in layered media that scatter the wave field at each interface crossing [START_REF] Gibson | The combinatorics of scattering in layered media[END_REF]. To circum vent this limitation, specific time marching schemes can be used to introduce numerical dissipation with tunable param eters [START_REF] Noh | Performance of an implicit time integration scheme in the analysis of wave propagations[END_REF][START_REF] Fung | Numerical dissipation in time-step integration algo rithms for structural dynarnic analysis[END_REF]. Other numerical methods can be used to solve wave propagation problems with reduced dispersion, such as boundary integral methods [START_REF] Beskos | Boundary element methods in dynarnic analysis[END_REF][START_REF] Bouchon | Effect of three dimensional topography on seismic motion[END_REF], space-time fini te element methods [START_REF] Hulbert | Space-time finite element meth ods for second-order hyperbolic equations[END_REF][START_REF] Richter | An explicit finite element method for the wave equation[END_REF], or the spectral element method [ 14--17].

As mentioned above, numerous numerical methods solve wave propagation problems with controlled accuracy and good convergence properties. Yet, even if the spatial domain is as simple as a plate, the computational effort remains pro hibitive if appropriate numerical resources are not available. Different approaches have been developed to tackle large scale simulations with parallel computing strategies [START_REF] Rek | Parallel computation on multicore proces sors using explicit form of the finite element method and C++ standard libraries[END_REF][START_REF] Li | 3D frequency-domain elastic wave modeling with the spectral element method using a massively parallel direct solver[END_REF][20]. For instance, Zhang et al. presented in [20] a parallel explicit solver based on the scaled boundary finite element method, with an efficient pre-computation approach and element-wise operations.

In practice, it is common situation that restriction accesses to intensive calculation centres slow down the research efforts. It is then difficult to use efficient solvers performing massively parallel calculations. The objective of the present work is to provide a numerical method dedicated to 3D wave propagation problems, compatible with standard com puting and prograrnming platforms generally available in research teams. The main limitation of the presented method is the restriction to simple spatial domains with at least one extrusion direction (e.g. plate, cylinder). This paper is a continuation of our previous work [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF] validated on two dimensional configurations.

This paper is organized as follows. In Sect. 2, we recall the variational formulation of the three-dimensional elastic waves equation and its time discretization. Then we present our proposa! to reduce the computational effort. The three dimensional spatial domain is decomposed into a sequence of lower dimension problems with the Proper Generalized Decomposition [START_REF] Chinesta | Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models[END_REF]. The spectral element method is imple mented in this space separation framework to improve the accuracy and reduce numerical dispersion compared to the finite element method. An original time marching scheme, originally introduced in [START_REF] Quaranta | A new hybrid explicit/implicit in-plane-out-of-plane sep arated representation for the solution of dynamic problems defined in plate-like domains[END_REF], is presented to improve the solution through one direction as needed, without decreas ing the time step and affecting the computation time. In this framework, the spectral element method enables a true hybrid explicit/implicit scheme with promising behavior on the computation time. Section 3 is devoted to numerical exper iments with space separation techniques. The convergence properties are first discussed on a simple two-dimensional example. Then three-dimensional test cases, in isotropie and anisotropie elastic media, are considered to evaluate the numerical performances of the proposed approach. Simula tions are carried out with a standard programrning software (Matlab) on a laptop to evidence the reduction of the com putation time and the memory needs.

Space separation of 3D elastic waves equations

We consider an elastic inhomogeneous medium occupying a spatially separable domain Q c JR; 3 , namely either of the form Q = rlxy x rlz (plate, cylinder etc.) or Q = rlx x rly x rlz (hexahedral domain). Space separation methods
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are therefore limited to domains with an extrusion direction, although domains with appropriate geometrical properties can be considered [START_REF] Ghnatios | Chines ta F Spurious-free interpolations for non-intrusive PGD-based parametric solutions: application to composites forming processes[END_REF].

Governing equations

We adopt in this paper the notations employed in [START_REF] Komatitsch | The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems[END_REF]. The

displacement vector at a point x E Q at time t E / = [O, T]
is denoted by u(x, t), where / is the time interval of interest.

The velocity and acceleration fields are denoted by ü and ü, respectively. We consider the equations of elastic wave propagation given by:

pü = div[u] + f
with the initial conditions:

u(x, 0) = uo(x) ü(x, 0) = vo(x) (1) 
(2)

(3)

where p(x) is the mass density, u(x, t) is the stress tensor, f(x, t) is the body force, uo(x) and vo(x) are the initial dis placement and velocity fields, respectively. The stress tensor is determined by Hooke's law: [START_REF] Marfurt | Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[END_REF] where C(x) is the fourth order elastic tensor and where the strain tensor E is given by: [START_REF] Ihlenburg | Dispersion analysis and error estima tion of Galerkin fini te element metl10ds for the Helmholtz equation[END_REF] In components form, the stress-strain relation is then OEij (x, t) = C;Jkl (x)Ek,/ (x, t) .

The boundary of Q is decomposed into three distinct portions r N, r D and r abs where we impose, respectively, tractions, displacements and fictitious tractions to absorb incident waves:

u(x, t) • n(x, t) = t(x, t) on rN u(x, t) = g(x, t) on rD u(x, t) • n(x, t) = -r(x, t) on rab s ( 6 ) ( 7 ) (8)
where n is the unit outward normal to the surface, t(x, t) is the prescribed boundary traction vector, g(x, t) is the prescribed displacement field, and -r(x, t) is the absorbing boundary traction. In this study, we use the absorbing bound ary conditions (ABCs) based on a paraxial approximation of the elastic waves equation introduced in [START_REF] Clayton | Absorbing boundary conditions for acoustic and elastic wave equations[END_REF]. These ABCs, denoted P-ABCs in the following, are exact for incident waves normal to the surface and less accurate as the angle (9) where e n is the velocity of P-waves (longitudinal) propagat ing in the direction of the normal n of the surface, c 1 1 and c i 2 are velocities of S-waves (transverse) also propagating in direction n, but with polarizations along unit orthogonal vectors t1 and t2 tangential to the surface, respectively. This P-ABC is therefore limited to orthotropic materials whose principal axes are aligned with the normal and tangential directions of the surface boundaries, otherwise such P-and S-waves would not exist [START_REF] Gallego-Juarez | Ultrasonic evaluation of elastic properties of directional fi ber reinforced composites[END_REF].

T = PCn [Ü • n] • n + pet, [Ü • ti] • ti + PCt 2 [Ü • h ] • h
More efficient AB Cs could be implemented within a space separation framework, such as Perfectly Matched Layers (PML, [START_REF] Basu | Explicit finite element perfectly matched layer for transient three-dimensional elastic waves[END_REF]) or Absorbing Layers using Increasing Damp ing (ALID, [START_REF] Semblat | A simple multi-directional absorbing layer method to simulate elastic wave propagation in unbounded domains[END_REF]), but they would increase the computational effort. The purpose of this study is not to minimize spurious reflections, but to resort to space separation techniques to significantly reduce the computation time while preserving a satisfactory accuracy. In addition, stability issues should be addressed with more advanced AB Cs. PMLs are indeed very effective with isotropie elastic materials but are unstable in general with orthotropic materials [START_REF] Bécache | Stability of per fectly matched layer, group velocities and anisotropie waves[END_REF]. ALID should be used in this case, and asynchronous strategies could be considered in future works to alleviate the computational cost by using a larger time step in the ALID domain [START_REF] Li | Hybrid asynchronous absorbing layers based on Kosloff damping for seis mic wave propagation in unbounded domains[END_REF].

Variational formulation

The solution u is searched in the space of kinematically admissible displacements: U i = {u(x, t) E H 1 (Q); u(x, t) = g(x, t) on rv x I} [START_REF] Beskos | Boundary element methods in dynarnic analysis[END_REF] and a fonction space of test fonctions u* is introduced: V= {u*(x) E H 1 (r?.); u*(x) = 0 on rv} [START_REF] Bouchon | Effect of three dimensional topography on seismic motion[END_REF] The variational formulation of the elastodynarnic problem (1-8) then reads: find u E U r , such that for any t E J and any u* EV: (12) Q rN lrabs with:

Lpu* •ÜdV + L Vsu*: C: VsudV = [ u* • fdV + i u* • tdr + f u* . -rdr
Lu* • u(x, O)dV = Lu* . u 0 (x)dV (13) Lu* • ü(x, O)dV = Lu* • v 0 (x)dV 2.
3 Discretization in time [START_REF] Seriani | Spectral element method for acoustic wave simulation in heterogeneous media[END_REF] We discretize the time interval of interest with a constant time step 11t. The time increments are then denoted by fk = k11t. We use a hybrid time integration scheme (see Sect. 2.7) inspired from the widely employed Newmark schemes based on the following approximations [START_REF] Bathe | Finite element procedures[END_REF]:

where the superscript C.i refers to an evaluation at time t k . These relations lead to unconditionally stable schemes if, and only if, oe 2: 1/4. For instance, oe = 0 is the central difference method (explicit, conditionally stable) and oe = 1/4 is the trapezoidal rule (implicit, unconditionally stable). The variational formulation is discretized in time by using the above relations with a linear combination of equation ( 12) evaluated at times tk-l, t k and t k +l • Given the solution known at times fk-1 and fk, the problem is now to find the solution at time fk+ 1 satisfying the following relation:

+ { u*. T a dr lrabs [START_REF] Dauksher | Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[END_REF] where we adopted the notation (.) ° = oe(.i +1 + (1 -2oe) (. i + oe (. l-1 for the sake of clarity. More advanced time marching schemes could be considered to control numerical dissipation and dispersion [START_REF] Fung | Numerical dissipation in time-step integration algo rithms for structural dynarnic analysis[END_REF].

Time adaptive space separation

Separation of variables consists in approximating the solu tion under separated form to break down a high dimensional problem into a sequence of problems of lower dimension, much cheaper to be solved. In 3D statics, there is no other possibility than performing an in-plane/out-of-plane space separation, or a full space separation, by approximating the solution with one of the following relations [START_REF] Bognet | Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity[END_REF], respec tively:

M ui(x, y, z) � L<PiJ(x, y)1/liJ(Z) j= l (18)

M Ui(X, y, z) � L, </Jij ( X ) Xij ( y ) i/Jij ( Z ) j=l [START_REF] Li | 3D frequency-domain elastic wave modeling with the spectral element method using a massively parallel direct solver[END_REF] where Ui denotes a component of the 3D displacement field u = (u1 , u 2, u 3 ). Such a separated form is built up on the fly, directly from the variational formulation of the problem, with a Proper Generalized Decomposition (PGD) solver [START_REF] Chinesta | Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models[END_REF].

In elastodynamics, however, the time variable must be taken into account and several alternatives can be consid ered. In low and medium frequency domains, the space-time separation has been successfully validated with standard PGD techniques [START_REF] Ladevèze | PGD in linear and nonlinear computational solid mechanics. Separated representations and PGD-based model reduction[END_REF][START_REF] Shirafkan | Quasistatic analysis of elastoplastic structures by the proper generalized decomposition in a space-time approach[END_REF]. It consists in introducing sepa rated fonctions depending on the time variable in [START_REF] Rek | Parallel computation on multicore proces sors using explicit form of the finite element method and C++ standard libraries[END_REF] or [START_REF] Li | 3D frequency-domain elastic wave modeling with the spectral element method using a massively parallel direct solver[END_REF]. Regarding wave propagation problems, however, con vergence difficulties have been reported with the space-time separation (M » 100). Boucinha et al. [START_REF] Boucinha | Space-time proper generalized decomposition for the resolution of transient elasto dynamic models[END_REF][START_REF] Boucinha | Ideal min imal residual-based proper generalized decomposition for non symmetric multi-field models-application to transient elastody namics in space-time domain[END_REF] circumvented this issue by developing a PGD sol ver based on a Time Dis continuous Galerkin framework with a compression strategy to enforce a low-rank approximation of the solution. Yet, even if their method achieves important memory gains, the computation time is as high as the one obtained with standard sol vers without separation of variables.

As an alternative, Quaranta et al. [START_REF] Quaranta | A new hybrid explicit/implicit in-plane-out-of-plane sep arated representation for the solution of dynamic problems defined in plate-like domains[END_REF] proposed perform ing a space separation, either with ( 18) or [START_REF] Li | 3D frequency-domain elastic wave modeling with the spectral element method using a massively parallel direct solver[END_REF], at each time step to compute a space separated form of the solution within a PGD-based time incremental solver. In our previous work [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF], we evidenced that this time incremental procedure is in fact well adapted to wave propagation problems. Indeed, the propagation of a planar wave is mathematically described with a phase variable of the form k • x -w t , with w the wave frequency and k the propagation vector [START_REF] Achenbach | Wave propagation in elastic solids[END_REF]. It informs that space and time variables are linked to efficiently describe the propagative behavior of the solution. In addition, we empha sized that an adaptive number of terms shall be introduced to get a wave propagation friendly separated form of the solution. The number of terms is then capable of evolving through time as needed, depending on the applied loading and the expansion of the waves in the medium. In particu lar, we showed that the number of terms stabilizes when the waves reach the boundaries of the domain. As a continuation of this work, validated on 2D test cases only, we consider herein the following time adaptive separated forms:

Mk Ui ( X,Y,Z,tk ) � L,</JiJ ( X,y,tk ) i/Jij ( Z,tk ) J=l Mk Ui ( X, Y, Z, fk ) � L, </Jij ( X, fk ) Xij ( Y, tk ) i/Jij ( Z, tk ) j=l (20) (21) 
In contrast to the work of Quaranta et al., we use effi cient pre-operators in the PGD solver (Sect. 2.5), we resort � Sprin g er to spectral elements instead of finite elements (Sect. 2.6), and we introduce a parameter in the hybrid explicit/implicit time marching scheme (Sect. 2.7).

Enrichment procedure with the proper generalized decomposition

In standard solvers, the unknowns of the 3D problem are the nodal values of the three components of the displace ment field. A seemingly simple discretization grid with 100 nodes in each direction results in 10 6 unknowns at each time step (for each component of the displacement field), which already is a challenging numerical problem. In the proposed framework, however, the unknowns are the nodal values of the 2D or 1D fonctions involved in the separated represen tations (20) or ( 21). This problem is solved with a PGD algorithm as described in the following.

For generality, we present herunder the mathematical developments with the full space separation. The develop ments for the in-plane/out-of-plane separation can easily be deduced. Let P , Q and R be vectors gathering shape fonc tions associated to each spatial direction. The choice for the shape fonctions will be discussed in next section. Then we employ a nodal approximation: [START_REF] Ghnatios | Chines ta F Spurious-free interpolations for non-intrusive PGD-based parametric solutions: application to composites forming processes[END_REF] where •t, x t and wt denote the vectors of the nodal values of </Jij, Xi} and 1/Jij at time tk , respectively.

</Jij (x , tk ) � P(x) • 4» 7 1 XiJ ( Y, tk ) � Q(y) • xt 1/JiJ ( z, tk ) � R(z) • '11'7J (22) (23) 
The PGD solver computes the separated form with an enrichment procedure at each time step, by adding new terms to the solution at time tk + 1 until a convergence criterion is satisfied. Assuming the first n -I terms of ( 21) are known, the solution is enriched with a new term: [START_REF] Clayton | Absorbing boundary conditions for acoustic and elastic wave equations[END_REF] where the superscript (.) k+1 is omitted on </Jin, Xin and 1/Jin for the sake of clarity. With the nodal approximation, the unknowns are the following vectors of nodal values:

4»n = ( 4» ln, 4»2n, 4»3n ) (26) Xn = (X1 n , X2n, X3n) (27) \Jin = ( Win, \112n, W3n ) (28) 
The enriched solution must satisfy the weak formulation discretized in time [START_REF] Dauksher | Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[END_REF], which results in a nonlinear prob lem. The unknowns 4»n, Xn and \Jin are computed with a fixed point method as follows. First, the nodal values of the fonctions Xin and o/ in are assumed known, and the com ponents of the arbitrary test field are taken under the form u7 = </J7 n Xin o/ in • Upon substituting (22-25) in (17), and by assurning separated forms of all the fields, we find the fol lowing linear system to be solved (see Appendix): 

) 32 
where 8 is a threshold value selected by the user. Altema tively, a maximum number of iterations can be implemented instead in the stagnation loop (see Sect. 3.2.1). The enrich ment loop over the number of terms n is stopped when the enrichment criterion is reached: [START_REF] Ladevèze | PGD in linear and nonlinear computational solid mechanics. Separated representations and PGD-based model reduction[END_REF] where E is another threshold value selected by the user. This criterion leads to a different length of the sum ( 21) depend ing on the complexity of the solution at the considered time increment. The selection of its value is discussed in Sect. 3.1.

Relations [START_REF] Bécache | Stability of per fectly matched layer, group velocities and anisotropie waves[END_REF][START_REF] Li | Hybrid asynchronous absorbing layers based on Kosloff damping for seis mic wave propagation in unbounded domains[END_REF][START_REF] Bathe | Finite element procedures[END_REF] evidence that the same pre-operators AiJ and B iJ are used throughout the fixed point method to compute the left and right hand sides of the linear systems. Many of them can be computed outside the enrichment loop, and the PGD sol ver proposed in this paper takes advantage of this property. It then saves numerous operations compared to solvers entirely computing both the left and right hand sides at each iteration of the fixed point method.

Spatial discretization with spectral elements

In our previous work [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF], we used low-order finite elements to salve 2D wave propagation problems with the time adap tive space separation. However, our numerical experiments showed unsatisfactory results for some problems, as pre sented in Sect. 3.1. It is indeed well known that low-order finite-element methods exhibit poor dispersion properties [START_REF] Marfurt | Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[END_REF]. To overcome this issue, we employ spectral elements but other high-order discretization schemes (e.g. p-FEM, IGA) could be considered [38]. Spectral elements are high order Lagrangian elements with specific interior points. These lat ter lead to higher spatial accuracy and reduced dispersion error compared to low-order finite elements [START_REF] Komatitsch | The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems[END_REF]. This is a property of primary importance, since spurious high fre quency oscillations due to spatial discretization would result in a large number of terms in the separated form. Besides, when the interior points defining the spectral elements are the same as the quadrature points used to numerically evaluate the integrals, the following matrices become diagonal [16]:

'P = f P(x)P(x) T dx Jnx Q = { Q(y)Q(y) T d y ln y 'R, = r R(z)R(zl dz ln, ( 34 
) (35) (36)
This is the so-called nodal quadrature technique, but other lumping strategies can be implemented in a spectral element framework, see for instance [START_REF] Duczek | Mass lumping techniques in the spectral element method: on the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods[END_REF].

Consequently, the combination of spectral elements, defined on the quadrature points (Gauss-Lobatto-Legendre quadrature is here employed), with the central difference method, leads to a true explicit time marching scheme. Only trivial and cheap matrix inversions at each time step are then performed. The mass matrix is indeed exactly diagonal in sol vers based on spectral elements with the nodal quadrature technique. With standard low-order finite elements, however, the mass matrix must be lumped to get an actual explicit scheme, introducing errors in the numerical procedure [START_REF] Wu | Lumped mass matrix in explicit finite element method for transient dynamics of elasticity[END_REF].

In practice, a polynomial degree between 4 and 10 is employed for wave propagation problems. In order to obtain accurate results, the element size must be selected such that the average number of grid points in the element per mini mum wavelength is greater or equal than 5 [ 16]. As a rule of thumb, for 3D problems discretized in space with the spectral element method and in time with the central dif ference method, the time step l},.f must be selected lower than 0.61},.xjc, with l},.x the minimum spacing between two grid points and c the maximum wave velocity in the studied medium.

Hybrid implicit/explicit time marching schemes

The major limitation of explicit time marching schemes is the stability criterion on the time step l},.t which must be selected small enough. As a result, high spatial accuracy, obtained by increasing the number of elements or the polynomial degree, cornes with a price to pay in terms of number of time steps, hence of computational time. Implicit schemes, however, are unconditionally stable and the time step should be selected such that the so-called Courant number c l},.t / l},.x minimizes the dispersion error introduced by the time discretization [START_REF] Noh | Performance of an implicit time integration scheme in the analysis of wave propagations[END_REF]. However, implicit schemes involve consistent matrices to be inverted at each time step (the ones related to intemal forces), which may become computationally expensive. Moreover, increasing too much the time step can impact the solution accuracy.

To overcome this issue, Quaranta et al. [START_REF] Quaranta | A new hybrid explicit/implicit in-plane-out-of-plane sep arated representation for the solution of dynamic problems defined in plate-like domains[END_REF] proposed a hybrid implicit/explicit time marching scheme within an in-plane/out-of-plane space separation framework. Their approach consists in simultaneously mimicking an implicit scheme for the out-of-plane 1D problems and an explicit scheme for the in-plane 2D problems. This procedure is illus trated on Fig. 1. The time step is then only constrained by the in-plane spatial discretization. As a result, the solution can be refined through the thickness as needed, without significantly decreasing the time step and affecting the computation time (since only cheap 1D problems are implicit). This numerical behavior is of particular interest for the wave propagation problem we will be dealing with in Sect. 3.3.

In this paper, we slightly improve their hybrid scheme by introducing a parameter a � 0 which controls amplitude decays and period elongations, as in Newmark's schemes presented in Sect. 2.3. The hybrid scheme, explicit in-plane and implicit out-of-plane, is obtained by selecting a [START_REF] Dauksher | Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[END_REF], except for the out-of-plane derivatives of the displace ment field that are treated implicitly:

u� +--au k + l + (1 -2a)u� + au k -l l,Z l,Z l,Z l,Z (37) 
Consequently, the matrix operators A l i and A2i are diagonal, as with the central difference method, hence the resolution of the linear systems (29-30) is explicit. On the other band, the matrix operators A3i related to the terms u7.z are not diagonal, and the resolution of the linear system [START_REF] Bathe | Finite element procedures[END_REF] is implicit, as with a Newmark's scheme with a f= O. These latter are unconditionally stable if a � 1/4, but our numeri cal experiments showed that the proposed hybrid scheme is unconditionally stable if a > 1/4.

Numerical results

Three numerical tests are considered in order to validate the method. In the first test, a two dimensional prob lem is studied to check the spectral convergence with the space separation. In the second, a three dimensional Lamb's test in an isotropie linear elastic medium is studied. The numerical performances of the in-plane/out-of-plane and full space separations are compared. In the last test, a laser shock configuration on a CFRP target is studied with the in-plane/out-of-plane separation. The performances of the hybrid explicit in-plane/implicit out-of-plane time marching scheme are illustrated. All the simulations are run with Mat lab R2018a on a laptop with a single core Intel i7-5500U 2.40 GHz CPU and 8 GB RAM. Spectral elements are imple mented from an open-source package [START_REF] Ampuero | SEM2DPACK: A spectral element method tool for 2D wave propagation and earthquake source dynamics user's guide[END_REF].

Spectral convergence and enrichment criterion

Spectral elements provide higher accuracy than low-order finite elements for the same number of discretization points. In order to check this property within the proposed space sep aration framework, the two dimensional test case extensively studied in [START_REF] Tschôke | On the numerical convergence and performance of different spatial discretization techniques for transient elastodynamic wave propagation problems[END_REF] is considered. lt consists in a linear elastic medium, initially at rest, occupying a rectangular geometry with dimensions 2m x lm. Dummy mechanical properties are used: the shear modulus is G = 1Pa, the density is p = lkg/m 3 and the Poisson's ratio is v = 1/3. The left edge of the domain is subjected to a uniformly distributed pressure: An observation point A is considered at the middle of the right edge of the domain. The objective is to compare the horizontal displacement u1 (A, t) for different numerical solutions with a reference solution. This latter is computed with a standard 2D SEM solver with a grid of 20 x 10 spec tral elements of degree 10 (60,903 degrees offreedom). FEM simulations are carried out with fully integrated 4-nodes elements and a lumped mass matrix. All the solutions are computed with 32, 000 time steps with the central difference method. The time step is then small enough to ensure that numerical errors are mainly due to spatial discretization or space separation. The error indicator considered in this study 1s: [START_REF] Duczek | Mass lumping techniques in the spectral element method: on the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods[END_REF] where u1 and u 1 ef are the numerical and reference solutions (observed at point A) discretized in time, respectively.

p(t) = sin(2n fot) exp(-(t -to) 2 /(2r 2 )) (38 
Figure 2 compares the errors obtained with a 2D FEM solver or a 2D SEM solver (without space separation). The FEM solutions are computed by refining the mesh with more square elements. The SEM solutions are computed with a 4 x 2 grid of spectral elements by increasing the polynomial degree of the shape functions. The 2D SEM solver outper forms the 2D FEM solver on this example. An error of 10-2 is obtained with 273 degrees offreedom (DOFs) with the 2D SEM solver, while 60, 903 DOFs are required with the 2D FEM solver to reach the same error level. However, it must be mentioned that the discrepancy between FEM and SEM error levels is usually less severe in more complex situations [START_REF] Tschôke | On the numerical convergence and performance of different spatial discretization techniques for transient elastodynamic wave propagation problems[END_REF].

The influence of the space separation is then investigated depending on the enrichment criterion given by relation [START_REF] Ladevèze | PGD in linear and nonlinear computational solid mechanics. Separated representations and PGD-based model reduction[END_REF]. Figure 3 compares the errors obtained with PGD solutions computed with a 1D/1D space separation and spectral ele ments. It can be seen that the rate of convergence depends on the selection of the enrichment criterion. This latter can be viewed as an a priori error indicator. Spectral convergence is indeed recovered (superposition with the 2D SEM curve) up to polynomial degree P if the enrichment criterion is selected lower or equal than 10-P. The value E = 10-P is then selected for all our numerical tests presented hereunder.

A consequence of the faster convergence rate with spectral elements is that a smaller number of terms is computed to reach a given error level. For instance, 10 terms are computed (in average) to reach the error level of 10-2 with 1D/1D SEM (with an equivalent grid of 4 x 2 spectral elements of degree 5 and E = 10-5 ), while 80 terms are computed (in average) with 1D/1D FEM to reach the same error level (with an equivalent grid of 100 x 50 4-nodes finite elements and E = 10-4 ). As aresult, more accurate solutions are computed with less computational effort.

3D Lamb's test

Lamb's problem is an important numerical test to validate a solver for elastic wave propagation. It consists in applying a transient concentrated loading on the surface of an infi nite half-space occupied with an isotropie elastic material. This configuration generates P-waves (longitudinal) and S waves (transverse) in the volume, and R-waves in the surface (Rayleigh waves). The analytical solution of this problem shows that R-waves are non dispersive and have a strong amplitude with respect to volume waves [START_REF] Johnson | Green's fonction for Lamb's problem[END_REF]. To simulate 
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Fig. 2 Error evolution obtained with 2D FEM and 2D SEM solvers with respect to a reference numerical solution computed with a grid of 20 x 10 spectral elements of degree 10 (60,903 degrees of freedom)
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Fig. 3 Error evolutions obtained with a PGD sol ver based on a lD/lD space separation and spectral elements

Lamb's problem, a Ricker's source is applied:

f(t) = -A(2rr 2 (t -t s } 2 /t� -l) exp(-rr 2 (t -t s ) 2 /t�) ( 40 
)
with A = 2.10 6 N, t s = 2.9s, and t p = 3s (see Fig. 4).

The material characteristics are E = lOMPa, v = 0.24 and p = 1700kg/m 3 , as in [30] for comparison purposes.

The numerical domain is a hexahedron with dimensions 300m x 300m x 300m. Due to the problem's symmetry, the 3D solutions are actually computed on one fourth of the physical domain by prescribing appropriate Dirichlet bound ary conditions (u • n = 0 on a truncated surface with normal n). Either free surface boundary conditions or P-ABCs are Fig. 4 Ricker's source applied at (0m, 0m, 300m)

implemented on the side and bottom surfaces of the numeri cal model. Initial conditions are null.

Comparison of space separation techniques

First we compare the results obtained with the in-plane/out of-plane and full space separation. Two observation points A and B are considered: A is located on the surface at position (50m, 0m, 300m), and B is located in the volume at posi tion (0m, 0m, 250m). The time interval of interest is such that spurious wave reflections at numerical boundaries do not reach the observation points. Under this condition and given the symmetry of Lamb's problem, a 2D axisymmetric numerical reference solution is computed with LS-DYNA Explicit v7 .1. A sufficiently converged mesh of 300 x 300 4node axisymmetric finite elements is used (270,000 DOFs), and the time step is equal to 7.46ms. Figure 5 compares the solutions obtained with the in plane/out-of-plane separation (2D/1D curves) and the full separation (lD/lD/lD curves). In each case, the spatial dis cretization is equivalent to a uniform grid of 729 3D spectral elements of degree 4 (151, 959 DOFs). In the full separa tion, a 9 x 9 x 9 grid of lD spectral elements is used. In the in-plane/out-of-plane separation, a 9 x 9 grid of 2D spec tral elements is used for the in-plane problems, and a grid of 9 lD elements is used for the out-of-plane problems. Fol lowing the guideline provided in the previous section, the enrichment criterion is selected equal to 10-4 . A maximum number of 10 iterations is implemented in the stagnation loop as recommended in our previous work [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF]. The central dif ference method is employed for the time integration (a = 0) and a uniform time step of 34.6ms is used. The number of time steps is 212. The two space separation techniques pro vide very sirnilar results, with a relative error with respect to the reference solution around 1 % on the vertical component of the displacement field.

Figure 6 shows 3D snapshots of a numerical solution com puted with the 2D/1D separation and P-ABCs, on a longer time interval. As expected, we observe both volume and sur face waves. The surface wave is non dispersive and stronger in magnitude than the volume waves. The P-ABCs perform well and reduce spurious reflections. Surprisingly, the full space separation demands much more computation time than the 2D/1D separation. Even if only cheap 1D problems are solved, it appears that the large number of terms involved in the solution increases the memory needs, which slows down the computation with the employed calculation ressources. Figure 7 presents the evolution of the number of terms in the numerical solutions throughout the simulation. An average number of 206 terms is required in the 1D/1D/1D solution with a total compu tation time of 4145s (17.8s per time step in average). On the other hand, the 2D/1D separation achieves satisfactory performances, with only 14 terms in average and a total com putation time of 248s (1.07s per time step in average). As reported in [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF], the number of terms increases as the waves expand in the domain (up to 527 with the full separation and up to 19 with the in-plane/out-of-plane separation).

Computation time

The numerical performances of the 2D/1D separation are now explored by enlarging the numerical domain while keep ing the same grid point spacing. In contrast to standard 3D solvers, the way of increasing the number of grid points with a space separation technique has an effect on the com putation time. Three spatial enlargements are considered: enlargement in z-direction (out-of-plane), enlargement in x, y-directions (in-plane), and enlargement in all directions (volume). Numerical solutions are computed with the param eters of previous section, on the same time interval, but with different spatial domain sizes. As a result, all the simulations compute the same solutions with the same spatial resolution, but within spatial domains of different sizes.

Figure 8 summarizes the evolution of the average com putation time (CPU time) per time step depending on the way of enlarging the spatial domain (out-of-plane, in-plane or volume enlargements). First, it can be appreciated that large simulations with more than one million of DOFs are efficiently computed with Matlab and a personal laptop. Full 3D calculations with as many DOFs simply cannot be con ducted with Matlab and the laptop used in this study. Yet, with the proposed approach the CPU time per time step is at most equal to 5.7s for the largest simulation (1,594,320 DOFs). It must be mentioned that the average CPU time per time step would increase for the largest domains if the sim ulation time was increased. lt is indeed reported in [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF] that the number of terms in the solution (hence the CPU time per time step) increases as the waves expand in the domain and then it stabilizes.

Second, the curve obtained with the out-of-plane enlarge ment is linear and below the polynomial curve obtained with the in-plane enlargement. It means that the CPU time per time step linearly increases with the number of DOFs when the domain is enlarged in the out-of-plane direction. This would not be the case with a standard 3D solver since the way of increasing the DOFs does not have an influence (the curve would be polynomial). The curve associated to the vol ume enlargement is polynomial and in between the two other curves. This can easily be explained as follows. In the out of-plane enlargement, only the size of the 1D problems is increased, while in the in-plane enlargement it is the size of the 2D problems that is increased. In the volume enlarge ment, the sizes of both the 1D and 2D problems is increased, which leads to a polynomial curve as well, but below the curve of the in-plane enlargement since for a same number of DOFs the size of the 2D problems is smaller.

As a conclusion, the 2D/1D separation allows enlarging the domain in the out-of-plane direction without significantly affecting the computation time. The number of terms in the solution remained moderate for all the numerical tests per formed on this test case (below 20). The resolution of the in-plane problems is fast thanks to the spectral discretiza tion enabling a true explicit scheme. However, the 1D/1D/1D separation is less effective on this test case. The concentrated loading generates radial waves challenging the full space sep aration. It results in a large number of terms in the numerical solution (roughly the square of the number of terms obtained with the 2D/1D separation). Consequently, more memory is needed to handle the numerous pre-operators to be stored to compute the right hand sides of the linear systems [START_REF] Bécache | Stability of per fectly matched layer, group velocities and anisotropie waves[END_REF][START_REF] Li | Hybrid asynchronous absorbing layers based on Kosloff damping for seis mic wave propagation in unbounded domains[END_REF][START_REF] Bathe | Finite element procedures[END_REF], which demands more computation time.

Laser shock on a composite laminate target

The last numerical test is inspired from a laser shock config uration on a composite laminate target. The target consists in a stacking sequence offive (0 °, 90 °) CFRP plies (140µm Initial conditions are null. It must be mentioned that P-ABCs would not perform well with this layered medium, because of the numerous crossings of interfaces and corners that are known to deteriorate absorbing performances [START_REF] Bamberger | Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem[END_REF]. More effi cient ABCs should be implemented to improve the accuracy on larger time intervals of interest, see Sect. 2.1.

We solve this problem with the hybrid explicit in-plane/ implicit out-of-plane scheme with a = 0.3. The 2D/1D space separation is employed. The numerical model is designed as follows. Frequencies up to 4.5MHz are significantly excited with this time loading (at least 3% of maximum spec trum amplitude). The minimum wave speed in this layered medium is 598m/s (transverse wave propagating perpendic ular to fiber orientation), hence the minimum wavelength we want to resolve is 133µ,m. As mentioned in Sect. 2.7, at least 5 grid points per minimum wavelength must be used in order to have enough spatial resolution. With spectral elements of degree 4, this criterion results in an element size of maximum 106µ,m. To comply with this criterion, the in-plane mesh is a grid of 80 x 80 spectral elements of degree 4 (174,243 in-plane DOFs). The in-plane problems are treated explicitly hence the time step is selected equal to 1.82ns to satisfy the stability condition (Courant number equal to 0.5). In the out of-plane direction, 3 spectral elements of degree 4 are used per CFRP ply, and 1 spectral element of degree 2 is used per Epoxy interply (417 out-of-plane DOFs). The out-of-plane 1 6�----���--------------5. 7s 4 � -------------------------- spatial resolution is richer than the in-plane spatial resolution (5 points per minimum wavelength for the in-plane problems and 13 for the out-of-plane problems). The total number of DOFs ofthis 3D problem is 24,219,777. Thanks to the hybrid scheme, the out-of-plane problems are treated implicitly with the coarser time step imposed by the in-plane discretization.
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If the central difference method (a = 0) was used instead of the hybrid scheme, the stability condition would impose a finer time step equal to 0.53ns, hence to 3,676 time steps instead of 1, 072 with the hybrid scheme. Table 3 summarizes the model parameters.

Figure 10 displays snapshots of the propagating stress fields at different instants. As expected, the applied pressure p(z)ü(z, t) = E(z)a;u(z, t) [START_REF] Ampuero | SEM2DPACK: A spectral element method tool for 2D wave propagation and earthquake source dynamics user's guide[END_REF] where E(z) and p(z) are the Young modulus and density fields of the 3D model along z-axis, respectively.

The peak amplitude of the 3D calculation is slightly lower because of the three-dimensional expansion of the waves.

The scattering patterns due to the plies (visible from t = 1.2µ,s) are different because edge effects are not taken into account in the 1D model. The ripples following the main peak would be larger if the width of the a33 wave was smaller compared to the plies thicknesses.

In terms of numerical performances, the average number of terms throughout the simulation is 14.4 and the compu tation time is 17.9 hours (50s per time step in average). The number of terms in the solution stabilizes around 18, see Figure 12. It can be appreciated that such a large simulation (24,219,777 DOFs and 1,072 time steps) has been success fully conducted with Matlab R2018a and a persona! laptop.

Conclusion

In this work, we presented space separation techniques to speed up wave propagation simulations in three-dimensional plate domains. High order spectral elements are employed instead of low-order finite elements to improve the conver gence and dispersion properties that are of primary impor tance for such problems. Spectral convergence is retriev 20 ,---,-------,-------,---,---,---,---,---,---,------ The solution can then be improved through one direction as needed, without decreasing the time step or affecting the computation time. This behavior is promising for wave propagation simulations in composite laminate media char acterized by strong material properties variations through the thickness. Numerical experiments on three-dimensional test cases confirm the desired behavior of the proposed method: 3D problems with millions of degrees offreedom are solved with computational ressources characteristic of2D problems. Future work will be devoted to the implementation of accu rate absorbing boundary conditions for composite laminate media.

llB=

  LBl i [B{ i Xn o B §;\Jln] (29) i=l where o denotes the component-wise product defined by (u o V)i = Ui Vi . Then the fonctions </J i n are assumed known with the pre viously calculated nodal values, and the components of the arbitrary test field are taken under the form u7 = </Ji n X i : o/ in • The same methodology now leads to the following linear system to be solved: llB = LBz i [B[;cI>n o B §;\Jln] (30) i=l Eventually, the fonctions Xin are assumed known with the previously calculated nodal values, and the components of the arbitrary test field are taken under the form u7 </J in Xin o/; :-The linear system to be solved is: llB = LB3ï[B[cI>n o BiiXn] i=l (31) This iteration repeats until convergence. More precisely, by denoting cI>� s ), X� s ), \Jl� s ) the nodal values computed at iteration s, the stagnation criterion reads: (

  ) with fo = lHz, to = ls and r = 4s. All other edges are free of traction. The time interval of interest is [Os, 25s]. Initial conditions are null.
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 11 Fig.1Illustration of the explicit in-plane/implicit out-of-plane hybrid scheme with the 2D/1D time adaptive space separation. See Appendix for notations
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 6 Fig. 6 Snapshots of the numerical solution computed with the 2D/1D space separation and a 10 x 10 x 10 mesh of spectral elements of degree 4 (206,763 DOFs). P-ABCs are implemented to reduce spurious reflections
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 7 Fig. 7 Evolution of the number of terms in the numerical solutions throughout the simulation depending on the space separation technique
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 181 Fig. 8 Evolution of the average CPU time per time step depending on the way of increasing the number ofDOFs. Numbers next to the edges of the hexahedral demains indicate the scaling factors from the reference
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 9 Fig. 9 a Stacking configuration. CFRP plies thickness is 140µ,m and Epoxy interplies thickness is 30µ,m. b Time and spatial profiles of the applied loading

Fig. 10

 10 Fig. 10 Snapshots of e111 (left), e122 (middle) and e133 (right) stress fields at different instants
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 11 Fig. 11 Back face velocity computed with a 1D model and a 2D/1D model
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 12 Fig. 12 Evolution of the number of terms through the simulation with the 2D/1D model

  

Table 1

 1 Mechanical properties

	of epoxy interplies	E (GPa)
		5.2

Table 2

 2 Mechanical properties of CFRP plies. Data extracted from[START_REF] Zhang | Modeling of dynamic behavior of carbon fiber-reinforced polymer (CFRP) composite under X-ray radiation[END_REF] 

	E1 (GPa)	E2 (GPa)
	72.9	22.9

Table 3 2D
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Appendix

Particular attention is required on the manipulation of the PGD matrix operators for wave propagation problems. The number of terms in the solutions is indeed generally larger than with other elastodynamic problems, since small wave lengths are significantly excited by the applied loading generating the waves. As a result, many matrix-vector prod-ucts must be computed in the terms involving u�+ 1 , u k and u kl in relation [START_REF] Dauksher | Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[END_REF]. It is even worse if the medium is anisotropie since more elastic coefficients are non null in the elastic tensor C. As proposed in [START_REF] Goutaudier | Proper Generalized Decomposition with time adaptive space separation for transient wave propagation problems in separable domains[END_REF], we avoid unneces sary operations by computing Aij and Bij in [START_REF] Bécache | Stability of per fectly matched layer, group velocities and anisotropie waves[END_REF][START_REF] Li | Hybrid asynchronous absorbing layers based on Kosloff damping for seis mic wave propagation in unbounded domains[END_REF][START_REF] Bathe | Finite element procedures[END_REF] outside the enrichment loop of the fixed point method.

The component-wise product between two vectors u and vis defined by (u o v)i = UiVi. The following vectorization property is employed:

where A, B, C are matrices and ♦, ♦i, X, Xi, \JI, \Ili are vectors of appropriate dimensions, and: 

. I\JIM]-

We present hereunder how is computed one of the terms of ( 17) with u7 = <1> 7n Xin ifiï n • For simplicity we assume p = p(z). First we use the separated form of the solution:

Then we use the nodal approximations [START_REF] Chinesta | Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models[END_REF][START_REF] Quaranta | A new hybrid explicit/implicit in-plane-out-of-plane sep arated representation for the solution of dynamic problems defined in plate-like domains[END_REF][START_REF] Ghnatios | Chines ta F Spurious-free interpolations for non-intrusive PGD-based parametric solutions: application to composites forming processes[END_REF]:

� I:I:c•7,;P•t)cxT,,Qxt)cw;,,R(p)wt) (47) i =l j=l where matrices 1' and Q are given by relations [START_REF] Shirafkan | Quasistatic analysis of elastoplastic structures by the proper generalized decomposition in a space-time approach[END_REF][START_REF] Boucinha | Space-time proper generalized decomposition for the resolution of transient elasto dynamic models[END_REF], respectively, and 'R,(p) = fnz p(z)R(z)R(z) T dz. Then property [START_REF] Tschôke | On the numerical convergence and performance of different spatial discretization techniques for transient elastodynamic wave propagation problems[END_REF] leads to the desired form: Publisher's Note Springer Nature remains neutral with regard to juris dictional daims in published maps and institutional affiliations.