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Abstract. We describe the structure of diffeological bundle of non formal

classical pseudo-differential operators over formal ones, and its structure group.

For this, we give few results on diffeological principal bundles with (a priori)
no local trivialization, use the smoothing connections alrealy exhibited by the

author in previous works, and finish with open questions.
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1. Introduction

The correspondence between formal and non-formal pseudo-differential opera-
tors plays a highly important role in analysis. Over the full interest of non-formal
pseudodifferential operators for spectral analysis, theory of partial differential equa-
tions and differential operators, integration on infinite dimensional spaces, renor-
malization among other themes, over the crucial place of formal pseudo-differential
operators for integrable systems, theory of r-matrices, representation theory, defor-
mation quantization among other fields of studies, it often happens that technical
steps can be overcome by passing from a family of non-formal pseudo-differential
operators to its formal coounterpart, and by interpreting the results. The reverse
procedure also exists, but less often because there is no canonical way to associate
a non-formal pseudo-differential operator to a formal one.

One geometric description of this correspondence between non-formal and for-
mal pseudo-differential operators is the aim of this work. For this, and in order to
circumvent a lack of differential geometric framework, we use diffeologies, a gener-
alized setting for differential geometry first describe by Chen and Souriau. in this
setting, we describe a structure analog to the one of principal bundles, with mild
weaker conditions that are described. This leads to open questions that may help
to clarify, for example, the results on the index of pseudo-differential operators that
actualy obtined through arguments coming from K-theory.

2. On diffeological bundles

2.1. Preliminary notions. The main reference for a comprehensive exposition on
diffeologies is [7]. This reference will be completed all along the text for specific
concerns.

Definition 2.1 (Diffeology). Let X be a set. A parametrisation of X is a map of
sets p : U → X where U is an open subset of Euclidean space (no fixed dimension).
A diffeology P on X is a set of parametrisations satisfying the following three
conditions:
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(1) (Covering) ∀x ∈ X, ∀n ∈ N, the constant function p : Rn → {x} ⊂ X is in
P.

(2) (Locality) Let p : U → X be a parametrisation such that for every u ∈ U
there exists an open neighbourhood V ⊂ U of u satisfying p|V ∈ P. Then
p ∈ P.

(3) (Smooth Compatibility) Let (p : U → X) ∈ P. Then for every n, every open
subset V ⊂ Rn, and every smooth map F : V → U , we have p ◦ F ∈ P.

A set X equipped with a diffeology P is called a diffeological space, and the
parametrisations p ∈ P are called plots.

Let (X,P) and (Y,P ′) be two diffeological space. Then f : X → Y is smooth
if f(P) ⊂ P ′. At this step of the exposition, and for the clarity of developments
above, we have to precise some technical features and necessary notations. We
have to precise that any finite or infinite dimensional manifold M has a diffeology
P∞(M) called “nebulae”, constructed as follows: Let O be an open subset of a
Euclidian space;

P∞(M)O =
∐
p∈N
{ f : O →M ; f ∈ C∞(O,M) (in the usual sense)}

and

P∞(F) =
⋃
O

P∞(F)O,

where the latter union is extended over all open sets O ⊂ Rn for n ∈ N∗.
We choose to note by P(X) the diffeology of a diffeological space X. From this

first diffeology, one can produce many others, and especially two:

• the 1-dimensional diffeology P1(X) made of plots p ∈ P(X) that read
locally as p|O = γ ◦ f where γ ∈ C∞(R, X) , O is an open subset of an
Euclidian space and f ∈ C∞(O,R).

• the nebulae diffology, which definition which follows refines the one given
independently in [13, 15] and [28], and extends the definition of the nebulae
diffeology of a manifold. Let O be an open subset of a Euclidian space
equipped with its P1−diffeology;

P∞(F)O =
∐
p∈N
{ f : O → X; f ⊂ C∞(O,X) in the sense of P1(O) and P(X)}

and

P∞(F) =
⋃
O

P∞(F)O,

where the latter union is extended over all open sets O ⊂ Rn for n ∈
N∗. This notion refines the notion of nebulae diffeology in the following
sense: there exists some diffeological spaces X which have very few smooth
maps from X to R, and the definition of the nebuale diffeology present in
e.g. [13, 15] is based on the existence of “enough” smooth functions in
C∞(X,R). Therefore, this ”new” notion of nebulae diffeology seems more
intrinsic to us, and not exactly the same as the one presented in the existing
litterature.

A group G is a diffeological group if multiplication and inversion are smooth
for the underlying diffeology.
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A diffeological group has a kinematic tangent space at identity, but the bracket
may not exist. If there is a smooth bracket, G is called diffeological Lie group.
If moreover there is an exponential map from C∞(R, g) to C∞(R, G), that is, a
smooth map exp such that exp(v)(t) = g(t) if and only if g is the unique solution
of the (right logarithmic) differential equation

∂tg.g
−1 = v,

with initial value g(0) = 1G, then G is called regular [12]. If g is regular as an
abelian diffeological group (vector space) we say that G is fully regular. All these
notions cooincide with more classical notions of regular Lie groups (see e.g. [11, 22])
and are reviewed in [18, 19].

2.2. On the way to diffeological principal bundles. We describe here a class of
objects that generalize principal bundles. Since then, to our knowledge, most results
are stated for diffeological principal bundles with local trivializations while there
exists examples where we do not know whether a system of local trivializations exist
or not, and certainly examples where such local trivializations do not exist.

Definition 2.2. Let G be a diffeological Lie group acting, smoothly and freely, on
the right on a diffeological (total) space P. Then we get a diffeological principal
bundle P with structure group G over P/G. Here, P/G is equipped with any
diffeology for which the canonical projection π : P → P/G is smooth.

Remark 2.3. This definition is even weaker than the definition of “structure quan-
tique” by Souriau in [27] where the problem of the diffeology of the base was not
considered.

Classicaly, connections are 1-forms θ ∈ Ω1(P, g) (see [7, 15] for a comprehensive
definition of differential forms, de Rham differential and wedge product) that are
covariant under the right action of G, that is, denoting the right action of g ∈ G
by Rg, we have:

(Rg)∗θ = Adg−1θ.

We keep this definition for a connection 1-form in the considered class of diffeological
principal bundles, mimicking what [15] did in a more specific context, even if the
existence of connection 1-forms remains to be checked on the examples considered
(see e.g. [8] for a slightly different framework in which similar technical issues are
analyzed). In [7], another notion of connection is defined, developed independently
in [15] under the terminology of horizontal lifts, which consists in lifting smooth
paths of the base to smooth horizontal paths on the total space. Here again, we
have to investigate deeply this relationship, already established in a more restricted
framework [15].

Theorem 2.4. If G is fully regular, then any connection 1-form θ defines a hori-
zontal path projection, i.e. a smooth map

H : C∞(R, P )→ C∞(R, P )

such that Hγ(0) = γ(0) and θ(∂tHγ) = 0, and which is G−equivariant.
Conversely, if there exists such a horizontal path projection H, there exists only

one connection 1-form θ which defines H.
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Proof. Let γ ∈ C∞(R, P ). Consider the principal bundle γ∗P over R and with
structure group the fully regular group G. Then the differential equation

∂tg.g
−1 = −θ(∂tγ(t))

has a unique solution. We define H(γ)(t) = γ(t).g(t) which is by construction a
smooth map, and a direct computation shows that

θ(∂tHγ) = 0

and that it is G−equivariant. The property H ◦H = H is obvious. The converse
is noticed in [7]. �

We have now to investigate the lifts of paths on the base P/G to horizontal paths
on the total space P.

Theorem 2.5. Let θ be a connexion 1-form on P. If G is fully regular, then there
exists a horizontal lift

L : C∞(R, P/G)→ C∞(R, P )

such that
H = L ◦ π

if and only if
P1(P/G) = π∗P1(P ).

Moreover, L is smooth if and only if

P(P/G) = π∗P(P ).

Proof. Since H exists, L exists if and only if any smooth path on P/G is locally the
projection of a smooth path of P, which can be formulated as P1(P/G) = π∗p1(P ).

Since H is smooth, analysing the canonical family of plots generating the func-
tional diffeologies of C∞(R, P ) and C∞(R, P/G), we obtain the condition an-
nounced P(P/G) = π∗P(P ). �

Before stating next theorem, we need to weaken the notion of star-shaped set.

Definition 2.6. Let X be a diffeological spaces. Let O ⊂ X be a non-empty, path
connected set and let x0 ∈ O. the set O is weakly star-shaped (for its subset
diffeology) if there exists a smooth map

Radx0
: O → C∞([0, 1], O)

such that

• ∀x ∈ O,Radx0
(x)(0) = x0

• ∀x ∈ O,Radx0
(x)(1) = x.

Remark 2.7. Trivially, a star-shaped set is weakly star-shaped

Remark 2.8. By its smoothness, the map Radx0
defined a smooth contraction

from O to {x0}, which shows that a weakly star-shaped set needs to be smoothly
contractible.

Theorem 2.9. Let θ be a connection on P. If:

• G is fully regular,
• L is smooth,
• the base P/G can be covered by open subsets that are weakly star-shaped,

then P is locally trivial.
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Proof. If O ⊂ P/G is open and weakly star-shaped, then there exists a basepoint
x0 ∈ O and “radial” paths starting at x0 and covering O, that is, a smooth map

Rad : O → C∞([0, 1], O)

defined as before. Therefore, the map

Φ : (x, g) ∈ O ×G 7→ (L(Radx)(1)) .g

furnishes the desired local trivializations. �

3. Application to groups of pseudo-differential operators

3.1. Preliminaries on classical pseudodifferential operators. We introduce
groups and algebras of non-formal pseudodifferential operators needed to set up our
equations. Basic definitions are valid for real or complex finite-dimensional vector
bundles E over a compact manifold M without boundary whose typical fiber is
a finite-dimensional real or complex vector space V . We begin with the following
definition after [2, Section 2.1].

Definition 3.1. The graded algebra of differential operators acting on the space of
smooth sections C∞(M,E) is the algebra DO(E) generated by:
• Elements of End(E), the group of smooth maps E → E leaving each fibre

globally invariant and which restrict to linear maps on each fibre. This group acts
on sections of E via (matrix) multiplication;
• The differentiation operators

∇X : g ∈ C∞(M,E) 7→ ∇Xg
where ∇ is a connection on E and X is a vector field on M .

Multiplication operators are operators of order 0; differentiation operators and
vector fields are operators of order 1. In local coordinates, a differential operator of
order k has the form P (u)(x) =

∑
pi1···ir (x)∇xi1

· · · ∇xir
u(x) , r ≤ k , in which

u is a (local) section and the coefficients pi1···ir can be matrix-valued. The algebra
DO(M,E) is filtered by order: we note by DOk(M,E),k ≥ 0, the differential
operators of order less or equal than k.

Now we embed DO(M,E) into the algebra of classical pseudodifferential op-
erators. We need to assume that the reader is familiar with the basic facts on
pseudodifferential operators defined on a vector bundle E → M ; these facts can
be found for instance in [5], in the review [24, Section 3.3], and in the papers [3]
and [29] in which the authors construct a global symbolic calculus for pseudodiffer-
ential operators showing, for instance, how the geometry of the base manifold M
furnishes an obstruction to generalizing local formulas of composition and inversion
of symbols.

Notations. We note by PDO(M,E) the space of pseudodifferential operators on
smooth sections of E, see [24, p. 91]; by PDOo(M,E) the space of pseudodifferen-
tial operators of order o; and by Cl(M,E) the space of classical pseudodifferential
operators acting on smooth sections of E, see [24, pp. 89-91]. We also note by
Clo(M,E) = PDOo(M,E)∩Cl(M,E) the space of classical pseudodifferential op-
erators of order o, and by Cl∗(M,E) the group of units of Cl(M,E).

A topology on spaces of classical pseudodifferential operators has been described
implicitely by Kontsevich and Vishik in [9]: it is a Fréchet topology (and therefore



6 JEAN-PIERRE MAGNOT

it equips Cl(M,E) with a smooth structure) such that each space Clo(M,E) is
closed in Cl(M,E). This topology is discussed in [24, pp. 92-93], see also [4, 23, 26]
for more explicit and rigorous descriptions. We will refer to it in this work under
the terminology of Kontsevich-Vishik topology.

We set

PDO−∞(M,E) =
⋂
o∈Z

PDOo(M,E) .

It is well-known that PDO−∞(M,E) is a two-sided ideal of Cl(M,E), closed for
the Kontsevich-Vishik topology, see [5] and also [26] for topological aspects. This
fact allows us to define the quotients

FCl(M,E) = Cl(M,E)/PDO−∞(M,E) ,

and

FClo(M,E) = Clo(M,E)/PDO−∞(M,E) .

The script font F stands for formal pseudodifferential operators. The quotient
FPDO(M,E) is an algebra isomorphic to the space of formal symbols, see [3], and
the identification is a morphism of C-algebras for the usual multiplication on formal
symbols (appearing for instance in [5, Lemma 1.2.3] and [24, p. 89], and in [26,
Section 1.5.2, Equation (1.5.2.3)] for the particular case of classical symbols). Sets
of formal classical pseudodifferential operators have been equipped with a topology,
before and independently of the works of Kontsevich and Vishik, in [1].

Theorem 3.2. The groups Cl0,∗(M,E) and FCl0,∗(M,E), in which FCl0,∗(M,E)
is the group of units of the algebra FCl0(M,E), are regular Fréchet Lie groups
equipped with smooth exponential maps. Their Lie algebras are Cl0(M,E) and
FCl0(M,E) respectively.

Regularity is reviewed in [19] and also in Paycha’s lectures, see [24, p. 95]. The
Lie group structure of Cl0,∗(M,E) is discussed in [24, Proposition 4]. Theorem
3.2 is essentially proven in [14]: it is noted in this reference that the results of
[6] imply that the group Cl0,∗(M,E) (resp. FCl0,∗(M,E) ) is open in Cl0(M,E)
(resp. FCl0(M,E) ) and that therefore it is a regular Fréchet Lie group.

3.2. Diffeologies, topologies and quotients by smoothing operators. We
equip the ideal of smoothing operators Cl−∞ with its Fréchet topology on smooth
kernels, which can be understood as the subset topology for the Kontsevich-Vishik
topology. The algebras PDO(M,E), Cl(M,E) and FCl(M,E) are equipped with
diffeologies such that:

(1) diffeologies make addition, multiplication and inversion smooth (i.e. they
are diffeological algebras), and the L2−adjoint operation (.)∗ is smooth.

(2) The subset diffeology on PDO−∞(M,E) is the nebulae diffeology on smooth
kernels,

(3) the quotient maps PDO(M,E)→ FPDO(M,E) and Cl(M,E)→ FCl(M,E)
are smooth.

, . We have to notice that

• if Cl(M,E) equipped with the Kontsevich-Vishik topology,
• if FCl(M,E) is equipped with the Adams, Ratiu and Schmid topology,
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then their nebulae diffeology fulfill these assumptions. But we wish to avoid non
necessary restrictions of frameworks in this work. Indeed, these topologies are
actually adapted to spectral and microlocal analysis in the actual state of the art,
and have never been questionned to our knowledge. This is not the place here to
make this investigation, but in order to leave this question open, we only choose to
assume assumptions (1-3), keeping in mind the two topologies mentionned before
(and their underlying nebulae diffeologies) as a field of application.

Let Cl∗(M,E) (resp. FCl∗(M,E)) the group of invertible operators of Cl(M,E)
(resp. FCl(M,E)), equipped with their subset diffeology in Cl (resp. FCl(M,E)).
Notice that the Lie brackets exist in these algebras.

Proposition 3.3.
If

G = {Id+R ∈ Cl∗ |R ∈ PDO−∞},
then FCl∗ = Cl∗/G algebraically

Proof. We have directly that Cl∗(M,E)/G ⊂ FCl∗(M,E).Now, let A ∈ Cl(M,E)
such that its associated formal operator a is invertible in FCl(M,E).Then a−1 is the
formal operator associated to some operators B ∈ Cl(M,E) (resp. PDO(M,E))
such that AB = Id+R, where R ∈ PDO−∞(M,E).

Let us first assume that A (and a) are of order 0. Then the partial symbol of order
0 (the principal symbol) is invertible and hence the operator A is Fredholm. Setting
pK the L2 orthogonal projection on its kernel, and pI the orthogonal projection
on the orthogonal complement of the image of A. These two subspaces are finite
dimensional and made of smooth sections. Therefore, one can find (λ, µ) ∈ R2 such
that

A′ = A+ λPI + µPK

and such that A′ ∈ Cl0,∗(M,E). By construction, the formal symbol associated to
A′ is a, and we get

R = (A′)−1A− Id
= (A′)−1(A′ − λPI − µPK)− Id
= (A′)−1(−λPI − µPK) ∈ PDO−∞.(M,E).

Now, of ord(A) = o ∈ Z, let ∆ be a (positive) Laplacian on C∞(M,E) then
(Id+∆)−o/2A is of order 0, to which one can apply the last construction. We finish
the proof by remarking that smoothing operators are not invertible in Cl(M,E). �

3.3. Diffeological short exact sequences and principal bundles with con-
nections. The construction of FCl(M,E) can be rephrased into a short exact
sequence

0→ PDO−∞(M,E)→ Cl(M,E)→ FCl(M,E)→ 0

which is diffeological, that is, each arrow is smooth in the diffeological sense ac-
cording to assumptions (1-3). According to Proposition 3.3 and under the same
diffeological conditions, we get a short diffeological exact sequence of groups

(3.1) 1→ G→ Cl∗(M,E)→ FCl∗(M,E)→ 1.

We get analogous properties for diffeological exact sequences of bounded operators

0→ PDO−∞(M,E)→ Cl0(M,E)→ FCl0(M,E)→ 0

and 1→ G→ Cl0,∗(M,E)→ FCl0,∗(M,E)→ 1.
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These exact sequences have actually no local slice FCl∗(M,E) → Cl∗(M,E) or
FCl0,∗(M,E)→ Cl0,∗(M,E), in other words the diffeological G−principal bundle
Cl0,∗ over FCl0,∗ has actually no local trivialization (according to the Adams,
Ratiu and Schmid topology which is the only one studied explicitely). This is at
this point that we carry now a new element, that generalize the constructions given
in [20] which treats the case M = S1.

Theorem 3.4. There exists PDO−∞−valued connections on the principal bundle
Cl∗(M,E) over FCl∗(M,E). In particular, we define, for s ∈ Cl−∞(M,E) and
(a, b) ∈ (Cl(M,E))2, three such classes of connections:

Θs,l
a b = sas∗b,

Θs,r
a b = bsas∗,

Θs,[]
a b = [sas∗, b],

and extend them by right-invariance on the full space TCl∗(M,E).

Proof. Recall that, for the diffeologies under consideration, multiplication, adjoint
and addition are smooth. Therefore, the right invariant vector fields on TCl∗(M,E)
drfined by

g ∈ Cl∗(M,E) 7→ g−1ag,

g ∈ Cl∗(M,E) 7→ g−1bg,

g ∈ Cl∗(M,E) 7→ g−1sg

and g ∈ Cl∗(M,E) 7→ g−1s∗g

are smooth vector fields, and for the same reasons, when evaluation on right-
invariant vector fields above, the map

(s, a, b) 7→ (Θs,l
a b,Θ

s,r
a b,Θs,[]

a b)

is smooth.
By direct computation, each connection form is G− covariant. �

Remark 3.5. By restriction, these constructions also show that there exists PDO−∞−valued
connections on the principal bundle Cl0,∗(M,E) over FCl0,∗(M,E).

Therefore, we have the following:

Remark 3.6. If there exists diffeologies on Cl∗(M,E) and FCl∗(M,E) such that
Theorem 2.9 applies to at least one PDO−∞(M,E)−valued connection, then there
exists local trivializations for the diffeological principal bundle Cl∗(M,E) over FCl∗(M,E)
and hence local slices to the exact sequence (3.1).

3.4. Yet another class of connections and the Schwinger cocycle when
M = S1. There is another class of smoothing connections defined by

Θε(D)
a b = b[a, ε(D)]

where ε(D) = D.|D|−1, and D = −i ddx . This connection fulfills also the require-
ments of Theorem 3.4 by the same arguments, see e.g. [20]. If the diffeology on Cl∗

has “enough” 2-dimensional plots, one can define the curvature of the connection
[15].

The same property of the curvature holds for a second class of connections,
studied in [21]:

Θ+
a b =

1

2
b(1 + ε(D))a.
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Remark 3.7. We have here to notice that Θ+ is not PDO−∞(M,E)−valued, but
its curvature is.

Then we get, following [21] and denoting by Ω the curvature of Θ+ :

Theorem 3.8. tr(Ω(a, b)(1 + ε)) is cohomologous to the Schwinger cocycle and
tr(Ω2(a, b, c, d)(1 + ε)) has non-vanishing cohomology class.

4. Open problems and perspectives

The principal bundle construction for Cl∗ gives new geometric lights about the
correspondence between non-formal and formal pseudo-differential operators. To
our knowledge, this correspondence is only treated actually from the (algbraic)
viewpoint of K-theory. This approach raises two questions:

(1) the question of the adequate topologies for such groups of operators. this
question is difficult due to the hard technicalities that one can meet when
dealing with such objects. But the question of local maps from FCl∗(M,E)
to Cl∗(M,E) has its own interest. One can ask if the statement of homotopy
equivalence between Cl∗(M,E) and FCl∗(M,E) can be obtained through
a weak contractibility of G. The necessary results actually do not exist in
the context of diffeological principal bundles in the class that we have to
consider.

(2) This first question is related to index theory, actually again only reated
through K-theory, r in a slightly different approach through the restricted
linear group following [25] for M = S1. This leads to a second question:
in our framework, the index cocycles appear as quite natural differential
geometric objects, even for unbounded operators. Indeed, the results by
[17] may be applied if the necessary assumptions were fulfilled, but this is
actually for us an open question.

Therefore, a key problem remains in the investigation of the topologies of interest
for Cl(M,E) and FCl(M,E) and their underlying nebulae diffeologies. We have
at hand an example of such topologies, but the key properties for the application
of our results still need to be investigated.
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