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Quadtree Segmentation Network for Obstacle Avoidance in Monocular
Navigation

Daniel Braun1, Olivier Morel1, Pascal Vasseur2 and Cédric Demonceaux1

Abstract— Monocular depth map prediction has become
in recent years a major research topic in computer vision.
Especially with the emergence of self-supervised methods that
have demonstrated that based on geometric properties, it is
possible to obtain good results without human generated labels.
But these methods are, for the moment, mainly oriented towards
high resolution dense reconstruction and therefore neglect
applications for robotic navigation. In this paper, we propose
addressing this problem by developing a solution for navigation
and obstacle avoidance. The method takes advantage of dense
depth prediction to segment the view into a limited number
of classes of interest for navigation. Four classes have been
thus retained: one to segment the road and three to cluster
obstacles by their distance (close, middle and far). As a result,
the system is able to directly identify threats and areas where
it can navigate. Furthermore, efficient information compression
can be considered using a quadtree data structure derived from
Quadtree Generating Network. Experiments conducted on the
Kitti dataset have shown our proposed method can efficiently
predict a quadtree segmentation directly from monocular input
images. In addition, the approach tends to significantly reduce
the amount of information to be predicted without any loss of
accuracy.

I. INTRODUCTION

Autonomous navigation is one of the key subjects in
computer vision and robotics. In recent years, deep learning
approaches have worked on developing new methods to
outperform the existing geometric based algorithm such as
SLAM. Among them, we find the approaches of depth
prediction from a single image. These methods have the
particularity to give solutions to an ill-posed problem. In-
deed, at least two images are normally required to be
able to extract depth information using geometric methods.
Monocular depth is, therefore, a prospect to lighten robotic
systems. If the depth can be efficiently extracted from one
image, robotics system would benefit from the latter and
become RGB-D sensitive while equiped with a single sensor.
However, most of these methods are engaged in a race for
accuracy [13] at the expense of computation time. Only a
few of them addressed the question of real-time embedded
solutions [14], [10].

However, monocular depth prediction methods have lim-
ited applications. The predicted depth is only reliable over
a few meters. It is therefore unusable on the entire data
range, which can be up to 80 or 100 meters for outdoor
applications. In obstacle avoidance applications, this degree
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Fig. 1. Quadtree scene segmentation for obstacle avoidance. (a) is the input
monocular RGB image and (b) is the output segmented view for obstacle
avoidance, in which we highlighted the quadtree subdivision.

of accuracy is unnecessary. It is often more appropriate to
have a binary or segmented output providing a simplified
representation of the scene. Semantic segmentation methods
aim at enriching the understanding of the scene and thus
improving the navigation performances. This semantics is
sometimes even integrated to depth prediction methods to
improve its quality [18]. However, segmentation approaches
rely on annotated data, which makes it difficult to generalize
to every situation.

Upon those observations, we propose here to develop a
hybrid solution between depth prediction and scene segmen-
tation, presented in Figure 1. This method predicts from a
single image a segmentation of the scene based on depth
to perform autonomous navigation with obstacle avoidance.
This segmentation is initially constructed geometrically from
a self-supervised depth prediction method, which will be
used as ground truth during the training phase. It is seg-
mented into four classes: one is segmenting the ground
and the other three are splitting the depth according to the
distance of the obstacles. The ground class represents the
safe area in which the autonomous system is allowed to
navigate. The following three classes are based on the depth
and indicate the level of priority with which the system
must take into account the obstacles. This limited number
of classes allows a fast training, with a light network, which
can be further refined by generating a prediction in the form
of a quadtree data structure using a Quadtree Generating
Network [2]. The quadtree decoder brings the advantage of
considerably reducing the computational complexity of the



Fig. 2. Quadtree prediction decomposition. On the top left the input image and the bottom left the recomposed output prediction. Q5 to Q0 are the
outputs of each prediction layers. We have the mixed class in white, the Ground class in gray, the Close class in red, the Middle class in yellow and the
Far class in green. The pixels in black stores no value: it’s the area which have been predicted by previous layers of the decoder.

network. Indeed, some zones in the image can be classified
at low resolution. Thus, the pixels that have already been
classified can be ignored in the rest of the decoder, thanks to
the usage of submanifold sparse convolutions [8]. It permits
to focus the attention on areas requiring a higher degree of
accuracy to be segmented.

II. RELATED WORKS

A. Self-supervised Monocular Depth

Self-supervised learning consists of training a network
to predict information without interference of human made
labels. The network’s output has to be learnt through an
optimization process only based on available input informa-
tion. For monocular depth prediction, the learning process
consists of injecting an adjacent view with small changes in
the camera motion. If the relative pose between the views
is known, the depth prediction can be projected into this
adjacent view in order to minimize the photometric recon-
struction error as introduced in [4]. The method has been
improved over the years with the introduction of the left-right
consistency with stereo supervision [6] and the simultaneous
pose and depth prediction for ego-motion training [19],
[7]. However, some problems persist, essentially caused by
occlusions and moving objects between views, leading to
bias as the photometric minimization error tends towards an
incorrect result. This issue is addressed by Chen et al. [1]
which proposes an occlusion-aware module which allows to
focus the training on non-occluded areas.

The results obtained for monocular depth prediction are
encouraging and raise the question of the use of these
methods for navigation applications as expressed in Dong
et al. survey [3]. For the moment, only a minority of
papers address the issue of lightweight architecture, usable
on embedded systems [14], [10]. These methods seek to
optimize their network structure to find the best trade-off
between lightness and precision.

B. Quadtree Data Structure

Quadtree is a hierarchical tree data structure that is deeply
tight to the image processing field since it was first intro-

duced nearly 40 years ago by Samet et al. [16]. Therefore,
this method has often been used for image compression
especially for navigation applications [17]. But it has only re-
cently been introduced in deep learning [2] probably because
its inconsistent data structure does not fit the standard tensor
representation. The introduction of sparse convolutions [11]
permitted to overcome this limitation.

In Quadtree Generating Networks [2], the author demon-
strated the usage of quadtree permits to significantly reduce
the computation cost for segmentation inference with no loss
of accuracy. It was made possible using sparse convolutions
by extracting in the early stage of the decoder the parts of the
image in which all the pixels already belonged to a unique
class. The extracted parts are then not being processed in the
rest of the decoder, to avoid unnecessary computation.

C. Segmentation for Navigation

Depth prediction and semantic segmentation are tight since
they are both methods to enhance scene understanding.
For this reason, some methods predict both information
together and fuse them to enhance results [18]. Some pre-
deep learning methods like Liu et al. [12] proposed to predict
depth information from a single image using segmentation
labels and Markov random fields. Wang et al. [18] proposes
a Semantic Divide-and-Conquer method predicting the seg-
mentation and using it to infer the depth per class. Such
decomposition simplifies the learning and permits a greater
generalization.

The combination of the semantic and depth have demon-
strated they capability reciprocally improve each other re-
sults. Yet, all the semantic classes are not relevant to improve
the depth understanding of the scene which can even aggre-
gate confusion in the prediction. Additionally, those methods
have in common the need of semantic segmentation labels
and, from the best of our knowledge, there is no method gen-
erating them without human interference. Therefore, those
methods are at most semi-supervised making them harder to
be generalized.



III. METHOD

In this section, we present our method to predict the
quadtree segmentation of the scene. We will explain the
quadtree representation and its implementation into a con-
volutional deep neural network. We will also describe the
process to build our self-supervised reference map and the
way it is employed to train the quadtree prediction.

A. Quadtree representation

1) Definition: A quadtree is a herarchical tree data struc-
ture composed of nodes connected by branches. Each node
is defined by its position in the tree, i.e. its depth level and
location at that level, and by the value it contains. A node
can be subdivided into four sub-nodes if more information is
needed to describe that location in the tree. It can be defined
as follows in equation (1), by a set of N nodes, of which
the ith node is characterized by its depth level li, its centroid
coordinates (xi, yi) and its value vi.

Q = {li, xi, yi, vi | i = {1, .., N}} (1)

In the rest of the paper, the quadtree will often be separated
by its nodes depth level and noted Ql = {Q | li = l}. Indeed,
the depth level is directly related to the squares dimension
that represent the nodes. Therefore, all these nodes form an
image of the scene at a given resolution, see Figure 2. In
general, the quadtree can be seen as a multi-resolution sparse
representation of the image.

2) Quadtree Segmentation: For the segmentation
approach, each node in the quadtree has a value vi which is
a vector of k + 1 elements, representing the k segmentation
classes plus one mixed class. The values in vi represent
the probability of the node to belong to the corresponding
classes. If the mixed class obtains the highest score, then it
means the area is composed of several classes. Therefore,
the node has to be subdivided in order to better describe the
corresponding location in the image. The same process is
applied recursively on each sub-node until either the mixed
does not obtains the highest probability or the maximum
depth level in the quadtree is reach.

B. The network

1) Architecture: The network architecture is based on the
quadtree generating network (QGN) proposed by [2]. It is a
U-Net [15] architecture composed of a dense ResNet [9]
encoder and sparse ResNet decoder. The sparse decoder
consists of submanifolds sparse convolutions blocks [8],
which exclusively performs operations on active sites, i.e.
where there is data to be processed. Initially designed for
sparse input data processing, they are suited for quadtree
construction, where the information is voluntarily reduced.

The strategy behind QGN is to directly generate a quadtree
through the decoder without having to compute the full
resolution dense prediction. Indeed, some information can
be correctly predicted at low resolution from the first layers
of the decoder. Further processing of this information will

Fig. 3. The reference segmentation map is constructed based on a depth
map generated by stereoNet. The image is segmented into four classes: three
classes separating the depth and one class for the ground.

not change the output. Subsequently, they can be stored into
the quadtree and removed from the set of active sites to not
be processed by the following layers of the decoder.

2) Quadtree Subdivision: Each prediction layer in the
decoder outputs a sparse segmented map, noted Ql with l
representing the quadtree level. From this map, one can build
the activation map, which will define the set of active sites
for the subsequent layer of the decoder. It is obtained by
applying a filter on the vi values of Ql. Indeed, as presented
in section III-A.2, only the vi with their highest probability
belonging to the mixed class are subdivided, i.e. conserved
as active sites to be computed by in the upper layers of
the decoder. In the other cases, the value has already been
assigned to a class and is therefore removed from the active
sites. This activation map A is defined for each vi as follow:

A(vi) =

{
1, if argmax(vi) = m,

0, else,
(2)

where m is the channel number of the mixed class.

C. Training

1) Self-Supervised Reference Map: Depth map prediction
networks have demonstrated their ability to accurately infer
scene geometry without ground truth supervision. The ref-
erence map, used to train our model, is derived from depth
prediction network to build our segmentation classes.

For urban applications as proposed by the Kitti dataset [5],
the position of the cameras is known and similar from one
image to another. It is therefore possible to extract useful
information with simple image processing tools. The aim
of the method is to be able to navigate and avoid obstacles.
Subsequently, the image has been segmented into four classes
as illustrated in Figure 3:

• three classes to cluster obstacles by distance (close,
middle and far),

• one class to detect the ground, where the driving system
is allowed to move.

The objective of this segmentation is to allow the system
to clearly identify the presence of nearby hazards as well as



the ground on which it is permitted to move. In theory, only
a third class would have been necessary to classify distant
obstacles. However, as monocular depth prediction can be
unreliable, we chose to integrate a buffer class between near
and far obstacles. This middle class consists, as it will be
presented later in the experiments, in producing the close
and far classes disjoint. Hence, we increase the reliability of
the whole prediction.

The depth map used to compute the segmentation refer-
ence is obtained from a network, which infers depth from
a pair of stereo images. This network has been trained
upstream using state-of-the-art monocular depth learning
methods and will be called stereoNet in the rest of the
paper. To counteract scale inconsistency and to have the
most reliable reference possible, the network generates the
depth from calibrated stereo images as the information is
available. Still, it would have worked similarly if the depth
was acquired from a single image or with any other approach
to capture the depth.

2) Loss function: As in [2], the optimization process is
based on the minimization of the cross-entropy loss function,
noted H, between the prediction Q and the reference map
decomposed into quadtree, noted Q∗, for every classes. The
loss is computed for each depth level of the quadtree Ql as
follows:

Ll =
1

Nl

Nl∑
i=1

H(vi, v
∗
i ) (3)

where Nl is the number of elements in Ql. The cross-entropy
function H compares the predicted value vi to the reference
value v∗i at the same location in the image (xi, yi).

Each Ql is sparse and does not represent the same portion
of the image in the prediction (see Table III). Therefore, the
global loss function is a weighted sum of the Ll terms:

L =
1

N

N−1∑
l=0

λlLl (4)

with λl some constants that weight respectively the Ll and
N the number of depth levels in the quadtree, here N has
been set to 6 for application purpose.

3) Active sites: The advantage of using a sparse quadtree
decoder is its allowance to only compute necessary opera-
tions. But it also implies the quality of the prediction depends
on the ability of the network to perform the appropriate
operations. They are determined by the set of active sites
which indicates the sparse convolutional system the features
to consider. During the inference, these active sites are
defined by the nodes of the quadtree to be subdivided, i.e.
where the mixed class gets the highest score. This approach
works effectively on a trained model, but is uncertain during
training phase. Indeed, the network will have difficulties to
converge if the quadtree structure is incorrect. To address this
issue, the choice of active sites is supervised during training
and is modeled on the quadtree subdivision of the reference
map. This guidance allows stabilization and reduction of the
training time of the network.

TABLE I
INTERSECTION OVER UNION PER CLASS AND IN AVERAGE (MIOU).

Method
Close
(red)

Middle
(yellow)

Far
(green)

Ground
(gray)

mIoU

Dense ResNet 18 68.48% 54.8% 66.5% 90.7% 70.1%
Sparse ResNet 18 65.3% 50.1% 65.2% 89.9% 67.6%
Dense ResNet 50 72.1% 60.9% 68.8% 90.2% 73.0%
Sparse ResNet 50 71.9% 59.4% 70.6% 91.4% 73.3%

IV. EXPERIMENTS

Experiments are conducted on the Kitti dataset [5]. It
offers urban images acquired from cameras in a car, which
allows exploring the scene from a constant point of view on
entire video sequences. Our method is evaluated under two
architectures: sparse ResNet 18 and 50 and compared with
the equivalent dense version, which have been trained using
the same loss function but to output a dense prediction. The
double objectives of those experiments are to evaluate the
reliability of the proposed segmentation solution as well as
the capability of the sparse methods to equal or outperform
the dense equivalent estimations.

A. Intersection over Union

The table I compares the performance of the methods
on the intersection-over-union (IoU) criterion for each class
and for the mean value mIoU. The first observation is that
the results are similar between sparse and dense, with an
advantage for the sparse ResNet 50 approach. The ground
class is the one that obtains in all cases the most accurate
prediction. The method seems to have difficulties to correctly
classify the buffer middle class, which is in between close
and far obstacles as explained in section 2.

Ultimately, the IoU results, except for the ground class are
not compelling. However, these three classes are not based
on semantic but on depth. Therefore, they might be penalized
by border effects induced by class-to-class adjacency.

B. Accuracy

The objective of our method is not to do semantic segmen-
tation, but to use the segmentation to navigate. Besides, our
classes are very related to each other because they describe
for three of them a depth information. As a result, there
are edge effects that minimize the results of intersection
over union (IoU) metrics. The aim of this experimentation
is to discuss the reliability of the method by analyzing
the confusion matrix. The latter, in Table II, highlights the
percentage of true positives per class (diagonal values) as
well as the false positives, i.e. the areas misclassified from
one class to another with regard to the ground truth. Values
of the four methods are displayed in the same table. Thus,
each cell contains four values and are ordered as indicated
in the top left corner of the table.

For navigation purposes, a high accuracy is required for
the detection of the nearest obstacles. This task is primarily
performed by the two classes close and ground. One can
investigate their respective accuracy (true positives) and the



TABLE II
CONFUSION MATRIX REPRESENTING THE SEGMENTATION DISTRIBUTION PER CLASS OF THE PREDICTION WITH RESPECT TO THE GROUND TRUTH

FOR EACH METHOD. BOLD VALUES ON THE DIAGONAL REPRESENTS THE ACCURACY AND THE OTHERS ARE THE INCORRECT SEGMENTATION.
UNDERLINED VALUES ARE THE HIGHEST ACCURACY PER CLASS. THE VALUES ARE MEANT TO BE READ IN LINE.

Dense 18 Dense 50 Ground Truth
Sparse 18 Sparse 50 Close Middle Far Ground

Prediction

Close
90.18% 91.09% 7.03% 6.47% 0.34% 0.23% 2.45% 2.21%
88.38% 91.22% 8.12% 6.20% 0.47% 0.25% 3.04% 2.33%

Middle
16.89% 12.69% 73.51% 79.28% 8.49% 6.97% 1.12% 1.06%
21.79% 13.84% 67.40% 77.55% 9.24% 7.35% 1.56% 1.26%

Far
2.17% 1.01% 22.07% 19.08% 75.24% 79.39% 0.53% 0.53%
2.22% 1.02% 21.47% 19.22% 75.52% 79.06% 0.79% 0.69%

Ground
3.11% 2.55% 1.26% 1.11% 0.57% 0.54% 95.06% 95.79%
2.98% 2.53% 1.17% 1.08% 0.49% 0.51% 95.36% 95.88%

TABLE III
DISTRIBUTION OF THE DATA PREDICTED BY EACH LAYER OF THE

DECODER.

Method Q5 Q4 Q3 Q2 Q1 Q0
Sparse ResNet 18 42.6% 18.4% 13.6% 9.9% 8.1% 7.5%
Sparse ResNet 50 49.6% 20.4% 13.5% 8.8% 5.2% 2.6%

TABLE IV
NETWORKS COMPLEXITY. COMPARE THE FLOPS, THE NETWORK

PARAMETERS AND THE MEMORY CONSUMPTION OF EACH METHOD.

Method FLOPs Parameters Memory
Dense ResNet 18 24G 27.4M 0.78GB
Sparse ResNet 18 10G 26.5M 0.83GB
Dense ResNet 50 56G 72.3M 1.14GB
Sparse ResNet 50 19G 70.7M 1.27GB

prediction errors (false positives). The ground class accuracy
is over 95% for every methods confirming the good IoU
results. The close class has an accuracy over 90% for the
ResNet 50 methods and presents almost no critical cases
since two-thirds of the false positives indicate obstacles
closer than they really are. The most problematic is the
middle class which shows over 20% of false positives, con-
firming the observations made on the IoU results. In practice,
with such results, the middle class should be considered as
an area to avoid, similarly to close class. But it fulfills its
initial goal, which is to be a buffer between the close and
far obstacles and ensuring separation.

When comparing the approaches, we observe a superior
accuracy when deploying ResNet 50. Besides, for the two
classes of interest close and ground, the best performances
are obtained with the sparse method. It is, therefore, the most
efficient of the four presented methods.

C. Complexity

1) Quadtree Data Compression: The quadtree data struc-
ture allows compressing significantly the information. Table
III presents the data distribution among each depth level of
the quadtree. Over 40% of the information can be predicted
by the first prediction layer of the decoder (Q5). It means

the rest of the decoder only has to process less than 60%
of the information. This percentage decreases after each
prediction layer, leaving only a small portion of the data to be
processed by the last layers. Since the decoder is composed
on submanifold sparse convolutions [8], operations are only
computed on active sites, i.e. information that have yet not
been extracted by previous prediction layers.

2) FLOPs, parameters and memory: The quadtree sub-
division permits to drastically reduce the floating-points
operations per seconds (FLOPs). Yet the memory usage
remains equivalent due to the necessity to provide a dense
prediction at full resolution, reconstructed from the quadtree
layers. Note that the FLOPs are related to the quadtree size.
Subsequently, it can fluctuate from one view to another.
The number of parameters remains mathematically high and
is almost equivalent to the dense counterpart due to the
similarity in the architecture. Yet, for the same reasons as
for the FLOPs, the prediction is highly sparse and all the
parameters are not solicited during the inference.

D. Qualitative Evaluation

Qualitative results are presented in Figure 4, allowing a
visual comparison of the methods with the reference map.
The observations corroborate the results presented in the
previous sections. The sparse segmentation networks predict
similar outcomes to the dense counterpart and the ground and
close classes are distinctly defined. The notable difference
that can be observed is on the middle class in yellow which
tends to encroach on the close and far classes. This behavior
can be mainly explained by the difficulty of the method
to accurately interpret the depth of the scene at medium
and long range. As explained previously, these segmentation
problems do not jeopardize the method which can be utilized
for obstacle avoidance, since the classes for the ground and
the close obstacles are precisely defined.

Differences between the ResNet 18 and ResNet 50 meth-
ods are visually noticeable but primarily due to some minor
defects. The general understanding of the scene is main-
tained, and the slight qualitative loss does not appear to be
redhibitory.



(a) Input (b) Reference Map (c) Dense ResNet 18 (d) Sparse ResNet 18 (e) Dense ResNet 50 (f) Sparse ResNet 50

Fig. 4. Qualitative Results. From left to right, the single input image (a), the reference map (b) and from (c) to (f) are the prediction of each methods.

V. CONCLUSION

In this paper, we have presented a segmentation framework
dedicated to obstacle detection using a monocular navigation
system. The proposed network architecture is derived from
QGN and provides efficient prediction of a limited set of
classes relevant for obstacle avoidance task. The reference
segmentation map has been constructed from a stereo depth
prediction network and converted into classes.

The experiments conducted on the Kitti dataset highlighted
our method capability to achieve similar segmentation preci-
sion as the dense counterpart but with a lower computational
complexity. Indeed, the quadtree data structure permits to
drastically reduce the density of the prediction. It was also
demonstrated that most of the information can be extracted
within the first few layers of the decoder justifying the usage
of quadtrees that avoids unnecessary computations.

The method has been experimented with both ResNet 18
and ResNet 50 constitutional blocks. The quantitative results
benefit the ResNet 50 solution, yet it is composed of almost 3
times more parameters. Therefore, it seems the sparse ResNet
18 is more appropriate for lighter applications. The trade-off
between the network’s complexity and the accuracy of the
output would need to be discussed during the deployement
of the solution on an autonomous driving system.
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