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Introduction

Let d ≥ 1 and p > 1. We consider the Lane-Emden equation

-∆u = |u| p-1 u in R d + , u = 0 on ∂R d + , (1) 
posed in the upper half-space R d + := {x = (x , x d ) : x ∈ R d-1 , x d ∈ (0, ∞)} with homogeneous Dirichlet boundary conditions. It is conjectured that the above equation has only one nonnegative solution, u = 0.

Gidas and Spruck in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] showed that this is indeed the case if 1 < p ≤ p S (d), where

p S (d) = d + 2 (d -2) +
is Sobolev's critical exponent. In the case p > p S (d), only partial results are available: Dancer [START_REF] Dancer | Some notes on the method of moving planes[END_REF] considered bounded nonnegative solutions and proved in this case that u = 0 if p < p S (d -1). The second named author [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains on R N[END_REF] improved Dancer's result showing that the only bounded nonnegative solution is u = 0 if p < p JL (d -1), where p JL is the Joseph-Lundgren stability exponent given by

p JL (d) := (d -2) 2 -4d + 8 √ d -1 (d -2)(d -10) + . (2) 
Finally Chen, Lin, and Zou [START_REF] Chen | Monotonicity and nonexistence results to cooperative systems in the half space[END_REF] proved that no bounded nonnegative solution u = 0 of (1) exists for any p > 1.

In all these results, the fact that any nonnegative bounded solution of ( 1) is monotone in the x d -direction, i.e. ∂u/∂x d > 0 in R d + , is crucially used. In fact, Sirakov, Souplet and the first named author proved in [START_REF] Dupaigne | A Liouville-type theorem for the Lane-Emden equation in a Half-space[END_REF] that, more generally, no nontrivial monotone solution of (1) exists, whether bounded or not. Note that monotone solutions are stable, meaning they verify additionally that

p ˆ|u| p-1 ϕ 2 dx ≤ ˆ|∇ϕ| 2 dx, (3) 
for all ϕ ∈ C 1 c (R d + ). Even more generally, consider solutions which are stable only outside a compact set K ⊂ R d + , i.e. such that (3) holds for ϕ ∈ C 1 c (R d + \ K). The second named author proved in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains on R N[END_REF]Theorem 9(b)] that there is no such solution except u = 0, provided 1 < p < p JL (d). We improve this result as follows.

Theorem 1. Let p > 1 and let u ∈ C 2 (R d + ) ∩ C(R d + ) be a solution of (1) stable outside a compact set. Then u = 0.

The above theorem can be partly extended to the following class of weak solutions. Definition 1. Let H denote the space of measurable functions u defined on the upper half-space

R d + such that u ∈ H 1 (R d + ∩ B R ) ∩ L p+1 (R d + ∩ B R )
for every R > 0 and u = 0 on ∂R d + in the sense of traces. Then, u is a weak solution of (1) if u ∈ H and it satisfies the equation -∆u = |u| p-1 u in the sense of distributions.

Then, Corollary 1. Let p > 1 and let u be a nonnegative weak stable solution of [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF]. Then u = 0. Remark 1. Corollary 1 is sharp in the following sense. By Theorem 1.1 in [START_REF] Bidaut-Véron | Isolated boundary singularities of semilinear elliptic equations[END_REF], for p ∈ ( d+1 d-1 , p S (d -1)), there exists a singular solution of the form u(x) = r -2 p-1 v(θ), where r = |x|, θ = x/r and v ∈ C 2 (S d-1 + ) ∩ H 1 0 (S d-1 + ) is positive and radial (w.r.t the geodesic distance to the north pole). Observe that u ∈ H if only if d ≥ 3 and p ∈ (p S (d), p S (d -1)), so that the equation is satisfied in the weak sense. However, u is always unstable, see Lemma 7 and Lemma 8 below. So, the stability assumption cannot be completely removed from the statement of Corollary 1.

Next, we extend our study of the Lane-Emden equation to cones, i.e. we consider the equation

-∆u = |u| p-1 u in Ω, u = 0 on ∂Ω, (4) 
where Ω = {rθ : r ∈ (0, +∞), θ ∈ A} , (5) d ≥ 2 and A ⊂ S d-1 is a subset of the unit sphere of dimension d -1.

Busca proved that there are no positive solutions u ∈ C 2 (Ω) ∩ C(Ω) of (4) in the case where Ω is a convex cone strictly contained in R d + , see [START_REF] Busca | Symmetry and nonexistence results for Emden-Fowler equations in cones[END_REF]. For such a cone, positive solutions are monotone (hence stable 1 in Ω) and A = Ω ∩ S d-1 is geodesically convex (see Lemma 11), hence star-shaped with respect to the north pole (up to a suitable rotation, see Lemma 13). So the following theorem extends both Busca's result and Theorem 1. + , which is star-shaped with respect to the north pole. Let Ω be given by [START_REF] Dávila | Partial regularity of finite Morse index solutions to the Lane-Emden equation[END_REF]. If p > 1 and u ∈ C 2 (Ω) ∩ C(Ω) is a solution of (4) stable outside a compact set 2 , then u = 0. Remark 2. We recall that a set A ⊆ S d-1 is said to be star-shaped with respect to a point θ 0 ∈ A if for every θ ∈ A any minimal geodesic path from θ 0 to θ remains inside A. Note that when A ⊆ S d-1

+ , there is at most one such minimal geodesic path.

Finally, for general cones (not necessarily star-shaped, not necessarily contained in a half-space), as follows from the proof of Theorem 2, we have the following partial result Corollary 2. Let Ω ⊂ R d be a cone given by (5) and p > 1. Assume that

p = p S (d) and pµ - (d -2) 2 4 + (p -1)λ 1 ≥ 0, where µ = 2 p-1 d -1 -p+1 p-1
and λ 1 is the principal eigenvalue of the Laplace-Beltrami operator on

A = Ω ∩ S d-1 . If u ∈ C 2 (Ω) ∩ C(Ω)
is a solution of (4) stable outside a compact set, then u = 0.

Remark 3. In particular, the Corollary applies to all p ≥ p 0 for some (explicitly computable) p 0 depending on d and λ 1 .

Remark 4. Since Ω is not smooth at its vertex, some care is needed when dealing with regularity/integrability properties of the solution. The reader interested only in the proof of Theorem 1 can safely skip these considerations in the proof presented below.

Proof of Theorem 2

We begin by proving that any classical solution of ( 4) is a weak solution of (4) in the following sense.

Definition 2.

Set Ω R := Ω ∩ B R for every R > 0. We say that a measurable function u defined on Ω is a weak solution of (4

) if u ∈ H 1 (Ω R ) ∩ L p+1 (Ω R )
for every R > 0, u solves -∆u = |u| p-1 u in the sense of distributions of Ω and if for all ψ ∈ C 1 c (R d ) we have uψ ∈ H 1 0 (Ω). Lemma 1. Assume p > 1 and let u ∈ C 2 (Ω) ∩ C(Ω) be a solution of (4). Then, u is a weak solution of (4). Furthermore, every weak solution u to (4) satisfies,

ˆΩ ∇u∇φ = ˆΩ |u| p-1 uφ, (6) 
for all φ ∈ H 1 0 (Ω) ∩ L p+1 (Ω) with bounded support. Proof. Multiply equation (4) by uζ 2 , ζ ∈ C 0,1 c (R d \ {0}
), and integrate by parts to get

ˆ|∇u| 2 ζ 2 = ˆ|u| p+1 ζ 2 -2 ˆuζ∇u • ∇ζ ≤ ˆ|u| p+1 ζ 2 + 1 2 ˆ|∇u| 2 ζ 2 + 2 ˆu2 |∇ζ| 2 Hence, ˆ|∇u| 2 ζ 2 ≤ 2 u p+1 L ∞ (Ω R ) ˆζ2 + 4 u 2 L ∞ (Ω R ) ˆ|∇ζ| 2 . ( 7 
)
Choosing ζ = ψζ n , where ζ n is a standard cut-off function away from the origin, and passing to the limit in the latter inequality we see that [START_REF] Dupaigne | A Liouville-type theorem for the Lane-Emden equation in a Half-space[END_REF] remains true for every

ζ = ψ ∈ C 1 c (R d ). Hence, u ∈ H 1 (Ω R ) ∩ L p+1 (Ω R
) for every R > 0 and u is a solution to -∆u = |u| p-1 u in the sense of distributions of Ω. Also, uψ ∈ H 1 0 (Ω R ) for any R >> 1, since ψ has compact support, 3 and thus uψ ∈ H 1 0 (Ω). Finally, [START_REF] Dupaigne | Regularity and symmetry for semilinear elliptic equations in bounded domains[END_REF] follows by a standard density argument (by passing to the limit in the distributional formulation of -∆u = |u| p-1 u). This part of the proof is inspired by [START_REF] Esteban | Existence and nonexistence results for semilinear elliptic problems in unbounded domains[END_REF] but some care is needed since the domain Ω is not necessarily smooth (at the origin) 4 and so solutions might not belong to W 2,q (Ω R ) with q ∈ (1, +∞) as in their case. The following integral estimate holds.

Remark 5. If Ω = R d + ,
Lemma 2. Let 1 < p ≤ p S (d). Let u ∈ C 2 (Ω) ∩ C(Ω) be a solution of (4) stable outside a compact set K. Then, u ∈ L p+1 (Ω) and |∇u| ∈ L 2 (Ω). Proof. Let u ∈ C 2 (Ω) ∩ C(Ω) be a solution of (4) stable outside a compact set K and let ϕ ∈ C 1 c (R d ) supported on R d \ K.
Then, φ = uϕ 2 has bounded support and belongs to H 1 0 (Ω) ∩ L p+1 (Ω) (thanks to Lemma 1 and Definition 2) and so, from (6), we get ˆ∇u∇(uϕ

2 ) = ˆ|u| p+1 ϕ 2 . ( 8 
)
We estimate the left-hand side of (8) using the stability of u in

Ω \ K ˆ|u| p+1 ϕ 2 = ˆ∇u∇(uϕ 2 ) = ˆ|∇(uϕ)| 2 -ˆu2 |∇ϕ| 2 (9) ≥ p ˆ|u| p+1 ϕ 2 -ˆu2 |∇ϕ| 2 ,
where in the latter we have used that φ = uϕ 2 belongs to H 1 0 (Ω \ K), and so it can be inserted into (3). Combining the above lines and observing that p > 1, we reach

(p -1) ˆ|u| p+1 ϕ 2 ≤ ˆu2 |∇ϕ| 2 . ( 10 
)
Returning to [START_REF] Esteban | Existence and nonexistence results for semilinear elliptic problems in unbounded domains[END_REF], it follows that p -

1 p ˆ|∇(uϕ)| 2 ≤ ˆu2 |∇ϕ| 2 . ( 11 
)
Taking ϕ := ψ m , for some some smooth non-negative function

ψ ∈ C 1 c (R d ) supported on R d \ K and m > 1 gives (p -1) ˆ|u| p+1 ψ 2m ≤ m 2 ˆu2 ψ 2m-2 |∇ψ| 2 .
Using Hölder's inequality,

(p -1) ˆ|u| p+1 ψ 2m ≤ m 2 ˆ|u| p+1 ψ (m-1)(p+1) 2 p+1 ˆ|∇ψ| 2 p+1 p-1 p-1 p+1
.

We can take m := p+1 p-1 , so the above inequality simplifies to

ˆ|u| p+1 ψ 2m ≤ (p + 1) 2 (p -1) 3 p+1 p-1 ˆ|∇ψ| 2 p+1 p-1 . ( 12 
) Fix R 0 > 0 such that K ⊂ Ω R0 and let R > 2R 0 so u is stable outside of Ω R . If ψ R (x) = ψ 1 (x/R) is a standard cutoff function, then ψ = (1 -ψ R0 )ψ R is supported in B 2R
\ K and so we may apply [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF]. It follows that

ˆΩR \Ω 2R 0 |u| p+1 ≤ C p ˆΩ2R 0 |∇ψ| 2 p+1 p-1 + C p ˆΩ2R \Ω 2R 0 |∇ψ| 2 p+1 p-1 ≤ C p,d (R d-2 p+1 p-1 0 + R d-2 p+1 p-1 ). ( 13 
)
Using the same test function in [START_REF] Ferreira | Projections onto convex sets on the sphere[END_REF] yields similarly

ˆΩR \Ω 2R 0 |∇u| 2 ≤ C p,d (R d-2 p+1 p-1 0 + R d-2 p+1 p-1 ). (14) 
The lemma follows by letting R → +∞, since p ≤ p S (d) implies d -2 p+1 p-1 ≤ 0. Thanks to Lemma 2, we derive the following Pohožaev identity.

Proposition 1. Under the assumptions of Lemma 2, there holds

1 - d 2 ˆΩ |∇u| 2 + d p + 1 ˆΩ |u| p+1 = 0.
Proof. Let (ζ n ) denote a standard truncation sequence near the origin and (θ n ) a standard truncation sequence near infinity. Set ψ n = ζ n θ n for n ≥ 1. Multiply equation ( 4) by (x • ∇u)ψ n and integrate by parts. Then,

-ˆΩ ∆u(x • ∇u)ψ n = ˆΩ ∇u • ∇[(x • ∇u)ψ n ] - ˆ∂Ω\{0} ∂u ∂ν (x • ∇u)ψ n = ˆΩ |u| p-1 u(x • ∇u)ψ n = ˆΩ x • ∇ |u| p+1 p + 1 ψ n . So, ˆΩ ∇u • ∇(x • ∇u)ψ n + ˆΩ ∇u • ∇ψ n (x • ∇u) - ˆ∂Ω\{0} ∂u ∂ν (x • ∇u)ψ n = - ˆΩ |u| p+1 p + 1 (dψ n + x • ∇ψ n ) + ˆ∂Ω\{0} |u| p+1 p + 1 (x • ν)ψ n = - d p + 1 ˆΩ |u| p+1 ψ n - ˆΩ |u| p+1 p + 1 (x • ∇ψ n ). It follows that ˆΩ |∇u| 2 ψ n + ˆΩ x • ∇ |∇u| 2 2 ψ n + ˆΩ ∇u•∇ψ n (x•∇u)- ˆ∂Ω\{0} ∂u ∂ν (x•∇u)ψ n = - d p + 1 ˆΩ |u| p+1 ψ n - ˆΩ |u| p+1 p + 1 (x•∇ψ n ), i.e. ˆΩ |∇u| 2 ψ n - ˆΩ |∇u| 2 2 (dψ n + x • ∇ψ n ) + ˆ∂Ω\{0} |∇u| 2 2 (x • ν)ψ n + ˆΩ ∇u • ∇ψ n (x • ∇u) - ˆ∂Ω\{0} ∂u ∂ν (x • ∇u)ψ n = - d p + 1 ˆΩ |u| p+1 ψ n - ˆΩ |u| p+1 p + 1 (x • ∇ψ n ). On ∂Ω \ {0}, ∇u = u ν ν and 0 = r∂ r u = x • ∇u, since u = 0 on ∂Ω and Ω is a cone. Thus, x • ∇u = u ν (x • ν) and |∇u| 2 2 (x • ν) = u 2 ν 2 (x • ν) = 0 on ∂Ω \ {0} so both boundary integrals are equal to zero! It follows that (1-d/2) ˆΩ |∇u| 2 ψ n + d p + 1 ˆΩ |u| p+1 ψ n = ˆΩ |∇u| 2 2 (x•∇ψ n )-ˆΩ ∇u•∇ψ n (x•∇u)- ˆΩ |u| p+1 p + 1 (x•∇ψ n ) =: I(n).
For n ≥ 1, the integrands of the right-hand side can be bounded as follows

|∇u| 2 2 (x • ∇ψ n ) -∇u • ∇ψ n (x • ∇u) - |u| p+1 p + 1 (x • ∇ψ n ) ≤ 3 2 |∇u| 2 + |u| p+1 p + 1 |x|•|∇ψ n | =: g|x|•|∇ψ n | in Ω,
where g ∈ L 1 (Ω) and g ≥ 0. Taking the truncation functions of the form θ n (x) = θ(x/n) and ζ n (x) = ζ(nx) if d ≥ 3 (and using log-type capacitary truncation functions if d = 2), we infer that

ˆΩ g|x| • |ζ n ∇θ n | ≤ ∇θ ∞ ˆΩ∩[n<|x|<2n] g |x| n ≤ 2 ∇θ ∞ ˆΩ∩[n<|x|<2n] g → 0 as n → +∞ and similarly ˆΩ g|x| • |θ n ∇ζ n | ≤ 2 ∇ζ ∞ ˆΩ∩[1/n<|x|<2/n] g → 0.
Since ∇u ∈ L 2 (Ω) and u ∈ L p+1 (Ω), we may apply the dominated convergence theorem to pass to the limit in

(1 -d/2) ´Ω |∇u| 2 ψ n -d p+1 ´Ω |u| p+1
ψ n and the proposition follows. Next, in order to exploit Pohožaev's identity, we establish the following elementary identity. Proposition 2. Under the assumptions of Lemma 2, there holds

ˆΩ |∇u| 2 = ˆΩ |u| p+1 .
Proof. Let (θ n ) be a standard truncation sequence near infinity and apply [START_REF] Dupaigne | Regularity and symmetry for semilinear elliptic equations in bounded domains[END_REF] with

ψ = θ n to get ˆΩ ∇u • ∇(uθ n ) = ˆΩ |u| p+1 θ n .
The left-hand side equals

ˆΩ |∇u| 2 θ n + ˆΩ ∇ u 2 2 • ∇θ n = ˆΩ |∇u| 2 θ n - ˆΩ u 2 2 • ∆θ n ,
where we used that u = 0 on ∂Ω and

∇θ n = 0 in B 1 ∪ R d \ B 2n . In addition, ˆΩ u 2 ∆θ n ≤ ˆΩ∩[n<|x|<2n] |u| p+1 2 p+1 ˆΩ∩[n<|x|<2n] |∆θ n | p+1 p-1 p-1 p+1
,

and since p ≤ p S (d), ˆΩ∩[n<|x|<2n] |∆θ n | p+1 p-1 ≤ Cn d-2 p+1 p-1 → 0,
as n → ∞. Since u ∈ L p+1 (Ω) and ∇u ∈ L 2 (Ω), we may pass to the limit and obtain the desired conclusion.

Remark 6. Combining Propositions 1 and 2, we immediately conclude that u = 0 if p < p S (d).

To deal with the critical case p = p S (d), we prove the following Proposition 3. Let p = p S (d) and u ∈ C 2 (Ω) ∩ C(Ω) be a classical solution of (4) in a cone Ω such that ∂Ω is a graph in the x d direction. Then, under the assumptions of Lemma 2, there holds

ˆ∂Ω\{0} ν d |∇u| 2 = 0,
where ν d is the d-th coordinate of the outward unit normal vector ν.

Proof. We multiply (4) with the test function ∂u ∂x d ψ n (where ψ n has been defined at the beginning of the proof of Proposition 1) and integrate by parts. The left-hand side equals

-ˆΩ ∆u ∂u ∂x d ψ n = ˆΩ ∇u • ∇ ∂u ∂x d ψ n - ˆ∂Ω\{0} ∂u ∂ν ∂u ∂x d ψ n
while the right-hand side equals

ˆΩ |u| p-1 u ∂u ∂x d ψ n = ˆΩ ∂ ∂x d |u| p+1 p + 1 ψ n = - ˆΩ |u| p+1 p + 1 ∂ψ n ∂x d ,
where we used the fact that u = 0 on ∂Ω \ {0}. Hence,

ˆΩ ∇u • ∇ ∂u ∂x d ψ n + ˆΩ ∇u • ∇ψ n ∂u ∂x d - ˆ∂Ω\{0} ∂u ∂ν ∂u ∂x d ψ n = - ˆΩ |u| p+1 p + 1 ∂ψ n ∂x d . Since ∇u • ∇ ∂u ∂x d = ∂ ∂x d |∇u| 2
2 , we integrate by parts the first term and find

- ˆΩ |∇u| 2 2 ∂ψ n ∂x d + ˆ∂Ω\{0} |∇u| 2 2 ψ n ν d + ˆΩ ∇u • ∇ψ n ∂u ∂x d - ˆ∂Ω\{0} ∂u ∂ν ∂u ∂x d ψ n = - ˆΩ |u| p+1 p + 1 ∂ψ n ∂x d . Since ∇u = u ν ν on ∂Ω \ {0}, ∂u ∂x d = u ν ν d on ∂Ω \ {0} and so ∂u ∂ν ∂u ∂x d = u 2 ν ν d = |∇u| 2 ν d on ∂Ω \ {0}.
We deduce that

I(n) := - ˆΩ |∇u| 2 2 ∂ψ n ∂x d + ˆΩ ∇u • ∇ψ n ∂u ∂x d + ˆΩ |u| p+1 p + 1 ∂ψ n ∂x d = 1 2 ˆ∂Ω\{0} |∇u| 2 ψ n ν d .
By the graph property of ∂Ω, -ν d ≥ 0. So, in order to conclude, it suffices to prove that the left-hand side in the above identity converges to 0 as n → +∞ (using Beppo Levi's theorem on ∂Ω \ {0}). But

|I(n)| ≤ ˆΩ 3 2 |∇u| 2 + |u| p+1 p + 1 |∇ψ n | → 0,
as n → +∞, as in the proof of Proposition 1.

Remark 7.

If ∂Ω is a graph, then there exists p ∈ ∂Ω \ {0} such that ν d (p) = 0 and so there exists ρ ∈ (0, 1)

such that |∇u| 2 = 0 in (∂Ω \ {0}) ∩ B(p, ρ)
. By the unique continuation principle, u = 0 in Ω.

Going back to the statement of Theorem 2, our cone Ω is star-shaped with respect to the north pole, so thanks to Lemma 12 below, the boundary of the cone Ω is a graph in the x d direction. Then we may apply Proposition 3 and by Remarks 6 and 7, we have just proved Theorems 1, 2 and Corollary 2 in the case 1 < p ≤ p S (d). Corollary 1 also follows for 1 < p ≤ p S (d) since in that case and for Ω = R d + , any weak solution is in fact a classical solution u ∈ C 2 (R d + ). Remark 8. Regarding weak solutions, we observe that Lemma 2 remains valid for weak solutions stable outside a compact set. Indeed, in these cases, (6) holds and so also does Lemma 2.

We turn next to 2.2. The supercritical case p > p S (d).

Observe that if u solves (4) and λ > 0, then the function u λ defined by

u λ (x) := λ 2 p-1 u(λ x), x ∈ Ω (15) 
is also a solution to [START_REF] Dancer | Some notes on the method of moving planes[END_REF]. In order to understand the asymptotic profile of u at infinity, we consider the blow-down family (u λ ) as λ → +∞.

2.2.1.

A priori estimates and convergence of the blow-down family.

Lemma 3. Let p ≥ p S (d). Assume that u is a weak solution of (4) stable outside a compact set. Then, there exist constants C = C(u, d, p) > 0 such that for all R > 1 and λ ≥ 1,

ˆΩR |∇u λ | 2 + |u λ | p+1 ≤ CR d-2 p+1 p-1 . (16) 
This follows essentially from [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains on R N[END_REF]. For completeness, we include a proof below.

Proof. Fix R 0 = R 0 (u) > 1 such that u is stable outside of Ω R0 . Then, given λ ≥ 1, u λ is stable outside the smaller domain Ω R0/λ . Therefore, by proceeding as in the proof of Lemma 2, we obtain inequalities ( 13) and ( 14) for u λ . Hence, for R > 2R 0 /λ,

ˆΩR \Ω 2R 0 /λ |∇u λ | 2 + |u λ | p+1 ≤ C p,d (R 0 /λ) d-2 p+1 p-1 + R d-2 p+1 p-1 ≤ 2C p,d R d-2 p+1 p-1
where we have used that p ≥ p S (d) implies d -2 p+1 p-1 ≥ 0. On the other hand we also have

ˆΩ2R 0 /λ |∇u λ | 2 + u p+1 λ = λ 2 p+1 p-1 -d ˆΩ2R 0 |∇u| 2 + |u| p+1 ≤ ˆΩ2R 0 |∇u| 2 + |u| p+1 = C(u, p, R 0 (u)) < +∞ (17)
since λ ≥ 1. The lemma follows.

Remark 9. Let p > p S (d). Assume that u is a weak solution of (4) stable outside a compact set. Then, the following improved version of (16) holds for some γ > 1 and all

R > 1 ˆΩR |∇(|u λ | γ-1 2 u λ )| 2 + |u λ | p+γ ≤ C(1 + R d-2 p+γ p-1 ), ( 18 
)
where C is constant depending only on p, d, γ and u. Precisely, as in Proposition 4 of [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains on R N[END_REF], testing equation (4)

with 5 |T k (u)| γ-1 T k (u)ϕ 2 , where T k (u) is the truncation of u at level k > 0, γ ∈ (1, 2p+2 p(p -1)-1) and ϕ ∈ C 1 c (R d ), and then inserting |T k (u)| γ-1
2 T k (u)ϕ 2 in the stability condition, we are lead to bounds (13) and [START_REF] Pacard | Partial regularity for weak solutions of a nonlinear elliptic equation[END_REF], where the exponent d-2 p+1 p-1 is replaced by d-2 p+γ p-1 . Finally, choosing γ such that d -2 p+γ p-1 ≥ 0 (and filling the hole) leads to the desired estimate (18). We use the preceding remark to prove convergence of (u λ ) to a limit u ∞ in suitable spaces. Lemma 4. Let p > p S (d). Assume that u is a weak solution of (4) stable outside a compact set. The rescaled solutions converge along a sequence (u λn ) to a limit u ∞ strongly in H 1 ∩ L p+1 (Ω R ) for every R > 0, as λ n → ∞. Furthermore, u ∞ is a weak, stable solution of (4).

Proof. By estimate (16) and (18) there is γ > 1 such that (u λ ) is bounded in H 1 ∩ L p+γ (Ω R ) for every R > 0. Thus, by a standard diagonal argument, there exists a measurable function u ∞ defined on Ω and a subsequence (u λn ) weakly converging to u ∞ in H 1 ∩ L p+γ (Ω R ) for every R > 0. In particular we get

ˆΩ ∇ u λn ∇η → ˆΩ ∇ u ∞ ∇η, (19) 
for all η ∈ H 1 0 (Ω) with bounded support. We also observe that, by Rellich-Kondrachov's compactness theorem, we may and do suppose that the convergence is strong in L 2 (Ω R ), for every R > 0. 6 To obtain strong convergence in L p+1 (Ω R ), we apply the following interpolation inequality

u λ -u ∞ L p+1 (Ω R ) ≤ u λ -u ∞ θ L 2 (Ω R ) u λ -u ∞ 1-θ L p+γ (Ω R ) , where θ = 2γ-2
(p+γ-2)(p+1) , as follows from Hölder's inequality. Since (u λn ) converges to u ∞ in L 2 (Ω R ) and (u λn ) is bounded in L p+γ (Ω R ), it follows that (u λn ) converges strongly to u ∞ in L p+1 (Ω R ) for every R > 0. Therefore, we can find a subsequence (still denoted by (u λn )) and g ∈ L p+1 (Ω R ) for every R > 0 such that

|u λn | ≤ g a.e. in Ω, u λn → u ∞ a.e. in Ω. ( 20 
)
5 For any β > 0, the function |T k (u)| β T k (u)ϕ 2 belongs to H 1 0 (Ω) ∩ L p+1 (Ω) and has bounded support. Indeed, pick ξ ∈ C 1 c (R d ) such that ξ ≡ 1 on a neighbourhood of the support of ϕ, then uξ ∈ H 1 0 (Ω). The latter implies

|T k (uξ)| β T k (uξ) ∈ H 1 0 (Ω) and so also |T k (uξ)| β T k (uξ)ϕ 2 belongs to H 1 0 (Ω). Then observe that |T k (uξ)| β T k (uξ)ϕ 2 = |T k (u)| β T k (u)ϕ 2 on Ω. Since it is clear that |T k (u)| β T k (u)ϕ 2 belongs
to L p+1 (Ω) and has bounded support, the desired claim follows. 6 Indeed, let (φ k ) be a sequence of standard cut-off functions of class C 1 c (R d ). Then, for every fixed k, the sequence (u λn φ k ) is bounded in H 1 0 (Ω 3k ) and by Rellich-Kondrachov's compactness theorem, it is compact in L 2 (Ω 3k ) which, in turn, implies that the sequence (u λn ) is compact in L 2 (Ω k ). The desired conclusion then follows by a standard diagonal argument.

The latter and Lebesgue's dominated convergence theorem imply that

ˆΩ |u λn | p-1 u λn η → ˆΩ |u ∞ | p-1 u ∞ η, (21) 
for all η ∈ L p+1 (Ω) with bounded support.

Recalling that u λn is a weak solution to (4), we see that the combination of ( 21) and ( 19) gives

ˆΩ ∇ u ∞ ∇η = ˆΩ |u ∞ | p-1 u ∞ η, (22) 
for all η ∈ H 1 0 (Ω) ∩ L p+1 (Ω) with bounded support. Next we observe that u

∞ ζ ∈ H 1 (Ω) for every ζ ∈ C 1 c (R d ) and that (u λn ζ) converges weakly to u ∞ ζ in H 1 (Ω), thanks to the weak convergence of (u λn ) in H 1 (Ω R ) for every R > 0. Hence, u ∞ ζ ∈ H 1 0 (Ω) for every ζ ∈ C 1 c (R d ), since H 1 0 (Ω) is weakly closed in H 1 (Ω)
. The latter and (22) prove that u ∞ is a weak solution to (4) and

ˆΩ ∇u ∞ ∇(u ∞ ϕ 2 ) = ˆΩ |u ∞ | p+1 ϕ 2 ∀ ϕ ∈ C 1 c (R d ) (23) since u ∞ ϕ 2 belongs to H 1 0 (Ω) ∩ L p+1
(Ω) and has bounded support. Next, we claim that u λn ϕ → u ∞ ϕ in H 1 0 (Ω). In view of ( 23) and ( 8) we can compute as in the first line of ( 9) and find that, for every

ϕ ∈ C 1 c (R d ) ˆΩ |∇(u λn ϕ)| 2 = ˆΩ |u λn | 2 |∇ϕ| 2 + ˆΩ |u λn | p+1 ϕ 2 → ˆΩ |u ∞ | 2 |∇ϕ| 2 + ˆΩ |u ∞ | p+1 ϕ 2 = ˆΩ |∇(u ∞ ϕ)| 2 ,
where in the latter we have used (20) and Lebesgue's dominated convergence theorem. It follows that (u λn ϕ) converges to u ∞ ϕ in H 1 0 (Ω), for every ϕ ∈ C 1 c (R d ) and, in particular u λn → u ∞ in H 1 (Ω R ) for every R > 0. Stability of the weak solution u ∞ follows from the strong convergence of (u λn ) in L p+1 (Ω R ) and the fact that for fixed n, u λn is stable outside K/λ n (here K ⊂ Ω is any compact set such that u is stable outside K).

Remark 10. One may wonder if Lemma 4 still holds if p = p S (d). If one works in all of R d , the answer is no. Indeed, a constant multiple of the function u

(x) = (1 + |x| 2 ) -d-2 2
solves the equation and is stable outside a compact set, thanks to Hardy's inequality. Yet, the family (u λ ) is clearly not compact in L p+1 (B 1 ).

Monotonicity formula. Define the functional

E(u; λ) = λ 2 p+1 p-1 -d ˆΩλ 1 2 |∇u| 2 - 1 p + 1 |u| p+1 dx + λ 4 p-1 +1-d 1 p -1 ˆΩ∩∂B λ u 2 dσ, (24) 
where λ > 0, Ω λ = Ω ∩ B λ and u ∈ C 2 (Ω) ∩ C(Ω) is a classical solution to (4).

Remark 11. Note that E satisfies the following simple scaling relation: given λ, R > 0,

E(u; λR) = E(u λ ; R)
The main result of this section is the following monotonicity formula, which extends a result due to Pacard [START_REF] Pacard | Partial regularity for weak solutions of a nonlinear elliptic equation[END_REF].

Lemma 5. Let u ∈ C 2 (Ω) ∩ C(Ω) be a solution of (4) and λ > 0. Let E be as in (24). Then λ → E(u; λ) is a non-decreasing function. Furthermore, E(u;

•) ∈ C 1 (R * + ) and for all λ > 0, dE dλ (u; λ) = λ 4 p-1 +2-d ˆΩ∩∂B λ ∂ r u + 2 p -1 u r 2 dσ. ( 25 
)
Proof. Fix ε ∈ (0, 1). Let

E ε 1 (u; λ) = λ 2 p+1 p-1 -d ˆΩλ \Ω λε 1 2 |∇u| 2 - 1 p + 1 |u| p+1 dx. ( 26 
)
For λ > 0, let also u λ be defined by [START_REF] Wang | Partial regularity of stable solutions to the supercritical equations and its applications[END_REF]. Then, u λ satisfies the three following properties: given λ > 0, u λ solves ( 4),

E ε 1 (u; λ) = E ε 1 (u λ ; 1), (27) 
and

λ∂ λ u λ = 2 p -1 u λ + r∂ r u λ for every (x, λ) ∈ Ω × R * + . ( 28 
)
By standard elliptic regularity,

u λ ∈ C 2 (Ω 1 \ Ω ε ) . So λ → E ε 1 (u; λ) is C 1
and differentiating the right-hand side of (27), we find

dE ε 1 dλ (u; λ) = ˆΩ1\Ωε ∇u λ • ∇∂ λ u λ dx - ˆΩ1\Ωε |u λ | p-1 u λ ∂ λ u λ dx.
Integrating by parts, using the equation, the boundary condition and the fact that Ω is a cone, we find

dE ε 1 dλ (u; λ) = ˆΩ∩∂B1 ∂ r u λ ∂ λ u λ dσ - ˆΩ∩∂Bε ∂ r u λ ∂ λ u λ dσ. Using (28), ˆΩ∩∂Bε ∂ r u λ ∂ λ u λ dσ = 1 λ ˆΩ∩∂Bε 2 p -1 u λ ∂ r u λ + ε(∂ r u λ ) 2 dσ ≤ C u λ L 2 (Ω∩∂Bε) ∇u λ L 2 (Ω∩∂Bε) + ε ∇u λ 2 L 2 (Ω∩∂Bε) ≤ Cε ∇u λ 2 L 2 (Ω∩∂Bε) ,
where we used (the sharp) Poincaré inequality in H 1 0 (∂B ε ∩ Ω) in the last inequality. Since u λ ∈ H 1 (Ω 1 ), lim inf ε→0 (ε| ln ε|) ∇u λ 2 L 2 (Ω∩∂Bε) = 0 and so there exists a sequence ε n → 0 such that

∇u λ 2 L 2 (Ω∩∂Bε n ) ≤ 1 ε n | ln ε n | .
And so

C| ln ε n | -1 ≥ dE εn 1 dλ (u; λ) - ˆΩ∩∂B1 ∂ r u λ ∂ λ u λ dσ ≥ dE εn 1 dλ (u; λ) -λ ˆΩ∩∂B1 (∂ λ u λ ) 2 dσ + 2 p -1 ˆΩ∩∂B1 u λ (∂ λ u λ ) dσ ≥ d dλ E εn 1 (u; λ) + 1 p -1 ˆΩ∩∂B1 u 2 λ dσ -λ ˆΩ∩∂B1 (∂ λ u λ ) 2 dσ .
For any fixed λ > 0, take 0 < λ 1 < λ 2 ≤ λ and integrate the above inequality between λ 1 and λ 2 . Then, letting n → 0, we find that

E(u; λ 2 ) -E(u; λ 1 ) = ˆλ2 λ1 λ ˆΩ∩∂B1 (∂ λ u λ ) 2 dσ dλ. (29) 
Hence, λ → E(u; λ) ∈ C 1 (R * + ) and scaling back the above quantity, the lemma follows.

Remark 12. Let u ∈ C 2 (Ω) ∩ C(Ω) be a solution of (4). If the function λ → E(u; λ) is constant on (0, +∞), then by (25) it follows that u is homogeneous of degree -2 p-1 . Remark 13. The proof of Lemma 5 immediately extends to solutions defined on Ω R , R > 0 i.e. let R > 0 and

u ∈ C 2 (Ω R ) ∩ C(Ω R ) be a solution of -∆u = |u| p-1 u in Ω R , u = 0 on ∂Ω ∩ B R . (30) 
For λ ∈ (0, R) let E be as in (24). Then λ → E(u; λ) is a non-decreasing function. Moreover, E(u; •) ∈ C 1 (0, R) and, for all λ ∈ (0, R),

dE dλ (u; λ) = λ 4 p-1 +2-d ˆΩ∩∂B λ ∂ r u + 2 p -1 u r 2 dσ. (31) 
and for any 0 < λ 1 < λ 2 < R we find that

E(u; λ 2 ) -E(u; λ 1 ) = ˆλ2 λ1 λ ˆΩ∩∂B1 (∂ λ u λ ) 2 dσ dλ. (32) 
Remark 14. The monotonicity formula remains valid for weak stable solutions in the sense that the function defined on R * + by λ → E(u; λ) is monotone, absolutely continuous and its derivative is given by (25) for a.e. λ ∈ (0, +∞).

Indeed, if u is weak stable solution of (4), then, by Proposition 13 in [START_REF] Dupaigne | Regularity and symmetry for semilinear elliptic equations in bounded domains[END_REF], for every R > 0, there exists a sequence of non-negative solutions

u R n ∈ C 2 (B + R ) such that u R n = 0 on ∂R d + ∩ B R , u R n -→ u a.e. in Ω R = B + R , and u R n → u in H 1 (Ω R ), as n → +∞. By Remark 13, λ → E(u R n ; λ) is a non-decreasing function of λ ∈ (0, R), E(u R n ; •) ∈ C 1 (0, R) and for any 0 < λ 1 < λ 2 < R we find that E(u R n ; λ 2 ) -E(u R n ; λ 1 ) = ˆλ2 λ1 λ ˆΩ∩∂B1 (∂ λ (u R n ) λ ) 2 dσ dλ. ( 33 
)
Passing to the limit in (33) as n → +∞, our claim follows.

2.2.3. Analysis of the limiting profile u ∞ . In this section, we will show that u ∞ (given in Lemma 4) is a homogeneous function. To do so, first note that given a weak solution u of (4), if u λ = u for all λ > 0, then u is homogeneous of degree -2 p-1 , and so it must have the form

u(r, θ) = r -2 p-1 v(θ), (34) 
for some measurable function v : A ⊂ S d-1 → R. This is a simple consequence of taking λ = |x| -1 in [START_REF] Wang | Partial regularity of stable solutions to the supercritical equations and its applications[END_REF]. Note that by (34), u λ = u automatically excludes the possibility that u is a classical solution of (4) because of the singularity near x = 0 (unless v = 0). Now we prove an important property of the limit function u ∞ given in Lemma 4.

Lemma 6. Let p > p S (d) and assume that u ∈ C 2 (Ω) ∩ C(Ω) is a solution of (4) stable outside a compact set. The blow-down limit u ∞ is homogeneous of degree -2 p-1 and thus has the form (34) for a suitable v ∈ H 1 0 ∩ L p+1 (A). Proof. After fixing two radii R 2 > R 1 > 0 we set

a λn := E(u λn ; R 2 ), b λn := E(u λn ; R 1 ),
and c λn := a λn -b λn .

We use the fundamental theorem of calculus and the monotonicity formula (25) to express c λn as

c λn = E(u λn ; R 2 ) -E(u λn ; R 1 ) = ˆR2 R1 dE dλ (u λn ; λ)dλ = ˆR2 R1 d dλ (E(u λn λ ; 1))dλ = ˆR2 R1 ˆ∂ B1∩Ω λ (∂ λ u λnλ ) 2 dσ dλ = ˆR2 R1 ˆ∂ B1∩Ω 1 λ 2 p -1 u λnλ + |x|∂ r u λnλ 2 dσ dλ = ˆR2 R1 λ 4 p-1 -d ˆ∂ B λ ∩Ω 2 p -1 u λn + |x|∂ r u λn 2 dσ dλ = ˆΩ∩B R 2 \B R 1 |x| 4 p-1 -d 2 p -1 u λn + |x|∂ r u λn 2 dx.
Since (u λn ) converges strongly in H 1 (Ω R ), we deduce that

lim n→+∞ c λn = ˆΩ∩B R 2 \B R 1 |x| 4 p-1 -d 2 p -1 u ∞ + |x|∂ r u ∞ 2 dx.
Next, we prove that c λn → 0.

By Lemma 3 and the trace inequality

´∂B R ∩Ω u 2 dσ ≤ C R ´BR ∩Ω |∇u| 2 dx + R -1
´BR ∩Ω u 2 dx , the sequences (a λn ) and (b λn ) are bounded. Using the monotonicity formula (25), we deduce that (a λn ) and (b λn ) are nondecreasing and converge to the same finite limit. Hence,

0 = ˆΩ∩B R 2 \B R 1 |x| 4 p-1 -d 2 p -1 u ∞ + |x|∂ r u ∞ 2 dx = ˆΩ∩B R 2 \B R 1 |x| 2-d ∂ r (|x| 2 p-1 u ∞ ) 2 dx so that w := |x| 2 p-1 u ∞ is homogeneous of degree zero. Therefore we can find a measurable function v : A ⊂ S d-1 → R such that w(x) = v x
|x| and thus u ∞ has the form (34). Note that w ∈

H 1 ∩ L p+1 (Ω 2 \ Ω 1 2 ), since u ∞ ∈ H 1 ∩ L p+1 (Ω R )
for every R > 0, and so v ∈ H 1 ∩ L p+1 (A) by Fubini's theorem. To conclude we need to prove that v belongs to H 1 0 (A). To this end we set w n = |x| 2 p-1 u λn and observe that the sequence 

(w n ) converges to w in H 1 (Ω 2 \ Ω 1 2 ), that is, ´2 1 2 ´A |w n -w| 2 + |∇(w n -w)| 2 (rθ)r d-1 dσdr -→ 0,
-w)| 2 (r•)dσ -→ 0,
where ∇ is the Riemannian gradient on the (d -1)-dimensional sphere. The latter and the fact that w |A = v imply that the sequence of C 2 (A) functions θ → w n (rθ) converges to v in H 1 (A). It follows that v ∈ H 1 0 (A) since w n (r•) = 0 on ∂A.

2.2.4. Homogeneous and stable solutions. In the previous section, we have shown that the blow-down limit u ∞ of the rescaled solutions u λ is a weak solution of (4), and it is homogeneous and stable. Here we study such solutions with the goal of proving that they are necessarily equal to 0.

Given a homogeneous solution u(r, θ) = r -2 p-1 v(θ) of ( 4), one can make a simple formal computation to conclude that the nonradial factor v satisfies the following equation

-∆ v + µ v = |v| p-1 v in A , v = 0 on ∂A , (35) 
where µ := 2 p-1 d -1 -p+1 p-1 and -∆ is the Laplace-Beltrami operator on the (d -1)-dimensional sphere. If u is also stable then v satisfies the following inequality for suitable test functions ψ:

(d -2) 2 4 ˆA ψ 2 dσ + ˆA |∇ ψ| 2 dσ ≥ p ˆA |v| p-1 ψ 2 dσ, ( 36 
)
where ∇ is the Riemannian gradient on the (d -1)-dimensional sphere, see e.g. [15, pp. 5245-5246] for the proof 7 of (36). We work in the class of weak solutions of (4) and make these considerations precise in the following lemma.

Lemma 7. Let u be a weak, homogeneous, and stable solution of (4). Then v ∈ H 1 0 ∩ L p+1 (A) is a weak solution of (35) which satisfies the stability-type estimate (36) for any ψ ∈ H 1 0 (A). Proof. To prove (35), we begin by testing (4) with the test function ϕ(r, θ) = χ(r)ψ(θ) where χ : R + → [0, 1] is a smooth, positive function compactly supported away from 0, and

ψ ∈ H 1 0 (A) ∩ L p+1 (A). Setting α = 2 p-1 , ˆΩ ∇u∇ϕ dx = ˆΩ ∂ r (r -α )v(θ)∂ r χ(r)ψ(θ) dx I1 + ˆΩ r -α-2 χ(r)∇ v(θ)∇ ψ(θ) dx I2 = ˆΩ r -2p p-1 χ(r)|v(θ)| p-1 v(θ) ψ(θ) dx I3 .
We perform a separation of variables of the three integral terms.

I 1 = -α ˆ∞ 0 r -α-2+d ∂ r χ(r)dr ˆA v(θ)ψ(θ)dσ = α(d -2 -α) ˆ∞ 0 r -α-3+d χ(r)dr ˆA v(θ)ψ(θ)dσ. I 2 = ˆ∞ 0 r -α-3+d χ(r)dr ˆA ∇ v(θ)∇ ψ(θ)dσ, I 3 = ˆ∞ 0 r -pα-1+d χ(r)dr ˆA |v(θ)| p-1 v(θ) ψ(θ)dσ.
Since α + 2 = pα, we can cancel all of the integral terms involving r to conclude

ˆA ∇ v∇ ψ dσ + α(d -2 -α) ˆA vψ dσ = ˆA |v| p-1 vψ dσ. ( 37 
) That is, v ∈ H 1 0 ∩ L p+1 (A) is a weak solution of (35).
We conclude this section by proving a Liouville-type result for weak solutions of (35) which satisfy estimate (36), under the additional condition for p

> 1 pµ - (d -2) 2 4 + (p -1)λ 1 ≥ 0, (38) 
where λ 1 is the first eigenvalue of the Laplace-Beltrami operator on A. Note that the term (p -1)λ 1 in (38) gives an improvement of the condition in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains on R N[END_REF]:

1 < p < p JL (d) ⇐⇒ pµ -(d-2) 2 4 > 0.
In other words, the condition 1 < p < p JL (d) is optimal only for stable solutions in the whole space R d . Lemma 8. Let v ∈ H 1 0 ∩ L p+1 (A) be a weak solution of (35) which satisfies the stability-type estimate (36). Then for all p satisfying (38), v = 0.

7 In [15, pp. 5245-5246], ψ is supposed to be smooth but the result remains valid for ψ ∈ H 1 0 (A) ∩ L p+1 (A) with the same proof and can be extended to any ψ ∈ H 1 0 (A) by Fatou's lemma.

Again for simplicity, we define C 3 = d -1 -4 p-1 . Following [1, pp. 186-188], we apply the divergence theorem to the vector field

P = ∇ φ, ∇ v λ ∇ v λ ,
to eventually reach the following relation

C 1 ˆA |∇ v λ | 2 φ dσ + C 2 ˆA v 2 λ φ dσ - d -1 p + 1 ˆA e λ v λ φ dσ + ˆA ∇ φ, ∇ v λ e λ dσ = 1 2 ˆ∂A |∇ v λ | 2 ∇ φ, ν dτ ≤ 0, (42) 
where ν is the unit outer normal. The right-hand side of (42) is nonpositive since A is star-shaped. Next, we multiply all terms of (42) by a standard cutoff function η : R + → R + compactly supported away from 0 and we integrate in the radial direction (including the factor r d-1 ). We begin with the first error term:

ˆ∞ 0 ˆAe λ v λ φr d-1 η dσ dr = C 3 ˆ∞ 0 ˆA(∂ r v λ )v λ φr d η dσ dr + ˆ∞ 0 ˆA(∂ 2 r v λ )v λ φr d+1 η dσ dr = C 3 ˆ∞ 0 ˆA(∂ r v λ )v λ φr d η dσ dr - ˆ∞ 0 ˆA(∂ r v λ ) 2 φr d+1 η dσ dr - ˆ∞ 0 ˆA(∂ r v λ )v λ φ∂ r (r d+1 η) dσ dr,
where we have integrated by parts in the second integral of the first line. Now, by the fact that

v λ → v = r 2 p-1 u ∞ in H 1 (Ω R ) (along
a sequence) and that v does not depend on r, we can pass to the limit as λ → ∞ to conclude lim λ→∞ ˆ∞ 0 ˆA e λ v λ φr d-1 η dσ dr = 0.

For the second error term in (42), we proceed as follows:

ˆ∞ 0 ˆA ∇ v λ , ∇ φ e λ r d-1 η dσdr = ˆ∞ 0 ˆA ∇ v λ , ∇ φ C 3 r∂ r v λ + r 2 ∂ 2 r v λ r d-1 η dσdr = C 3 ˆ∞ 0 ˆA ∇ v λ , ∇ φ ∂ r v λ r d ηdσdr I1 - ˆ∞ 0 ˆA ∇ v λ , ∇ φ ∂ r v λ ∂ r (r d+1 η)dσdr I2 - ˆ∞ 0 ˆA ∇ ∂ r v λ , ∇ φ ∂ r v λ r d-1 ηdσdr I3 ,
where we have integrated by parts in the r variable. Since v λ → v in H 1 (Ω R ) (along a sequence) and since v does not depend on r, I 1 and I 2 tend to zero as λ → ∞. We deal with I 3 by recalling that φ is an eigenfunction and so

- ˆ∞ 0 ˆA ∇ ∂ r v λ , ∇ φ ∂ r v λ r d-1 ηdσdr = - 1 2 ˆ∞ 0 ˆA ∇ (∂ r v λ ) 2 , ∇ φ r d-1 ηdσdr = - d -1 2 ˆΩ(∂ r v λ ) 2 φη dx,
where in the latter we have used an integration by parts over A and the fact that ∂ r v λ = 0 on ∂Ω \ {0}. This term then tends to 0 as λ → ∞, since v λ converges to v in H 1 (Ω R ) (along a sequence). Now we deal with the other solid integral terms arising from integrating (42) with the test function r d-1 η in the r variable. Since u λ converges to u in H 1 (Ω R ) for every R > 0 along a sequence, so does v λ to v. Since v does not depend on r, we can apply Fubini's theorem at the limit to obtain

lim λ→∞ ˆ∞ 0 ˆA C 1 |∇ v λ | 2 + C 2 v 2 λ φ r d-1 ηdσdr = ˆ∞ 0 r d-1 ηdr ˆA C 1 |∇ v| 2 + C 2 v 2 φdσ ≤ 0,
where C 1 and C 2 are the fixed constants defined at the beginning of the proof. Dividing by the positive constant ´∞ 0 r d-1 ηdr yields (40).

Proof. First, by virtue of the radial scaling property of cones, it is enough to prove the result for all x = ϕ 1 ∈ A. It can then be verified that the curve

S = {S t } t>0 = ϕ 1 + tϕ 0 |ϕ 1 + tϕ 0 | t>0 ⊂ S d-1 + ,
coincides with the unique minimal geodesic connecting ϕ 1 to ϕ 0 (for example by taking the stereographic projection from -ϕ 0 ). Then, since A is star-shaped with respect to ϕ 0 , S t ∈ A for all t, whereby x + tϕ 0 ∈ Ω due to the cone property of Ω.

Lemma 13. Assume that A ⊂ S d-1

+ is geodesically convex. Then, a suitable rotation of A is star-shaped with respect to the north pole and still contained in S d-1 + . Proof. If the north pole n belongs to A the statement is trivially proven because convex sets are in particular star-shaped. Therefore, let us assume that n does not belong to A. Then Ω ∩ n = ∅ by the cone property of Ω, and Ω is convex by Lemma 11. So by the geometric form of the Hahn-Banach theorem, there exists a hyperplane H normal to some ν ∈ S d-1 (w.l.o.g. take ν = (-1, 0, . . . , 0)) which includes the x d axis and which satisfies H ∩ Ω = ∅. By the convexity assumption, Ω (resp. A) must lie on one side of H (resp. H ∩ S d-1 + ). That is, w.l.o.g, A ⊂ S d-1

+ ∩ {x 1 > 0}.
Let us consider the great circle G = {(x 1 , 0, . . . , 0, x d ) : x i ∈ [-1, 1], |x| = 1}. Up to a suitable modification of the choice of ν, we can assume (by convexity of A) that there is a point a = (cos θ a , 0, . . . , 0, sin θ a ) ∈ G ∩ A for its corresponding θ a ∈ (0, π/2). Then we take the rotation that sends a to n. This rotation has a specific form: for a general p = (α p cos θ, x 2 , • • • , x d-1 , α p sin θ) ∈ A for its corresponding α p ∈ [0, 1], θ ∈ (0, π/2), we have p → α p cos π 2 -θ a + θ , x 2 , • • • , x d-1 , α p sin π 2 -θ a + θ .

Since θ, θ a ∈ (0, π/2), it can be verified that the image of A under this rotation is still contained in S d-1 + .
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Theorem 2 .

 2 Let A be a C 2,α domain contained in the (open) upper-half sphere S d-1

  The subcritical and critical cases p ≤ p S (d).

	Definitions 1 and 2 coincide.
	Next we recall the following
	Definition 3. A weak solution of (4) is
	• stable if u satisfies (3) for all ϕ ∈ C 1 c (Ω),
	• stable outside a compact set if there is a compact set K ⊂ Ω such that u satisfies (3) for all
	ϕ ∈ C 1 c (Ω \ K).
	Let us focus next on
	2.1.

Take e.g.A = S d-1 ∩ {x ∈ R d : |x d | < 1/2}and observe in passing that Ω is not contained in a half-space in this case.

In the second part of the proof of Lemma 6, in order to prove that v ∈ H 1 0 (A), one just needs to replace the sequence (u λn ) by the approximating sequence (u R n ), R = 2, from Remark 14.
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Proof. First, we take the solution v (multiplied by p) as a test function in (37) We use the trivial identity

to deduce the following:

where the final inequality follows from Poincaré's inequality on A with optimal constant λ 1 . By ( 38) and (39), v is a principle eigenfunction of the Laplace-Beltrami operator on A. Combining this with the fact that v also satisfies (35) leads trivially to the conclusion that v = 0.

2.2.5.

A Pohožaev-type result on subdomains of S d-1 + . The following Pohožaev-type result is proven by Bidaut-Véron, Ponce, and Véron in [1, Theorem 2.1] for smooth solutions v to (35). Since we deal with weak solutions, we construct smooth approximations v λ of v and use the H 1 loc convergence of u λ to u ∞ (along a sequence) to prove that the inequality also holds for the blow-down limit u ∞ . Lemma 9. Let A be a C 2,α domain of S d-1 + which is star-shaped with respect to the north pole, and let u ∞ (r, θ) = r -2 p-1 v(θ) be the blow-down limit of (u λ ) as above.

where ∇ is the tangential gradient to S d-1 + , and φ(θ) = θ d is an eigenfunction of the Laplace-Beltrami operator -∆ in H 1 0 (S d-1 + ) associated to the principal eigenvalue λ 1 (S d-1 + ) = d -1. Proof. We begin with a simple geometric lemma. Denote by , the inner product on the tangent space to S d-1 , φ(θ) = θ d , and ∇ φ its Riemannian gradient on S d-1 . Then,

set with outward unit normal direction ν. If A is star-shaped with respect to the north pole, there holds ∇ φ, ν ≤ 0 on ∂A.

Proof. Apply the stereographic projection π S from the south pole to the set A. Then take a point x ∈ π S (A) ⊂ B 1 ⊂ R d-1 and consider the unique minimal geodesic γ θ contained in A connecting the north pole to π -1 S (x) =: θ. Its projection π S (γ θ ) is a straight line connecting the origin to x and is contained in π S (A). So π S (A) ⊂ R d-1 is star-shaped (in the usual Euclidean sense). Since the stereographic projection is conformal (it preserves angles), ∇ φ, ν has the same sign as

, r = |x|, and n = dπ S (ν) is the outward unit normal direction of π S (A). In view of the Lemma in [START_REF] Evans | Partial Differential Equations, Second Edition[END_REF] p. 554, we conclude that ∇ φ, ν ≤ 0 on ∂A.

Let us return to the proof of Lemma 9. To simplify the appearance we set

. Let u ∈ C 2 (Ω) ∩ C(Ω) be a solution of (4). Since for any λ > 0, u λ (x) = λ 2 p-1 u(λ x) is also a smooth solution of (4), we set v λ to satisfy

Plugging this expression of u λ into (4), it follows that v λ is a classical solution of the following equation:

where the error term e λ is , and 8, it follows that u ∞ = 0. In the remaining case p > p S (d -1), Lemma 9 implies that v = 0 (which of course implies that u ∞ = 0). Then, since (u λn ) converges strongly to u ∞ in H 1 ∩ L p+1 (Ω R ), it follows that E(u λn ; 1) → 0 as λ n → ∞. Furthermore, by the monotonicity formula (25), the convergence to 0 is monotone non-decreasing.

To conclude, we study the behavior of E(u λ ; 1) = E(u; λ) as λ → 0 + . By definition (24) of the monotonicity formula, we have

Since u is bounded in a neigbourhood of 0, we deduce that lim λ→0 + E(u; λ) ≥ 0. Since E(u, •) is nondecreasing, we deduce that E(u; λ) ≥ 0 for all λ > 0 (43) Now, lim λ→+∞ E(u; λ) = E(u ∞ ; 1) = 0 and so, since E(u, •) is nondecreasing and nonnegative, E(u; λ) = 0 for every λ > 0. By (25), u is homogeneous, which is possible only if u = 0 since u ∈ C(Ω).

Proofs of Corollary 1 and Corollary 2 in the supercritical case

3.1. Proof of Corollary 1. We just need to inspect the proof of Theorem 1 and adapt it as follows. Let u be a nonnegative weak stable solution. By Remark 14, the monotonicity formula remains valid and so 8 does Lemma 6. So, the blow-down limit u ∞ is homogeneous. Regarding Pohozaev's identity Lemma 9, we use Proposition 13 in [START_REF] Dupaigne | Regularity and symmetry for semilinear elliptic equations in bounded domains[END_REF] to deduce that u ∞ is also the limit (in H 1 (B + R )) of classical solutions u R n (with zero value on ∂R d + ∩ B R ) and so the same proof applies. Finally, we adapt Section 2.2.6 by observing that by the same proof E(u R n ; λ) ≥ 0 for all λ ∈ (0, R) and so E(u; λ) is nonnegative for all λ > 0. As before, this forces u to be homogeneous, hence u = 0 by our classification of homogeneous weak solutions.

Proof of Corollary 2.

In the supercritical case p > p S (d), the proof is identical to that of Theorem 2. We only need to observe that in the range (38) of exponents p, no geometrical condition on the cone Ω is needed.

3.3.

Positive solutions in convex cones. In this last section, we explain more carefully how Busca's result [START_REF] Busca | Symmetry and nonexistence results for Emden-Fowler equations in cones[END_REF] for positive classical solutions defined on convex cones can be recovered thanks to Theorem 2. This is the content of Lemma 13 below. First, we extend the following natural result proven in [START_REF] Ferreira | Projections onto convex sets on the sphere[END_REF]Proposition 2] in the case where Ω is convex. Lemma 11. Let Ω be defined as in [START_REF] Dávila | Partial regularity of finite Morse index solutions to the Lane-Emden equation[END_REF] for some A ⊂ S d-1

+ . Then Ω is convex (resp. star-shaped) if and only if A is geodesically convex (resp. geodesically star-shaped).

Proof. Let Ω be convex. Now take two points ϕ 1 , ϕ 2 ∈ A. (By the hypothesis that A ⊂ S d-1 + , ϕ 1 and ϕ 2 may not be antipodal points.) By convexity, tϕ 2 + (1 -t)ϕ 1 ∈ Ω, so

for all t ∈ [0, 1] by the cone property of Ω. It can be directly verified, for example using a stereographic projection from -ϕ 2 , that {S t } 0≤t≤1 coincides with the unique geodesic curve from ϕ 1 to ϕ 2 . Finally, since {S t } t>0 ⊂ A, we have that A is geodesically convex. Conversely, let us choose two general points x 1 , x 2 ∈ Ω. In the same way as above, we can show that

is a geodesic curve on A, whereby we find that tx 2 + (1 -t)x 1 ∈ Ω due to the cone property of Ω.

In the case of star-shaped domains, we repeat the above method with ϕ 2 and x 2 fixed taken to be the points with respect to which A and Ω, respectively, are star-shaped. Lemma 12. If A ⊂ S d-1 + is star-shaped with respect to some direction ϕ 0 ∈ A, then Ω is convex in that direction in the sense that for all x ∈ Ω and t > 0, x + tϕ 0 ∈ Ω. In particular, the boundary of the cone Ω is a graph with respect to the direction ϕ 0 ∈ A.