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Abstract
We study the Helmholtz equation

(1) —Au+4zu=ginQ,

with Dirichlet boundary conditions in a polygonal domain €2, where z
is a complex number. Here g belongs to Lj,(Q) = {v € L} () : rt'v €
LP(Q)}, with a real parameter p and r(z) the distance from z to the
set of corners of 2. We give sufficient conditions on p,p and € that
guarantee that problem (1) has a unique solution u € H& (Q) that
admits a decomposition into a regular part in weighted LP-Sobolev
spaces and an explicit singular part. We further obtain some estimates
where the explicit dependence on |z| is given.
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1 Introduction

This paper is the first one of a large program of research devoted to the study
of (nonlinear) heat equation in nonsmooth domains in weighted LP-Sobolev
spaces. Our final goal requires precise informations about the solution of
the linear heat equation, in particular its decomposition into a regular part
and an explicit singular part. Although this theory is well developed in
weighted L?-Sobolev spaces [8, 11, 10, 3] or in LP-Sobolev spaces [9], to our
best knowledge such a result does not exist in the framework of weighted LP-
Sobolev spaces. For maximal regularity type results in weighted LP-Sobolev
spaces, we refer to [5, 15, 20, 16, 19].

According to the approach of [9], the study of the linear heat equation in
non-hilbertian Sobolev spaces can be performed with the help of the theory
of sums of operators. This theory requires in a first step to obtain uniform
estimates of the solution of the Helmholtz equation. Hence the goal of this
paper is to make this analysis in L (€2) for a large range of values of y and
p- Our results extend the ones from [8] to the L7 (Q) setting.

For the sake of simplicity we have restricted ourselves to the two-dimensio-
nal situation. The results of this paper can be easily extended to the case of
domains with conical points.

The paper is organized as follows: In section 2 after some recalls, we prove
some embeddings and some a priori estimates in H' — 0 and in L norms.
Section 3 is devoted to the proof of the decomposition of the solution of (1)
with uniform estimates with respect to the parameter z.

2 Some preliminary results

2.1 Some notations and definitions

In this paper we consider polygonal domains of R? in the following sense.

Definition 2.1. Let Q be a bounded domain of R%. We say that Q is a
polygonal domain if its boundary is the union of a finite number of line
segments T';, j € {1,...,J} (T'; being supposed to be open). Hence we do
not assume that € is a Lipschitz domain, that is we include the presence of
cracks.

Denote by S;,j = 1,---,J the vertices of J€) enumerated clockwise.
Without loss of generality we may assume that B(S;,1) N does not contain
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any other vertex of €. For j€{1,2,---,J}, let ¢; be the interior angle of
(2 at the vertex S;, \; = and (r;,6;) the polar coordinates centered at .S;
such that

B(S;,1)NQ = {(rjcosb;,r;sinf;) |0 <r; <1,0<6; <;} =1 D
For i = (p;)7_;, we define the spaces LE(Q) = {f € L,.(Q) | wf €
LP(Q)} with
J
w143 " — 1), (2.)
j=1

where 7;(z) is the distance from z to the vertex S; and n; € D(R?) are such
that

n; =1in D;(1/2), n; =0o0n Q\ D;(1),
where D;(r) is the truncated cone D;(r) = QN B(S;,r). Note that the weight
w satisfies

w =7} on D;j(1/2) andw=1onQ\ Uiz Di(1).

The space L(€2) is a Banach space for the norm

o= ([ 17@P 0o a ) "

() is now defined as the closure of

C3(Q) ={vec™(Q)|S; ¢ supp v}

with respect to the norm

k.p
i

1/p
lullygoe = | 3 [ 1070w @) 4P @) da
' i<k
We denote
1/p
|u|V§,p(Q): Z/|Dw )P w?(2) r R (1) da
IvI=k

In H}(Q) we will denote the norms in the following way

ulty = [ IVl and iy = [ (90 + )

For /i and 7, we write fi > 7 in case, for all j € {1,...,J}, u; > ;.
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2.2 Embeddings and consequences

Lemma 2.1. Let Q be a polygonal domain of R?, p > 2 and ji satisfies,

Vi=1,..,J, <22 ifp>2,

2.2
pi <1, ifp=2 22)

Then the next continuous embeddings hold:
1. Lg(Q) — L%(Q),

2 (Q L2(Q)) = LY (), with ¢ = 2=
2. L—T( ) — ( ﬁ - _ﬁ J] q — pil)
8. H} Q) — Lq_ﬁ(Q).

Proof. The first assertion follows from the identity
ij:T;LJij #]7

Holder’s inequality and the fact that le-fuj belongs to LI(Q2) if 1 — p; > —%.
The second assertion is a consequence of the first one by using duality.
For the last assertion, in case p = 2, it is known (see [4, Thm 14.5.5] or

Lemma 2.11 below) that Hj(Q) is continuously embedded in L? .(Q2). We

then conclude observing that, for p; <1, we have 7“]2-(7/”“) € L>(Q).
In the case p > 2, we use the embedding Hy(Q2) — L? .(Q) and the second
assertion. ]

Lemma 2.2. Let Q be a polygonal domain of R?, p > 2 and [i satisfies, for
allj=1,...,J,

pi> 2 ifp>2

wi>—1, ifp=2.

Then Hg () is continuously embedded in L7 (9).

Proof. We have the continuous embedding of H}(Q) into LP(Q) for all p > 1
and " € L*(Q) for all s > 1 satisfying pups +2 > 0. The result follows by
Holder inequality as we have by assumption s > 1 such that ups +2 > 0
and, for f € Hy(Q),

up
Ty

Ls Ly

/ P < 1P
Q

with + 4+ & = 1. O
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Lemma 2.3. Let Q2 be a polygonal domain of R%, p > 2, [i satisfy (2.2) and
04 €10,7[. Then for all g € LZ(Q) and all z € C with |argz| < 04, the
problem

veety @, [Vuvers[w- [ (2.3)
Q Q 0
has a unique solution u € HJ ().

Proof. For all g € L7(€2), we know by Lemma 2.1 that the mapping
H:H&(Q)%C:U»—)/gu
Q

is linear and continuous. Observe that, for all z € C with | arg z| < 04, there
exists 6 € [0,2n] such that cos > 0 and R(z¢) > 0. Hence the conclusion
follows from the Lax-Milgram Lemma as, for all u € Hy (),

R [ (9uP -+ 2fu)] = cost [ Va2 alulfy,

for some a > 0, due to Poincaré’s inequality. m

Remark 2.1 The unique solution u € Hj () of (2.3) is called a weak solu-
tion of the problem

—Au+zu=g, in Q,
u =0, on 09,

since —Au + zu = ¢ in the distributional sense.

2.3 Some inequalities
For R > 0 and 6, €7, 7| fixed, we define
7 ={2€C|R(z) >0}, Sa={z€C]||z] >Rand |argz| <04} (2.4)

For a solution u € H}(Q) of (2.3) we will use the following notation:
llu|]| < |lg]] means the existence of a positive constant C', which is independent
of the quantities ||u||, ||¢g|| and z under consideration such that ||u| < C|g||
and [Ju]| ~ [lg]| means [[ul| < [lg]| and [lg]| < flu]-
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Lemma 2.4. Let R > 0 and 04 €15, 7| be fived. Let Q be a polygonal domain
of R?, p > 2, [i satisfy (2.2), 2 € 77 US4, and u € H}(Q) be the solution of
(2.3). Then u satisfies the inequality

[ulbio) S H9|\Lg(n)~ (2.5)

Proof. Applying (2.3) with w = u we have

g+ = [ 1P = [ gu 26)
Q Q

By Lemma 2.1, taking the real and the imaginary parts of (2.6), we obtain

oy + RC) [ 1ol 5 ooy (2.7)

and
S [ 1ol 5 ool (25)
Case 1: R(z) > 0. In that case the result can be directly deduced from (2.7).

Case 2: R(z) < 0. As z € Sy Unt, we have R(2) = pcosf, I(z) = psinb
with p > R and |3(2)| > psinf4. Hence we deduce from (2.8) that

1
/Q [ 5 Zlallgio ol (2.9)

Then (2.7) together with R(z) < 0 gives

ey S loligolulmo = RE) [ jof

1
N HQHLﬁ(Q)\u’H(}(Q) - %(Z)EHQHLZ(Q)W’H&(Q)'

We conclude using the inequality —}(z) < p. O

Corollary 2.5. Let R > 0 and 04 €5, 7[ be fived. Let Q2 be a polygonal
domain of R?, p > 2, ji satisfy (2.2), g € L}(Q), » € 77 US4, and u € Hy(Q)
be the solution of (2.3). Then we have the inequalities

1 1
W%?(Q) S mHQHLg(Q)|U|H3(Q) N m”guig(ﬂ) (2.10)

and
(142" |ulr2@) S 912z (2.11)
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Proof. By (2.6), we have

2 _ 2
[ 1P = [ gl

from which we deduce, using Lemmas 2.1 and 2.4,

2| /Q |U|2 S ||9||Lg(n)|U|H3(Q) + |U|§15(Q) S ||9||L§(Q)|U|H3(Q)-

We then prove (2.10) by a second application of Lemma 2.4 and (2.11) is
obtained by (2.10), Lemma 2.4 and Poincaré inequality. O

Corollary 2.6. Let R > 0 and 04 €)%, 7| be fived. Let Q be a bounded
domain of R*, g € L*(Q), z € 7t U Sa, and u € H}(Q) be the solution of
(2.3). Then we have the inequality

(1 + =D lullzz@) < llgllzze)-

Proof. As in Lemma 2.4, we obtain (2.6).
Case 1: R(z) > 0. In that case, we also have

[uliy ) < 5}%(/9 g) < llgll 2@ llull 20, (2.12)

z/]u\zz/gﬂ—/\Vu\Q.
0 0 0

Using (2.12), this implies

and

o1 [ 1 <1 [ gl + iy S ol lulz
from which we deduce
2| HUHH(Q) N HQHLQ(Q)-
By Poincaré inequality and (2.12), we have,
lullZ2) S lulin) < l9llzxellullrg),

and the result follows.
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Case 2: R(z) < 0. In that case z € S4. As in the proof of Lemma 2.4, we
have

pllullz) S llgllz2 @)

where p = |z| > R. Hence we deduce

I+ 2Dllull2 @) S Izl ullz@) < llgllze@),

which concludes the proof. m

Lemma 2.7. Let Q be a polygonal domain of R?, p > 2, [i satisfy (2.2),
fe L) andu e H}(Q) be the solution of

Vi € HI(S), /vu-w:/m (2.13)
Q )
Then, for all ¥ > [i with ¥ > 2 — 1% —Xand X = (M) = (,\lj)}']:p
u e VIP(Q),
and, 1 particular,

v Pue LM(Dy), P T'Vue (L(Dy)?, P Aue LP(Dy).

If moreover [i > —X then we have in particular

u < V;fz_%(9)7
and hence,
2 g2 9.2
T;’LJ ‘u e Lp(Dj>7 T5]+1 "Vu e (Lp(Dj))27 1”5]+2 "Au € Lp(Dj)'

Proof. Using regularity results far from the corners of € for the Laplace

equation with Dirichlet boundary conditions (see [6, 7]), u € W*P(Q), where,

for some & > 0, Q) is a subdomain of Q with a smooth boundary, its boundary
J

being the same as 2 except in U B(S;,6), with the estimate
j=1

Hunwzqﬁ)fSHfHLgﬂy
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It then remains to look at the behaviour of u near the corners. For any
j = 1,---,J, consider the cut-off function 7; € D(R?) used in (2.1). For
shortness we write D = D;(1) and drop the index j. Let us set

I<g1

= nu.
This function satisfies
~Ai=h, in D
’ ! 2.14
{ u =0, on 0D, ( )
where h = nh—2Vn-Vu—uAn. Moreover due to the above results (regularity
far from the corners), h belongs to L (D) and

17l oy S 10l e
For v > p we have (D) C L?(D). As, by [12, Remark 9.11], L?(D) =
V(D) applying [13, Lemma 11.2 (ii)] (as in [13, Example 11.3]) we prove
that « € V;"*(D). Let 41 be such that p < v < v, 11 > 2 — % — A and
7 <2-— 1%. As f € L? (D), by [13, Thm 9.3] we have u € V2?(D) if

2
0<2—=—m <A
p
which is equivalent to
2 2
2—— =A<y <2—-.
p p

This gives the first part of the result observing that V*?(D) C V*?(D) if
<7

To prove the second part of the result, we just have to observe that, if
p,>—)\thenu—§+22,uandu—l—2—%>—)\—|—2—}%. O

Corollary 2.8. Let Q be a polygonal domain, p > 2, i > S\ satisfy (2.2),
f e Li(Q), ue Hy(Q) be the solution of (2.13) and define v = wu with w
defined by (2.1). Then we have

vEVIL(Q), e (@), PTiVee Q) rPiAve Q)

92

bS]
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Proof. This can be easily deduced from Lemma 2.7. O]
Definition 2.2. For Q a polygonal domain, p > 2 and i € R?, we define

D(Ay) = {u € H)(Q) | Au € LL(Q)}.

Before going on let us show that Lemma 2.7 furnishes an existence result
in D(A, ;) for problem (2.3).
Lemma 2.9. Let 04 €]0,2n], p > 2, i satisfies (2.2) as well as ji > —X — %,
z € C with |argz| < 0, and u € HY(QY) be the solution of (2.3) with
9 € L5(Q). Then u € D(A,z)-

Proof. We only need to show that
—Au € Lg(Q). (2.15)

Using regularity results far from the corners of €2 for the Laplace equa-
tion with Dirichlet boundary conditions (see [6, 7]), u € W?P(Q), where
Q) was introduced in the proof of Lemma 2.7. We directly deduce that
u € W?P(Q). Hence it remains to show (2.15) near each corner S;. For
a fixed j € {1,2,---,J}, we then set u; = n; u € Hy(D;) with n; the cut-off

function used in (2.1). The function u; is a weak solution of

{ —Auj+zu; =g, in Dj, (2.16)

u; =0, on 0D,

where g; = 17, g—2Vn;-Vu—u An;. By the regularity u € W*?({2) mentioned
before, we have

Vue WH(Q)?2  ue LP(Q),
and consequently g; € L (D;) with
”gj”Lﬁj(Dj) S HgHLg(Q)- (2.17)
Hence we can concentrate on (2.16) and prove that
—Au; € Ly, (Dj). (2.18)

For the rest of the proof we drop the index j and write D for D;, u for
Hjy -ee
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As Lemma 2.2 guarantees that Hy(D) < LF,(D) for all 4/ > _123’ we
distinguish different cases:

2 _
Case 1. p > —=. In that case —Au =g — zu € Li(D).
Case 2. —2 —Z% <pu< —%. In that case, we take p = p + 2 if p < _227
and py =2 — 120 — ¢, with € €]0,2[ if p = _127' Since p; > —1%, u € HY(Q) is
solution of
—Au=g—zu€ Ll (D).

This implies by Lemma 2.7 that

ue V(D).
Accordingly

ri =2y € LP(D),

which implies that

u € LE(D), (2.19)
due to py — 2 < p. This again guarantees (2.18) because —Au = g — zu.
Case 3. —4 — }—27 <pu<L—=2-— %. then po = p 4+ 2 enters in the framework of
Case 2, and therefore by Case 2, we obtain by (2.19) that

u e Lh (D).

Now we use the same argument as before: look at u € Hj(D) as a solution
of
—Au=g—zue L (Q).

This implies by Lemma 2.7 that
u e V2P(Q).
Accordingly
ri2=2y € LP(Q),
and we conclude that (2.19) holds.

The general case follows by induction. O]

Corollary 2.10. Let 04 €]0,2xw], D = {(rcosf,rsinf) | 0 <r < 1,0 <
8<¢},/\:%,pZZ,,uGR,fELfL(D),zECwith|argz|§6’A and
u e D(A,,) be the solution of

{ —Au+zu=f, in D,

u =0, on 0D. (2.20)
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Assume v =rtu € V2’p2 (D). Then v satisfies

8 P
ﬁUW/ 2 o-23) = 0;
w)(/n7uw2+———/|w42vU / 2y

+2u/7" —|v|p 21}—|—z/ |v|p:/r"f|v|p_26.
D or D D

Remark 2.2 Recall that, by Corollary 2.8, if ;1 > —\ satisfies (2.2) then
v e V;_’pg(D) as u € D(A,,) is a solution of (2.20).

Proof. Recall that V;;Z(D) = C¥(D) with C¥(D) = {v € C*(D) | S ¢
supp v}. ’
Step 1: Proof of (a). For v € CF (D), we have

[ % p-2ranas = [ o2 2oy aran + [ o, oypas
5 or p Or 0 7

and hence

L0 o ¥
r —|v|P o rdrdf = lv(1,8)Pdo
oo ’ 9 oo
_ 9 B2 P2
[ el o+ o5 dras
/[vl€|”d9
p— 2
/D 3

5OV

()(% N N
P HPQa + o255 drdo

/—| p-2522 drd&—/ 212022 g,
p 2 Yor D2 or
We obtain then

> ¥
Z_) —1 p—Q*a'U d / -1 p—2 _av et / 1 p
5 (/Dr |v] Cw rdrdf + Dr v o rdrdf i lv(1,0)Pdo
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By density and [17, Thm 1.31, p.27 and Def 1.9 p.15], we can pass to the
limit and we see that the previous equality is also valid for v € fo; /p(D).

As v = rfu with u € H} (D) we have yov = 0 on D which gives the equality

p -1 p72—@ / -1 pq@ _ 1
2</Dr ps+ [ gl ) <o (2.21)

Then (a) follows by taking the real part of (2.21).
Step 2: Proof of (b). Observe that v satisfies

{ —Av—plr 2o+ 2ur P 4 2o =g, in D (2.29)

v =0, on 0dD,

with g = r#f € LP(D). As v € V;ﬁ(D), it is meaningful to multiply (2.22)

P
by |[v|[P~20 and integrate. We then obtain

0
- / Av o5 — 42 / 2ol + 25 / 12y / jof?
D D p Or D (2.23)

= [ gl
D

For v € C3°(D) we have

- / Av o5 = / Vo V(jo]20) + / ([0 20) 76(V0) - v
D D 28D
_ / VoPlop2+ P2 / Vol + / [P (V0)?)
D 2 D D

T /8 olloP ) (V) -

As in Step 1, we show that we can pass to the limit and the previous equality

is also valid for v € \/22_1”2 /p(D). Again the boundary term is equal to zero

and we obtain the equality

—2
—/ Av|v|p—2@:]3/ ]VU\2|U|7”_2+p—/ WP (VR (2.24)

The result follows then from (2.23) and (2.24). O
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Lemma 2.11. Let D = {(rcosf,rsinf) |0 <r < 1,0 <0 < }. For all
w € HY(D), we have
J et =5

Proof. First observe that

[ vl = [ (G 5 G0,

Moreover, for all 7 €0, 1[ we have w(r, -) € H}(0,1) and hence, by applying
Poincaré inequality in (0, ),

ow A
/(89)(7“9)d9>ﬁ/0 w?(r, 0) do).

We deduce from this inequality that

// + 1 gl;))rdﬁdr > // d@d
¢2// 7“9d9 dr
A i

Remark 2.3 Observe that for w(r,6) = r?(1 — r)*sin(\) with 8 > 0 and
a > 1/2 we have w € H}(D) and

/ |V |2 ﬂ-_ (O‘+B>) le

2 2@—1 DT'Q ’

v

which proves the optimality of the previous inequality.

Corollary 2.12. Let D = {(rcosf,rsinf) [0 <r <1,0<6 <9}, A =7,
p > 2, pe R satisfy
4(p — DA — 1i?p* > 0. (2.25)

Let f € LF(D), z € C with R(2) > 0 and u € D(A, ) be the solution of

{—Au—i—zu:f, in D, (2.26)

u =0, on 0D.
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Assume v = rHu € V;_’pg (D). Then we have the inequalities
p

R(2) lullzoy < Il and — [S)] ullgzo) S [1flzgp)

Proof. By Corollary 2.10, v = r*u satisfies

-2
L[ 1woiop2+ 252 [ bt wor -2 [ 2op
D D D (2.27)

0
+2/L/T1—U’U’p2@+2/ \v|p:/g|fu\p26,
D or D D

ov
%(/D " lv[P~*0) = 0. (2.28)

Writing v = vy + 1 vy with v; : D — R, (2.27) becomes

with g = r#f and

P @z (Qvaye L Ouiyy 1 Doy a5
2\/17[(87") +(a7,) +T2(89) +T2(86)](U1+U2)|U’

P=2 [ a2 2o Oviyy _ (Oayy | o 0u1 00
B2 [ ot = o = ) (G = (G2 + 254
1 Ovi., 1 0vg.o  2i0v; Oy

(ae) __<ae) _QWW]

L 0v
i [l o [ G w 5z [P = [ g
D

(2.29)
By taking the real part of (2.29) and using (2.28) we obtain
Ovy 10v; 1 0vsy
p—dg( ouL 2 Lou 100242
/ o =) [(Ul +8 ? 31“) ;(Ulr 00 +8U2 89) ]8
1 1
s~ G2+ (et — v =227}
/ ol + Rz / o =R( [ gl o)
(2.30)

Denoting w = (v? + v2)P/* = |v[P/2, then (2.30) gives

4(p—1) 3_w 2 1 ow 2 [ 2,2
2D NG+ -w [ .

+R(2) /D w? < R /D glo0)
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By Lemma 2.11, we have

Hence, we deduce from (2.31) that

R(2) Il < llgllze 0llZ:",

n case

4(p — 1)\?

e —p*>0.

This gives the first inequality.
As 2 1)’\ — p% >0 and R(z) > 0, we also have

, 1
/ 2 /I "5 < llgllze [ (2.32)

1 1
/IVw|2 /Ivi” ! m%ﬂf’“?) +<v1—avl+ %)]

or r o0 Croe’ ! (233)
S ||9||Lp [v]I7s
and
ov ov 10v 1 0v
p—af, Z01  YT2\2 it AP s lolB5t. (2.34
ol = 0 G2 + (oo = 0 2] S el ol (234
By taking the imaginary part of (2.29) we obtain
8?)1 81)2 8U1 8212 (%1 802
- 4| 20010V OV1 9 OV29
2) / [ 1 Or 0 2 or Or vrva( or )7 v or )
1 81}1 1 87)2 1 87}1 1 (91}2 1 c%l 1 87)2
910U 10Uy 51001 10Uy 10019 10U2.9
o oaron  Crasron  ag) Tl g)]

2 [ o2~ w3 +96) [ op =3( [ glr o),

Hence, we deduce from (2.32)-(2.33)-(2.34) that

)| / ol < Nllos 1ol

Sl < gl

The conclusion follows observing that [[v||z» = [[ul| 1z and [|g|[zs = || f[|z. DO

and hence
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Before going on let us show that this result is mainly optimal.

Lemma 2.13. Let D and \ = % as in Corollary 2.12, and let p > 2 and
uweR.If

1
A< 2(1 - 2—9)2, (2.35)

then, for all p 6]\/2(1 — %)2 + A2 2— %[, there exist f € L7(D), z € Ry and
u e D(A,,) solution of (2.26) such that r*u € V;_’pg(D) and

zllull ey > 11z o) (2.36)

Proof. Take p > 2, z € Ry, and u € D(A, ) such that r*u € V;_’pg(D),

u > 0on D and |ul[zp) = 1. Let us consider the function g : R — RT
defined by

p
sy = 1Al

EP

in order that

| — Au+ zuHiﬁ(D) B

=q(1/z).
zP ||u||zzﬁ(p)

Clearly we have ¢(0) = 1 and therefore if ¢ satisfies
q'(0) <0,

then there exists a positive real number X close enough to 0 (and then a
positive real number z large enough) such that ¢(X) < 1 which will show
(2.36).

In view of the definition of ¢, we directly see that

q'(0) = p/ P~ (= Au)r? da.
D

Hence we are reduced to find a non zero positive function u € D(A, )
such that

/ uP (= Au)r*? dr < 0. (2.37)
D

For that purpose, according to the proof of the previous Corollary and to
Remark 2.3 we take
u(r,0) = ¢(r) sin(Ad),
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with (1) = r=#+8(1 — r)®. Then we see that u € H}(D) if
pw<p and a>1/2. (2.38)

On the other hand by direct calculation we check that Au € L7(D) if
2 1
f>2—- and a>2——, (2.39)
p p

and r*u € V;_’pg (D) if

p

1
>0 and a>2-—-.

p
Now we come back to (2.37). By direct calculation, (2.37) reduces to

I:=—[(B—pu)?— N /0 rPP2 (1 — )P dr
+2(8 — p) + 1o /0 PP — )Pl dy (2.40)
—[a(a — 1)] /0 rPP(1 — )P~ 2 dy
<0

By using the definition of the Beta function, we get that

I ==B(pB.pa+1)[(B—p)* = N+ B(ps + 1,pa)[2(8 — ) + Lo
—B(pB + 2, pa — Da(a —1)].

Finally the relation B(z,y) = and the recurrence relation I'(z +

1) = 2T'(2) lead to

T(pA)L(por — 1)

[(pa+pB+1)

({108 = 1) = X + 208 = ) + 1B} (par = 1) = (@ = 1)(pB + 1)8).

I =ap

In conclusion we are looking for parameter «, 8 and p satisfying

2 1
B > max(p,2 — —), a>2——
p p
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and

[(p = 1B +p(\* = p?)]a+ (p = 1)B* = (A — p*) <0
Hence, if 2(p — 1) + p*(A\? — p?) < 0, then for 8 > 2 — % close enough to
2 — %, n<2— % and « large, the above conditions are satisfied. O]

Remark 2.4 Observe that, in the notations of the previous proof, if 2(p —
1)+ p?(\? — p?) 20,ﬁ>2—% anda>2—]—1)thenwe have

(p—1)B+p\ = p)]a+ (p—1)52 — (A2 =) > 0.

In order to go further, we need estimates like in Corollary 2.12 for z in a
larger part of the complex plane.
Corollary 2.14. Let D = {(rcost,rsinf) [0 <r <1,0<0<¢}, A= 7,
p > 2, ;> =\ satisfy (2.2) and (2.25). Then there ewists 04 €5, such

that, for all f € L1(D), all z € C with |arg 2| < 04 and u € D(A,,,) solution
of (2.26), we have the estimate

2| ||UHL{;(D) S HfHL{;(D)~

Proof. Observe that by Lemma 2.7, we have that D(A,,,,) C L? (D). Hence
we can define the operator

A:D(A,,) CLE(D) — LV(D) : u v —Au.

First Lemma 2.9 guarantees that, for all z > 0, the range of A + 21 is
LE(D). Second by Corollary 2.12 we have, for all z > 0,

z|[(A+2D)7 < 1.

By [18, Thm I-4.2], this implies that —A is dissipative. As L% (D) is reflexive,
we have by [18, Thm 1-4.6] that D(A, ) is dense in L%(D). Hence by Hille-
Yosida Theorem [18, Thm I-3.1], —A is the infinitesimal generator of a Cj
semigroup of contractions 7'(t) for ¢t > 0.
By Corollary 2.12; we have also a constant C' > 0 such that, for all ¢ > 0
and all T € R
[T 1A+ (o +ir))7H < C,

hence, by [18, Thm II-5.2], there exists 0 €]0, 7[ and M > 0 such that
p(—A) DY :={zeC||argz| < g+5}u{0},
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and, for all z € X,
2] I(A+ 207 < M.

This proves the required inequality. O]

Lemma 2.15. Let Q be _a bounded domain with a smooth boundary and
p > 2, Then there exists 04 €)%, [ such that, for all h € LP(2), all z € C

with | arg z| < 04, and v € HE(Q) weak solution of

—Av+zv=h, in Q,
v =0, on 0,

we have
L+ 2Dl oy S N0l e @)
Proof. Recall that v satisfies

Vo € HL(Q), [V%V@—I—z[?@:/h@.
9 9 Q

Step 1: Rz > 0. By [1, Theorem 1.6], we have

12 [Vl @y S 17l 2o (@)
As moreover
[0l o) S 10l may < 10l oy
we obtain the result.

Step 2. Extension. The extension to {z € C | |argz| < 64} can be made as
in Corollary 2.14. O]

Corollary 2.16. Under the assumptions of Corollary 2.14, for all f €
L7 (), there exists a unique ¢ € LT ;(S2) solution of

Vo € D(A, ), /ng((—Am)v):/va.

Moreover ¢ satisfies
2| H¢||L3ﬁ(9) S Hf||L‘1ﬁ(Q).
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Proof. By Corollary 2.14 and Lemma 2.15, the linear operator
A:D(Ay;) C L%(Q) — LZ(Q) cu— —Au
satisfies, for z € C with |arg(z)| < 4,
12| |I(A + Z—’)_lfHLg(Q) N Hf||L§(Q)-

Moreover D(A, ;) is dense in L3(Q2) (because D(2) C D(A, ;). Hence we
can define the adjoint A* of the operator A

A% D(A) € (I4(9)" - (IO
where
D(A") = {a* € (IX(Q))" | 3y" € (IX(Q))", Vo € D(A), /Q v A7 — /Q T}
Afx* = y*, for x* € D(A").

For z € C with |arg(z)| < 04, we have z € p(A) and by [18, Lemma [-10.2],
z € p(A*) and
(ZI+ A = ((z1+A)"H"

The result follows from [18, Lemma I-10.1] observing that A* is such that
u € D(A*) C L1 () if and only if there exists g € L? ;(€2) such that

Yo € D(A, z), /gv = — / uAv.
Q Q

and, for u € D(A*), in the above notations, A*(u) = g. O

3 Uniform decomposition

Theorem 3.1. Let R > 0 be fixed. Let p > 2, € > 0 fized and 2 be a bounded
polygonal domain of R?. Denote by S;,j =1,---,J, the vertices of 9Q. Set

Qe={xeQ|Vj=1---,J  dist (z,S;) > €},

and let ji € R’.
Then, there exists 04 €|
the solution u € H}(Q) of (

[ulwzg,) + (L 272) Julwroio,) + L+ |2]) ulon) S lglme).  (3.1)
Proof. Let 64 be given by Corollary 2.15.

7| such that, for all g € L7(Q), all 2 € 77USy,
3) satisfies u € W*P(Q,) and

s
2
2.

September 2, 2010



22

Step 1: Regularity H?>. Let us fix n a cut-off function such that n = 0

on U B(S;,€/2) and n = 1 on Q.. Let Q a regular domain such that
=1,
Q. C Q C Q, the boundary of Q satisfying 9Q = 9Q except near the corner,

and v = nu € H}(Q). In that case v is a weak solution of

{ —Av+zv=n9g—2Vn-Vu—Anu=:h, in € (3.2)

v =0, on .
By Lemma 2.4 and Poincaré inequality, we have h € L?() and satisfies
HhHm(Q) S ||9HL§(Q) + HVUHLQ(Q) + ”UHL2(Q) N HgHLg(Q)- (3:3)

By Lemma 2.4 and Corollary 2.6 we obtain

[0lig@) + L+ 12D [0l 2@y S Ill2q)- (3.4)

We can also consider v € H{(£2) as a weak solution of

—Avt+v=h+(1-z)v=h, in Q,
v =0, on S,

where hy € L2(Q) and, by (3.4),
1Pall 2y S 10l 2gy + (U4 [2) 0ll 20y S Wl 20) S l9llzse)-

By the strong ellipticity of —A and the fact that the boundary conditions

cover —A we have (see [4]), v € H?*(2) and
[0l 2@y S hall 2@y S 1Pl 2@y (3.5)

As v € H?(Q2) we have Av € L?(Q). Multiplying (3.2) by —Av and integrat-
ing, we obtain

z/\Vv|2:—z[vAv:—/hAv—/|Av|2.
0 Q 0 9

This implies, using (3.5),

2] / Vol < [l 1A oy + 1812505, S 1Al 0.
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Combining (3.3), (3.4) and (3.5) we prove the inequality
(V]2 + (14 V12D [0l + (L + 2D ol 2@ S IRl S l9lliz)
As v = u on €, this implies u € H?(€2,) and
[ul 2o, + (14 V12D [ulma + 1+ [2) [ul 2o, S llgllzzo)

Step 2: Regularity W?P(€2,.). As in Step 1, let 1, be a cut-off function such
that n; = 0 near the corners and 7 = 1 on Q. Let ), a regular domain such
that Q C Oy C Q, the boundary of O satisfying 901 = 9Q except near the
corner, and w = mu € H} (). In that case w is a weak solution of

—Aw+ zw =m9—2Vn - Vu — Anyu =: iLl, in €y,
w =0, on 0.

By Step 1, we have that w € H?*(Q;) and
(w2 + (L+ V2D [wlm@y + 1+ |2) [wl 20, S N9l
As w = u on ) this shows u € H?*(Q) and
|l g2y + (1 + Vzl) |l + (14 [2]) [ul2@) S ||9||L§(Q)- (3.6)
This implies that
h:=ng —2Vn-Vu— Anu € LP(Q)

with
HhHLp(Q) N HSJHLZ(Q) + |U’w1m(fz) + |U|Lp(§z) S ”g”Lg(Q)a (3.7)
where we have used Sobolev inequality and (3.6).

We can now proceed in the same way as before but with a given function
h € LP(Q). Hence v € HJ () is a weak solution of

—Av+v=h+(1-2)v=h, in Q,
w =0, on Of).

By the elliptic regularity, for all § € [2, p] we have v € W2P(Q) and
[ollw2s@) S 11l Lo@
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Using Corollary 2.6, we obtain

(L +zDlvll 2@y < 1Rl L2y
which allows to prove in particular

[0l 2y S Ihall ey < Al + 1+ ZDN0ll 2@y S 1Rl L2@) < 1Bl

By Corollary 2.15, we deduce that

L+ 2D [Vl oy S 1Al
and hence

||h1||Lp(Q) S ||9||L§(Q)-
By interpolation (see [7, Thm 1.4.3.3]) we obtain
[vllwro@) < €llvllwzsg) + e vl o)

Applying this inequality with € = H;’ this gives

||

Wlwar@) + (L + VI [vhyie@) + 1+ 12]) [v] @ S ||9||L§(Q)-
The result follows as v = u on (). O

Lemma 3.2. Let R > 0 and 04 €5, 7| be fized. Let C' be the cone with
interior angle Y and A = 5. For z € 7% US4 and u € V2*(C) N Hy(C) with
u =0 forr >rg, if u satisfies (2.2) and, for all k € Z*, 2 — % — 1 # kX, then
we have

1/2|U|v‘}71”(0) + 2] lull 2oy

|uly2r ey + ’U‘v;;Pl(C) +llullze o)+ 12
S (A + 2)ull ey + 2] [Jull ey
Proof. By [14, Thm 6.2], we have, for § € [=04,04] and u € E2?(C),
Jullgzoey S =4+ eullg ey + ulzscs) (9
where S = {z € R* | §; < |z] < &} NC with 0 < & < 0y, EXP(C) =
adh”.”Eam (C°(C'\ {0}) where

1/p

2
fullgzr = | [ 7 32 @7 1) D)

|a|=0

As [Jullzesy S llull Lz (e, the result can be deduced from a change of variable.

]
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Theorem 3.3. Let R > 0, p > 2, Q be a bounded polygonal domain of R2.
Denote by S;,j =1,---,J, the vertices of OS2 enumerated clockwise and, f07"
Je{1,2,---,J}, let i be the interior angle of Q0 at the vertex S;, \; =
and X = ()\j)lgjgj.

Let ﬁ > —X satisfies (2.2), (2.25) and, for all k € Z* and all j €
{12+ J}, 2= 2 — p; £ k.

Then, there exists 04 €5, 7| such that, for all g € L%(Q), all z € T USy,
the unique solution u € D(Apﬁ) of

{ —Au+zu=g, mn €,

wa

u =0, on 0,

admits the decomposition

u=ug+ an(r) Z cx,(2) Py, (ry/z)e™"Vz sin(\0), (3.9)

/ 2
0<)\j <2757,u]
FLEN, N, =kA;

with up € Vﬁz’p(Q), ex(2) €C,omj € D(R?) is a cut-off function such that

n=11inD;(1/2), n;, =0 onQ\ D;(1),

RV
st
and Pj . (s) = Z a4 with Ly, > 2 = puj — ]% — ).
i=0
Moreover, the following inequalities are satisfied
(@) [urly 2oy + [urly 2o ) + lurlzs_o < ol

(b) |UR|V;”’(Q) + |2|'? |UR|Vﬁl‘p(Q) + |2 |UR|L§(Q) S ||9||L§;(Q)

€Y D ley@IA+

. 2 .
j=1 0<A;<2—;—uj
FLEN,N =k,

ey
) S ||9||L§(Q)

Proof. Let 64 be the minimum of the ones obtained by Theorem 3.1 and by
Corollary 2.14. By Theorem 3.1, we have the required result in the interior
of 2. It remains to prove the regularity near the corners.

Let j € {1,2,---, J} be fixed and observe that v = n; u is the solution of

{ —Av+zv=g¢;, in Dy,

v =0, on 0D, (3.10)
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with D; = {(rjcosfj,r;sind;) | 0 <r; < 1,0 < §; < ¢;} and g1 = n;9 —
2Vn; - Vu — An;u. By Theorem 3.1, we have

Vue WH(Q.),  ue LP(Q),
and g € L§ (D;) with
H91HL§1].(Dj) N HgHLfI(Q)- (3.11)

Hence we can concentrate on (3.10). For the rest of the proof we drop the
index j and write D for D;, p for p;, ...

Step 1: v € Vi*(D) and
0ly22(p) + [0lyr2py + [0lyop ) S llgrllzzpy S lgllzze)- (3.12)
Using Lemma 2.4 and Corollary 2.5, we have

HngLf(D) Sirgllczpy + 1wl g0
2(1—p)p  p—

p=2
S ; e[ ) = gl ooy + llulla@) < llgllzz )

This proves
11l z2m) S 9l zze)- (3.13)

Moreover v can be considered as a solution of

—Av=gy—zv=:¢9y, in D,
{ v =0, on 0dD. (3.14)
By Lemma 2.7, v € LE(D) and by Corollary 2.14, we obtain
92lzz0) S N9illzzoy + |2llI0llzo) S Ngallzg oy S llgllzne)- (3.15)

Applying [13, Lemma 11.2(ii)] (as in [13, Example 11.3]), this allows to con-
clude v € V;**(D) and

||U||v12v2(p) = |U|V1212(D) + |U|v0172(D) + |U|v3f(D) S ||92||L§(D) S ||9||L§(Q)-

The case p =2 and p = 1 is proved.
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Step 2: LP-decomposition in case p > 2 or in case p = 2 and p < 1. As
< % and, by Step 1, v € V**(D), applying [13, Cor (iv) of Thm 10.2
and Thm 10.3], we have

v = Ug) + Z ex () sin(N) =: vg) + vg (3.16)
0<>\’<2—%—u
IkEN, N =kA

with vg) € V2?(D) satisfying, by (3.15),

1
1o 2oy S loallzy S lollzeoy S lollze- (3.17)

Asp < %, by [13, section 0.10], we have VP(D) < V2?(D) and Lr(D) —
L3(D). Hence, using (3.12), (3.15) and (3.17), we obtain

1
osllvz2p) S ollyzem) + 1R 2oy S loillzamy S gl -

The space Vg = span{r* sin(\N0) | 0 < X < 2 — % —pand 3k € N, X = kA}
being of finite dimension, we have

. lev(@) S llvsllyz2p) < l9rllzgo)- (3.18)
0<>\’<2—%—u
JkeN, N =k\

Now in order to have uniform estimates with respect to |z|, we choose
another decomposition. We rewrite (3.16) in the following way

v =vp+ Z ex (2) n(r) Y (ry/z) r sin(N), (3.19)
0</\’<2—%—u
IKEN, N =kA

where vg = vg)—i- Z ex(2) n(r) 1=ty (ry/2)) ™ sin(N0) and ¢y (s) =

0<N <22y

JLEN,N kA
-1
. S . .
Py (s)e™® with Py(s) = Z —and Ly > 2 —p— % — X\ is chosen in such a
i!
=0

way that (1 — ¥y (ry/2)) r sin(N) € VZP(D).
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Step 3: Estimates (c) on |cy(z)]. By (3.18) we know that, for all z € 7t USy,
the mapping

LE(D) = C: g1+ cxn(z)
is linear and continuous. Hence by Riesz theorem, there exists a unique
w) € L (D) = (LE(D))" such that

z

cx(z):/glu_@/ dx.
D

Al
z

(i) for allv € VZ2P(D)N D(A,,), / (=Av + zv) @) = 0;
D

(i) for all £ €10,2 — % — p[ such that Ik € N, X = kX, we have

/D(—A + 2)(n(r) r* sin(£6)) u‘;ﬁl = e

This can be easily deduced from (3.16) as this implies

Claim: The function w} 1s characterized by

v € V22(D) N D(A,,)
<= VN €]0,2 - 1% — p[ with 3k € N, X = k), cyv(z) = 0.

and

/D (A + 2)(n(r) ¢ sin(€0)) @Y = dex.

The reversed implications can be deduced by uniqueness of w?".
)\/

To obtain the good estimate on ¢y (z), we will decompose w, in an ap-
propriate way. To this aim define the function
W = Ayve ™V Q(VEr) Y sin(N), (3.20)

-, Q(s) = Z a;s", with m fixed below and a; such that

=0

ag=a; =1,
Vie{l,...,m—1}, RN —=1-2))a; =G+ 1) 2N —i—1) .

The positive integer m is fixed as follows: if N — 1 > 1 then we take m >
N —1>m—1, hence we have m > 1 and for i € {1,...,m — 1} we have
i+1<m<NXNandhencei+1#2)N. If ' —1< 1 then we take m = 1.
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The above choice leads to

(A +2)(Y) = = Ay (2N — 1 — 2m)ay, r™ V1275 ¢77VE sin(X)
H(=2VN - Vi — 9N A,
Let ¢t > 1 be such that (m — X — 1)t + 2 > 0, by the above computation, we

see that (—A + 2)(ny*) € LY(D). Hence we can define ¢ € H}(D) such
that

Yo € H} (D), /D(qu*’ V7 + 2o 7) = / (A 4+ 2) () 5. (3.21)

D

Let us show that
wY =N — ¢ (3.22)
To this aim, let us prove that gy — ¢ satisfies the conditions (i) and (ii)
above.

The condition (i) can be deduced from the Green formula, see Lemma
3.5 below. Consider then the condition (ii). By the Green formula (apply
[17, Corollary 1.42] and remind that H}(D) < L*,(D) (see Lemma 2.11))
we deduce

/D (—A + 2)(n(r)ré sin(€6)) &
- /D V(n(r)ré sin(€0)) - V&Y + 2 /D n(r)r sin(£6) 3

By definition of ¢ we obtain

/D V(n(r)ré sin(€0)) - V&Y + 2 /D ()< sin(6) "
- / TR T 200 1(r)r sin(€6).

D

Hence we have
[ (=t 2ty sin(en) (¥ — )
= [ a2 sineo)) i
- [ EEFRE arr singeo)
—— [ Awrysinon i + [ Al )y singeo).
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Let us denote by D, = D\ B(0,¢€), then we can write by the Green formula

- /D Aln(r)r sin(€8)) i + / A n(r)r sin(€6)

—tiny = [ AGEsin(eo) ¥+ [ AP sinien)
~tiy |- /, S sin(eo) 1 + | o sin(et)
~tiye [ oo sinfen) o0 — S0 oty sinten)] | _ao

By definition of 1" we deduce that, for & # X,

/D (—A + 2)(n(r)r sin(e)) @Y = 0,

P
as / sin(€0) sin(N'0)df = 0 if £ # .
0

In case £ = X we have

/D (—A + 2) () sin(N6)) (0 — 3)

- AX% fimg [M@_WQ(\/ZE) +Vze Ve (Q(Vze) — Q'(Vze))
= AN = 1.

This proves that w?l =N — V.

FEstimate on Hw;\'HLgM(D). Observe that, as z € 77 U Sy , we can write z =

|2]e® with 6 € [—04,604] and we have |e=7VE| = ¢=rlzl"/? cos(6/2) < o—arlz]
with v = cos(64/2) > 0. Hence we obtain

1/2

1
' —~qr|z|1/? — N
||@/)/\ ||qL<1M(D) 5/ ezl |Q(\/;7“)|q7“( N-wa+1 g,
0

Making the change of variable s = r|z|'/? we obtain

+oo
/ Ll N —~ags (=N —
||¢A ”%q ) < |z| 5 ((—u—X)g+2) e~ a8 g(=A M)Q+1|Q(S)|st'
‘. 0
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+oo
where the integral / e 155N O (5) |9 ds < 400 as (=N — p)g+2 >
0

0. Hence we have
u+A

k% HLq D) S |Z|_7Jr (3.23)

Recall that

(A +2) (™) = —n Ay (2N — 1 = 2m)ay, r™m N1 EmTHle_“/E sin(%\’e)
+(=2VyN -V — N An).

Hence, we see that (—A + 2)(ny) € L?,(D)as X < —,u+2—% and m > 1.

1/2 we obtain

Making the change of variables s = r|z]|
1
O e

+oo
,S (/ e—'yqss(m—u—)\’—l)q-i-ldS) ’Zl—%(m—,u—)\’—l)—l7
0

where the integral /+0<> e~ 798 gm=u=XN=1at1jg « 456, Hence we obtain
0
leErm N2 (V) gy S [ H IR (3.24)
Let us denote by 7y := (—2V¢* - Vi — N An). For |z| > 1, we have
I lZe () / e~ TIVE| N O (/)[4 dr
/ e rq\f|r( N —p—1)g +1|Q(r\/_)|qdr
+ [ oy B
o
# [ e g v
/ e (V) 1) ar
[ e e var + IR evaar
o
- / e QA
o +1).
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Hence we obtain s
ryllpe oy S e 3.25
L,.(D) S

for some 74 > 0.
We then deduce from (3.24) and (3.25) that

pN

’ _1
I(=A+2) (e oy S 12702

As (=A + z)(my*) € L (D), by Lemma 3.4 below, ¢* € H}(D) —
L? (D) satisfies the assumptions of Corollary 2.16, hence it satisfies

/
Ly

216X 122, 0y S W=+ 2) )0y S Iz

Le.
/ 1 N
1M e oy S l27a 72 (3.26)

By (3.23) and (3.26) we deduce

_1 N
o s oy  JoI75+5

and by Holder inequality

_ 1 pt
q+ 2

/ / by
oxl =1 | 011 < oy 10" i o0 S 1145 Nl

Hence, using (3.11), we conclude that, for |z] > 1,

_ 1y ptN
q+ 2

lev] < 7] HQHL:;(Q)- (3.27)

which proves (c).
Step 4: Estimates (a) and (b) on vg. By (3.19) we know that vg € V*P(C)N
H}(C) with C the cone with interior angle ¢). By Lemma 3.2, to obtain the es-
timates (a) and (b), it remains to estimate ||(—A+z2)vg| o) +12] [[vrl 2 (c)-
We have
[(=A + 2)vrll Lz ) + 2] [[vall Lz
S N(=A+2)vllz oy + 2 vl ez

+ ) e @A+ 2) () Y (ry/2) Y sin(N0) 1)

0<X<2—%—M
JkeN N =k

el D lev@n) dn(rv/z) e sin(VO)| ).

0<>\'<2—%—u
JkeEN, N =kX
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Recall that v is a solution of (3.10) and hence, by Corollary 2.14 and (3.11),

I(=A + 2)ollpo) + 2 0llzo) S Norllzzm) S llgllzgo)-

It remains to estimate the two last terms.
Since N'p + up + 2 > 0, we have

In(r) dx (ry/2) 1 sin(NO) 17
1 1 ,
5/ | Py (ry/z) e 7712 N sin(NQ) |Prie L drr
0

< /OO |P)\/(3) |p o—15P NDFuptl g |Z|_%(>‘/p+#l’+2)
0

~Y
5 |Z|—%(>\’p+up+2)

We then deduce from (3.27) that

20D lev@n(r) x(rvz) rY sin(NO)| )

0<)\’<2—%—,u
A/

_1 + _1 _1
SO TR gl 122X
0<)\’<2—%—p,

S HQHLﬁ(Q)-

Moreover if [y, > 2, we have
[(~A 4 2) (W (/) sin(XO)Ly ) = llz e 1 sin(NO) Prv/DI
with P a polynomial function of degree Ly — 2. As before we obtain

[(=2 4 2)(tn (r/2) ™ sin(NO)|[y ) S |2 307220

since N'p + up + 2 > 0. Hence we have

+u

ro. _l_y
I(=A -+ 2)(Wx (rv/2) ™ sin(NO) [z py S 127772, (3.28)
If Iy, = 1, then we have

(=A + 2)(y (rv/z) 7 sin(VO)) = (2N + 1)v/ze ™V r¥ 1 sin(\6),

and the same arguments than before yield (3.28) since here ' — 1+ u+ % >0
(reminding that if [y, = 1, then 2 — u — % - XN <1).
As the function 7 does not interfere the result follows from (3.27). O
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Lemma 3.4. Let p > 2, D = {(rcosf,rsinf) |0 <r < 1,0 < 0 <} and
w satisfy (2.2). Let ¢ € HJ(D) and v € D(A,,) then we have

/ (Avg+ Vv Vo) =0. (3.29)

Proof. For all € € (0,1), we set D, = {x € D | r(x) > €}. Since v is regular
far from the origin, we can apply Green’s formula on D, and find

/ (Avg + Vv - V) = —¢ / Orvodd. (3.30)

Since Holder’s inequality and Lemma 2.1 guarantee that the integrant of
left-hand side of (3.30) is integrable on the whole domain D, Lebesgue’s
convergence theorem allows to conclude that the left-hand side of (3.30)
tends to the left-hand side of (3.29) as € — 0. Hence it remains to show that
the right-hand side of (3.30) tends to 0.

Now denote by A the annulus defined as follows

A={(rcosf,rsinf)|1/2<r<1,0<6 <}

For any 0 € H'(A) such that Au € LP(A) and any ¢ € H'(A) such that
¢ =0o0n 0 =0 and 0 =, let us show that

| / 0,00d8| S 18l lolmeny + 19llr wlAdllpzy  (331)
r=1

Indeed by taking an arbitrary cut-off function n € D(R) such that n(1) =1
and 7(1/2) = 0, Green’s formula yields

| oviddi = [ (85(0d) + 95T

A

By Holder’s inequality we obtain
| 00000] S 180 ol + 16000 | A0 o
Since Poincaré’s inequality guarantees that
H<5HH1(A) S ’QMHl(A);

September 2, 2010



35

and since 7 is equivalent to 1 on A, the previous estimate leads to (3.31).
Now for all j € N, we set

A; = {(rcosf,rsing) | 27Ut < <279 0 <0 <}
We then see that the linear mapping
= r=e72,

is a bijection from A into A;.
Now we perform the change of variables © = ¢277% and using (3.31), we
obtain

’/ _arvﬁl_”’de‘ SOl aplolma,y + 10l aplAvllpay-  (3:32)
r—=e2-J

Since the measure of A; tends to zero as j goes to infinity, we deduce
from this estimate that

Ii(e) == / Ovérdd — 0 as j — oo.
r=e2-J

Moreover Green’s formula on B; = {(rcosf,rsinf) | 277 <r <e 0< 6 <
W}, yields

Iy(e) :/B.(AUQE—FVU'VQE)—FI]‘(E).

Accordingly passing to the limit in j, we obtain that

Io(e) = /  Ovbrdd = /D (B0 V- V5)

where we recall that D(e) = {(rcosf,rsinf) | 0 < r < ¢ 0 < 0 < 9}
Passing to the limit as € goes to zero, by Lebesgue’s bounded convergence
theorem, we find that

Iy(e) = 0 as € — 0.

This proves (3.29) thanks to (3.30). O

Lemma 3.5. With the notations of the proof of Theorem 3.3, the function
nN — N (with v and ¢ defined by (3.20) and (3.21)) satisfies, for all
v e VIP(D)ND(A,,),

/D (—Av+ 20) (7B — ) = 0. (3.33)
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Proof. For shortness we now skip the indices z and X' and we use the nota-
tions of the Proof of Lemma 3.4. Thanks to (3.29), we may write

/D(—Av—l-zv)gz_ﬁ—/D(VwV(ﬁ—l—zwﬁ),

and using (3.21), we obtain

/D(—Av +20)p = /Dv(—A + 2) ().

Consequently if we prove that

/D(—Av +zv)n = /Dv(—A + 2) (), (3.34)

then the difference between these two last identity yields (3.33).
It remains to prove (3.34). For that purpose, we again apply Green’s
formula in D, = {z € D | r(z) > €}, and find

/ (—Av + zv)n) = v(—=A+2)(nY) + J.,

€ D€

where
J. = e/ (V0,1 — D)) db.
Hence as before it suffices to show that

J.— 0ase—0. (3.35)

For that last purpose we remark that

0.0 = AIVEr S Q(/Er) ~ VErQ(VEr) — X QWEn] e sin(X6),

consequently

T < e / (e, 0)] dB + e X+ /

r—=

10,0(e, 0)] do. (3.36)

Now we estimate each term of this right-hand side separately. For the first
one, we perform the change of variables © = ez that maps A into Ay, and by
setting 0(Z) = v(z), we obtain

/ |v(e,9)|d9:/ 16(1,6)| 6.
r=e r=1
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On A, we notice that 9 belongs to W'?(A) and by a standard trace theorem,
we deduce that

| 1601 ([ 1001.DP ) < ol

r=1

Since © = 0 on a part of the boundary of A, 10wrecay < 10lwrncay. and
therefore we obtain

10140 S ol

Finally as 7 is equivalent to 1 on fl, we arrive at

1
/ (0(1,0)] df < </ fw—l)pva)p.
r=1 A

Going back to Ay, we have proved that

1
2 P 2
[ wteotas g i ([ rwer)” S e ol g,
r=e 0

In a similar way we show that

1
1-2—4 P p\” 1-2—p
[ owteanas s et ([ imwor) e i,
These two estimates in (3.36) lead to

2N
| Je] SeETT ||UijvP(D)'

Since 2 — % — p— X' is positive, we obtain (3.35). O
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