
HAL Id: hal-03721729
https://hal.science/hal-03721729v1

Preprint submitted on 12 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning model for gas-liquid interface
reconstruction in CFD numerical simulations

Tamon Nakano, Michele Alessandro Bucci, Jean-Marc Gratien, Thibault
Faney, Guillaume Charpiat

To cite this version:
Tamon Nakano, Michele Alessandro Bucci, Jean-Marc Gratien, Thibault Faney, Guillaume Charpiat.
Machine learning model for gas-liquid interface reconstruction in CFD numerical simulations. 2022.
�hal-03721729�

https://hal.science/hal-03721729v1
https://hal.archives-ouvertes.fr

The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

MACHINE LEARNING MODEL FOR GAS-LIQUID
INTERFACE RECONSTRUCTION IN CFD NUMERICAL

SIMULATIONS

T. Nakano1, M. A. Bucci1, J-M. Gratien2, T. Faney2, G. Charpiat1

1 INRIA, LISN, bât 660, Université Paris-Saclay, 91405 Orsay cedex, France

2 IFPEN, 1 et 4, avenue du Bois-Préau, 92500 Rueil-Malmaison Cedex, France
http://www.ifpenergiesnouvelles.fr

Key words: Graph neural network, interface reconstruction, VoF method

Abstract. The volume of fluid (VoF) method is widely used in multi-phase flow simula-
tions to track and locate the interface between two immiscible fluids. A major bottleneck of
the VoF method is the interface reconstruction step due to its high computational cost and
low accuracy on unstructured grids. We propose a machine learning enhanced VoF method
based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general
unstructured meshes. We first develop a methodology to generate a synthetic dataset based on
paraboloid surfaces discretized on unstructured meshes. We then train a GNN based model and
perform generalization tests. Our results demonstrate the efficiency of a GNN based approach
for interface reconstruction in multi-phase flow simulations in the industrial context.

1 Introduction

Gas-liquid inter-facial flow can be found in a large variety of industrial problems, such as
cooling systems for electrical engines, chemical reactors or pore-scale flow in porous media.
Among the many numerical methods developed to simulate such gas-liquid flows, an important
issue is to track the motion of the free interface. Two classes of methods have emerged in the
last decades: front tracking methods and interface capturing methods. The second class is more
appropriate for industrial applications as it can more easily deal with topological changes of the
free interface (e.g. break up or coalescence) in complex flows. The volume of fluid (VoF) method
([4], [5]) is such an interface capturing method that recovers interface properties (i.e., normal,
location, curvature) from the volume fraction of each fluid. One bottleneck of this method is
the cost of the accurate computation of the local interface curvature which is essential for the
evaluation of the surface tension force at the interface. Currently, the convolution method ([9],
[10]) and the height function method ([1], [5]) are the most standard and the most accurate
approaches. Nevertheless, these methods are computational expensive and while robust on
regular structured grids, they are the source of unphysical fluid motions ([3]) when applied to
unstructured tetrahedral grids.

Several attempts to apply machine learning approaches have been done recently. Qi et al.
[7] proposed a two-layer neural network to predict the curvature of a 2D surface, trained with
a synthetic data-set. The trained model was then implemented into a CFD solver and tested

1

on an unseen data-set. The prediction was accurate enough to consider this approach as a
valid solution. Patel et al. [6] extended this approach to 3D geometry using a two-layer neural
network as well. Their model was trained considering a synthetic data-set generated from a
spherical surface. They then studied the performance of their trained model on analytical and
CFD based test cases. Their approach outperformed the convolution method and even matched
the accuracy of the height function method [6]. Svyetlichnyy et al. [8] also applied the neural
network approach to predict the interface properties for a 2D and 3D surface reconstruction.
Their model showed a good performance on the prediction of the normal but not on the curvature
and surface location predictions. The major bottleneck of the common VoF methods and the
proposed data-driven approaches is the low accuracy on unstructured grids. The VoF performs
well on structured-like grids while it becomes unstable on an unstructured grid inducing artificial
numerical residual currents. On the other hand the proposed neural network solutions in Qi
et al. [7], Patel et al. [6] and Svyetlichnyy et al. [8] cannot be employed with unstructured
grids since they do not take into account the variability in the neighbouring cells for a given
mesh element. Below is a tabular summary of the involved problems for each available method
today. It is worth noting that in industrial problems involving multi-phase-flow simulations,
unstructured grids are usually employed. To overcome this problem, we propose to use Graph
Neural Networks (GNN) models to deal with complex data structures such as non-euclidean or
graph-based inputs.

Structured grid Unstructured grid Computational cost

VoF Good Instability Expensive

Neural Network Good Not available Less expensive

The objective of this work is to propose a machine learning-based framework in place of
conventional algorithms in order to model interface dynamics. This is expected to accelerate
the interface reconstruction while preserving an accurate prediction. We start by presenting in
section 2 a quick review on the VoF method. We then present in section 3 a GNN architecture
to recover interface properties in each mesh element from the discretized concentration field.
In section 4, we describe how to generate a training dataset that will allow the model to make
accurate predictions on a large range of unseen test data representative of industrial applications.
Section 5 details the model training procedure on the generated dataset. Finally, we validate
our methodology in section 6 using several synthetic test cases.

2 Volume of Fluid method

There are a wide variety of numerical methods to solve multi-phase flow problems. Most of
them are based on the resolution of the mass and momentum conservation equations leading to
the Navier-Stokes (NS) equations. If we consider for instance two fluids A and B partitioning
the simulation domain Ω, a standard approach consists in representing each type of fluid as a
single fluid with spatial physical properties and with the characteristic function χA(x) of fluid A,
defined as follows: χ(x) = 1 if x in fluid A, else χ(x) = 0. The interface between the two fluids
induces a surface tension force that is modeled as a source term in the NS equation. The methods
dealing with fluid interfaces differ in the way such interface is represented and computed. Among

2

(a) Discretization of continuous interfaces (b) Interface reconstruction

Figure 1: Gas-liquid interface representation with volume fraction

the various methods to solve such problems, the VoF method is an Eulerian-Eulerian approach
that is capable of accurately capturing the interface from the phase indicator field α =

∫
τ χA

where τ is a cell of a mesh discretization Ωh of Ω. α represents then for each cell τ the volume
fraction of fluid A. Fig.1 illustrates a bubble defined by a characteristic function χA in blue
and the discretization on a mesh with cells colored depending on the value of the discrete phase
indicator α. Physical quantities such as the fluid density, viscosity and velocity are expressed as
volume fraction weighted sums. For instance, let ρA and ρB be the density of fluid A and fluid
B, the fluid density is then defined as ρ = χAρA + (1 − χA)ρB. The Navier-Stokes momentum
and mass conservation equations can be written as:

∂ρU

∂t
+∇ · (ρUU) = −∇p+ ρg +∇ · (µ∇U) + ρS + Fσ

∂ρ

∂t
+∇ · (ρU) = 0

where t, U, p, ρ and µ are time, the velocity, the pressure, the density and the dynamic viscosity.
g represents body accelerations acting on the fluid, for example gravity. Fσ represents the surface
tension force. The surface tension force term at the interface of two fluids is usually modeled as
follows:

Fσ = σHnδ (x− xs)

where xs are the points on the interface and σ, H and n are the surface tension coefficient, the
mean curvature of the interface and the normal direction to the interface. δ is the Kronecker-δ
that allows to account for the surface tension only for points belonging to the interface. An
extra advection equation is written to compute the evolution of χA discretized on the mesh with
α the volume fraction.

3 Graph Neural Network Model

3.1 GNN models

Neural Networks (NN) are the most popular method used to recover data driven models.
The most basic neural network, namely the Multi Layer Perceptron (MLP), is composed of a
few layers of neurons (input, hidden and output layers). Data is fed to the input layer and
predictions are made at the output layer. Neurons are connected between successive layers
with multiplicative weights and non-linear activation functions. Convolutional Neural Networks
(CNN) perform convolution operations with parameterized filters in order to capture spatial
patterns on structured data on regular grids, such as pixel or voxel grids for images and videos.

3

MLPs and CNNs cannot be applied to irregularly-organized data such as irregular meshes, which
can be represented as graphs.

A graph consists of nodes and edges connecting the nodes as illustrated in Fig. 2a. We denote
a graph by G = (V, E) where V is a set of n ∈ N nodes vi and E is a set of (eij)i,j∈n edges. eij
defines the connection between nodes vi and vj . The graph connectivity can be represented by
the adjacency matrix A which is a n× n matrix with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E .
Nodes and edges can be equipped with features vectors xv ∈ Rd (see Fig.2a) and xe ∈ Rm
respectively. Likewise, Xv ∈ Rn×d is the node feature matrix, Xe ∈ Rn×m is the edge feature
matrix.

Graph Neural Networks (GNNs) are designed to treat data in the form of graph structures.
A GNN takes a graph as its input and returns the same graph with updated features as the
output. Message passing (MP) is the main mechanism that allows the nodes to communicate
through connections in order to update the node features. The MP mechanism on the i node
can be summarised in the following three steps:

1. message computation: φv(xvj)→ x̃vj for all nodes j in the neighbour of the i node

2. message propagation: φe(x̃vj ,xeij)→ x̄vj

3. message aggregation: φa(xvi ,�
j

(x̄vj)) → xvi where �
j

is any aggregation function with

permutation invariant properties.

φv, φe, φa are learnable functions, generally MLPs. The same steps are computed for all nodes
in the graph in an operation similar to convolution. In our work we employ SAGEConv which
is a variant of graph convolution network proposed by Hamilton et al. [2]. We refer the reader
to [11], [12] and [2] for a thorough review on the topic.

3.2 GNN architecture design

3.2.1 Data modeling

The objective is to predict the normal, the curvature, the center and the area of the recon-
structed surface for each tetrahedral cell from a graph containing the information from neigh-
bouring tetrahedral cells (including the current cell). Therefore, each interface cell is associated
to its own graph and interface properties, representing a single data point in the training pro-
cess. The nodes of the graph are the centroids of each cell, and the edges are defined by the cell
connectivity through shared faces. The dimension of the graph is defined by all elements sharing
at least one vertex with the current cell. The inputs are provided to the graph as node features
for each cell: coordinates of cell vertices and volume fraction. Fig.2b sketches the reconstructed
surface properties for a three dimensional tetrahedral cell, and Fig.2c shows the graph for a
given interface cell in two dimensions.

In the training algorithm, all the coordinates are normalized by L = max(Lx, Ly, Lz), where
Lx, Ly and Lz are the maximum dimensions in the x, y and z directions over all mesh cells,
such that each tetrahedral cell belongs to the unitary cube. The corresponding adimensional
curvature H is H = H ′L where H ′ is the original curvature, and the corresponding adimensional
area of the reconstructed surface S is S = S′/L2 where S′ is the original area. The coordinates

4

(a) Schematic diagram of a
graph

(b) Surface properties (c) Graph structure

Figure 2: Gas-liquid interfaces representation with GNN graphs

of the interface center M are expressed in the barycentric system as M = p1P1 + p2P2 +
p3P3 + p4P4, where P1, P2, P3, P4 are the coordinates of each vertex of the tetrahedral cell
(see Fig.2b). p1, p2, p3, p4 are the barycentric coordinates of M and they satisfy the constraint
p1 + p2 + p3 + p4 = 1.

3.2.2 Neural network architecture

Fig.3 shows the architecture of our model. The design of the architecture is based on a
causality criterion: first the normal and the curvature of the interface are computed, then the
interface location is defined through the computation of the center by moving the interface in
the computed normal direction. Finally, the area of the interface is evaluated as a function of
the normal, the center and the vertices of the considered cell. The whole model then consists in
staking three different sub-models.

NN-1 is a graph neural network that simultaneously predicts the normal and the curvature
from the input graph associated to a given interface cell. The node features are the coordinates of
the cell vertices and the volume fraction α of the cells. More specifically, at each node we have the
3 dimensional coordinates for the 4 vertices of a tetrahedron {Pv ∈ R12, ∀v ∈ V}. Here the coor-
dinates of vertices are flattened in a manner that Pv = (P1, P2, ..., P4) = (x1, y1, z1, x2, y2, . . . , z4)
where 1, 2, 3, 4 are the number of the vertices of the tetrahedron. We then concatenate Pv with
the volume fraction of the same node as xv = (α,Pv) ∈ R13. Therefore, an input feature of
NN-1 for a graph having n nodes can be denoted as X1 ∈ R13×n. The first two layers of NN-1
are SAGEConv layers that process the input graph and return a new graph with updated fea-
tures. Node features are further processed by two linear layers. Skip connections are employed
to prevent the vanishing gradient problem. The following global-mean-pool layer returns graph
averaged node features. A latent representation of the initial graph is then recovered. The
model splits into two branches of linear layers for the prediction of the normal n ∈ R3 and the
curvature H.

NN-2 is a simple MLP network that predicts the interface center M from the local information
available in the current interface cell, including the normal n predicted by NN-1. We concatenate
the volume fraction α, the coordinates of the vertices Pcell ∈ R3×4 and the normal n, which is
fed in the form of the dot product with Pcell, that is, n·Pcell ∈ R4. This helps the neural network

5

(a) NN-1: Normal/Curvature (b) NN-2: Center

(c) NN-3: Area

Figure 3: Schematic diagram of the architecture, the numbers in the figure mean the number of
node in the layer or the probability of dropout

discriminate vertices that are above or below the interface. Finally, a concatenated form of them

X2 =
(
α,n ·Pcell, P̂cell

)
∈ R17 is used as input, where P̂cell = (Pcell1, Pcell2, ..., Pcell4) ∈ R12

is the flattened Pcell and Pcell1, Pcell2, ... are the coordinates of the vertices. At the output the
barycentric coordinates p ∈ R4 are recovered. A final L1 normalisation is applied on the output
to enforce

∑4
j=1 pj = 1.

NN-3 is also a simple MLP that predicts the interface area from the available cell quantities

X3 =
(
n ·Pcell, P̂cell, p

)
∈ R19. A sigmoid function is used after the final layer. Due to the

non-dimensionalization by L of the coordinates, the maximum possible area is
√

2/2 which is
less than 1, allowing us to skip normalization of the target area.

4 Dataset

4.1 Dataset generation

Previous studies such as Patel et al. [6] uses a spherical surface to generate their synthetic
dataset. They performed a prediction of the normal on a sinusoidal surface as shown in Fig.4.
We observe that the largest errors are located on saddle point regions, where the surface presents
discordant principal curvature sign. It is likely that the model trained on a sphere based dataset
is biased and can’t generalize to surfaces with non-constant curvatures. To avoid this issue,
we use a paraboloidal surface as shown in Fig.4 to generate our dataset. A paraboloid can

be described as x2κ1
2 + y2κ2

2 = z, where κ1 and κ2 correspond to the two curvatures along the
principal planes. By sampling explicitly κ1 and κ2, we can obtain a dataset representative of a
larger range of 2-dimensional surfaces in 3-dimensional space. Our dataset sampling process is
as follows:

1. Define the curvature range as κ1, κ2 ∼ −[0.001, 0.5] ∪ +[0.001, 0.5] and let u1 ∼ U(−1, 1)

6

Figure 4: Curvature prediction by Patel et al.[6] (left) and Paraboloid (right)

Figure 5: Histograms on the generated dataset: κ1, κ2, α, Curvature and Area (left to right)

and u2 ∼ U(0, 1) be uniformly distributed random variables. This paraboloidal surface
mimics the interface between two fluids.

2. Form a cubic space around the interface and discretize the inside with a tetrahedron mesh.
The dimension of the cube is (12+u1)×(12+u1)×(12+u1), its center is given as (u1, u1, u1).
The grid resolution is constantly ∆ = 1. The curvature in a dimensionless form will be:
κ1∆, κ2∆ ∼ ±[0.001, 0.5].

3. Generate a graph around the center of the cube (u1, u1, u1) as illustrated in Fig.2c. As
a reminder, we collect the following data from this graph. The label variables (normal,
curvature, center and area) are collected at the center cell (see Fig.2c for its definition),
and the feature variables (the coordinates of the vertices of a tetrahedron, edges, volume
fraction) are collected at all nodes in the graph.

4. Rotate the graphs randomly by (rotx, roty, rotz) = (cos−1(2u2 − 1), πu2, 2πu2). Those
formula are known to give a uniform 3D rotation.

5. Repeat this step from 1 to 5 for Nall times, Nall being the dimension of the desired dataset.

4.2 Dataset analysis

We generate Nall = 500, 000 paraboloids for the dataset. Fig.5 shows the histograms of
some properties of the generated dataset. Both κ1 and κ2 have a uniform distribution. The
mean curvature is defined as H = κ1+κ2

2 . The area and the mean curvature is non-uniform and
non-controllable a priori. Nevertheless, we expect such a dataset generation procedure to better
represent general surfaces than a dataset solely based on spherical surfaces.

7

5 Model training

We divide our 500,000 graphs dataset into a 7:2:1 ratio for training, validation and test.
To train more efficiently, some exact label values can also be used as inputs: in NN-2, the
input normal can be the normal predicted by NN-1 or the exact normal. This means that two
different loss functions need to be defined. The same is true for the the input center in NN-3.
Each individual loss is a L2 normalized MSE loss. The total loss is then:

Losstotal = Lossnormal + Losscurv + Losswl
center + Losswolcenter + +Losswl

area + Losswolarea

where Lossnormal, Losscurv, Losscenter and Lossarea are the loss functions of the normal, curvature,
center and area predictions. ”wl” means that the label values are used for the input (wl: with-
label). ”wol” means that the predicted values are used for the input (wol: without-label).

The pytorch-integrated adaptive learning rate is used and set between 1e-2 and 1e-6, reducing
it by a factor of 0.9 when the validation loss function doesn’t improve for 5 consecutive epochs.
The batch size is 512. The early stopping patience parameter is set to 80 epochs in order to
avoid overfitting. Finally, gradient clipping is set to 1e-2 and the Adam optimizer is used.

Fig.6 shows the learning curves of the total and individual train/validation losses during
training. No improvement was observed for the total validation loss after 508th epoch and the
training was stopped at the 588th epoch. All types of losses converge without major overfitting.
For the center and the area, the loss with label gives a lower loss function than without. This is
expected since the input variables in the without label case are predicted variables by another
NN and their variables can already contain errors. Those total and individual loss functions at
the 508th epoch for the training and the validation are compared in the Table 1. It also shows
the prediction on the test dataset by the model trained above. All types of losses stay in the
same range as the ones in the training and the validation. This result confirms the generalization
of the model trained above.

Figure 6: Learning curves: total, normal, curvature (left), center (middle) and area (right)

To analyse the results in-depth, the errors in L1 norm for each predicted property, as defined
in Table 2, are plotted in Fig 7. The histograms show a unimodal shape centered on zero with
a long tail for large errors. Table 2 also shows the median of the errors. Fig.8 shows the R2

score between the prediction and their labels in the test dataset for the scalar variables, i.e., the
curvature and the area. The scattered points are colored by the volume fraction α of the cell
where the prediction was done. R2 value is larger than 0.9 for both of them. The value of α

8

Figure 7: Histogram of the errors: Normal, Curvature, Center, Area

doesn’t seem to have a clear relation with the error: high and low α values appear homogeneously
in the figure regardless of wether the prediction under- or over- estimates the label.

Table 1: Model performance at the 508th epoch

Type of loss Training Validation MSE

Losstotal 7.50e-3 9.07e-3 9.30e-3
Lossnormal 2.30e-3 2.39e-3 2.41e-3
Losscurv 4.13e-3 5.26e-3 5.40e-3
Losswl

center 1.10e-4 2.01e-4 1.84e-4
Losswolcenter 6.66e-4 9.76e-4 1.05e-3
Losswl

area 1.03e-4 5.53e-5 5.51e-5
Losswolarea 1.99e-4 1.95e-4 2.03e-4

Table 2: Model performance on test
set

Predicted variable Median

nerror = ‖nlabel − npred‖ 5.61e-2
Herror = |Hlabel −Hpred| 4.16e-2
Merror = ‖Mlabel −Mpred‖ 1.98e-2
Aerror = |Alabel −Apred| 7.57e-3

6 Model validation

In order to assess the model generalization, we perform a prediction on a 3D sinusoidal surface
as shown in Fig 9. The surface is defined by f(x) = 0.1 sin 9x cos 9y. The space surrounding
the surface was voxelized (generation of a tetrahedral mesh) with a constant discretization by
∆ = 0.05. We then generate graphs in each of those voxels. Each voxel contains the center
point of a graph. Its neighbor voxels contain other nodes of the same graph. This means that a
voxel can be a container of a center point as well as a neighbor point. The maximum absolute
non-dimensionalized curvature of the test surface is |H|max = 0.703. This is in the range of the
training data-set (Htraining ≈ [−0.75, 0.75]). Each interface cell where the volume fraction is
in the range 0.01 < α < 0.99 is input to the model, while interface cells with very high or low
volume fractions are filtered out since we consider these as out of the range of applicability of
our model. Fig.10 shows the errors of the prediction on the four variables and their histograms.
The error for each variable is defined as Table.3. We see that errors don’t have a clear relation
to the geometry for any variable. The histograms show a unimodal shape and no abnormal
behavior is observed. Table.3 also show the median of the error.

This test surface doesn’t have a uniform distribution about α as Fig.11 shows. More samples
are found at α close to 0 and 1 (hereby let us call them “marginal α”). This can have an
impact on the prediction result. In Fig.11 the prediction is compared to the label colored by α.
The marginal α cases have clearly a larger error. For a small marginal α case the model tend
to predict smaller than the label, while it tends to predict larger to a large marginal α. This

9

Figure 8: R2 score on the prediction: Curva-
ture (left) and Area (right)

Figure 9: Test surface: colored by the mean
curvature (left), voxelized and colored by α
(right)

influence of α has not been observed in the test case in the training where α was quasi-uniform.
It implies the limited capacity of the model on the marginal α and it should be taken into
consideration in case of implementation in a real CFD solver and performing on real use cases.

Table 3: Median of the error for the entire surface

Predicted variable value

nerror = ‖nlabel − npred‖ 6.05e-2 [min(nerror),max(0.3nerror)]
Herror = |Hlabel −Hpred| 4.32e-2 [min(Herror),max(0.2Herror)]
Merror = ‖Mlabel −Mpred‖ 1.84e-2 [min(Merror),max(0.1Merror)]
Aerror = |Alabel −Apred| 6.84e-3 [min(Aerror),max(0.2Aerror)]

7 Conclusions and perspectives

In this work, we proposed a machine learning-based framework to model interface reconstruc-
tion. To do so, we generated a synthetic dataset built with paraboloid surfaces discretized on
unstructured meshes. Then we introduced a GNN based method to compute the interface recon-
struction on general unstructured meshes. With the generalization test, we validated our new
method. We demonstrated that 1/ GNNs could be an alternative to the conventional surface
reconstruction methods, 2/ GNNs could be an effective reconstruction approach to unstructured
grids. This can make our method particularly interesting in an industrial context. Further work
includes 1/ implementation of the model in a CFD solver, 2/ assessment of time performance
in a real CFD simulation, 3/ treatment of boundary conditions.

8 Acknowledgements

This research was supported by DATAIA convergence Institute as part of the “Programme
d’Investissement d’Avenir”, (ANR- 17-CONV-0003) operated by INRIA and IFPEN.

References

[1] Sharen J Cummins, Marianne M Francois, and Douglas B Kothe. “Estimating curvature
from volume fractions”. In: Computers & structures 83.6-7 (2005), pp. 425–434.

10

Figure 10: Error plotted on the test surface (left and middle) and its histogram (right) of nerror,
Herror, Merror, Aerror (top to bottom), the visualized range in 3D surface is indicated in the
Table 3

11

Figure 11: Histogram of the volume fraction α on the test surface and R2 score on the curvature
(middle) and area (right) prediction colored by α

[2] William L Hamilton, Rex Ying, and Jure Leskovec. “Inductive representation learning on
large graphs”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. 2017, pp. 1025–1035.

[3] D.J.E. Harvie, M.R. Davidson, and M. Rudman. “An analysis of parasitic current gener-
ation in Volume of Fluid simulations”. In: Applied Mathematical Modelling 30.10 (2006).
Special issue of the 12th Biennial Computational Techniques and Applications Conference
and Workshops (CTAC-2004) held at The University of Melbourne, Australia, from 27th
September to 1st October 2004, pp. 1056–1066. issn: 0307-904X. doi: https://doi.org/
10.1016/j.apm.2005.08.015. url: https://www.sciencedirect.com/science/

article/pii/S0307904X05001666.
[4] Douglas Kothe et al. “Volume tracking of interfaces having surface tension in two and

three dimensions”. In: 34th aerospace sciences meeting and exhibit. 1996, p. 859.
[5] Daniel Lörstad et al. “Assessment of volume of fluid and immersed boundary methods

for droplet computations”. In: International journal for numerical methods in fluids 46.2
(2004), pp. 109–125.

[6] HV Patel et al. “Computing interface curvature from volume fractions: A machine learning
approach”. In: Computers & Fluids 193 (2019), p. 104263.

[7] Yinghe Qi et al. “Computing curvature for volume of fluid methods using machine learn-
ing”. In: Journal of Computational Physics 377 (2019), pp. 155–161.

[8] Dmytro Svyetlichnyy. “Neural networks for determining the vector normal to the surface
in CFD, LBM and CA applications”. In: International Journal of Numerical Methods for
Heat & Fluid Flow (2018).

[9] Matthew W Williams et al. “Numerical methods for tracking interfaces with surface ten-
sion in 3-D mold filling processes”. In: Fluids Engineering Division Summer Meeting.
Vol. 36150. 2002, pp. 751–759.

[10] MW Williams, DB Kothe, and EG Puckett. “Accuracy and convergence of continuum
surface tension models”. In: Fluid dynamics at interfaces (1998), pp. 294–305.

[11] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE trans-
actions on neural networks and learning systems 32.1 (2020), pp. 4–24.

[12] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: AI
Open 1 (2020), pp. 57–81.

12

