Nader El Khatib 
  
Mamdouh Nicolas Forcadel 
  
M Zaydan 
  
Regularizing effect for unbounded flux-limited viscosity solutions of a discontinuous Hamilton-Jacobi equation on junction

Keywords: AMS Classification: 35F21, 35D35, 35D40 Regularizing effect, viscosity solutions, discontinuous Hamilton-Jacobi on a junction

   

Regularizing effect for unbounded flux-limited viscosity solutions of a discontinuous Hamilton-Jacobi equation on junction

Introduction

The term regularizing effect indicates that the solution of a non-linear PDE becomes more regular for t > 0 than it is at the initial time t = 0. Such effects were studied in the framework of first order continuous Hamilton-Jacobi equations in many papers like [START_REF] Barles | Regularity results for first order hamilton-jacobi equations[END_REF][START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder hamilton-jacobi equations[END_REF][START_REF] Lions | Regularizing effects for first-order hamilton-jacobi equations[END_REF][START_REF]New regularity results for hamilton-jacobi equations and long time behavior of pathwise (stochastic) viscosity solutions[END_REF]. In these works, the regularizing effect is obtained for Hamiltonian H satisfying that (H p • p -H)(p) is large when |p| is large or when H(p) is large. This regularizing effect can be used to study the large time behavior of viscosity solutions. For example, in [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder hamilton-jacobi equations[END_REF] the authors proved that the viscosity solution u satisfy u t ≥ -η(t)e u . This result implies first more regularity in space: local Lipschitz continuity if the Hamiltonian is coercive and Holder regularity for hypo-elliptic Hamiltonian. As a second application, this result can be used in the study of the large time behavior of the viscosity solution if η(+∞) = 0. For more details, the reader can refer to [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder hamilton-jacobi equations[END_REF][START_REF] Barles | On the large time behavior of solutions of hamiltonjacobi equations[END_REF][START_REF]An introduction to the theory of viscosity solutions for first-order hamilton-jacobi equations and applications[END_REF]. Let us mention also the work [START_REF]New regularity results for hamilton-jacobi equations and long time behavior of pathwise (stochastic) viscosity solutions[END_REF] where authors exploited the regularizing effect for a Hamilton-Jacobi equation in order to study the large time behavior of the stochastic viscosity solution.

In this paper, we want to develop regularizing results for discontinuous Hamilton-Jacobi equations. The study of discontinuous (in space) Hamilton-Jacobi equations is recent (see [START_REF] Achdou | Hamilton-jacobi equations constrained on networks[END_REF][START_REF] Imbert | A hamilton-jacobi approach to junction problems and application to traffic flows[END_REF]) but the basic results, like comparison principle, existence, stability, homogenization are now well understood (see [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF][START_REF] Lions | Well-posedness for multi-dimensional junction problems with kirchoff-type conditions[END_REF][START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF][START_REF] Imbert | Quasi-convex hamilton-jacobi equations posed on junctions: the multi-dimensional case[END_REF][START_REF] Siconolfi | Time-dependent hamilton-jacobi equations on networks[END_REF][START_REF] Achdou | Effective transmission conditions for hamiltonjacobi equations defined on two domains separated by an oscillatory interface[END_REF][START_REF]Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains[END_REF][START_REF] Khatib | Homogenization of a microscopic pedestrians model on a convergent junction[END_REF]) and we are now able to attack more difficult problems like the regularity or the regularizing effect.

More precisely, in this paper, we consider regularizing effect for a Hamilton-Jacobi posed on a junction, which is a metric space formed by the union of a N branches J 1 , J 2 , .., J N glued to one point called junction point. For i ∈ {1, ..., N }, the branch J i is isometric to R + and the junction point is x = 0. We denote by J the junction and it is defined by J = i=1,...,N J i with J i ̸ = J j if i ̸ = j.

To be more precise, the definition of elements in J is given by the following definition: if x ∈ J, then x = x i • e i , x i > 0 if x ∈ J * i = J i \{0} or x = (0, 0) where e i is a unit vector in R 2 and e i ̸ = e j if i ̸ = j. We define on the junction J the geodesic distance by

d(x, y) = |x i -y i | if x, y ∈ J * i , |x i | + |y j | if x ∈ J i and y ∈ J j with i ̸ = j.
For T > 0, let u : [0, T ]×J → R be a real function. The space gradient of u at (t, x) ∈ [0, T ]×J is defined by

u x (t, x) = ∂ i u(t, x) if x ∈ J * i , (∂ 1 u(t, 0), ..., ∂ N u(t, 0)) if x = 0
where ∂ i u(t, x) is the derivative of u with respect to x ∈ J * i . We consider a continuous bounded by below viscosity solution of the following Hamilton-Jacobi with flux limited condition at the point 0 introduced in [START_REF] Imbert | Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks[END_REF] and given by

u t + H i (t, x, u x ) = 0 if (t, x) ∈ [0, T ] × J * i , u t + F A (t, 0, u x ) = 0 if t ∈ [0, T ], (1.1) 
where for each i ∈ {1, ..., N }, the Hamiltonian H i satisfies the following assumptions:

     H i ∈ C([0, T ] × J i × R), for all (t, x) ∈ [0, T ] × J i , the Hamiltonian H i (t, x, •) is quasi-convex, for all (t, x) ∈ [0, T ] × J i , the Hamiltonian H i (t, x, •) is coercive.
For t ∈ [0, T ] and p = (p 1 , ..., p N ) ∈ R N , the flux limiter function F A is defined by

F A (t, 0, p) = max A(t), max i=1,...,N H - i (t, 0, p i ) (1.2)
where

H - i (t, 0, •) is the non-increasing part of H i (t, 0, •).
The function A is called the "flux limiter" and we assume that A ∈ C([0, T ]). Moreover, we suppose that for t ∈ [0, T ],

A(t) ≥ max i∈{1,...,N } min p∈R H i (t, 0, p).
Additional assumptions (H) (see below) are required to obtain a regularizing effect. These assumptions are satisfied for example by the following Hamiltonians,

H i (t, x, p) = |A i (t, x)| mi |p| mi -f i (t, x)
where m i > 1, f i is non negative (or bounded by below), A i and f i are space-time Lipschitz continuous functions and there exists 0

< δ ≤ 1 such that δ ≤ |A i (t, x)| ≤ 1 δ for (t, x) ∈ [0, T ] × J i .
More precisely, we will provide a lower bound for the time derivative of the viscosity solution u.

Up to constant addition, we can assume that u ≥ 0. We will prove that there exists a time t * > 0 and function η defined on (0, t * ) such that for all t ∈ (0, t * ) and x ∈ J, we have ,x) .

u t ≥ -η(t)e u(t
(1.3)

Using inequality (1.3), we can prove that u is locally Lipschtiz continuous in J × (0, t * ) (see Proposition 2.2 ). To obtain (1.3), we will first provide a lower gradient bound on each branch of the junction using the assumption ((H i ) p • p -H i )(t, x, p) is positive and large when p is negative and small (Lemma 4.3). This bound, joint to the idea of studying the sign of the derivative of d 2 (x, y) used in the proof of the comparison principle in [START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF] will allow us to obtain our main result by exploiting the assumption ((H i ) p •p-H i )(t, x, p) is positive and large when H i (t, x, p) is positive and large.

Organization of the paper

In section 2, we state the assumptions imposed on the Hamiltonians and then we give the main result (Theorem 2.1) of this paper. In section 3, we derive consequences from assumptions of section 2 and then we give examples of Hamiltonians. In section 4, first, using the variable change v = -e -u , we obtain a new Hamilton-Jacobi formulation and we derive properties of the new Hamiltonians G i . Then, we prove the main result of this paper using this new equation (Theorem 4.2). In the last section, as application of Theorem 2.1, we show that our solution is locally Lipschitz.

Assumptions on the Hamiltonians and main results

Assumptions (H)

Our main goal is to process the proof in the vicinity of the junction point x = 0. Far from it, we work with one type of Hamiltonian and we can impose weaker assumptions (like non-coercivity) on the Hamiltonians. To be more precise, far from the junction point, we can use the assumptions on Hamiltonians provided in [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder hamilton-jacobi equations[END_REF]. Therefore, all the assumptions we will see below can be imposed on a neighborhood of the junction point. For simplicity, we assume that they are satisfied for all x ∈ J. Let u : [0, T ] × J → R be a continuous, non-negative viscosity solution of (1.1). We set

C u = min t∈[0,T ]
(e -u(t,0) ) > 0.

(2.1)

We state now the assumptions concerning the Hamiltonians.

(H0) For all i ∈ {1, ..., N } and for all t ∈ [0, T ], x ∈ J i , the Hamiltonian H i (t, x, •) is quasi-convex and coercive on R and

H i is continuous in [0, T ] × J i × R.
1) We assume that there exists an interval [p - i (t, x), p + i (t, x)] such that

     H i (t, x, •) is non increasing on (-∞, p - i (t, x)), H i (t, x, •) is constant on [p - i (t, x), p + i (t, x)], H i (t, x, •) is non decreasing on (p + i (t, x), +∞).
Moreover, we assume that p - i is bounded in [0, T ]×J i and that p + i is continuous in [0, T ]×J i . 2) We assume that for all i ∈ {1, ..., N }, there exists a continuous, quasi-convex and coercive function h i such that for all t ∈ [0, T ] and p ∈ R,

H i (t, 0, p) ≤ h i (p).
For i ∈ {1, ..., N }, there exists an interval [p - hi , p + hi ] such that

     h i is non increasing on (-∞, p - hi ), h i is constant on [p - hi , p + hi ], h i is non decreasing on (p + hi , +∞).
3) For all i ∈ {1, ..., N }, there exists a constant c i such that

c i ≥ max max t∈[0,T ],x∈Ji |p - i (t, x)|, |p - hi |C u
such that:

the function H i is locally Lipschitz continuous in a neighborhood of the set

{(t, x, p) ∈ [0, T ] × J i × R; p ≤ -c i }.
-There exists a continuous, positive and decreasing function ϕ i defined on (-∞, -c i ) such that for some

B i > c i , +∞ Bi 1 sϕ i (-s) ds < +∞ (2.2)
and for almost all t ∈ [0, T ], x ∈ J i and p ∈ R,

((H i ) p • p -H i )(t, x, p) ≥ ϕ i (p) a.e. in {(t, x, p) ∈ [0, T ] × J i × R; p ≤ -c i }. (2.3) 
-There exists κ i > 0 such that

|(H i ) p (t, x, p)| ≤ κ i • ((H i ) p • p -H i )(t, x, p) a.e. in {(t, x, p) ∈ [0, T ] × J i × R; p ≤ -c i }.
(H1) Let C ≥ 0 satisfying the following property: for all i ∈ {1, ..., N }, Regularizing effect (H2) For all i ∈ {1, ..., N }, we define the following set

h i (p) ≥ C ≥ min p∈R h i (p) ⇔ p ≥ max t∈[0,T ] p + i (t,
I i = {p ∈ R; p ≤ p - hi and h i (p) ≥ c}. Then, we have that ϕ (h i (p)) h i (p) < ϕ i (C u p)h ′ i (p)p a.
e. in I i . The next two assumptions concern the dependence of the Hamiltonians on the space and the time.

(H3) For all i ∈ {1, ..., N }, there exists

t i > 0 such that H i is locally Lipschitz in x in a neighborhood of the set {(t, x, p); t ∈ [0, t i ], x ∈ J i , p ≤ -η i (t)} and for all t ∈ [0, T ], x ∈ J i and p ∈ R, |(H i ) x (t, x, p)| ≤ 1 2 η i (t) (p(H i ) p -H i ) (t, x, p) a.e in {(t, x, p); t ∈ [0, t i ], x ∈ J i , p ≤ -η i (t)} (H4) For all i ∈ {1, ..., N }, there exists τ i > 0 such that H i is locally Lipschitz in t in a neighborhood of the set {(t, x, p) ∈ [0, τ i ] × J i × R; H i (t, x, p) ≥ η(t)} and for all t ∈ [0, T ], x ∈ J i and p ∈ R, |(H i ) t (t, x, p)| ≤ 1 2 ψ (η(t)) (p(H i ) p -H i ) (t, x, p) a.e in {(t, x, p) ∈ [0, τ i ] × J i × R; H i (t, x, p) ≥ η(t)}
where ψ is defined in (3.3).

Main results

The main result of this paper is given by the following theorem.

Theorem 2.1. Assume (H). Let u be a continuous, non-negative viscosity solution of (1.1). Then, there exists t * and a continuous function η such that for all t ∈ (0, t * ) and x ∈ J, we have ,x) .

u t (t, x) ≥ -η(t)e u(t
A consequence of this result is the following local Lipschitz coninuity of u:

Proposition 2.2. Assume that (H) holds. If u is a non-negative continuous viscosity solution of (1.1), then u is locally Lipschitz continuous on (0, t * ) × J.

Remarks on the assumptions and examples

In this section, we first exhibit some consequences of the assumptions and we construct in particular the function η. We then provide typical examples of Hamiltonians satisfying the assumptions.

consequences of the assumptions

In this subsection, we derive consequences from assumptions (H0)-(H2).

Consequence of (H0). The function

F i : (c i , +∞) → (0, F i (c i )) defined by F i (τ ) = 2 ∞ τ dσ σϕ i (-σ)
is decreasing and invertible. We define for s ∈ (0, F i (c i )) the function η i (s) = F -1 i (s). We can easily check that the following hold:

   η ′ i (s) = - η i (s)ϕ i (-η i (s)) 2 η i is decreasing, positive and η i (0 + ) = +∞. (3.1)

Consequence of (H1):

The function F : (c, +∞) → (0, F (c)) defined by

F (τ ) = 2 ∞ τ dσ σϕ(σ)
is decreasing and invertible. We define for s ∈ (0, F (c)) the function η(s) = F -1 (s). We can easily check that the following hold:

   η ′ (s) = - η(s)ϕ(η(s)) 2 η is decreasing, positive and η(0 + ) = +∞. (3.2) Moreover, x → x + ϕ(x) is increasing from (c, +∞) to (c + ϕ(c), +∞).
We consider its inverse function denoted by ψ. We have that

ψ(x + ϕ(x)) = x for x ∈ (c, +∞). (3.3)
Consequence of (H2). For t ∈ (0, F (c)) and x ∈ J i , we define the continuous function q - i (t, x) by

q - i (t, x) = min{p < p - i (t, x); H i (t, x, p) = η(t)}.
Then, for t ∈ 0, min

F (c), min i∈{1,...,N } F i (c i ) , we have for any i ∈ {1, ..., N }, -η i (t) > q - i (t, 0)C u (3.4)
where C u is defined in (2.1).

Proof of (3.4). Let q - hi (t) ≤ p - hi such that h i (q - hi (t)) = η(t). We remark that q - hi (t) exists because η(t) > c ≥ min p∈R h i (p). In addition, we have

q - hi (t) ≥ q - i (t, 0). (3.5)
In fact, using that η(t) > c ≥ h i (p - i (t, 0)), we have

q - hi (t) = h -1 i (η(t)) < p - i (t, 0) (3.6) where h -1 i is the inverse of the function h i ↾ (-∞,p - h i
) . Moreover, we have

H i (t, 0, q - hi (t)) ≤ h i (q - hi (t)) = H i (t, 0, q - i (t, 0)) = η(t). (3.7)
Using (3.6) and (3.7), we deduce (3.5). We claim that

-η i (t) > q - hi (t)C u . (3.8) Using that η(t) = h i (q - hi (t)) > c ≥ h i (- c i C u ) with - c i C u ≤ p - hi , we get q - hi (t) ≤ - c i C u .
Therefore, using the inverse of η i , (3.8) is equivalent to

t > F i (-q - hi (t)C u ). (3.9)
We have

F i (-q - hi (t)C u ) = 2 +∞ -q - h i (t)Cu dσ σϕ i (-σ)
.

Setting the variable change σ = -q - hi (s)C u , we obtain

F i (-q - hi (t)C u ) = 2 0 t (q - hi ) ′ (s) q - hi (s)ϕ i (q - hi (s)C u )
ds.

Deriving the equality h i (q - hi (s)) = η(s), we get

(q - hi ) ′ (s) = - ϕ(h i (q - hi (s)))h i (q - hi (s)) 2h ′ i (q - hi (s))
.

Replacing the last equality in the integral, we get

F i (-q - hi (t)C u ) = t 0 ϕ(h i (q - hi (s)))h i (q - hi (s)) ϕ i (q - hi (s)C u )h ′ i (q - hi (s))q - hi (s)
ds.

Using assumption (H2), we get (3.9) and (3.8). Finally, (3.5) and (3.8) implies (3.4).

Examples of Hamiltonians

We give now examples of Hamiltonians satisfying assumptions (H). Let us first consider the model Hamiltonians defined for i ∈ {1, ..., N } by

H i (t, x, p) = |A i (t, x)| mi |p| mi -f i (t, x) (3.10) with            m i > 1, f i is non negative, A i and f i are space-time Lipschitz functions, there exists 0 < δ ≤ 1 such that δ < |A i (t, x)| < 1 δ for (t, x) ∈ [0, T ] × J i .
For such Hamiltonians, our assumptions are satisfied for c i = 0 and c = max

t∈[0,T ] |A(t)| where A(t) is the flux limiter. We take ϕ i (s) = (m i -1)δ mi |s| mi , ϕ(s) = (m -1) Cs and h i (p) = |p| mi δ mi and C < (δ 2 C u ) m where m = min i∈{1,...,N } m i and m = max i∈{1,...,N } m i . Moreover, the function η is defined for s ∈ (0, F (c)) by η(s) = 2 C(m -1)s .
For i ∈ {1, ..., N }, the function η i is defined for s > 0 by

η i (s) = δ 2 m i (m i -1)s 1 m i .
Concerning (H3) and (H4), we have the following

((H i ) p • p -H i )(t, x, p) = (m i -1)|A i (t, x)| mi |p| mi + f i (t, x), |(H i ) x (t, x, p)| ≤ m i |(A i ) x (t, x)||A i (t, x)| mi-1 |p| mi + |(f i ) x (t, x)|, |(H i ) t (t, x, p)| ≤ m i |(A i ) t (t, x)||A i (t, x)| mi-1 |p| mi + |(f i ) t (t, x)|.
We can easily verify that (H3) is satisfied if we take t < t i with

η i (t i ) ≥ max 4K 1 m i (m i -1)δ 2mi-1 , 4K 2 (m i -1)δ mi 1 m i +1
where K 1 and K 2 are respectively bounds of

|(A i ) x | and |(f i ) x |. Assumption (H4) is satisfied if we take t < τ i with η(τ i ) ≥ max 4K 3 m i ((m -1) C + 1) (m i -1)δ 2mi-1 , 4K 4 ((m -1) C + 1) (m i -1) 1 2
where K 3 and K 4 are respectively bounds of

|(A i ) t | and |(f i ) t |.
Another example is the following Hamiltonians:

H 1 (p) = e |p| , H 2 (p) = |p| m , H 3 (p) = |p| n -p, H 4 (p) = |p| log(1 + |p|)
with m, n > 1. In this case, H i = h i . For s negative and small enough, we define for i = 1, 2, 3, 4,

ϕ i (s) = φ(h i (s))
with φ(s) = (log(s)) 2 . We remark that for s negative and small enough, we have that

h i (s) > |s| > 1.
Therefore,

+∞ τ dσ σϕ i (-σ) < +∞ τ dσ σ(log(σ)) 2 < +∞.
Moreover, we can easily verify that

             e |p| (|p| -1) -ϕ 1 (p) → +∞ as p → -∞ (m -1)|p| m -ϕ 2 (p) → +∞ as p → -∞ (n -1)|p| n -ϕ 3 (p) → +∞ as p → -∞ |p| 2 1 + |p| -ϕ 4 (p) → +∞ as p → -∞.
Hence, we deduce that for all i ∈ {1, 2, 3, 4}, there exists c i positive and big enough such that (H0) is satisfied for ϕ i (s) = φ(h i (s)). Concerning (H1)-(H2), we can take ϕ(s) = C φ(s) = C(log(s)) 2 with C < C 2 u . There exists c big enough such that (H1) and (H2) are satisfied. In fact, we have

             e |p| (|p| -1) -ϕ(e |p| ) → +∞ as |p| → +∞ (m -1)|p| m -ϕ(|p| m ) → +∞ as |p| → +∞ (n -1)|p| n -ϕ(|p| n -p) → +∞ as |p| → +∞ |p| 2 1 + |p| -ϕ(|p| log(1 + |p|)) → +∞ as |p| → +∞.
We recall that the above inequalities imply that h ′ i (p)p -h i (p) > ϕ(h i (p)) > 0 for |p| big enough. Thus, to prove (H2), it's sufficient to prove that

C φ(h i (p)) < φ(h i (C u p)) in I i .
For c big enough, the last inequality is true for any i ∈ {1, 2, 3, 4} since we have

lim p→-∞ φ(h 1 (C u p)) φ(h 1 (p)) = C 2 u > C and for i = 2, 3, 4, lim p→-∞ φ(h i (C u p)) φ(h i (p)) = 1 > C.

Proof of Theorem 2.1

Adapting the same strategy in [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder hamilton-jacobi equations[END_REF], we consider the function v(t, x) = -e -u(t,x) . To prove Theorem 2.1, we will prove that for all t ∈ (0, t * ) and x ∈ J, we have

v t ≥ -η(t).
This is done in Theorem 4.2. Before to do that, we give some properties of the equation satisfied by v

Viscosity solutions

The function v is a continuous viscosity solution of

v t + G i (t, x, v, v x ) = 0 if (t, x) ∈ [0, T ] × J * i , v t + G A (t, 0, v, v x ) = 0 if t ∈ [0, T ] (4.1)
where

     G i (t, x, v, p) = (-v)H i t, x, - p v , p ∈ R, G A (t, 0, v, p) = (-v) max A(t), max i=1,...,N H - i t, 0, - p i v , p = (p 1 , p 2 , .., p N ) ∈ R N .
The definition of viscosity solutions of (4.1) can be derived from the one of (1.1). For the reader convenience, we state it: for T > 0, set J T = (0, T ) × J. We define the class of test functions on J × (0, T ) by

C 1 (J T ) = {φ ∈ C(J T ) such that the restriction of φ to (0, T ) × J i is C 1 for all i ∈ {1, .., N }}.
Definition 4.1. Let v : J T → R be a continuous function. We say that v is a viscosity sub-solution (resp. super-solution) of (4.1) in J T if for any test function φ ∈ C 1 (J T ) touching v from above (resp. from below) at some point (t 0 , x 0 ) ∈ J T , we have

φ t (t 0 , x 0 ) + G i (t 0 , x 0 , v(t 0 , x 0 ), φ x (t 0 , x 0 )) ≤ 0 (resp. ≥ 0) if x 0 ∈ J * i φ t (t 0 , 0) + G A (t 0 , 0, v(t 0 , 0), φ x (t 0 , 0)) ≤ 0 (resp. ≥ 0) if x 0 = 0.
If v is viscosity sub-solution and viscosity super-solution, we say that v is a viscosity solution.

Properties of G i

We derive properties of the Hamiltonian G i (t, x, v, p) = (-v)H i t, x, p -v from the assumptions (H). The derivative of this function are involved and we will state new conditions (G0)-(G1)-(G2) and (G3). We define first the time t * for which assumptions (H) are satisfied. We set

t * = min T, min i=1,...,N η -1 i (c i ), η -1 (c), min i=1,...,N t i , min i=1,...,N τ i . (4.2)
By simple computations, we can check that the function G i has the following properties.

(G0) Let i ∈ {1, ..., N }. For all t ∈ (0, t * ), if p ≤ -η i (t), then by using (H0), we have that

(G i ) v (t, x, v, p) ≥ ϕ i (p) and |(G i ) p (t, x, v, p)| ≤ κ i • (G i ) v (t, x, v, p) and (G i ) p (t, x, v, p) ≤ 0. (G1) Let i ∈ {1, ..., N }. For all t ∈ (0, t * ), if G i (t, x, v, p) ≥ η(t)
, then by using (H1) we have that

(G i ) v (t, x, v, p) ≥ ϕ(G i (t, x, v, p)) and |(G i ) p (t, x, v, p)| ≤ κ • (G i ) v (t, x, v, p) .
(G2) Let i ∈ {1, ..., N }. For all t ∈ (0, t * ), if p ≤ -η i (t), then by using (H3) we have that

|(G i ) x (t, x, v, p)| ≤ 1 2 η i (t)(G i ) v ((t, x, v, p). (G3) Let i ∈ {1, ..., N }. For all t ∈ (0, t * ), if G i (t, x, v, p) ≥ η(t)
, then by using (H4) we have that

|(G i ) t (t, x, v, p)| ≤ 1 2 ψ(G i (t, x, v, p))(G i ) v (t, x, v, p).

The main result wrote on v

Theorem 2.1 is a direct consequence of the following result on v.

Theorem 4.2. Assume (H).

Let u be a continuous, non-negative viscosity solution of (1.1). Then, for all t ∈ (0, t * ) and x ∈ J, the function v = -e -u is a viscosity solution of (4.1) and it satisfies:

v(t, x) -v(s, x) ≥ -η(s)(t -s) if 0 < s < t < t * and x ∈ J.
To prove Theorem 4.2, we need the following lemma in which we obtain a gradient lower bound on each branch.

Lemma 4.3. Assume (H). Let u be a continuous, non-negative viscosity solution of (1.1).

The function v = -e -u is a viscosity solution of (4.1) and it satisfies the following: for all i ∈ {1, ..., N } and t ∈ (0, t * ), if x, y ∈ J * i such that x = x i • e i and y = y i • e i with x i > y i , then

v(t, x) -v(t, y) ≥ -η i (t)d(x, y).
Proof of Lemma 4.3. Let i ∈ {1, ..., N }. We define

M = sup t∈(0,t * );x,y∈J * i ,xi>yi>0 {v(t, y) -v(t, x) -η i (t)d(x, y)}.
By contradiction, we assume that M > 0. We introduce

M ν,γ = sup t,s∈(0,t * );x,y∈J * i ,xi>yi>0 v(t, y) -v(s, x) -η i (t)d(x, y) - (t -s) 2 2ν - γ t * -t -αd(0, x) - γ d(0, y) .
Since M > 0, we deduce that M ν,γ > 0 for γ, α small enough. Using that -1 ≤ v < 0, we have 0 < M ν,γ ≤ 1 -αd(0, x). This implies that d(0, x) ≤ 1 α < +∞. Moreover, using that M ν,γ is a supremum of a continuous function, we deduce that it's reached at some point (t, s, x, y).

Step 1: t, s ̸ = 0 and t, s ̸ = t * : Using that η i (t) → +∞ as t → 0 and γ t * -t → +∞ if t → t * , we have that t ̸ = 0 and t ̸ = t * for all ν > 0. Moreover, we have

(t -s) 2 2ν ≤ 1. (4.3)
Inequality (4.3) implies that |t -s| → 0 as ν → 0. Thus, for ν small enough, we have that s ̸ = 0 and s ̸ = t * .

Step 2: y i ̸ = 0 and x i > y i for ν small enough. Using that γ d(0, y)

→ +∞ if d(0, y) → 0, we get that d(0, y) > 0 and thus y i > 0. Assume that there exista ν → 0 such that we have

x i = y i . This implies that v(t, x) -v(s, x) > γ t * . ( 4.4) 
Using that d(0, x) = x i ≤ 1 α , we deduce that x converges (up to a sub-sequence) as ν → 0.

Denoting by t (resp. x) the common limit of t and s (resp. x and y), and taking ν to zero in (4.4), we obtain

v( t, x) -v( t, x) ≥ γ t * > 0
which gives a contradiction. Therefore, x i > y i for ν small enough.

Step 3: Use of the viscosity inequalities. Using the viscosity inequalities, we obtain

     η ′ i (t)(x i -y i ) + t -s ν + γ (t * -t) 2 + G i t, y, v(t, y), -η i (t) - γ (y i ) 2 ≤ 0 t -s ν + G i (s, x, v(s, x), -η i (t) -α) ≥ 0.
This implies

η ′ i (t)(x i -y i ) + γ (t * -t) 2 + G i t, y, v(t, y), -η i (t) - γ (y i ) 2 -G i (s, x, v(s, x), -η i (t) -α) ≤ 0.
Denoting by t the common limit of t and s and by x (resp. ȳ) the limit of x (resp. y) as ν goes to zero and using the continuity of G i and v, we obtain after taking ν to zero,

η ′ i ( t)(x i -ȳi ) + γ (t * -t) 2 + G i t, ȳ, v 1 , -η i ( t) - γ (ȳ i ) 2 -G i t, x, v 2 , -η i ( t) -α ≤ 0 (4.5)
where

v 1 = v( t, ȳ) and v 2 = v( t, x).
For σ ∈ [0, 1], we define

ξ σ = ( t, x, v 2 , -η i ( t) -α) + σ 0, ȳ -x, v 1 -v 2 , - γ ȳ2 i + α
We argue as if G i is C 1 (otherwise a standard mollification argument allows to reduce to this case). Using (4.5), we have

η ′ i (t)(x i -ȳi ) + γ (t * -t) 2 + 1 0 d dσ G i (ξ σ )dσ ≤ 0. (4.6)
Step 4: Getting the contradiction. We have that

d dσ G i (ξ σ ) = (G i ) x (ξ σ )(ȳ -x) + (G i ) v (ξ σ )(v 1 -v 2 ) + (G i ) p (ξ σ ) - γ ȳ2 i + α = I 1 + I 2 + I 3 with        I 1 = (G i ) x (ξ σ )(ȳ -x) + 1 2 (G i ) v (ξ σ )(v 1 -v 2 ), I 2 = 1 2 (G i ) v (ξ σ )(v 1 -v 2 ) + (G i ) p (ξ σ )α, I 3 = -(G i ) p (ξ σ ) γ ȳ2 i .
Bound for I 1 : We recall that

ξ σ = t, x + σ(ȳ -x), v 2 + σ(v 1 -v 2 ), p with p = -η i ( t) -α + σ - γ ȳ2 i + α .
Using that p ≤ -η i ( t), we can use (G0) and (G2) and we have

   (G i ) v (ξ σ ) ≥ ϕ i (p) ≥ ϕ i (-η i ( t)), |(G i ) x (ξ σ )| ≤ 1 2 (G i ) v (ξ σ )η i ( t)
where we use that ϕ i is decreasing. Using that

v 1 -v 2 > η i ( t)(x i -ȳi ) + γ t * - t + αx i
we obtain that

I 1 ≥ 0.
Bound for I 2 : Using again (G0), we have

(G i ) p (ξ σ ) ≥ -κ i (G i ) v (ξ σ ).
We obtain that

I 2 ≥ 1 2 (G i ) v (ξ σ )(v 1 -v 2 ) -κ i (G i ) v (ξ σ )α ≥ 1 2 ϕ i (-η i ( t))η i ( t)(x i -ȳi ) + (G i ) v (ξ σ ) 1 2 αx i + γ 2t * -κα > 1 2 ϕ i (-η i ( t))η i ( t)(x i -ȳi )
where we use that (G i ) v (ξ σ ) > 0 and γ 2t * -κ i α > 0 for α small enough.

Bound for I 3 : Using (G0), we have (G i ) p (ξ σ ) ≤ 0 and thus I 3 ≥ 0. Using bounds of I 1 , I 2 and I 3 , we obtain in (4.6)

γ (t * -t) 2 + (x i -ȳi ) η ′ i ( t) + 1 2 ϕ i (-η i ( t))η i ( t) ≤ 0
which gives a contradiction.

We turn now to the proof of Theorem 4.2.

Proof of Theorem 4.2. We introduce

M = sup 0<s<t<t * ,x∈J {v(s, x) -v(t, x) -η(s)(t -s)}.
By contradiction, assume that M > 0. We define

M α = sup 0<s<t<t * ,x∈J v(s, x) -v(t, x) -η(s)(t -s) -βη(s) - δ t * -t -αd(0, x) 2 .
We have that M α ≥ M 2 > 0 for β, δ and α small enough. We classically have that M α is reached at some point (s α , t α , x α ). Using that η(s) → +∞ as s → 0 and δ t * -t → +∞ as t → t * , we have s α ̸ = 0 and t α ̸ = t * . If t α = s α , we get a contradiction using that M α > 0. Till the end of this proof, we will denote

v(s α , x α ) = a and v(t α , x α ) = b.
Case 1: x α = 0. For i ∈ {1, ..., N }, we define the constants λ i and γ i that satisfy the following:

λ i ≥ γ i and γ i -b ≥ p + i (t α , 0), G + i (s α , 0, a, λ i ) > η(s α ) -η ′ (s α )(t α -s α + β) and G + i (t α , 0, b, γ i ) < η(t α ) (4.7) 
where

G + i (t, 0, v, p) = (-v)H + i t, 0, p -v with -1 ≤ v < 0 and H + i (t, 0, •) is non-decreasing part of H i (t, 0, •). For ε > 0 small, we define M α,ε = sup 0<s<t<t * ,x,y∈ BR (0) {v(s, x) -v(t, y) -η(s)(t -s) -βη(s) - δ t * -t -αd(0, x) 2 - (d(x, y)) 2 2ε -L(s, t, x) -φ(x) + Ψ(y)}
where

     L(s, t, x) = (s -s α ) 2 + (t -t α ) 2 + d(x α , x) 2 , φ(x) = λ i x i if x = x i e i ∈ J i , Ψ(x) = γ i x i if x = x i e i ∈ J i .
We have M α,ε ≥ M α > 0 and M α,ε is reached at some point (s, t, x, y). Classically, we have

d(x, y) → 0 as ε → 0.
Denoting by s (resp. t, x) the limit of s (resp. t, x and y) as ε → 0, we have

M α ≤ M α,ε ≤ M α -L(s, t, x) -φ(x) + ψ(x).
Using that ψ(x) -φ(x) ≤ 0, we obtain that L(s, t, x) = 0 and hence (s, t, x) = (s α , t α , 0).

Case 1.1: x = x i • e i ∈ J * i , y = y j • e j ∈ J j with i ̸ = j. Writing the viscosity sub-solution's inequality, we obtain

η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + G i (s, x, v(s, x), p ε + 2αx i + 2x i + λ i ) ≤ 0 with p ε = x i + y j ε . Using that G i (s, x, v, p) ≥ G + i (s, x, v, p), p ε + 2αx i + 2x i + λ i > λ i we get η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + G + i (s, x, v(s, x), λ i ) ≤ 0.
Taking ε to zero, we obtain a contradiction using (4.7).

Case 1.2: x = 0 and ∃j such that y ∈ J * j .

Writing the viscosity super-solution's inequality, we obtain

G j (t, y, v(t, y), p ε + γ j ) ≥ η(s) + δ (t * -t) 2 + 2(t -t α ) with p ε = - y j ε
. This implies that for ε small enough,

H j t, y, p ε + γ j -v(t, y) > η(s) > η(t) (4.8) 
where we use that η is decreasing. We deduce that

     p ε + γ j -v(t, y) > q + j (t, y) or p ε + γ j -v(t, y) < q - j (t, y) (4.9) 
where q - j (t, y) and q + j (t, y) are defined by q + j (t, y) = max{p > p + j (t, y); H j (t, y, p) = η(t)} q - j (t, y) = min{p < p - j (t, y); H j (t, y, p) = η(t)}. Using successively Lemma 4.3 and (3.4) , we have

p ε + γ j ≥ -η j (t) > q - j (t, 0)C u which implies for ε small enough p ε + γ j > q - j (t, y)(-v(t, y)).
Therefore, we obtain p ε + γ j -v(t, y) > q - j (t, y). Using (4.8) and (4.9) , we deduce that

p ε + γ j -v(t, y) > q + j (t, y) (4.10) 
and G + j (t, y, v(t, y), p ε + γ j ) > η(t). But using that p ε < 0, we have for ε small enough G + j (t, y, v(t, y), p ε + γ j ) ≤ G + j (t, y, v(t, y), γ j ) < η(t) where we use (4.7). This gives a contradiction. Case 1.3: x = 0 and y = 0. Writing the viscosity super-solution's inequality, we obtain

G A (t, 0, v(t, 0), p) ≥ η(s) + δ t 2 * + 2(t -t α ) ≥ max [0,t * ] A(t) + δ t 2 * + 2(t -t α )
with p = (γ 1 , γ 2 , ..., γ N ). This implies max A(t), max i=1,...,N

H - i t, 0, γ i -v(t, 0) ≥ max [0,t * ] A(t) + δ t 2 * + 2(t -t α ). (4.11) 
Taking ε to zero, we obtain a contradiction using (4.7). In fact, using that γ i -b ≥ p + i (t α , 0), we have

H - i t α , 0, γ i -b = min p∈R H i (t α , 0, p) ≤ A(t α ).
Therefore (4.11) implies (after taking ε to zero) that

A(t α ) ≥ A(t α ) + δ t 2 *
.

Case 1.4: ∃i such that x, y ∈ J * i . Writing the viscosity sub and super-solution's inequalities, we have 

η ′ (s)(t -s + β) -η(s) + 2(s -s α ) + G i (s, x, v(s, x), p ε + 2αx i + 2x i + λ i ) ≤ 0 (4.
h i p ε + γ i -v(t, y) > C.
Using the definition of C in (H1), we obtain that

p ε + γ i -v(t, y) ≥ max τ ∈[0,t * ]
p + i (τ, 0) or

p ε + γ i -v(t, y) ≤ min τ ∈[0,t * ] p - i (τ, 0).
But, from (4.15), we know that p ε + γ i -v(t, y) > p + i (t, 0). Therefore, we deduce that

p ε + γ i -v(t, y) ≥ max τ ∈[0,t * ] p + i (τ, 0).
The coercivity of H i and inequality (4.12) implies that

|p ε + 2αx i + 2x i + λ i | ≤ C tα,sα,o(α)
and in particular

|p ε | ≤ C tα,sα,o(α) + o(α) + 2r + λ i .
We deduce that up to a sub-sequence, lim ε→0 p ε exists and we denote by p = lim ε→0 p ε . Inequalities (4.12) and (4.13) gives after taking ε to zero

δ (t * -t α ) 2 + η ′ (s α )(t α -s α + β)) + G i (s α , 0, a, p + λ i ) -G i (t α , 0, b, p + γ i ) = δ (t * -t α ) 2 + η ′ (s α )(t α -s α + β)) + 1 0 d dσ G i (ξ σ )dσ ≤ 0 (4.17)
where

ξ σ = (t α + σ(s α -t α ), 0, b + σ(a -b), p + γ i + σ(λ i -γ i )) and σ ∈ [0, 1]. We have that d dσ G i (ξ σ ) = (s α -t α )(G i ) t (ξ σ ) + (a -b)(G i ) v (ξ σ ) + (λ i -γ i )(G i ) p (ξ σ ) = I 1 + I 2 + I 3 with          I 1 = (s α -t α )(G i ) t (ξ σ ) + 1 2 (a -b)(G i ) v (ξ σ ), I 2 = 1 2 (a -b)(G i ) v (ξ σ ), I 3 = (λ i -γ i )(G i ) p (ξ σ ).
Our goal is to prove that

I 1 + I 2 + I 3 ≥ ϕ(η(s α )η(s α )) 2 (t α -s α + β). (4.18)
To obtain our result, we need the following lemma whose proof is postponed.

Lemma 4.4. For all σ ∈ [0, 1], we have

η(s α ) ≤ G i (ξ σ ) ≤ η(s α ) + ϕ(η(s α )). ( 4 

.19)

We prove now (4.18). We denote by t σ = t α + σ(s α -t α ). Using (4.19) and (G3), we have

I 1 ≥ 1 2 (s α -t α )(G i ) v (ξ σ )ψ(η(t σ )) + 1 2 (a -b)(G i ) v (ξ σ ) ≥ 1 2 (G i ) v (ξ σ ) (ψ(η(t σ ))(s α -t α ) + (a -b)) ≥ 1 2 (G i ) v (ξ σ )(t α -s α )(η(s α ) -ψ(η(t σ ))) (4.20)
where we use that a -b ≥ η(s α )(t α -s α ). Using (4.19), we have

ψ(η(t σ )) < ψ(η(s α )) ≤ ψ(G i (ξ σ )) ≤ ψ(η(s α ) + ϕ(η(s α ))) = η(s α )
where we use that η is decreasing, ψ is increasing and ψ(x + ϕ(x)) = x. Injecting this inequality in (4.20), we get that

I 1 ≥ 0.
Concerning I 2 , we use (G1) to obtain

I 2 ≥ 1 2 η(s α )(t α -s α + β)ϕ(η(s α )).
We will show now that I 3 ≥ 0. Using (4.16), we have that

p + γ i -b ≥ p + i (t α + σ(s α -t α ), 0). This implies that p + γ i + σ(λ i -γ i ) -b -σ(a -b) ≥ p + i (t α + σ(s α -t α ), 0)
and therefore (G i ) p (ξ σ ) ≥ 0. Hence, I 3 ≥ 0. Finally, injecting (4.18) in (4.17), we obtain

δ (t * -t α ) 2 + (t α -s α + β) η ′ (s α ) + η(s α )ϕ(η(s α )) 2 ≤ 0
which gives a contradiction and the proof is now complete.

Case 2:

x α ̸ = 0. In this case, there exists i ∈ {1, ..., N } such that x α = x α,i e i ∈ J * i . We then define M α,ε without the function Ψ(y) -φ(x). The supremum M α,ε is reached at some point (s, t, x, y) with x, y ∈ J * i for ε small. Writing the viscosity inequalities, we get equation (not necessarily the same i) (4.17) with ξ σ = (t α + σ(s α -t α ), x α , b + σ(a -b), p + σ2αx α,i ) and σ ∈ [0, 1]. We get that

d dσ G i (ξ σ ) = (s α -t α )(G i ) t (ξ σ ) + (a -b)(G i ) v (ξ σ ) + (2αx α,i )(G i ) p (ξ σ ) = I 1 + I 2 with    I 1 = (s α -t α )(G i ) t (ξ σ ) + 1 2 (a -b)(G i ) v (ξ σ ), I 2 = 1 2 (a -b)(G i ) v (ξ σ ) + (2αx α,i )(G i ) p (ξ σ ).
We proceed as in case 1.4. The difference comes from the term (2αx α,i )(G i ) p (ξ σ ). Using Lemma 4.4, we can use (G1) and we get

I 2 ≥ η(s α )ϕ(η(s α ))(t α -s α + β) 2 + (G i ) v (ξ σ ) δ 2t * -2αx α,i .
Finally, using that αx α,i → 0 as α → 0, we have δ 2t * -2αx α,i ≥ 0 for α small enough.

We turn now to the proof of Lemma 4.4.

Proof. Firstly, we will show that for σ ∈ [0, 1],

G i (ξ σ ) ≤ η(s α ) + ϕ(η(s α )).
We have

G i (ξ 1 ) ≤ η(s α ) -η ′ (s α )(t α -s α + β) ≤ η(s α ) + ϕ(η(s α ))η(s α ) 2 (t α -s α + β) ≤ η(s α ) + ϕ(η(s α ))η(s α ) 2 1 - δ t * < η(s α ) + ϕ(η(s α )) (4.21)
where we use that 1

≥ a -b ≥ η(s α )(t α -s α ) + δ t *
. By contradiction, assume that there exists

σ ∈ [0, 1) such that G i (ξ σ ) > η(s α ) + ϕ(η(s α )). We define σ = sup{σ ∈ [0, 1] such that G i (ξ σ ) > η(s α ) + ϕ(η(s α ))} .
By (4.21), we have that σ < 1. By definition of σ, we also have

G i (ξ σ ) = η(s α ) + ϕ(η(s α )).
Using the continuity of G i , we deduce that there exists σ ∈ (σ, 1] such that for σ ∈ [σ, σ], we have

G i (ξ σ ) ∈ [η(s α ), η(s α ) + ϕ(η(s α ))] and G i ( σ) < G i (σ).
However, arguing as above, we can prove that d dσ G i (ξ σ ) ≥ 0 for σ ∈ [σ, σ]. This gives a contradiction and therefore G i (ξ σ ) ≤ η(s α ) + ϕ(η(s α )). Let us now prove that

G i (ξ σ ) ≥ η(s α ).
The proof is similar to the above case. We have G i (ξ 0 ) > η(s α ). We define In fact, for the Hamiltonians H i (p) = |p| mi , taking A = 0, we can take c = 0 and in this case η is defined on (0, +∞) and η(+∞) = 0. It may be useful to exploit (4.22) in any future study of the large time behavior of viscosity solutions of (1.1). In fact, having (4.22) in the case of continuous Hamilton-Jacobi equation was a key idea to obtain the large time behavior of the viscosity solutions, see Corollary 6 in [START_REF] Barles | On the regularizing effect for unbounded solutions of firstorder hamilton-jacobi equations[END_REF] and Theorem 10.6 in [START_REF]An introduction to the theory of viscosity solutions for first-order hamilton-jacobi equations and applications[END_REF]. However, we believe that we can not easily extend the aforementioned results. In fact, a crucial idea in [START_REF] Barles | On the large time behavior of solutions of hamiltonjacobi equations[END_REF] was the use of the periodicity assumption to construct the ergodic constant. This property is missing even in the case of Hamiltonian depending only on the gradient variable.

σ = inf{σ > 0 such that G i (ξ σ ) < η(s α ) } . We have σ > 0, G i (ξ σ ) = η(s α ) and G i (ξ σ ) ∈ [η(s α ), η(s α )+ϕ(η(s α ))] for σ ∈ [0, σ]. The inequality G i (ξ 0 ) > G i (ξ σ ) gives a contradiction.

Local Lipschitz bound

The proof of Proposition 2.2 is a consequence of the following lemma.

Lemma 5.1. Let z = z i e i ∈ J * i and s ∈ (0, t * ). Let r > 0 be such that z i -r > 0 and the ball B r (z) ⊂ (0, t * ). There exists a constant K i depending on z i , t * and r such that for all x, y ∈ B r (z) and for all t ∈ B r (s), we have |u(t, x) -u(t, y)| ≤ K i d(x, y).

(5.1)

Proof of Lemma 5.1. From Lemma 4.3, we have for t ∈ (0, t * ), x = x i e i , y = y i e i and x i > y i , u(t, x) -u(t, y) ≥ -η i (t)Kd(x, y) ≥ -η i (s -r)Kd(x, y)

where K = max (τ,l)∈Br(s)×Br(z) e u (τ,l) .

It remains to prove the upper bound. Let P i > max (t,x)∈Br(s)×Br(z)

p + i (t, x) such that for all (t, x) ∈ B r (s) × B r (z), H i (t, x, P i ) > η(s -r)K.

Let (t 0 , y) ∈ B r (s) × B r (z). Let ν > 0 and define M = sup t∈Br(s),x=xiei,x∈Br(z),yi<xi<zi+r u(t, x) -u(t 0 , y) -P i (x i -y i ) -(t -t 0 ) 2 2ν .

We claim that M ≤ 0. Assume by contradiction that M > 0. For δ > 0 small enough, we define M δ = sup t∈Br(s),x=xiei,x∈Br(z),yi<xi<zi+r u(t, x) -u(t 0 , y)

-P i (x i -y i ) - (t -t 0 ) 2 2ν - δ z i + r -x i .
Classically, M δ > 0 for δ small enough and is reached at some point (t, x). If x i = y i , we get δ z i + r < 0. If x i = z i + r, we get a contradiction using that δ z i + r -x i → +∞. We deduce that y i < x i < z i + r. On the other hand, using the continuity of u, there exists a constant C r,s,z such that 0 < M δ ≤ C r,s,z -(t -t 0 ) 2 2ν .

We deduce that t ∈ B r (s) for ν small enough. Writing the viscosity inequality, we get

H i t, x, P i + δ (z i + r -x i ) 2 ≤ t 0 -t ν .

Remark 4 . 5 .

 45 We remark that the function η depends on the time T . The main reasons of this dependence are two: firstly, we need that η(t) > c > max t∈[0,T ] A(t). Secondly, we need to satisfy assumption (H2) in which the bounds of the solution u on [0, T ] are involved. For example, if we consider the model Hamiltonians (3.10) with A i = 1,f i = 0 and A(t) = A > 0, we obtain H i (p) = |p| mi . Although that the Hamiltonians are not space-time depending, we still needc ≥ A and η(s) = 2 C(m -1)s with C < (C u ) m.The constant C is needed to satisfy assumption (H2). However, if u is bounded in R + × {0}, we can construct η without T -dependence (since C u does not depend on T ). Let us mention that if u(•, 0) is bounded for t > 0, then we can obtain our main result (Theorem 4.2) for t > 0 and η(+∞) = 0.(4.22)
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Using Theorem 2.1, we have t 0 -t ν ≤ η(t)K. Therefore, we obtain

We get a contradiction using the definition of P i . Therefore, M ≤ 0, and taking t = t 0 , we get the desired result. Finally, we can take K i = max (P i , η i (s -r)K).

Proof of Proposition 2.2. The proof of this proposition can be easily derived from the previous lemma. In fact, let us consider the ball B r (0) and take x, y ∈ B r (0) such that x ∈ J i and y ∈ J j with i ̸ = j. Using (5.1), we have