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1. Introduction

Let d ≥ 1 and p > 1. We consider the Lane-Emden equation{
−∆u = |u|p−1u in Rd+ ,
u = 0 on ∂Rd+ ,

(1)

posed in the upper half-space Rd+ := {x = (x′, xd) : x′ ∈ Rd−1, xd ∈ (0,∞)} with homogeneous Dirichlet
boundary conditions. It is conjectured that the above equation has only one nonnegative solution, u = 0.

Gidas and Spruck in [12] showed that this is indeed the case if 1 < p ≤ pS(d), where

pS(d) =
d+ 2

(d− 2)+

is Sobolev’s critical exponent. In the case p > pS(d), only partial results are available: Dancer [4] considered
bounded nonnegative solutions and proved in this case that u = 0 if p < pS(d− 1). The second named author
[10] improved Dancer’s result showing that the only bounded nonnegative solution is u = 0 if p < pJL(d − 1),
where pJL is the Joseph-Lundgren stability exponent given by

pJL(d) :=
(d− 2)2 − 4d+ 8

√
d− 1

(d− 2)(d− 10)+
. (2)

Finally Chen, Lin, and Zou [3] proved that no bounded nonnegative solution u 6= 0 of (1) exists for any p > 1.
In all these results, the fact that any nonnegative bounded solution of (1) is monotone in the xd-direction, i.e.
∂u/∂xd > 0 in Rd+, is crucially used. In fact, Sirakov, Souplet and the first named author proved in [7] that,
more generally, no nontrivial monotone solution of (1) exists, whether bounded or not. Note that monotone
solutions are stable, meaning they verify additionally that

p

ˆ
|u|p−1ϕ2 dx ≤

ˆ
|∇ϕ|2 dx, (3)

for all ϕ ∈ C1
c (Rd+). Even more generally, consider solutions which are stable only outside a compact set

K ⊂ Rd+, i.e. such that (3) holds for ϕ ∈ C1
c (Rd+ \K). The second named author proved in [10, Theorem 9(b)]

that there is no such solution except u = 0, provided 1 < p < pJL(d). We improve this result as follows.

Theorem 1. Let p > 1 and let u ∈ C2(Rd+) ∩ C(Rd+) be a solution of (1) stable outside a compact set. Then
u = 0.

The above theorem can be partly extended to the following class of weak solutions.

Definition 1. Let H denote the space of functions u such that u ∈ H1(Rd+ ∩ BR) ∩ Lp+1(Rd+ ∩BR) for every
R > 0 and u = 0 on ∂Rd+ in the sense of traces. Then, u is a weak solution of (1) if u ∈ H and it satisfies the
equation in the sense of distributions.

Remark 1. By approximation, any weak solution satisfiesˆ
∇u · ∇ϕ dx =

ˆ
|u|p−1uϕ dx, for all ϕ ∈ H. (4)

Then,

Corollary 1. Let p > 1 and let u be a nonnegative weak stable solution of (1). Then u = 0.

Remark 2. Corollary 1 is sharp in the following sense. By Theorem 1.1 in [1], for p ∈ ( d+1
d−1 , pS(d− 1)), there

exists a singular solution of the form u(x) = r−
2
p−1 v(θ), where r = |x|, θ = x/r and v ∈ C2(Sd−1

+ ) ∩H1
0 (Sd−1

+ )
is positive and radial (w.r.t the geodesic distance to the north pole). Observe that u ∈ H if only if d ≥ 3 and
p ∈ (pS(d), pS(d − 1)), so that the equation is satisfied in the weak sense. However, u is always unstable, see
Lemma 7 below.

1



2 LOUIS DUPAIGNE, ALBERTO FARINA AND TROY PETITT

Next, we extend our study of the Lane-Emden equation to cones i.e. we consider the equation{
−∆u = |u|p−1u in Ω,

u = 0 on ∂Ω.
(5)

where
Ω = {rθ : r ∈ (0,+∞), θ ∈ A} , (6)

d ≥ 2 and A ⊂ Sd−1 is a subset of the unit sphere of dimension d− 1. Busca proved that there are no positive
solutions u ∈ C2(Ω)∩C(Ω) of (5) in the case where Ω is a convex cone strictly contained in Rd+, see [2]. For such
a cone, positive solutions are monotone (hence stable) and A = Ω∩Sd−1 is geodesically convex (see Lemma 10),
hence star-shaped with respect to the north pole (up to a suitable rotation, see Lemma 12). So the following
theorem extends both Busca’s result and Theorem 1.

Theorem 2. Let A be a C2,α domain contained in the (open) upper-half sphere Sd−1
+ , which is star-shaped with

respect to the north pole. Let Ω be given by (6). If p > 1 and u ∈ C2(Ω) ∩ C(Ω) is a solution of (5) stable
outside a compact set, then u = 0.

Remark 3. A set A ⊆ Sd−1 is said to be star-shaped with respect to a point θ0 ∈ A if for every θ ∈ A any
minimal geodesic path from θ0 to θ remains inside A. Note that when A ⊆ Sd−1

+ , there is at most one such
minimal geodesic path.

Finally, for general cones (not necessarily star-shaped, not necessarily contained in a half-space), as follows
from the proof of Theorem 2, we have the following partial result

Corollary 2. Let Ω ⊂ Rd be a cone given by (6) and p > 1. Assume that

p 6= pS(d) and pµ− (d− 2)2

4
+ (p− 1)λ1 ≥ 0,

where µ := 2
p−1

(
d− 1− p+1

p−1

)
and λ1 is the principle eigenvalue of the Laplace-Beltrami operator on A =

Ω ∩ Sd−1. If u ∈ C2(Ω) ∩ C(Ω) is a solution of (5) stable outside a compact set, then u = 0.

Remark 4. In particular, the corollary applies for p ≥ p0 for some (explicitly computable) p0 depending on d
and λ1.

Remark 5. Since Ω is not smooth at its vertex, some care is needed when dealing with regularity/integrability
properties of the solution. The reader interested only in the proof of Theorem 1 can safely skip these considera-
tions in the proof presented below.

2. Proof of Theorem 2

The case p ≤ pS(d) follows from Theorem1 9 in [10]. So, we assume henceforth that p > pS(d). Observe that
if u solves (1) and λ > 0, then the function uλ defined for x ∈ Ω by

uλ(x) := λ
2
p−1u(λx) (7)

is also a solution. In order to understand the asymptotic profile of u at infinity, we consider the blow-down
family (uλ) as λ→ +∞.

2.1. A priori estimates and convergence of the blow-down family.
We begin by proving that any classical solution is a weak solution.

Lemma 1. Let u ∈ C2(Ω)∩C(Ω) be a solution of (5). Then, u is a weak solution, in the sense of Definition 1.

Proof. Multiply equation (5) by uζ2, ζ ∈ C0,1
c (Rd \ {0}), and integrate by parts to getˆ

|∇u|2ζ2 =

ˆ
|u|p+1ζ2 − 2

ˆ
uζ∇u · ∇ζ

≤
ˆ
|u|p+1ζ2 +

1

2

ˆ
|∇u|2ζ2 + 2

ˆ
u2|∇ζ|2

Hence, ˆ
|∇u|2ζ2 ≤ 2‖u‖p+1

L∞(ΩR)

ˆ
ζ2 + 4‖u‖2L∞(ΩR)

ˆ
|∇ζ|2. (8)

1Theorem 9 in [10] is stated for smooth domains, but the proof remains valid in our setting, thanks to Lemma 1, in the case
p < pS(d). If p = pS(d), thanks to Lemma 11, the boundary of the cone Ω is a graph with respect to some direction and up to
rotation, we may assume that this direction is the north pole. The conservation laws Proposition I.1 and I.2 in [9] remain valid
with some work.
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Choosing ζ = ψζn, where ζn is a standard cut-off function away from the origin, and passing to the limit
in the latter inequality we see that (8) holds true for every ψ ∈ C1

c (Rd). Hence, uψ ∈ H1
0 (Ω) and u is a weak

solution of the equation. �

Remark 6. By the same proof, any weak solution u is such that uψ ∈ H1
0 (Ω) for any ψ ∈ C1

c (Rd).

Lemma 2. Let p ≥ pS(d). Assume that u is a weak solution of (5) stable outside a compact set. Then, there
exists a constant C = C(u, d, p) and R1 = R1(u) > 1 such that for all R ≥ R1 and λ ≥ 1,ˆ

ΩR

|∇uλ|2 + |uλ|p+1 ≤ CRd−2 p+1
p−1 , (9)

where ΩR = BR ∩ Ω and BR is the ball of radius R centered at the origin.

This follows essentially from [10]. For completeness, we include a proof below.

Proof. Let u be a weak solution of (5) stable outside a compact set K. Test the equation with uϕ2, where ϕ is
some smooth function supported on BR \K, to get

ˆ
∇u∇(uϕ2) =

ˆ
|u|p+1ϕ2. (10)

We estimate the left-hand side of (10) using the stability of uˆ
|u|p+1ϕ2 =

ˆ
∇u∇(uϕ2) =

ˆ
|∇(uϕ)|2 −

ˆ
u2|∇ϕ|2 (11)

≥ p
ˆ
|u|p+1ϕ2 −

ˆ
u2|∇ϕ|2.

Combining the above lines and observing that p > 1, we reach

(p− 1)

ˆ
|u|p+1ϕ2 ≤

ˆ
u2|∇ϕ|2. (12)

Returning to (11), it follows that
p− 1

p

ˆ
|∇(uϕ)|2 ≤

ˆ
u2|∇ϕ|2. (13)

Taking ϕ := ψm, for some some smooth function ψ supported on BR \K and m > 1 gives

(p− 1)

ˆ
|u|p+1ψ2m ≤ m2

ˆ
u2ψ2m−2|∇ψ|2.

Using Hölder’s inequality,

(p− 1)

ˆ
|u|p+1ψ2m ≤ m2

(ˆ
|u|p+1ψ(m−1)(p+1)

) 2
p+1
(ˆ
|∇ψ|2

p+1
p−1

) p−1
p+1

.

We can take m := p+1
p−1 , so the above inequality simplifies to

ˆ
|u|p+1ψ2m ≤

[
(p+ 1)2

(p− 1)3

] p+1
p−1

ˆ
|∇ψ|2

p+1
p−1 . (14)

Fix R0 > 0 such that K ⊂ ΩR0 and so u is stable outside of ΩR. If ψR(x) = ψ1(x/R) is a standard cutoff
function, then ψ = (1− ψR0

)ψR is supported in Ω2R \K and we may apply (14). It follows thatˆ
ΩR\Ω2R0

|u|p+1 ≤ Cp
ˆ

Ω2R0

|∇ψ|2
p+1
p−1 + Cp

ˆ
Ω2R\Ω2R0

|∇ψ|2
p+1
p−1 ≤ Cp,d(R

d−2 p+1
p−1

0 +Rd−2 p+1
p−1 )

Using the same test function in (13) yields similarlyˆ
ΩR\Ω2R0

|∇u|2 ≤ Cp,d(R
d−2 p+1

p−1

0 +Rd−2 p+1
p−1 ). (15)

Given λ ≥ 1, uλ is stable outside the smaller domain ΩR0/λ, so that applying the above inequalities to uλ yieldsˆ
ΩR\Ω2R0/λ

|∇uλ|2 + |uλ|p+1 ≤ Cp,d,R0R
d−2 p+1

p−1 ,

where we used that p ≥ pS(d) and R ≥ 1. Inside Ω2R0/λ, using again that p ≥ pS(d) and λ ≥ 1, we notice thatˆ
Ω2R0/λ

|∇uλ|2 + up+1
λ = λ2 p+1

p−1−d
ˆ

Ω2R0

|∇u|2 + |u|p+1 ≤
ˆ

Ω2R0

|∇u|2 + |u|p+1 < +∞. (16)

The lemma follows. �
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Remark 7. Assume p > pS(d). Then, the following improved version of (9) holds for some γ > 1ˆ
ΩR

|∇(|uλ|
γ−1
2 uλ)|2 + |uλ|p+γ ≤ CRd−2 p+γp−1 . (17)

Precisely, as in Proposition 4 in [10], testing equation (5) with |Tk(u)|γ−1uϕ2, where Tk(u) is the truncation
of u at level k and γ ∈ (1, 2p + 2

√
p(p− 1) − 1) leads to a bound similar to (15) while choosing γ such that

2p+γp−1 − d ≤ 0 leads to a bound similar to (16).

We use the preceding remark to prove convergence of (uλ) to a limit u∞ in suitable spaces.

Lemma 3. Let p > pS(d). The rescaled solutions converge along a sequence (uλn) to a limit u∞ strongly in
H1 ∩ Lp+1(ΩR) for every R > 0, as λn → ∞. Furthermore, u∞ is a weak, stable solution of (5) satisfying
u∞ψ ∈ H1

0 (Ω) for every ψ ∈ C1
c (Rd).

Proof. By estimate (17), (uλ) is bounded in H1 ∩ Lp+γ(ΩR) for every R > 0 and for some γ > 1. Thus a
sequence (uλn) converges weakly to u∞ in H1 ∩ Lp+γ(ΩR) for every R > 0. In particular we getˆ

Ω

∇uλn∇ϕ→
ˆ

Ω

∇u∞∇ϕ, (18)

for all ϕ ∈ H.
We also observe that, by Rellich-Kondrachov’s compactness theorem, we may and do suppose that the

convergence is strong in L2(ΩR), for every R > 0.2 To obtain strong convergence in Lp+1(ΩR), we apply the
following interpolation inequality

‖uλ − u∞‖Lp+1(ΩR) ≤ ‖uλ − u∞‖
θ
L2(ΩR) ‖uλ − u∞‖

1−θ
Lp+γ(ΩR) ,

where θ = 2γ−2
(p+γ−2)(p+1) , as follows from Hölder’s inequality. Since (uλn) converges to u∞ in L2(ΩR) and (uλn)

weakly to to u∞ in Lp+γ(ΩR), it follows that (uλn) converges strongly in Lp+1(ΩR) to u∞ for every R > 0.
Therefore, we can find a subsequence (still denoted by (uλn)) and g ∈ Lp+1(ΩR) for every R > 0 such that

|uλn | ≤ g a.e. in Ω,

uλn → u∞ a.e. in Ω.
(19)

The latter and Lebesgue’s dominated convergence theorem imply thatˆ
Ω

|uλn |p−1uλnϕ→
ˆ

Ω

|u∞|p−1u∞ϕ, (20)

for all ϕ ∈ H. The latter and (18) proves that u∞ is a weak solution of (5), i.e.,
ˆ

Ω

∇u∞∇ϕ =

ˆ
Ω

|u∞|p−1u∞ϕ, (21)

for all ϕ ∈ H.
Next we observe that u∞ζ ∈ H1(Ω) for every ζ ∈ C1

c (Rd) and that (uλnζ) converges weakly to u∞ζ in H1(Ω),
thanks to the weak convergence of (uλn) in H1(ΩR) for every R > 0. Hence, u∞ζ ∈ H1

0 (Ω) for every ζ ∈ C1
c (Rd)

by Remark 6 (and (uλnζ) converges weakly to u∞ζ in H1
0 (Ω)). In particular we have u∞ζ ∈ H1

0 (Ω)∩ Lp+1(Ω)
for every ζ ∈ C1

c (Rd). Hence we haveˆ
Ω

∇u∞∇(u∞ζ) =

ˆ
Ω

|u∞|p−1u∞(u∞ζ) ∀ ζ ∈ C1
c (Rd). (22)

Next, we claim that uλnϕ→ u∞ϕ in H1
0 (Ω). In view of (10) and (22) we can compute as in the first line of

(11) and find that, for every ϕ ∈ C1
c (Rd)ˆ

Ω

|∇(uλnϕ)|2 =

ˆ
Ω

|uλn |2|∇ϕ|2 +

ˆ
Ω

|uλn |p+1ϕ2 →
ˆ

Ω

|u∞|2|∇ϕ|2 +

ˆ
Ω

|u∞|p+1ϕ2 =

ˆ
Ω

|∇(u∞ϕ)|2,

where in the latter we have used (19) and Lebesgue’s dominated convergence theorem. It follows that (uλnϕ)
converges to u∞ϕ in H1

0 (Ω), for every ϕ ∈ C1
c (Rd) and, in particular uλn → u∞ in H1(ΩR) for every R > 0.

Stability of the weak solution u∞ follows from the strong Lp+1(ΩR) convergence of (uλn) and the fact that for
fixed n, uλn is stable outside K/λn. �

Remark 8. One may wonder if Lemma 3 still holds if p = pS(d). If one works in all of Rd, the answer is
no. Indeed, a constant multiple of the function u(x) = (1 + |x|2)−

d−2
2 solves the equation and is stable outside

a compact set, thanks to Hardy’s inequality. Yet, the family (uλ) is clearly not compact in Lp+1(B1).

2Indeed, let (φk) be a sequence of standard cut-off functions of class C1
c (Rd). Then, for every fixed k, the sequence (uλnφk) is

bounded in H1
0 (Ω3k) and by Rellich-Kondrachov’s compactness theorem, it is compact in L2(Ω3k) which, in turn, implies that the

sequence (uλn ) is compact in L2(Ωk). The desired conclusion then follows by a standard diagonal argument.
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2.2. Monotonicity formula. Define the functional

E(u;λ) = λ2 p+1
p−1−d

ˆ
Ωλ

(
1

2
|∇u|2 − 1

p+ 1
|u|p+1

)
dx+ λ

4
p−1 +1−d 1

p− 1

ˆ
Ω∩∂Bλ

u2 dσ, (23)

where λ > 0, Ωλ = Ω ∩Bλ and u is a solution to (5).

Remark 9. Note that E satisfies the following simple scaling relation: given λ,R > 0,

E(u;λR) = E(uλ;R)

The main result of this section is the following monotonicity formula, which extends a result due to Pacard
[14].

Lemma 4. Let u ∈ C2(Ω) ∩C(Ω) be a solution of (5) and λ > 0. Let E be as in (23). Then λ 7→ E(u;λ) is a
non-decreasing function of λ. Furthermore, E(u; ·) ∈ C1(R∗+) and for all λ > 0,

dE

dλ
(u;λ) = λ

4
p−1 +2−d

ˆ
Ω∩∂Bλ

(
∂ru+

2

p− 1

u

r

)2

dσ. (24)

Proof. Fix ε > 0. Let

Eε1(u;λ) = λ2 p+1
p−1−d

ˆ
Ωλ\Ωλε

(
1

2
|∇u|2 − 1

p+ 1
|u|p+1

)
dx. (25)

For x ∈ Ω, λ > 0, let also uλ be defined by (7). Then, uλ satisfies the three following properties: given λ > 0,
uλ solves (5),

Eε1(u;λ) = Eε1(uλ; 1), (26)
and

λ∂λuλ =
2

p− 1
uλ + r∂ruλ for a.e. (x, λ) ∈ Ω× R∗+. (27)

By standard elliptic regularity, uλ ∈ C2(Ω1 \ Ωε) . So λ 7→ Eε1(u;λ) is C1 and differentiating the right-hand
side of (26), we find

dEε1
dλ

(u;λ) =

ˆ
Ω1\Ωε

∇uλ · ∇∂λuλ dx−
ˆ

Ω1\Ωε
|uλ|p−1uλ∂λuλ dx.

Integrating by parts and using the equation, we find
dEε1
dλ

(u;λ) =

ˆ
Ω∩∂B1

∂ruλ∂λuλ dσ −
ˆ

Ω∩∂Bε
∂ruλ∂λuλ dσ.

Using (27), ∣∣∣∣ˆ
Ω∩∂Bε

∂ruλ∂λuλ dσ

∣∣∣∣ =
1

λ

∣∣∣∣ˆ
Ω∩∂Bε

2

p− 1
uλ∂ruλ + ε(∂ruλ)2 dσ

∣∣∣∣
≤ C‖uλ‖L2(Ω∩∂Bε)‖∇uλ‖L2(Ω∩∂Bε) + ε‖∇uλ‖2L2(Ω∩∂Bε)

≤ Cε‖∇uλ‖2L2(Ω∩∂Bε),

where we used (the sharp) Poincaré inequality in H1
0 (∂Bε ∩ Ω) in the last inequality. Since uλ ∈ H1(Ω1),

lim infε→0 (ε| ln ε|)‖∇uλ‖2L2(Ω∩∂Bε) = 0 and so there exists a sequence εn → 0 such that

‖∇uλ‖2L2(Ω∩∂Bεn ) ≤
1

εn| ln εn|
.

And so

C| ln εn|−1 ≥
∣∣∣∣dEεn1

dλ
(u;λ)−

ˆ
Ω∩∂B1

∂ruλ∂λuλ dσ

∣∣∣∣
≥
∣∣∣∣dEεn1

dλ
(u;λ)− λ

ˆ
Ω∩∂B1

(∂λuλ)2 dσ +
2

p− 1

ˆ
Ω∩∂B1

uλ(∂λuλ) dσ

∣∣∣∣
≥
∣∣∣∣ ddλ

(
Eεn1 (u;λ) +

1

p− 1

ˆ
Ω∩∂B1

u2
λ dσ

)
− λ

ˆ
Ω∩∂B1

(∂λuλ)2 dσ

∣∣∣∣ .
For any fixed λ > 0, take 0 < λ1 < λ2 ≤ λ and integrate the above inequality between λ1 and λ2. Then, letting
εn → 0, we find that

E(u;λ2)− E(u;λ1) =

ˆ λ2

λ1

λ

ˆ
Ω∩∂B1

(∂λuλ)2 dσ dλ. (28)

Hence, λ 7→ E(u;λ) ∈ C1(R∗+) and scaling back the above quantity, the lemma follows. �
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Remark 10. If E(u;λ) is constant with respect to λ > 0, then by (24) it follows that u is homogeneous of
degree − 2

p−1 .

2.3. Analysis of the limiting profile u∞. In this section, we will show that u∞ is homogeneous. Given a
weak solution u of (5), if uλ = u for all λ > 0 (u is homogeneous of degree − 2

p−1 ), u must have the form

u(r, θ) = r−
2
p−1 v(θ), (29)

for some function v : A ⊂ Sd−1 → R. This is a simple consequence of taking λ = |x|−1 in (7). Note that by
(29), uλ = u automatically excludes the possibility that u is a classical solution of (1) because of the singularity
near x = 0 (unless v = 0).

Now we prove an important property of the limit function u∞ given in Lemma 3.

Lemma 5. Let p > pS(d). The blow-down limit u∞is homogeneous of degree − 2
p−1 and thus has the form (29)

for a suitable v ∈ H1
0 ∩ Lp+1(A).

Proof. After fixing two radii R2 > R1 > 0 we set

aλn := E(uλn ;R2),

bλn := E(uλn ;R1),

and cλn := aλn − bλn .
We use the fundamental theorem of calculus and the monotonicity formula (24) to express cλn as

cλn = E(uλn ;R2)− E(uλn ;R1) =

ˆ R2

R1

dE

dλ
(uλn ;λ)dλ =

ˆ R2

R1

d

dλ
(E(uλn λ; 1))dλ

=

ˆ R2

R1

ˆ
∂ B1∩Ω

λ (∂λ uλnλ)
2
dσ dλ =

ˆ R2

R1

ˆ
∂ B1∩Ω

1

λ

(
2

p− 1
uλnλ + |x|∂r uλnλ

)2

dσ dλ

=

ˆ R2

R1

λ
4
p−1−d

ˆ
∂ Bλ∩Ω

(
2

p− 1
uλn + |x|∂r uλn

)2

dσ dλ

=

ˆ
Ω∩BR2

\BR1

|x|
4
p−1−d

(
2

p− 1
uλn + |x|∂r uλn

)2

dx.

Since (uλn) converges strongly in H1(ΩR), we deduce that

lim
n→+∞

cλn =

ˆ
Ω∩BR2

\BR1

|x|
4
p−1−d

(
2

p− 1
u∞ + |x|∂r u∞

)2

dx.

Next, we prove that
cλn → 0.

By Lemma 2 (and the trace inequality ‖u‖L2(∂BR∩Ω) ≤ C(R)‖u‖H1(Ω∩BR)), the sequences (aλn) and (bλn) are
bounded. Using the monotonicity formula (24), we deduce that (aλn) and (bλn) are nondecreasing and converge
to the same (finite) limit.

Hence, ˆ
Ω∩BR2

\BR1

|x|
4
p−1−d

(
2

p− 1
u∞ + |x|∂r u∞

)2

dx = 0,

and u∞ has the form (29). �

2.4. Homogeneous and stable solutions. In the previous section, we have shown that the blow-down limit
u∞ of the rescaled solutions uλ is a weak solution of (5), and it is homogeneous and stable. Here we study such
solutions with the goal of proving that they are necessarily equal to 0.

Given a homogeneous solution u(r, θ) = r−
2
p−1 v(θ) of (1), one can make a simple formal computation to

conclude that the nonradial factor v satisfies the following equation{
−∆′v + µ v = |v|p−1v in A ,

v = 0 on ∂A ,
(30)

where µ := 2
p−1

(
d− 1− p+1

p−1

)
and −∆′ is the Laplace-Beltrami operator on the (d− 1)-dimensional sphere. If

u is also stable then v satisfies the following inequality for suitable test functions ψ:

(d− 2)2

4

ˆ
A

ψ2dσ +

ˆ
A

|∇′ψ|2dσ ≥ p

ˆ
A

|v|p−1 ψ2dσ, (31)
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where ∇′ is the Riemannian gradient on the (d − 1)-dimensional sphere, see e.g. [15, pp. 5245-5246] for the
proof3 of (31). We work in the class of weak solutions of (1) and make these considerations precise in the
following lemma.

Lemma 6. Let u ∈ H1∩ Lp+1(ΩR) be a weak, homogeneous, and stable solution of (5). Then v ∈ H1
0 ∩ Lp+1(A)

is a weak solution of (30) which satisfies the stability-type estimate (31) for any ψ ∈ H1
0 (A).

Proof. To prove (30), we begin by testing (1) with the test function ϕ(r, θ) = χ(r)ψ(θ) where χ : R+ → [0, 1] is
a smooth, positive function compactly supported away from 0, and ψ ∈ H1

0 (A) ∩ Lp+1(A). Setting α = 2
p−1 ,ˆ

Ω

∇u∇ϕdx =

ˆ
Ω

∂r(r
−α)v(θ)∂rχ(r)ψ(θ) dx︸ ︷︷ ︸

I1

+

ˆ
Ω

r−α−2χ(r)∇′v(θ)∇′ψ(θ) dx︸ ︷︷ ︸
I2

=

ˆ
Ω

r−
2p
p−1χ(r)|v(θ)|p−1v(θ)ψ(θ) dx︸ ︷︷ ︸

I3

.

We perform a separation of variables of the three integral terms.

I1 = −α
ˆ ∞

0

r−α−2+d∂rχ(r)dr

ˆ
A

v(θ)ψ(θ)dσ

= α(d− 2− α)

ˆ ∞
0

r−α−3+dχ(r)dr

ˆ
A

v(θ)ψ(θ)dσ.

I2 =

ˆ ∞
0

r−α−3+dχ(r)dr

ˆ
A

∇′v(θ)∇′ψ(θ)dσ,

I3 =

ˆ ∞
0

r−pα−1+dχ(r)dr

ˆ
A

|v(θ)|p−1v(θ)ψ(θ)dσ.

Since α+ 2 = pα, we can cancel all of the integral terms involving r to concludeˆ
A

∇′v∇′ψ dσ + α(d− 2− α)

ˆ
A

vψ dσ =

ˆ
A

|v|p−1vψ dσ. (32)

That is, v ∈ H1
0 ∩ Lp+1(A) is a weak solution of (30). �

We conclude this section by proving a Liouville-type result for weak solutions of (30) which satisfy estimate
(31), under the additional condition for p > 1

pµ− (d− 2)2

4
+ (p− 1)λ1 ≥ 0, (33)

where λ1 is the first eigenvalue of the Laplace-Beltrami operator on A. Note that the term (p − 1)λ1 in (33)
gives an improvement of the condition in [10]: 1 < p < pJL(d) ⇐⇒ pµ − (d−2)2

4 > 0. In other words, the
condition 1 < p < pJL(d) is optimal only for stable solutions in the whole space Rd.

Lemma 7. Let v ∈ H1
0 ∩ Lp+1(A) be a weak solution of (30) which satisfies the stability-type estimate (31).

Then for all p satisfying (33), v = 0.

Proof. First, we take the solution v (multiplied by p) as a test function in (32) to obtain

pµ

ˆ
A

v2dσ + p

ˆ
A

|∇′v|2dσ = p

ˆ
A

|v|pv dσ.

Likewise, testing (31) with v yields

(d− 2)2

4

ˆ
A

v2dσ +

ˆ
A

|∇′v|2dσ ≥ p

ˆ
A

|v|pv dσ.

Combining these two lines gives(
pµ− (d− 2)2

4

)ˆ
A

v2dσ + (p− 1)

ˆ
A

|∇′v|2dσ ≤ 0.

We use the trivial identityˆ
A

|∇′v|2dσ = −
(
λ1

ˆ
A

v2dσ −
ˆ
A

|∇′v|2dσ
)

+ λ1

ˆ
A

v2dσ

3In [15, pp. 5245-5246], ψ is supposed to be smooth but the result remains valid for ψ ∈ H1
0 (A)∩Lp+1(A) with the same proof

and can be extended to any ψ ∈ H1
0 (A) by Fatou’s lemma.
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to deduce the following:(
pµ− (d− 2)2

4
+ λ1(p− 1)

)ˆ
A

v2dσ ≤ (p− 1)

ˆ
A

(
λ1v

2 − |∇′v|2
)
dσ ≤ 0, (34)

where the final inequality follows from Poincaré’s inequality on A with optimal constant λ1. By (33) and (34),
v is a principle eigenfunction of the Laplace-Beltrami operator on A. Combining this with the fact that v also
satisfies (30) leads trivially to the conclusion that v = 0. �

2.5. A Pohožaev-type result on subdomains of Sd−1
+ . The following Pohožaev-type result is proven by

Bidaut-Véron, Ponce, and Véron in [1, Theorem 2.1] for smooth solutions v to (30). Since we deal with weak
solutions, we construct smooth approximations vλ of v and use the H1

loc convergence of uλ to u∞ (along a
sequence) to prove that the inequality also holds for the blow-down limit u∞.

Lemma 8. Let A be a C2,α domain of Sd−1
+ which is star-shaped with respect to the north pole, and let

u∞(r, θ) = r−
2
p−1 v(θ) be the blow-down limit of (uλ) as above. Then v ∈ H1

0 (A) satisfies(
d− 3

2
− d− 1

p+ 1

)ˆ
A

|∇′v|2φdσ − d− 1

2

(
d− µ (p− 1)− 1

p+ 1

)ˆ
A

v2φdσ ≤ 0, (35)

where ∇′ is the tangential gradient to Sd−1
+ , and φ(θ) = θd is an eigenfunction of the Laplace-Beltrami operator

−∆′ in H1
0 (Sd−1

+ ) associated to the principal eigenvalue λ1(Sd−1
+ ) = d− 1.

Proof. We begin with a simple geometric lemma. Denote by 〈, 〉 the inner product on the tangent space to Sd−1,
φ(θ) = θd, and ∇′φ its Riemannian gradient on Sd−1. Then,

Lemma 9. Let A ⊂ Sd−1
+ denote a C1 open set with outward unit normal direction ν. If A is star-shaped with

respect to the north pole, there holds 〈∇′φ, ν〉 ≤ 0 on ∂A.

Proof. Apply the stereographic projection πS from the south pole to the set A. Then take a point x ∈ πS(A) ⊂
B1 ⊂ Rd−1 and consider the unique minimal geodesic γθ contained in A connecting the north pole to π−1

S (x) =: θ.
Its projection πS(γθ) is a straight line connecting the origin to x and is contained in πS(A). So πS(A) ⊂ Rd−1 is
star-shaped (in the usual Euclidean sense). Since the stereographic projection is conformal (it preserves angles),
〈∇′φ, ν〉 has the same sign as V · n, where V = dπS(∇′φ) = ∇( 1−r2

1+r2 ) = −4r
(1+r2)2

x
r , x ∈ Rd−1, r = |x|, and

n = dπS(ν) is the outward unit normal direction of πS(A). In view of the Lemma in [8] p. 554, we conclude
that 〈∇′φ, ν〉 ≤ 0 on ∂A. �

Let us return to the proof of Lemma 8. To simplify the appearance we set C1 =
(
d−3

2 −
d−1
p+1

)
and C2 =

d−1
2

(
d−µ (p−1)−1

p+1

)
. Let u ∈ C2(Ω)∩ C(Ω) be a solution of (5). Since for any λ > 0, uλ(x) = λ

2
p−1u(λx) is also

a smooth solution of (5), we set vλ to satisfy

uλ(x) = r−
2
p−1 vλ(r, θ).

Plugging this expression of uλ into (1), it follows that vλ is a classical solution of the following equation:{
−∆′vλ + µ vλ = |vλ|p−1vλ + eλ in Ω ,

vλ = 0 on ∂Ω ,
(36)

where the error term eλ is

eλ =

(
d− 1− 4

p− 1

)
r∂rvλ + r2∂2

rvλ.

Again for simplicity, we define C3 =
(
d− 1− 4

p−1

)
.

Following [1, pp. 186-188], we apply the divergence theorem to the vector field

P = 〈∇′φ,∇′vλ〉∇′vλ,

to eventually reach the following relation

C1

ˆ
A

|∇′vλ|2φdσ + C2

ˆ
A

v2
λφdσ −

d− 1

p+ 1

ˆ
A

eλvλφdσ +

ˆ
A

〈∇′φ,∇′vλ〉 eλdσ

=
1

2

ˆ
∂A

|∇′vλ|2 〈∇′φ, ν〉 dτ ≤ 0,

(37)

where ν is the unit outer normal. The right-hand side of (37) is nonpositive since A is star-shaped. Next, we
multiply all terms of (37) by a standard cutoff function η : R+ → R+ compactly supported away from 0 and we
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integrate in the radial direction (including the factor rd−1). We begin with the first error term:ˆ ∞
0

ˆ
A

eλvλφr
d−1η dσ dr = C3

ˆ ∞
0

ˆ
A

(∂rvλ)vλφr
dη dσ dr +

ˆ ∞
0

ˆ
A

(∂2
rvλ)vλφr

d+1η dσ dr

= C3

ˆ ∞
0

ˆ
A

(∂rvλ)vλφr
dη dσ dr −

ˆ ∞
0

ˆ
A

(∂rvλ)2φrd+1η dσ dr −
ˆ ∞

0

ˆ
A

(∂rvλ)vλφ∂r(r
d+1η) dσ dr,

where we have integrated by parts in the second integral of the first line. Now, by the fact that vλ → v = r
2
p−1u∞

in H1(ΩR) (along a sequence) and that v does not depend on r, we can pass to the limit as λ→∞ to conclude

lim
λ→∞

ˆ ∞
0

ˆ
A

eλvλφr
d−1η dσ dr = 0.

For the second error term in (37), we proceed as follows:ˆ ∞
0

ˆ
A

〈∇′vλ,∇′φ〉 eλrd−1η dσdr =

ˆ ∞
0

ˆ
A

〈∇′vλ,∇′φ〉
(
C3r∂rvλ + r2∂2

rvλ
)
rd−1η dσdr

= C3

ˆ ∞
0

ˆ
A

〈∇′vλ,∇′φ〉 ∂rvλ rdηdσdr︸ ︷︷ ︸
I1

−
ˆ ∞

0

ˆ
A

〈∇′vλ,∇′φ〉 ∂rvλ ∂r(rd+1η)dσdr︸ ︷︷ ︸
I2

−
ˆ ∞

0

ˆ
A

〈∇′∂rvλ,∇′φ〉 ∂rvλrd−1ηdσdr︸ ︷︷ ︸
I3

,

where we have integrated by parts in the r variable. Since vλ → v in H1(ΩR) (along a sequence) and since v
does not depend on r, I1 and I2 tend to zero as λ→∞. We deal with I3 by recalling that φ is an eigenfunction
and so

−
ˆ ∞

0

ˆ
A

〈∇′∂rvλ,∇′φ〉 ∂rvλrd−1ηdσdr = −1

2

ˆ ∞
0

ˆ
A

〈
∇′(∂rvλ)2,∇′φ

〉
rd−1ηdσdr

= −d− 1

2

ˆ
Ω

(∂rvλ)2φη dx,

where in the latter we have used an integration by parts over A and the fact that ∂rvλ = 0 on ∂Ω \ {0}.
This term then tends to 0 as λ→∞, since vλ converges to v in H1(ΩR) (along a sequence).
Now we deal with the other solid integral terms arising from integrating (37) with the test function rd−1η in

the r variable. Since uλ converges to u in H1(ΩR) for every R > 0 along a sequence, so does vλ to v. Since v
does not depend on r, we can apply Fubini’s theorem at the limit to obtain

lim
λ→∞

ˆ ∞
0

ˆ
A

(
C1|∇′vλ|2 + C2v

2
λ

)
φ rd−1ηdσdr =

ˆ ∞
0

rd−1ηdr

ˆ
A

(
C1|∇′v|2 + C2v

2
)
φdσ ≤ 0,

where C1 and C2 are the fixed constants defined at the beginning of the proof. Dividing by the positive constant´∞
0
rd−1ηdr yields (35). �

2.6. Proof of Theorem 2.

Proof. By an elementary computation, pS(d) < pS(d − 1) < pJL(d). Recall also that if p ≤ pJL(d), then (33)
holds. So all p > pS(d) either satisfy (33), p > pS(d − 1), or both. Suppose first that (33) holds. By Lemmas
5, 6, and 7, it follows that u∞ = 0. In the remaining case p > pS(d − 1), Lemma 8 implies that v = 0 (which
of course implies that u∞ = 0). Then, since (uλn) converges strongly to u∞ in H1 ∩ Lp+1(ΩR), it follows that
E(uλn ; 1) → 0 as λn → ∞. Furthermore, by the monotonicity formula (24), the convergence to 0 is monotone
non-decreasing.

To conclude, we study the behavior of E(uλ; 1) = E(u;λ) as λ→ 0+. By definition (23) of the monotonicity
formula, we have

E(u, λ) ≥ − 1

p+ 1
λ2 p+1

p−1−d
ˆ

Ωλ

|u|p+1 dx = −cλ2 p+1
p−1

 
Ωλ

|u|p+1 dx

Since u is bounded in a neigbourhood of 0, we deduce that limλ→0+ E(u;λ) ≥ 0. Since E(u, ·) is nondecreasing,
we deduce that

E(u;λ) ≥ 0 for all λ > 0 (38)
Now, limλ→+∞E(u;λ) = E(u∞; 1) = 0 and so, since E(u, ·) is nondecreasing and nonnegative, E(u;λ) = 0 for
every λ > 0. By (24), u is homogeneous, which is possible only if u = 0 since u ∈ C(Ω). �



10 LOUIS DUPAIGNE, ALBERTO FARINA AND TROY PETITT

3. Proofs of Corollary 1 and Corollary 2

3.1. Proof of Corollary 1. We just need to inspect the proof of Theorem 1 and adapt it as follows. Let u
be a nonnegative weak stable solution. By (the proof of) Proposition 13 in [6], for every R > 0, there exists a
sequence of solutions uRn ∈ C2(B+

R) such that uRn = 0 on ∂Rd+∩BR, uRn ↗ u a.e. in ΩR, and uRn → u in H1(ΩR),
as n → +∞. So choosing R > λ2, we may apply (28) to uRn , pass to the limit as n → +∞ and conclude that
the monotonicity formula E(u;λ) is monotone, absolutely continuous and its derivative is given by (24) for a.e.
λ > 0. Regarding Pohozaev’s identity Lemma 8, we use again [6] to deduce that the blow-down limit u∞ is also
the limit (in H1(B+

R)) of classical solutions (with zero value on on ∂Rd+ ∩ BR) and so the same proof applies.
Finally, we adapt Section 2.6 by observing that using the same approximating procedure, (38) remains true i.e.
E(u;λ) is nonnegative. As before, this and the blow-down analysis force u to be homogeneous, hence u = 0 by
our classification of homogeneous weak solutions. �

3.2. Proof of Corollary 2. In the subcritical case, the proof of Theorem 9 in [10], stated for smooth domains,
remains valid in our setting, thanks to Lemma 1. In the supercritical case p > pS(d), the proof is identical to
that of Theorem 2. We only need to observe that in the range (33) of exponents p, no geometrical condition on
the cone Ω is needed. �

3.3. Positive solutions in convex cones. In this last section, we explain more carefully how Busca’s result
[2] for positive classical solutions defined on convex cones can be recovered thanks to Theorem 2. This is the
content of Lemma 12 below. First, we extend the following natural result proven in [11, Proposition 2] in the
case where Ω is convex.

Lemma 10. Let Ω be defined as in (6) for some A ⊂ Sd−1
+ . Then Ω is convex (resp. star-shaped) if and only

if A is geodesically convex (resp. geodesically star-shaped).

Proof. Let Ω be convex. Now take two points ϕ1, ϕ2 ∈ A. (By the hypothesis that A ⊂ Sd−1
+ , ϕ1 and ϕ2 may

not be antipodal points.) By convexity, tϕ2 + (1− t)ϕ1 ∈ Ω, so

St =
tϕ2 + (1− t)ϕ1

|tϕ2 + (1− t)ϕ1|
∈ A

for all t ∈ [0, 1] by the cone property of Ω. It can be directly verified, for example using a stereographic
projection from −ϕ2, that {St}0≤t≤1 coincides with the unique geodesic curve from ϕ1 to ϕ2. Finally, since
{St}t>0 ⊂ A, we have that A is geodesically convex.

Conversely, let us choose two general points x1, x2 ∈ Ω. In the same way as above, we can show that{
tx2 + (1− t)x1

|tx2 + (1− t)x1|

}
0≤t≤1

⊂ A

is a geodesic curve on A, whereby we find that tx2 + (1− t)x1 ∈ Ω due to the cone property of Ω.
In the case of star-shaped domains, we repeat the above method with ϕ2 and x2 fixed taken to be the points

with respect to which A and Ω, respectively, are star-shaped.
�

Lemma 11. If A ⊂ Sd−1
+ is star-shaped with respect to some direction ϕ0 ∈ A, then Ω is convex in that direction

in the sense that for all x ∈ Ω and t > 0, x+ tϕ0 ∈ Ω.

Proof. First, by virtue of the radial scaling property of cones, it is enough to prove the result for all x = ϕ1 ∈ A.
It can then be verified that the curve

S = {St}t>0 =

{
ϕ1 + tϕ0

|ϕ1 + tϕ0|

}
t>0

⊂ Sd−1
+ ,

coincides with the unique minimal geodesic connecting ϕ1 to ϕ0 (for example by taking the stereographic
projection from −ϕ0). Then, since A is star-shaped with respect to ϕ0, St ∈ A for all t, whereby x + tϕ0 ∈ Ω
due to the cone property of Ω. �

Lemma 12. A convex set A ⊂ Sd−1
+ is star-shaped with respect to the north pole and still contained in Sd−1

+

after taking a suitable rotation.

Proof. If the north pole ~n belongs to A the statement is trivially proven because convex sets are in particular
star-shaped. Therefore, let us assume that ~n does not belong to A. Then Ω ∩ 〈~n〉 = ∅ by the cone property
of Ω, and Ω is convex by Lemma 10. So by the geometric form of the Hahn-Banach theorem, there exists a
hyperplane H normal to some ν ∈ Sd−1 (w.l.o.g. take ν = (−1, 0, . . . , 0)) which includes the xd axis and which
satisfies H ∩ Ω = ∅. By the convexity assumption, Ω (resp. A) must lie on one side of H (resp. H ∩ Sd−1

+ ).
That is, w.l.o.g, A ⊂ Sd−1

+ ∩ {x1 > 0}.
Let us consider the great circle G = {(x1, 0, . . . , 0, xd) : xi ∈ [−1, 1], |x| = 1}. Up to a suitable modification

of the choice of ν, we can assume (by convexity of A) that there is a point a = (cos θa, 0, . . . , 0, sin θa) ∈ G ∩A
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for its corresponding θa ∈ (0, π/2). Then we take the rotation that sends a to ~n. This rotation has a specific
form: for a general p = (αp cos θ, x2, · · · , xd−1, αp sin θ) ∈ A for its corresponding αp ∈ [0, 1], θ ∈ (0, π/2), we
have

p 7→
(
αp cos

(π
2
− θa + θ

)
, x2, · · · , xd−1, αp sin

(π
2
− θa + θ

))
.

Since θ, θa ∈ (0, π/2), it can be verified that the image of A under this rotation is still contained in Sd−1
+ .

�
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