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Abstract

We consider the heat equation in a polygonal domain € of the
plane in weighted LP-Sobolev spaces

Ou—Au=nh, inQx|—m |,
u=0, on 09 X [—m, 7], (0.1)
u(s,—m) =u(-,m), in Q.
Here h belongs to LP(—m,m; L}(R)), where Li(Q) = {v € L} (Q) :
rfv € LP(Q)}, with a real parameter p and r(z) the distance from
x to the set of corners of 2. We give sufficient conditions on pu, p
and ) that guarantee that problem (0.1) has a unique solution u €
LP(—m,m; L, (S2)) that admits a decomposition into a regular part in
weighted LP-Sobolev spaces and an explicit singular part.
The classical Fourier transform techniques do not allow to handle
such a general case. Hence we use the theory of sums of operators.
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1 Introduction

This paper is the second one of a large program of research devoted to the
study of (nonlinear) heat equation in nonsmooth domains in weighted LP-
Sobolev spaces. Our final goal requires precise information about the solution
of the linear heat equation

Ou—Au=h, inQx]|—mn|
u =0, on 02 X [—m, 7], (1.1)
u(-, —m) =u(-,m), in

in weighted LP-Sobolev spaces. In particular its decomposition into a regular
part and an explicit singular part is needed. Although this theory is well de-
veloped in weighted L2?-Sobolev spaces [13, 16, 15, 4] or in LP-Sobolev spaces
[14], to our best knowledge such a result does not exist in the framework
of weighted LP-Sobolev spaces. The first class of papers are based on the
Fourier analysis, while the second one uses the theory of sums of operators.
For maximal regularity type results in weighted LP-Sobolev spaces, we refer
to [6, 19, 23, 20, 22]; here different techniques like estimates of the Green
function, the theory of sum of operators or blowing up can be used.

According to the approach of [14], the study of the linear heat equation in
non-hilbertian Sobolev spaces can be performed with the help of the theory
of sums of operators. Hence the goal of this paper is to make this analysis in
LP(—m,m; LE(S2)) for a large range of values of 1 and p. Our results extend
the ones from [13, 14] to the L7 () setting.

This theory also requires, in a first step, to obtain uniform estimates of
the solution of the Helmholtz equation

—Au+zu=g in ,

u =0, on 0f2, (1.2)

where z is a complex number. This was performed in the companion paper
8].

For the sake of simplicity we have restricted ourselves to two-dimensional
domains 2. The results of this paper can be easily extended to the case of
domains with conical points.

The paper is organized as follows: In section 2 we recall some results on
the sums of operators in Banach spaces of Da Prato-Grisvard [6] and of Dore-
Venni [9]; we also state some basic results from [8] used later on. In section 3
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we apply the approach of Da Prato-Grisvard to obtain a decomposition but
with non-optimal regularity informations. Section 4 is devoted to the proof
of the regularity of (0; — A)S, where S is the singular part of the solution
obtained before. The use of the approach of Dore-Venni and the results of
section 4 allows to get the optimal regularity result obtained in section 5.

In the whole paper the notation a < b means the existence of a positive
constant C', which is independent of the quantities a, b (and eventually the
above parameter z) under consideration such that a < Cb.

2 Preliminary results

Results on the sums of operators in Banach spaces, such as the result of G. Da
Prato and P. Grisvard [6] and of G. Dore and A. Venni [9], can be fruitfully
used to prove the singular behaviour of elliptic problems in non-Hilbertian
Sobolev spaces as in [14]. Let us recall these results.

Fix a complex Banach space E and a pair of closed linear densely defined
operators A : D(A) C E— E and B: D(B) C E — E. Hence we can define
their sum

L:D(L):=DA)ND(B)CFE — E:x+ Lr:= Ax + Bx.
For an operator C' we denote by o(C) and p(C) respectively its spectrum
and its resolvent set.

2.1 First strategy

Assumptions on A and B:
(Hy) There exist M >0, R >0, 04 €]0,7], 5 €0, 7] such that

O+ 0 >,
Sa={N||A| >R, |arg\| < 04} C p(—A),
Sp:={N| |\ > R,|arg A\| < 0p} C p(—DB),

and, for all A € Sy and all 4 € Sp,
_ M _ M
A+ D)7 < n I(B+pD)7H| < —;
RY |l
(Hy) o(—A) O o(B) =
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(H3) The resolvent of A and B commute, i.e., for every A € p(—A) and every
€ p(=B),
A+ XD Y B+ul) ' =(B4+pul) "(A+ X))
Theorem 2.1. [6] Under assumptions (Hy), (Hs) and (Hs), the operator L

has an invertible closure.

Definition 2.1. The closure of L is defined by x € D(L) and Lz = y if there
exists a sequence (Tn), C D(L), which satisfies x, — x and Lz, — y.
A solution of Lx =y is called a strong solution of Lz = y.

The inverse of L is obtained as the integral
1
Ly '=— [(A+X)"'(A\ ] — B)"'d\
D)7 = g [ A or By,
where 7 is a path which separates o(—A) and o(B) and joins coe™" to coei?r
where 6, is chosen so that 7 — 0p < 0, < 04.

2.2 Second strategy

Assumptions on A, B and E:
(Hy) E is a UM.D. space;
(Hs) | — 00,0] C p(A) N p(B) and there exists M > 0 such that, for every
t>0,
M M
A+t < — B+t Y < —:
A+ < s (B +eD) < 7
This allows to define the complex power of A and B by setting, for R(z) < 0,
sin(7z)

AF =

+oo
/ t*(A+t 1) dt.
0

T
This definition can be extended to R(z) = 0 by taking limits when they exist.

(Hg) For every s € R, the complex power A* and B exist and are bounded
operators. In addition there exist K > 0, 74 > 0, 75 > 0 such that

TA+Tp <,
and, for all s € R,
A5 < Kelis, 1B < Keli.

Theorem 2.2. [9] Under assumptions (Hs), (Hy), (Hs) and (Hg), the op-
erator L is invertible.

September 2, 2010



2.3 Results on the Helmholtz equation

In this paper, we work with a polygonal domain Q of R? with a Lipschitz
boundary 052, in the following sense.

Definition 2.2. Let Q be a bounded domain of R?. We say that Q is a
polygonal domain if its boundary is the union of a finite number of line
segments T, j € {1,...,J} (T; being supposed to be open). Hence we do
not assume that 2 is a Lipschitz domain, that is we include the presence of
cracks.

Denote by S;,j = 1,---,J the vertices of J€) enumerated clockwise.
Without loss of generality we may assume that B(S;,1) N does not contain
any other vertex of . For je{1,2,---,J}, let ¥; be the interior angle of
2 at the vertex Sj, A; and (r;,0;) the polar coordinates centered at S;

such that
B(S;,1)NQ = {(rjcosb;,rjsinb;) |0 <r; <1,0<6; <} = D,
For i = (u1;)7_,, we define the spaces L3.(Q) = {f € L}, (Q) | wf €
LP(Q)} with
J
w=1+Y n(r - 1), (2.1)
j=1

where () is the distance from x to the vertex S; and n; € D(R?) are such
that
nj=1in D;(1/2), n;=00n Q\ D;(1),

where D;(r) is the truncated cone D;(r) = QN B(S;,r).
The space L(€2) is a Banach space for the norm

||f||Lg(Q) = (/Q |f(z)|P wP(x) da:) Up,

; P(Q) is defined as the closure of

CF(Q) ={ve ()| S; & supp v}
with respect to the norm

1/p

||u||v,§,p(ﬂ): Z/|Dvu VP wh () r PP (1) da

Iv[<k
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We use the following notation for the semi-norm
1/p

— IvI=k)p
oy = | [ IDu@)p v @) ) da

Iv|=k

In H}(Q) we will denote the norms in the following way

ulty = [ IVl and iy = [ (90 + )

For ji and 7, we write ji > 7 in case, for all j € {1,...,J}, u; > ;.

Let us finish this subsection by stating two theorems obtained in [8] that
concern uniform regularity results for the Helmholtz equation in weighted
Sobolev spaces.

Theorem 2.3. [8] Let R > 0, p > 2 and Q be a bounded polygonal domain
Of R2. Denote \ = (Aj)lgjg].
Let [i > .\ satisfies, for all j =1,...,J,

pyp < Z2ifp>2, <1, ifp=2,

s s (2.2)
Alp = DAF = jp° > 0

and, for allk € Z* and all j € {1,2,--- ,J}, 2 — ——,uj%k)\
Then, there exists 04 €5, 7| such that, for allg € L(Q), all z € mTUSy,
with

t={2eC|R(:)>0}, Sa={2€C||z| >R and |argz| <04},

the problem
—Au+zu=g, in €,
u =0, on 0f),

has a unique solution uw € Hy(Q). Moreover this solution is in D(A, ;) =
{ue Hy(Q) | Au € LE(Q)} and admits the decomposition

u=ug+ an Z e, (2) Py, (ry/z)e” "V i sin(\0),  (2.3)

j=1 0</\;<27%7uj
IKEN,N;=k;
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L1

with ur € Vﬁz’p(Q), ex,(2) € C and Py (s) = Z % with Ly, > 2 — pj —
g )\/' =0
2 .

J
Moreover, the following inequalities are satisfied
(a) |UR|V§"D(Q) + |uR|Vﬂl’f’1(Q) + HURHL;2 Q) S H!JHLg(Q)

(b) |uR|Vﬁ2”’(Q) + |Z|1/2 |UR|VEI’7”(Q) + |2| HURHLZ(Q) S ||g||Lg(Q)

J /
1_1_@
@O @I+ S gz

j=1 0<A;<2—%—uj
FKEN, N =k ;

Theorem 2.4. [8] Under the assumptions of Theorem 2.3, D(A,z) C L7 ()
and we have

(a) If z € C satisfies R(z) > 0 then R(2) HuHLE(Q) < Hg||L§(Q);
(b) If z € C satisfies |arg z| < 04 then (1 + |z])l[ullzz) S l9llzz@

Theorem 2.3 can be rephrased as follows. The operator (—A + 2 1)~ can
be decomposed as

(=A+zI)” )+ Z 7; Z TA;. (2) ® 12/\;,2 (2.4)
j=1 0<>\3<2—%—/L]'
IKEN,N =k,

where we use the linear and continuous operators
R(z): LE(Q) — V;’p(ﬂ) L g > UR,
Ty (2): IH(Q) > C: g o> ey (2) = (T (2), 9)
and the function 1/;)\;,2( 0) = Pix(rv/z)e” VE sin(\0). Recall that

(T, (2) ® @/)A;,z)(g) = (T,(2), 9) ¢A;.,z.
Moreover, for all z € 77 U S4, we have
HR(Z)|’L§(Q)—>V§"’(Q) + |Z‘1/2HR(Z)”LS(Q)—)V;”’(Q) + HIRGE) [ @»n@ S 1

(2.5)
and

1Ty, ()l 22y S - (2.6)
1_1)_
1+ |22
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3 Application of the first strategy

Let us assume in the future that the assumptions of Theorem 2.3 are satisfied.
Consider the problem (1.1) with h € LP(I; L(?)) with [ =] — 7, 7[. In
that case, h admits the decomposition

h(z,t) = g1(z) + g(x,t) with, for a.e. x € Q,/ g(x,t)dt =0,
g1 € L3(Q) and g € LP(I; L7(€2)). To obtain such a decomposition, we just
have to define

91() ! /7T h(z,s)ds.

:% »

Hence u is a solution of (1.1) if and only if u(z,t) = u(z) +v(z,t) with u
solution of

—A g1(x), in Q,
0 (3.1)

on 0f),

U
u
and v(z,t) solution of

Ow — Av = g(z,t), inQx]|—m |,

v =0, on 09 X [—m, ],
U(' _ﬂ—) - U<’77T)7 in Q7 (32)

/ v(x,t)dt =0, forall x € Q.

—T

By [18] and as in [8], @ admits the decomposition

J
u=ur+y n >, Gyrsin(\0) (3.3)
j=1 0<A;<2—%—uj
FLEN, N =k);
with up € V;7(Q),
lazllvze@) S llgillzz) and ex| < llgallzz -

Hence we concentrate on (3.2).
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We shall apply the First Strategy (Theorem 2.1) on the space

E={heP(I Q)| forac zeQ, / h(z,t) dt = 0).

—T

In the future, we will use the index m to denote the fact that the functions

T

h of the space satisfy, for a.e. = € €, / h(z,t)dt = 0. In that way

E =: L1, (I; I'(%)). .
We consider the operators

A:DA) CE— E:u— —Au, with
D(A) = L}, (I; D(Ap 7)) where D(Apz) = {u € Hy(Q)|Au € LE(2)},
and
By:D(By) CE — E:uw O, with
D(Bo) = Worn(L (@)
_ P(]- o) = u(-
={ue E|du e LP(I; L;(), u(-, —m) = u(-, m)}.
Proposition 3.1. Under the assumptions of Theorem 2.3, the operator A +
By has an inverse closure i.e., for all g € L} (I; L7(S2)), there exists a unique
strong solution v € L% (I3 L7(2)) of (A+ Bo)v = g i.e. there ezists (v,), C
D(A)N D(By) such that v,, — v and Av, + Bv, — g.
Moreover we have
1 _ _
V=g 7(A—l—z[) Y21 - By) 'gdz, (3.4)
with v : R — C defined for example by
v(s) = |s]e” G for s <0,
= 5|2t fors >0,
with 6 €10,04 — 5[ and 04 given by Theorem 2.3.
Proof. Observe that by Theorem 2.4, we have D(A) C E and, for all A > 0,

_ 1
A+ 2D < 5.

By [21, Thm I-4.2], this implies that —A is dissipative. As FE is reflexive
and R(I + A) = E, we have by [21, Thm I-4.6] that D(A) is dense in E.
Hence by Lumer-Phillips and Hille-Yosida Theorems, A is closed. It is easy
to observe also that o(—A) = {—v; | £ € N} where () is the strictly
increasing sequence of eigenvalues of —A in H} (). In particular v; > 0 and
khjgo UV = +00.
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Concerning By it is easy to observe that D(By) is a dense subset of F and
that By is closed. Moreover a simple calculation proves that o(By) = iZ*
and therefore p(—By) D {A € C | A > 0}. Let us show that for all 0p < 7,
there exists M > 0 such that, for all p € S, = {p € C | |arg(p)| < b5},
|(Bo+p )7t < 2. To this aim, it is enough to prove that if u is a solution

ul®
of
atu(xat) + [LU(.I’,t) = f(.’ll',t), in € x ] o 77777[7
U(% _ﬂ-) = U(',ﬂ'), in Qa (35>
u(z,t)dt =0,
then

| ||U||Lp(1;Lg(sz)) S ||f||Lp(1;L§(Q))-

Multiplying the equation in (3.5) by v := wP|u[P"2u and integrating, we
obtain

/ &;uvdtdx—i—,u// wp|u|pdtdx:// w? flulP~*udtdr.  (3.6)
QJ—7 QJ—7 QJ—7

Observe that, by periodicity,

// 8tuvdtdx:—// o udtdr.
QJ—m QJ—m

Moreover by [2], we have

/ Oyu v dtdr
Q

- - 5 W
— _]_)/ / wP|ulP~u O dtdr — — / / wP |ulP~ T u Opu dtda
2 QJ—m z QJ—m

v _2 i
= —]2// v@tudtdx—p—// w? | u|P~? Opu dtde,
2 QJ—7 2 QJ—7
b / / vy dtdz + / / vdudtdr | = 0.
2 QJ—7 QJ—7

Hence taking the real part of (3.6) gives

1.e.

R() HU||LP(I;L§(Q)) < HfHLP(J;Lg(Q)).

September 2, 2010



11

As |arg(p)| < 0p < 7, we have |3(p)| < R(p) and hence
1l ||U||LP(I;L§(Q)) S ||f||Lp(1;L§(Q))- (3.7)

We conclude that (H) is satisfied with 64 given by Theorem 2.3 and fp =
5 —op with 0 <dp <d <0, — 3.

It remains to verify (H3). This can be easily deduced from the fact that
the variables are separate in these two operators.

Hence we can apply Theorem 2.1 to conclude. O]

Remark 3.1 Observe that, multiplying the equation
du = [ — pu,
by |O;ulP~20,u, integrating and using the inequality (3.7), we obtain also
(1 + |pl) ||U||LP(I;L§(Q)) S HfHLP(I;Lg(Q))- (3.8)
As it is clear that, for each t, we have
[(A+2D)7'h)(t) = (=A+ 2 1) (h(t)),

we can use the decomposition (2.4) and rewrite (3.4) as

J
V= VUR + Z nj Z vy, (3-9>
j=1

/ 2 X
0<)\j<2757,u]
EIkEN,)\;:k)\j

with

vr(x,t) = QLm/WR(Z)(Z] — By) gdz
oy (1) = 5 / (Tog (). (=1 = Bo) g ()

= L / <T>\;(2)7 (21— Bo)flg> P, (rv/z)e V7 i sin(\;6) dz.

211 .
(3.10)
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Proposition 3.2. Under the assumptions of Theorem 2.3, let us denote
o; = 1—%—%)\7’. For all s €0, min(1—o0y,1/p)[, for all g € W3P(I, L%(92)),
there exist Gy, € Wi (1) and E,\;_ such that vy, defined by (3.10) can be

written as

™

'U)\;_ = (E}\; *y qA;) T)\; SlD(}\ge) = (/ E)\; (517, 7-) q~)\; (t - T) dT) T)\; SlIl()\Q@)

—T

Moreover we have

) 1 B
iylt) = 5z [ (). 1= By o) d
E’A; (ZL‘, t) = Z e’ktPj’A; (7“\/%) 677"\/%,

kezZ*

where we used the notations introduced at the end of Section 2, and the

operator
Un - WP (L L () — Wi (I) g = G

18 continuous.

Remark 3.2 Observe that, by the domain of summation in (3.9), we have
o; > 0 and the condition p; > —)\; implies that o; < 1.

Proof. First observe that vy, € LP([—, m]; Lj;(€2)) and hence we can take its
partial Fourier series in t.

Step 1: For dll € LE(Q), the application C — C : z <T,\;_(z),f> is

holomorphic on A == {z € C | |arg(2)| < 84} and continuous on A. In fact
the problem

—Au+zu=f, in
{ u =0, on 012, (3.11)
is equivalent to
—Au=f—zu, in
{ u =0, on 0f2. (3.12)

By [18] as in [8], we know that the solution w of this second problem admits
the decomposition

J
u=ug+ an Z dy, i sin(\;0)
j=1

’ 2
O<)\j<2f;f,u]
JLEN, X, =kA;
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with
dy, = dy (f — 2u) = /(f — zu)wy,
Q
and w X, independent of z. Moreover we have

(T (2), 1) = doy (f = 2u),

Hence it remains to consider the regularity of u with respect to z.
Let us consider the operator

S C— L(L(Q), LE(Y) : 2 = (A + 217t

Observe that
S(z)f—=S(z+h)f=—hS(z)S(z+h) f

and hence

1

([t = mse e nn — w5t

h Q
:% z/QwAg(S(z)f—S(z+h)f)—h/QwA;S(Z+h)f)

- —z/ﬂw)\; S(z) S(z+h)f—/ﬂwxgs(z+h)f'

By Theorem 2.4 we have C' > 0 such that, for all f € Lg(Q), z € A and for
h € C small enough,

1S(z+h)f — S(Z)fHLg(Q) = |h][|S(2) S(z + h) f||L§(Q)
C'|hl

< P(Q)-
S ArEna+lerap /e

Hence we conclude that, for z € A,

Ty (z+h), f) — (T (2), f
}llli)r(l)< A]<Z ) ;L < )\](Z) > :—Z/ﬂw,\; S(Z)Qf_/gw)\zs(z)fa

and, for all f € Lg(Q), the application C — C : z — <T)\; (2), f> is holomor-

phic on A. In a similar way, we prove the continuity of this application on

A.
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Step 2: The Fourier series coefficient in t of vy (x,t) satisfies
by (k) = = (T (i), (-, k) ) Dy n(2):
By definition of the Fourier series in ¢ and applying Fubini’s theorem we
g( k)
B gl a
:[-1,1] - C

obtain
1
By <TA;. (2),

17,\/.(35,16):/ e” kvx(x t)dt = 5

—T

J
For R > k, let us consider the domain Dg bounded by 71 g
and Yo,r = —7|rpr and, for € > 0 its

defined by 71, r(s) = Re
subdomain D, bounded by v, g and vo g 1= —7|—p,r + €

As, for € > 0, the function
2 (T (2), 9, k) ) by ()
is holomorphic in an open domain containing Dpg . then, by the Cauchy for-
mula,
1 g :
— <T>\ (2), g( )>¢A' 2(7)dz = <TA;(”€)7Q( )>¢A' ik ()

27 Jopy,.
As this fonction of € is continuous for € € [0, €[ and constant, we deduce

b8)5 | (085
, <TA;(z‘k),g(.’ k)> Davan(o).

1
— Ty
271 [/71’R< ’\f(z) z—zk

Let us prove that

g(>k) ~
Y1.R <TA;(Z)’ z— zk> Uxo(2) dz =

lim
R—+00
and
g<7k> 7 I B g(7k) 7
[ (o L) iy @i = = g [ (1), L8 g (o)
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Observe that by Holder’s inequality, we have
19C. 1)) = /Q w(2) | / ey (e ) dt]? du
S [ w@ [ lota 0l dids S ol

Hence by (2.6) we have

(T (2,3, K))

z —k Eh
R 1
|z| 2 7(1*;) _T\ﬁ Vo ,
~ 2 = K| |PJ',A;(T\/E)€ | [r? Sm()\j@” ||9||LP(I;L§(Q))7

with “5% — (1~ 1) = —o; < 0. This implies

/ (13 (2). 9. h)

z—ik Vngaw) dz

/ | VR +6)s) Rei(5+9)s
N Ro—

( 0)] dSHQ”Lp(I LE(9))

from which we deduce that

i (By@atm)
pim o po— U -(1) dz = 0.

The argument to prove

[ g ) etz == i [ (15 S50} et

is similar. Step 2 is then proved.

Step 3: The operator Uy : WiP(I; Li(Q2)) — Wetoib(I) 2 g Qx, with

QA; (t) = % L <T)\; (2), (21 — Bo)flg> dz
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is continuous. By the results of [11], as 0 < s < 1/p, we know that
o0 o d
WP L5(Q) = {g € E| / p* || Bo(Bo — pe™ 50 1) g, ?p < oo}
0

We have a similar characterization of W2 (I) by considering the operator
ND(N)CE1—>E1 :ub—>3tu

with
El = Lgl([)v
D(N) = {u € By | dyu € LP(I), u(~n) = u(r)}.
Hence
if s +0; < 1/p then
W) =ty Bl [ r NG 4D ol T < o)
0
if s +0; > 1/p then

2m,m

s+0j, 0 s+o _ dT
Wit (D) ={g € By | [ r PN 7 1) gl T < oo),
0

Claim 1: For 7 > 0, we have

dz
24T

1 .
NN + 7073 = — [ (Ty(2), Bo(2 - Bo)'g)

271 .

(3.13)

First observe that
1
NN 4707 = 5 / <TA;_(Z), Bo(By +71) 7 (21 — Bo)’lg> dz. (3.14)
m
Y

Let us take the Fourier coefficients in ¢ of

L <TA;,(2), Bo(By +71)"} (21 — BO)_lg> dz.

2mi ),
By Cauchy theorem, we obtain

% 8 <TA9(Z)7 (ik + TZ)IEZ - @k:)g(’ k>> dz =~ <T)‘9 (i), 5, k>> Hfzi T
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In the same way, if we take the Fourier coefficients in ¢ of

1 _ dz
5 | (T (), Bolal = Bo)g) <

271 .

by Cauchy theorem, we obtain

5 [ (Byen a5

27 )., 2z — 1k z+T

1 1k 1 1k 1
- Ty _

2mi 7< ’\f(z)’(T—i—ik‘z—ik: T4ik 2+ T

— o [ (g i) a:

)it d:

2w ), ‘T4 ik 2 — ik
vk
= = (T (k). (-, k) ) ——
(B (ik). 40 k)) —=

as <T,\;_(z) g("k)> is holomorphic on the right of .

Voz+T
As the Fourier coefficients of the two functions coincide, the two functions
are equal.
Claim 2: For 0 < s < min(l — 0;,1/p), the operator Uy : W P(I; L¥(Q)) —
WetoiP(I) @ g G, is continuous. As 0 < s < 1/p, for g € WiP(I; L;())
we have '
1Bo(Bo — pe' 1) " glle = n(p),
with - p
s P
/ P n(p)lF — < oo.
0 p

By (3.13), denoting y = § + J, we have

N(N—i-T[)_l(j/ :L JrOO<T,(,0€1'90) B <pei901_B>flg> eiaoi
1 +OO<T ( ,ieo) B ( —ibo; _ R )71 > e—%eodp
-5 (pe e — = 7
2mi 0 )\j P , Dol p 0 g pe*“’o + 7_7
and hence
T(S—i-aj)pHN(N_i_TI)—lq)\gu};Jp(}) |
— T(S+Uj)p /ﬂ— L /+OO <T / (peieo) B <peit90[ — B )—lg> 6190d[)
x| 270 ) & Y 0 petto + 1
1 [t . . ety [P

- T , —ibg B —7,90] o B —1 > A dt

2mi J, < A (pe )7 0(p6 0) g —pe_leo pe
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+00 +oo
Using the inequality || ey < / | fllze(r), we have
0 0
TP NN + 71) G |1, o
+o00 T <T>\l (peleo)’Bo(peleol _ BO)—lg>
< sto)p / / : | dt | dp
~ 0 - ’pezeo + 7_|
, A P\ Ur \?
too [ pm <T>\;(pe_19°),Bo(pe_’901' — Bo)_lg>
(st / / | dt| dp
0 . |pe=io + 7|

As the two terms behave in the same way, let us consider only the first term
of the sum. We have, using (2.6),

i0 0 -1 ! r ’
“+00 ™ <TA;(p€ 0)7B0(p6 OI_BO) g>
T(s+oj)p / / . dt d,O
0 —T |p6190 + T|
. 400 T Hj+>‘;'7 1 ) _ P e dp !
< rlstor ( / ( / [p T By (e I - By) 19||Lz<ﬂ>} dt) Tpe® + 7]
0 -7
) +oo “J’*%’, 1 i — dp ’
< platap / p =T || Bo(pe®l — By) 19HLP(LL§(Q))W)
0
Foo i 1 !
< (s+0oj)p 32 L-1tg —d
N A T”"ﬂ'p@_lﬁ_sd
< /O pon(p) et 17
As oy = "% 41— L we obtain

(s+0j)p -1~ p < e s 7_S—i_aj|I0|_(s+0j) .
T O A e e

( /0 - P L i @)

0, T
e+ 2] p

This is a multiplicative convolution and we have, by Young inequality, that

i, € Wt (1) if
+oo §s+aj d§

—— < 00,
/0 e +¢| &
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which is true as 0 < s + 0, < 1.

Conclusion. By Step 2, we have

O (@, k) = = (D (ik), (- k) ) xan(@)
= ) 0 ; —rvik N, / (315>
= - T/\; (ik), (-, k) Pj,A}(T@)@ 7 sm()\jQ).

211
theorem as above, we see that its Fourier series coefficient in ¢ is given by

(k) = 2Lm/7<TXV(z) g("kli> dz = — <TA;(z'k;)7g(.,k:)>.

iy — g

1
Let gb\}(t) = — / <T,\;,(z), (21 — Bo)_lg> dz. Applying again the Cauchy
ol

Moreover the function EA; (x,t) = Z e"ktPM; (rv/ik) e~V is such that, for
keZx*

all 7 > 0, Ey (r,") € L*(—7,m) and even Ey (r,-) € C([~m,7]). Hence we

deduce from (3.15) that

U)\g. (ZE, t) = (E/\; *t Q)\;) 7"/\; Sln(/\ge)u

which allows to conclude. O
Let us go back to the problem (1.1).
Proposition 3.3. Under the assumptions of Theorem 2.3, let 0; =1 — % —

# Then, for all s €0, min(1 — o;,1/p)[ and for all h € W*P(I, L7(S)),

the problem (1.1) has a unique strong solution u with

J
u:uR—l—an Z u)\;,

j=1 0</\;.<2727uj
IKEN,N;=k);

and, with the notations of Propositions 3.1, 3.2 and of (3.3),

(e, t) = —— / R(=)(1 — Bo) ' (h — — /W h(-,5)ds) dz + iin(z)

2me o ) .
ux; (2,1) = (EA; ¢ q,\g) i Sin(/\;ﬂ)
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with gy, € WetoiP(T) and Ey. verifying

ax () = qu(t) + ey

L <T,\;(z),(zI—Bo)1(h—%/ﬂ h(-,s)ds)>dz+a;,

271 . -7

- 1 ' L )

2
keZ*
Moreover, the operator
U:W*P(I, L1 (Q)) — WSt ([) b ax,
18 CONtINUOUS.
Proof. By the previous results it is enough to prove that

(Ex; *t qx;) i sin(\j6) = ox (2, 8) + Ty,

Observe that, as / G, (s) ds = 0 and / EA;(r,t — s)ds = 0, we have

—T

By say)wt) = [ Bylnt-9ay()ds

T 1
= / Exi(r,t —s)qy(s)ds + o— qx;(s) ds

2 J_.

= / E,\;,(r,t —5)qn,(s)ds + ey,

_ / By (r,t — 8) () ds + 2y

= (Ex, *qy)(2,1) + ey,
= oy (z,t) + Cx.
The result follows. O
In the next result we extend Proposition 3.3 to h € LP(I, L}($2)).
Theorem 3.4. Under the assumptions of Theorem 2.3, let 0; = 1—%—@.
Then, for all h € LP(I, LE(Q)), the problem (1.1) has a unique strong solution

w with J
S R

j=1 0</\;<27%7uj
KEN,N;=k;
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and, with the notations of Propositions 3.1, 3.2 and of (3.3),

(1) = % / R(=)(=1 — Bo)~'(h — % /ﬂ h(-,s) ds) dz + iin(x)

—T

uy, (2,1) = (EA;. k¢ q,\;.) i sin(/\g.e)
with VIS WeiP(I) and E,\;, verifying

o () = qu(t) + ey
1 -1 L[ _
= o 7<T>\3(2)a(2[—30) (h—ﬁ/_ﬂh(-,s)ds)>dz—|—ckg,
_ T I ikt - ik 1
kezr
Moreover the mapping LP(I, L5 (Q)) — W P(I) : h — qx; 18 continuous.

Proof. We already know by Proposition 3.3 that, for 0 < s < min(1—0;,1/p),
the operator U which maps % to gy is continuous from W*F(J s LE(€)) to

We+72(I). We prove that U is also continuous from W*='#(I; LE(2)) to
W1+ (1) which allows to conclude by interpolation.
Claim 1: For 0 < s < min(1 — o}, 1/p), the operator U : W "P(I; LY () —
WS=HHoP(I) o b s qx; is continuous. We have

0

he W (1 L(Q)) & Sho, by € WL LE(S)), h=ho + 5l

Hence we define
X s—1, . s—1+0;,
U: W P(I Lg(Q)) — W P(I)

by

0
Uh=Uh —Uh
o+ o 1

where h = hg + 5 hy with ho, hy € W*P(I; LE(Q)).

Let us show thaﬁt U is~well definegi. Assume that A admits a second
decomposition h = hg + %hl with ho, hy € W*P(I; L%(Q)) In that case we
have

0 ~
(hl - h/1>7

ho—ﬁoza
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and hence w := hy — hy € WP (I, LE(Q). As w € WoHhe([; LE(Q))
we have that D,w = M — w' in WP([; L3(Q)) as 7 — 0. As
U WP(I; L7 () — WeterP() is linear and continuous we have

D.Uw=UD,w — Uw" as 7 — 0,

from which we deduce that Uw is derivable and

0 0

and hence, if hg + %hl = ho + %711, we have

U — o) = U(2 (b~ 1)) = 0y — )

which means 9 9
Uhg + —Uhy = Uhy + —Uh
o+ ET o+ ET
i.e. U is well defined.
It remains to prove that U is continuous. We have for h = hg+ %hl with
ho, hhy € W*P(I, LZ,(Q)),

HUhHWS*Hf’j»P([) ||Uh0||ws+“jﬁp(1) + HUhIHWSJr“jﬂP([)

<
S Mhollwsrrzzy + 1llwsrcne)
5 ||h||WS*17p([;L§.(Q))7

which proves the Claim.

Claim 2: LP(I; LE(Q)) < (W*P(I; (), W*(I; L%(Q))), . By Fubini’s

theorem, we have
WP(IL LE(Q)) = L(Q, WP (1)),

as well as
Wo P (1, LE(Q)) = L(Q, Wy P (1)),

and then by duality

We=bP(1, LE()) = L(Q, W= P(1).
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Hence we may write
(WP, LE(Q)), WP (1, LE(Q))sp = (LR(QWHP(I)), LE(Q, W*1(1)))s p,
and applying [25, Theorem 1.18.4, p.128], we deduce that

(W*P(I, LE(Q)), WP (1, LE(Q))sp = Lp(Q, (WP (1), W (1)) ).
Hence by [10, Thm 6.2], we obtain

(WP, LE(Q)), WP (1, L5(Q)))sp = Lp(Q, BYP(I)).
As Taibleson’s results [24] yield LP(I) < B%?(I), we have shown that
0, . S, 571,

L(Q, LP(I)) = L (S, BPP (1)) = (WHP(L, L(Q2), WP (1, LE(€)))sp-

We conclude by Fubini’s theorem that
LP(I, Ly()) = L(Q, LP (1))

Conclusion. By interpolation the application

. s, . s—1, .
U+ (WS (I; I5(Q)), W12(1; LE(Q))).,
N (WS"‘U]'ap(I)’ Ws—l—i-aj,il’(j))s’p ho— Q)\;.

1S continuous.

As, for o; € N,
(W42s2(1), 17552 (1)), = B2(1) = Woso(1),
and, by Remark 3.2, 0; €]0, 1], we have a continuous operator
U: LP(I;LZ(Q)) — WP(I) : h s

and the result follows. ]
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4 Regularity of Q= (& — A)(njuA;)

In order to consider the regularity of ur we observe that ug satisfies

J
Owug +ur — Aug = h—z Z (O(njux,) — Anjux,)) + ur

j=1 0</\;.<2—%—uj
FKEN N =k,

Hence we need informations on the regularity of 3t(7]ju,\;) — A(njuy;). This
is the aim of this section.

Lemma 4.1. The kernel H defined on R™ x [—m, 1] by

H(r,t) =Y Vike ek =" Hy(r) ™ (4.1)

keZ kEZ

admits the decomposition

H(T, t) = H1(7”, t) + HQ(ra t)a (42>
with
|H1<7’, t)| 5 17 (43)
and 1
Hy(r,t)| < —-—rr. 4.4
| 2(T7 )’ ~ (T2+|t|)3/2 ( )
Moreover, forl € N,
al—H

l l
ol t) = H(r.t) + Hy (r,1),

with H{l) and Hél) satisfying
[ (r 1) <1 (4.5)

and
[ (r, 01 S ([t] 4 %) 7172, (4:6)
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Proof. Let us define the function
—Ir|Vik

EO(rt) = ekt (4.7)
P g; ik

We verify that EY) € L2(R x [—, 7)) as, using Parseval identity,

+00 —|r|Vik |2 +00 —2rVE cos(m/4)
/ Sl - Y

+oo —scos(m/4)
€
- 2/ > BEE ds
0 k>0

1 +o0
E —scos(mw/4)
= 2 < —|k‘3/2) \/0 (& ds < +o00.

k>0

Considering the finite sum for |k| < K and passing to the limit as K — 400,
we can take the Fourier transform in r of Ei(,o) using the fact that the Fourier
transform is an isometry and E,()O) € L*(R x [—m, w]). This gives

/E\IgO) (E,1) = Z \/%6—/%7%(5)61@

k0
As, for k # 0,
— +oo +o00 0
e IrVik(¢) = / e IrVik g—igr g / e~ Viko—iEr gy 4 / orVik =i .
— 00 0 — 0o
400 "
— —rvik ( —igr | ifr - 2V/ik
= e e + e dr = ——,
/0 ( ) &2 +ik
we obtain |
EO (e ) =9 ikt 48
P (5’ ) Z 52 + ik’e ( )

k40
Let E be the elementary solution of the heat equation in R? i.e.

E(rt) = fﬁf_z (4.9)

where
M(t) = 1, ift >0,
= 0, ift<0.
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Then we have that the Fourier transform of E in r is given by

E(&,1) /+OO e dr = M) /+OO e cos(ér) dr = M(t)e €
7 \/ 4t B \/ﬁ 0 B .

Consider now the function Ry(r,t) which has as Fourier transform in r the

function ,
e—& (t+) 1

Ro(&:1) = ~ 2sinh(€%7) + 282

With these notations we have

(B - Ro)&,t) = 5= 3 ™

kEZ

/6 o 1 /ﬂ' 6752(t+ﬂ-) + ZM(t) —£2t —ikt dt 1 /7r —ikt dt
*7 2 ) _\ sinh(€&r) ‘ ‘ 28271 J_. ‘ ‘

Hence we have, for k # 0,

1 e & T T g2
o L gy [
g 2 | sinh(&%m) J_ 0

_ o
_ 1 { e (6_(§2+ik)ﬂ— i e(£2+ik)7r> + 2(6_(£2+ik)7r o 1)}

with

2(&% 4 ik) | sinh(&2m)
B 1

£2 44k’

and, in the same way,
ﬁo - O
Hence, we obtain
(B Ro)(E0) = 5= 3 ™ (4.10)
, 5 . )
wr &+ zk

By (4.8) and (4.10), we deduce that
E\z()()) (67 t) = 47T(E\<€7 t) - Eo(ﬁ, t))
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and hence
EI(,O) (ryt) = 4w (E(r,t) — Ro(r,t)).

Now observe that

2
%E}(,O) (r,t) = Z Vike "VEK _ 95, (r) Z ekt
" k40 k;éO
= H(|r|,t) = 200(r)() ™ —1
keZ

= H(|r|,t) — 280(r)(2mdo(t) — 1)
= H(|r|,t) — 4mwdo(r)do(t) + 200(r).

In the same way, we have

0? 0? 0?
87”2 (E Ro)(T’ t) = ﬁE(?" t) — WRO(T t)

~ 2 (am )
and, denoting R({,t) = —%, we obtain

”2 2D — _2(R !
WRQ(&f) = _g R0(£>t> - 1_5 (R<£’t) 252 )
= —&R(,t) — — = —ER(¢,1) — —50(5)

2R 1 -
= W(fﬁ) - %50(5)-

Hence we deduce

H(r|, ) — dmbo(r)6o(t) = 2= EO(r, ) — 260(r)

O’F O0’R 1
= WW(T’ t) 47'['( 87’2 (7“ t) %50(7“)) — 2(50(7")
and therefore, for r > 0,
0’FE 0’R

H(r,t) —47r(9 5 (r,t) —4m e ——5 (1, 1)

This suggests to decompose H (r,t) for r > 0 in the following way
R O*FE
H=H, +H, with H = —47TW and H, = 47TW (4.11)
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For H; we have
~ 9 o~ 626_52(t+7r)
H t) =4né°R(E ) = 20—
1(€a ) ﬂf (57 ) T Sil’lh(fQW)

Hence .
1 oo
Hl(?”, t) = % /_OO e”{Hl(gvt) df

—+00 2
_ 1 / ere ST etkm) ge
T J oo sinh(&2m)

As t+ 7 > 0 we have e~ < 1 and hence

+o0 2 +oo 2
lHl(r,wlsl/ 5—”d5si/ T,

T J_o sinh(&2m) /T J_o sinh(z?)
400 xQ
Now let us consider the estimate (4.4). We have chosen
O*F
Hy =4r—
2= g2

and hence we have,

M) 5,1 1% .2
Hy(rt) = —2n—2 732 (2 — — )
2(r 1) = —2r— G- %
This implies

—3/2

N

1 7
2 4t

|Hy(r,t)| < 2w

Recall that for all x > 0 we have
1—zle™ < (1+ x)_3/2

and hence
r? )

Ha(r, )] S 521+ )72 S (4 02y 7002

The result concerning the derivatives can be deduced easily by similar
considerations. For what concerns A fl), we just have to observe that

OV (T t) +oo (if)SH )
HY(r 1) = =1 = / iré ~&2(t+m) g
v () orltt L sinh(§27r)e ¢

o0
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and hence, as above,
a2 (r,1)] S 1.

On the other hand, by recurrence, we can prove that, for some a; € R,

1+1 3+1
Hél)(r,t) _ 0 HQ(T,t)_ 0 E(T,t)

Or 1+ = a7 O3+l
(2H] ,
M) 1 _.»2 Fri2i
Wi—e_ﬂ Z a; L .
ﬁ \/Z — t3+l71,
1
2 M(t) 1 2 « <r2) R
- = T4l a; - )
VT i=0 t
and we conclude as above. O]

Theorem 4.2. Under the assumptions of Theorem 3.4 and recalling that
NJ

g =1-— % - , the mapping qy — (% — A)(nju&) is continuous from
WeiP(I) into Lp(] Lp(Q))
Proof. Recall that, by Remark 3.2, 0 < 0; < 1.

Case 1: Pj,)\; =lde Nj+p—1+ % > (. Let us take the Fourier series in
tof f= nj(% — A)u,\g_. We obtain

—
~

fo = mi(r) (5 — D)ux), = 0(r) (kI — D)ty
= —c,\;(ik) (2)\;-—#1)\/_/% rVik N 5111()\;0) n; (1),

with ey (ik) = (T (ik), 3, k)) = —ay (k).

Let us consider the kernel H given by Lemma 4.1 i.e.

Z\/_ker kzkt ZH zkt'

kEZ kEZ

Hence, we have
fo= (Hxqy) 2N+ 1) 75 sin(X0) n;(r)

(2X; + 1) 1 sin(\;0) 77]-(7“)/ H(r,s) qu (t — s) ds.
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As | g
— H(r,s)ds = Hy(r) =0,

2 ) .

we have
f=0@XN+1) PNt sin(\;0) n;(r) /7r H(r,s)[ax,(t — s) — qx (t)] ds. (4.12)

By (4.2) we define f = f; + fo with

fi= (2N, +1) PNt sin(\;60) n;(r) Hi(r, s) [qn (t = s) = qx, (t)] ds.

—T

Step 1: Study of fi. By (4.3) we have
fiedl £ ) [ g9~ ay (0] ds

rAQ'_ln]-(r) {/_7T ]q,\;.(S)| ds + 2w !q,\;_ )}

)\/

<
S () Llla llwesear + lax, (£)]}-

This implies that

i 1
/ / |f1 (':Ea t)|p7““jp7" drdt S (/ r(Ag_l)P"'MP-ﬁ-ldT)
—7 J ) 0 i
|:27qu)\;. ”%/'Ujvp(l) + / |(]>\;_ (t)lpdt:|

1
S ||qA;||€ng,p(I)/0 PN Dp g+ g,

1
The integral [ X~ DPFHPHL e converges if (N = 1) + py + % > 0 which is

0
the condition to have P; N = 1.
Step 2: Study of fo. By (4.4), we have

, ™ Jgx (t —8) — qx (1)]
A—1 J J
| fol@, D) S 77 m;(r) /7T (r2 + |s])3/2 ds

from which we deduce

(/_7; | fo(z, t)P dt) v (4.13)

< r/\é'_lnj(r)/ (r* + |5|)3(/ g, (t = s) — qx, (8)[P dt) > ds.

—T —T
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By the assumption gy € W77 (I) we have

v (2) = qx (y)?
|z — y[L o

drdy < |lqx, < 0. (4.14)

H];[/"j’?’ I
1 (N

Making the change of variables (z,y) = (t — s,t), (4.14) becomes

g, (t = 5) = qx ()7
‘S|1+0jp

" lax(t—s) —au@®P )"
k(s) = i dt ,

Denoting

this estimates is equivalent to

[ It Ps < s e (4.15)

—Tr

Going back to (4.13), we obtain

’r_ g 3 1 o
£, ey S 79 177;'(7")/ (r* + |s]) 2 [s|" T k(s) ds,

—T

which implies
/ /]fg(x,t)\pr”jprdrdﬁdt
—m JQ
1 ™ p
S/ T(A;fl+uj)p+2 (/ (r2+|8|)—%|3|%+0j+1/{(8) @) @
0 S

Y sl r
(4.16)
Observe that, by definition of o},
PO (2 o [s]) 73 |sfrtt = PO THII Rl imR (12 1)
T(A;—1+uj)+§‘3‘2—%—@—%(r_j +1)2
o Ni—ltup+2 3
—= (%2 2 (r?‘ —|— 1) 2
= K(E)
where )
N =14pj)+2
Kry=1"—2 “(r+1)%
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With these notations, (4.16) becomes

1 ™ 2 d d
1lpnigon < [ ([ Rl s TP @D

—r 8] [s|” 7

Making the change of variables r’ = 12, (4.17) becomes

S 1 ds . dr’
gy S [ r sl r(s) T

—Tr

N
o\
/-\H
O\:‘
ol
YaS
—\_/\
-,
—~
N~—
| &
S~—
=
3 3:

Let us define
k(s) = k(s), if s€]0,n,

= 0, otherwise.

In that case
[ e S = [T i) T = e ()0

where x,, denotes the multiplicative convolution. Now observe that, by
(4.15), we have

00 1 ds <>o~ T
| 1P = [ lrerds = [ s ds < o e,

It remains to verify that k € L'(0, 00; %) i.e.
o i , dr
/ rm 2 (r+1)72 — < oo.
0 r

This is true as, by the summation domain N} + j1; + 1—27 < 2 and as Pj,A; =1,
2

/\9+Mj—1+5>0,

Case 2: deg(Pj)\;) = lj,A; — 1> 1. In that case, we have

fr = n;(r) (ikI— A)iy g = cx(ik)ike” rVik sin(\;0) n;(r) P P(rVik) (4.18)

with P a polynomial function of degree L, N~ 2 and [; X such that
, 2
lj7)\; +)\j+'uj_2+]_9 > 0. (419)
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Let us introduce the kernel
H(l)(r, t) _ Z(z’k)”m 677"\/% eikt’
keZ
where [ = 0,1, ---lj,A;- — 2. We see that

al—i—l
87~1+l

HY| = ‘ H‘ :

By Lemma 4.1, we have
HY = 1" + 1Y

with H" and HY satisfying (4.5) and (4.6).

Y

In the same way as before, we define

£ = sin(N6) nj(r)/ H(r,s) lqx, (t = ) = qx ()] ds.

and we have
L x =2

LS ST A+ 1£0D,
=0
with

™

1060 =y (o) [ O )l (- 9) ~ axy 0] ds.

—T

Hence we have, as in the first case,

s 1
[ 10 apet vdrd S ooy [ rO50m0m
- JQ 0

33

(4.20)

(4.21)

(4.22)

where the last integral converges as A+ pi; +1 —i—% > ( which is true as o; < 1

and [ > 0.

In the same way as before, we have

1 T
Hf2 HLP(IL”(Q) </ (N +l4p5)p+2 (/ (7” +’ |) (2+1 | ‘ +cf]+1 (S)

—T

< [ W0 R &

r
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with
N

EO(w) =u~ 2 Fo(u+ 1)~ @2,

We conclude observing that, as 0 < 0; < 1, we have

/ kD (u) du < 0.
0 u

Conclusions. Now observe that

o P on; Oux,
(57 — D)mju) = 1555 — A, =255 =2 — uyy A,

with % and An; equals to zero on D;(1/2) U (2\ D;(1)). Hence it is easy
to deduce that

0 an; Oun,
7%(@ — A)U)\; — 28_7'] 87" — U)\; A?]] € LP(I, L%(Q)),

which concludes the proof. O

5 Application of the second strategy

Now we are able to consider the regularity of uz and to prove our main result.

Theorem 5.1. Letp > 2, (2 be a bounded polygonal domain of R? and denote
A= (Mhsi<
Let i satisfies, for all j =1,...,J,

2p—2
_)\j < py < pT:

4p — 1A — p3p* >0

and, for allk € Z* and allj € {1,2,--- , J}, 2—%—;@ # kX and pj+kN; # 1.
Let 0; = —“j;/\g +1- %, then, for every h € LP(I; L‘Z(Q)), there exists a

- ‘ TP
unique solution uw € LP(I; L5(€2)) of

Ou — Au = h(x,t), in Qx| —m x|,
u =0, on 0 X [—m, 7],
u(-,—m) =u(-,m), in .
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Moreover u admits the decomposition

J
u:uR+an Z U,

j=1 0<N)< 2—;—;@

akeN,\ =k);
with
ur € LP(I; VEP(Q)) N Wy P (1; LE(Q)
and
uy, = (EA; *i q)\;,)r)‘é' sin(\;0)
where
gy, € WD)
and 1
E)\/ x t Z elk’tp )\/ 7,,\/_) 77_\/74_ 27T

keZ*

Proof. Recall that, in the notations of the end of Section 2, we define
R(z) : L(Q) — VﬁQ’p(Q) DG uR
where upg is the regular part of the solution of

—Au+zu=g, in Q,
u =0, on 09,

and, for all z € 77 U Sy,

||R(Z)||LZ(Q)~>V;’Z)(Q) + (14 ]2]) HR(Z)||L§(Q)—>L§(Q) S

Hence by interpolation we have (see for example [1, Thm 7.22]), for all § €

[O, 1[,
R < —1
H (z)||L§(Q)—>(L§(Q),V5’p(§2))g ~ (1 \z|)1*9'
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In that case, by Theorem 3.4 and Remark 3.1

||UR||LPI(LP( Q). V2P(9))0)

< H2m/ R(2) (21 — By)~ h——/ ) ds)dz + Gl Lo ryn )2 @)

< — /||R (21— By)~ (h——/ h(s, ) ds)|| (s (L@, vEr (@)

+“uR‘|LP(I;(L§(Q)7V‘?7P(Q))0)
1 | e
S oo 1 1oNn1—p I—-B -1 h— — h Nd o d

+ |IﬂR||Lp(1;(Lg(Q),V§”’(Q))e)

1

1
< — | ————|h gron dz + K ||k P
S QW/W(le‘ZDQQH HLP(I,LE(Q)) 2+ K || HLP(I,Lﬁ(Q))

Hence, for all 8 € [0, 1],
up € Lp(l; (LE(Q>7 ,72’p(9))0)»

with the estimate
lurll oz nny vz @y < KONz @, (5.1)

for some positive constant K () that may depend on 6 but not on h.

Let us show that
up € LP(I; VP () N Wy P (1 L2(92)).
First observe that ug is a strong solution of
J
8tuR+uR—AuR:h—Z Z (0 — A)(njux;) +ur =: hg

j=1 0</\}<2—%—M
FKEN, N =k)\;

with, by the previous results, hr € LP(I; LZ(Q))
Then we apply the second strategy with

E = LP(I; L)),
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and
A:DA)CE—=E:uw— —Au, with D(A)=L(I;D(Ayz)),
B:D(B)CE—E:uw du+u, with D(B)=W,"(;L(Q)).

The assumptions (Hs) and (Hs) can be verified as previously. The assump-
tion (Hy) is satisfied by all L7(€2) spaces (see for example [3]). It remains
to verify (Hg). To this aim we will apply the following result of Coifman -
Weiss (see [5] or for example [3]).

If — A 1s the infinitesimal generator of a strongly continuous contraction semji-
group in E which preserves the positivity then there exists K > 0 such that,
for all s € R,

|4 < K (1 +[s]) e2l.

For what concerns the operator A, we already know (see [8, proof of
Corollary 2.14]) that —A generates a Cj semigroup of contractions T'(t). It
remains to prove that 7T'(¢) preserves the positivity.

Let f € L(Q) with f >0, A € [0, +00[ and u € Hy(Q2) be the solution of

Yw € Hy (), /QVu-quLA/Qum:/wa (5.2)

As f is real, the solution u is real. Let us decompose u = u™ — u~ with
u™ = max(u,0) and u~ = max(—u,0). Hence we have u*, v~ € H(Q2) and
by (5.2) applied with w = u~, we obtain

/]Vu\z—l-)\/\u\z:—/fugo.
Q 0 0

Hence v~ =0 and u > 0.
By [21, Cor I-3.5] we have that if —A is the generator of T'(¢) then, for
all f ek,

T f = Ahigo ptOP(AT+A) =1 =) ¥
_ }EEO ef)\tet)\z(/\IJrA)—l ¥
o ) k
= Jim e, S A
k>0

By what we prove just before we have (A\[+ A)~'f > 0 and hence T'(t) f > 0.
We then deduce that the semi-group preserves the positivity. Hence, there
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exists K > 0 such that, for all s € R,
”AisHLP(I;Lg(Q)) < K(1+ |s]) ezll,

As —A is symmetric on the Hilbert space L*(I, L?(f2)), we have also (see for
example [3, p. 164]) ‘
A" L2(r,22(0)) < 1.

Hence under the assumptions of Theorem 2.3, for 6 €]0, 1] close enough to

1 in such a way that v = % and ¢ = 2_55’1'9_9) satisfy the assumptions of
Theorem 2.3, we have, by [25, 1.18.7/Th 4],
A1 Loy 471

||Ais||LP(I,L§(Q)) La(I,LL(9))

<
< KO (14 |s|)? 30,

Hence, for all such 0, for all € > 0 there exists K (e,0) > 0 such that
||Ais||LP(I,L§(Q)) < K (e, 0) 2t

from which we deduce the existence of 74 < 7 such that

||Ai5”Lp(LL§(Q)) — O(GTA|8|)‘

For what concerns B, observe that o(—B) = {—(ki + 1) | k € Z} and
hence o(—B) N [0, +oo[= (). Moreover we have seen that R™ C p(—B) and,

for all A € RT,
1

M+ B < ——
|07+ B) ) < 1
and hence, as in [8, proof of Corollary 2.14], we see that —B is the generator
of a Cy semigroup S(t) of contraction.

Let us show that S(t) preserves the positivity. Consider the solution
u € D(B) of

u+u+u=f>0,
u(=m) = u(m),
then
u(w,t) = (B+AD

T — (14X (7—s5)
e —
N / ()T _ 67(1“)#]((56, s)ds e~ (1M

—Tr

¢
+/ e~ N9 (5 5) ds > 0.

—T
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As above we deduce that S(t) preserves the positivity. By the previous result
of Coifman-Weiss, there exists K > 0 such that, for all s € R,

1B < K (1+ |s]) e3P,
Hence we obtain 74 < 7/2 and 75 € |7/2, ™ — 74[ such that
1A®] = 0(e™),
1B = 0(e7*!).

As all the assumptions of the second strategy are satisfied, we have the
existence of wr € Wy (I; L2 () N LP(1; D(A, 7)) solution of

Ow+w — Aw = hg, in Qx| —m 7
w =0, on 0 X [—m, 7,
w(-,—m) =w(-,m), in .
Clatm: wr = ugr and hence
ur € Wy (I3 L(9)) 0 L (I D(Ap ) 0 LP(1; (LE(Q), VP (€2))).
It is easy to observe that up is a strong solution of

Owup +up — Augr = h

J
=Y > (Blpux) = Alpuy)) +ug, in Qx I,

j=1 0<Nj<2—2—p; (5.3)
IKEN,N =kA; )
ur =0, on 0f) x I,
up(s, —m) = ug(-, ), in Q.

In fact, by Theorem 3.4, we know that u is a strong solution of

Ou—Au=~h, inQxI,
u =0, on 0 x I,
u(-,—m) =u(-,m), in Q,
i.e., for every n € N, there exist u,, € D(A) N D(B) and h,, € E such that

(A+ B)u, = hy, u, — u and h, — h in E. Moreover, as in Section 3, for
every n, we have the decomposition

J
Up = Un,R + § Ui § u”v)\;'

- / 2 )
7j=1 0<)\j<27;7,uj
HkEN,)\;:k/\j
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By Theorems 3.4 and 4.2, we have
Or(njtn,x;) — AN ) — Or(njus ) — Alnjux;).

By the estimate (5.1) we see that u, p — ug in E.

Now observe that wg is a strong solution of (5.3) as w,, p = wg are such
that w, p € D(A) N D(B) and w, g — wg.

Hence applying the first strategy to (5.3) with

E = LP(I, L}(9))
A:D(A):=L"(I;D(Ay;z) CE— E:u— —Au,
B:D(B):= W;;p(I;LZ(Q)) CE— FE:uw— O+ u,

we have by uniqueness of the strong solution that wr = ur and hence

ur € Wyl (I Li() 0 LP (I3 D(Ap,)) N L (15 (L), V5" (2))o)-

m

Claim: D(A,,) N (L5(Q), VP () C V(9).

i
If w e D(A,,) then, by [18] as in [8], u admits the decomposition

J
U =u; + Z ur Z cx, N sin(/\gﬂ).
=1

0<Nj<2—2—p;
IKEN,N =k,

Recall that by [7] we have that
2, 2, ‘
G0 (Q) = WH(Q) tu s wu

as well as
LY(Q) = LP(Q) tu > wu

are continuous. Hence, if u € (L3(92), ﬁ?’p(Q))g we have wu € (LP(Q), WP(2)),.
By [1] we know (LP(Q), W?P(Q2)), = W??P(Q) and in particular r*iu €
W20 (D;).

By [12] we have
if 1+ N > 20 — 2, then # sin(Nj0) € W27 (D;),
if 1+ Ny <20 — 2 and p; + N € N, then 774 sin(\;6) & W2(D;).

As pj+ N, <2 — %, for 6 close to 1, we have i; + X < 20 — % and hence

u:ulevﬂ?’p(Q). O

September 2, 2010



41

References

1]

R.A. Adams and J. Fournier, Sobolev spaces, second edition, Pure
and Applied Mathematics series, Academic Press, Elsevier, Amsterdam,
2003.

J.0. Adeyeye, Generation of analytic semi-group in LP(2) by the
Laplace operator, Boll. U.M.I. Analisi Funzionale e Applicazioni, Serie

VI, Vol. IV - C, n. 1 (1985), 113-128.

H. Amann, Linear and quasilinear parabolic problems, Monographs in
Mathematics, Birkhauser Verlag, Basel - Boston - Berlin 1995.

N.T. Anh and N.M. Hung, Asymptotic formulas for solutions of
parameter-depending elliptic boundary-value problems in domains with
conical points, Electron. J. Differential Equations, 2009 (2009), No. 125,
1-21.

R.R. Coifman and G. Weiss, Transference methods in analysis,
C.B.M.S.-A.M.S. 31, 1976.

G. Da Prato and P. Grisvard, Sommes d’opérateurs linéaires et
équations différentielles opérationnelles, J. Math. Pure Appl. 54 (1975),
305-387.

C. De Coster and S. Nicaise, Lower and upper solutions for elliptic
problems in nonsmooth domains, J. Differential Equations 244 (2008),
599-629.

C. De Coster and S. Nicaise, Singular behavior of the solution of the
Helmholtz equation in weighted LP-Sobolev spaces, preprint.

G. Dore and A. Venni, On the closedness of the sum of two closed
operators, Math. Z. 196 (1987), 189-201.

P. Grisvard, Commutativité de deuz foncteurs dinterpolation et appli-
cations, J. Math. Pure Appl. 45 (1966), 143-290.

P. Grisvard, FEquations différentielles abstraites, Ann. Scient. Ec.
Norm. Sup. 2 (1969), 311-395.

September 2, 2010



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

42

P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and
Studies in Mathematics 24, Pitman, Boston-London-Melbourne, 1985.

P. Grisvard, Edge behavior of the solution of an elliptic problem, Math.
Nachr. 132 (1987), 281-299.

P. Grisvard, Singular behavior of elliptic problems in non hilbertian
Sobolev spaces, J. Math. Pures Appl. 74 (1995), 3-33.

V.A. Kozlov, Coefficients in the asymptotic solutions of the Cauchy

boundary-value parabolic problems in domains with a conical point,
Sibirskii Mat. Zhurnal 29 (1988), 75-89.

V.A. Kozlov and V.G. Maz’ya, Singularities of solutions of the first
boundary value problem for the heat equation in domains with conical
points. II, Soviet Math. (Iz. VUZ) 31 (1987), 49-57.

A. Kufner, Weighted Sobolev spaces, John Wiley and Sons, Chichester,
1980.

A. Kufner and A.-M. Sandig, Some applications of weighted Sobolev
spaces, Teubner texte zur mathematik 100, Leipzig 1987.

A.I. Nazarov, L,-estimates for the solution to the Dirichlet problem
and to the Neumann problem for the heat equation in a wedge with edge
of arbitrary codimension, J. Math. Sciences 106 (2001), 2989-3014.

A.l. Nazarov, Dirichlet problem for quasilinear parabolic equations in
domains with smooth closed edges, Amer. Math. Soc. Transl. 209 (2003),
115-141.

A. Pazy, Semigroups of linear operators and applications to partial
differential equations, Springer-Verlag, New York, 1983.

[22] J. Priiss and G. Simonett, H*>-Calculus for the sum of non-

commuting operators, Trans. A.M.S. 359 (2007), 3549-3565.

[23] V.A. Solonnikov, L,-estimates for solutions of the heat equation in

a dihedral angle, Rend. Matematica, Serie VII, vol. 21, Roma (2001),
1-15.

September 2, 2010



43

[24] M. Taibleson, On the theory of Lipschitz spaces of distributions on
euclidian n-space, J. Math. and Mech. 13 (1964), 407-458.

[25] H. Triebel, Interpolation theory, function spaces, differential operators,
North-Holland Publishing Company, Amsterdam, 1978.

September 2, 2010



