
Singular behavior of the solution of the
periodic-Dirichlet heat equation in weighted

Lp-Sobolev spaces

Colette De Coster and Serge Nicaise

Université de Valenciennes et du Hainaut Cambrésis
LAMAV, FR CNRS 2956,

Institut des Sciences et Techniques de Valenciennes
F-59313 Valenciennes Cedex 9, France

Colette.DeCoster,Serge.Nicaise@univ-valenciennes.fr

September 2, 2010

Abstract

We consider the heat equation in a polygonal domain Ω of the
plane in weighted Lp-Sobolev spaces

∂tu−∆u = h, in Ω× ]− π, π[,
u = 0, on ∂Ω× [−π, π],

u(·,−π) = u(·, π), in Ω.
(0.1)

Here h belongs to Lp(−π, π;Lpµ(Ω)), where L
p
µ(Ω) = {v ∈ L

p
loc(Ω) :

rµv ∈ Lp(Ω)}, with a real parameter µ and r(x) the distance from
x to the set of corners of Ω. We give sufficient conditions on µ, p
and Ω that guarantee that problem (0.1) has a unique solution u ∈
Lp(−π, π;Lpµ(Ω)) that admits a decomposition into a regular part in
weighted Lp-Sobolev spaces and an explicit singular part.

The classical Fourier transform techniques do not allow to handle
such a general case. Hence we use the theory of sums of operators.

Keywords: heat equation, singular behavior, nonsmooth domains.
AMS Subject Classification: 35K15, 35B65.
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1 Introduction

This paper is the second one of a large program of research devoted to the
study of (nonlinear) heat equation in nonsmooth domains in weighted Lp-
Sobolev spaces. Our final goal requires precise information about the solution
of the linear heat equation

∂tu−∆u = h, in Ω× ]− π, π[,
u = 0, on ∂Ω× [−π, π],

u(·,−π) = u(·, π), in Ω,
(1.1)

in weighted Lp-Sobolev spaces. In particular its decomposition into a regular
part and an explicit singular part is needed. Although this theory is well de-
veloped in weighted L2-Sobolev spaces [13, 16, 15, 4] or in Lp-Sobolev spaces
[14], to our best knowledge such a result does not exist in the framework
of weighted Lp-Sobolev spaces. The first class of papers are based on the
Fourier analysis, while the second one uses the theory of sums of operators.
For maximal regularity type results in weighted Lp-Sobolev spaces, we refer
to [6, 19, 23, 20, 22]; here different techniques like estimates of the Green
function, the theory of sum of operators or blowing up can be used.

According to the approach of [14], the study of the linear heat equation in
non-hilbertian Sobolev spaces can be performed with the help of the theory
of sums of operators. Hence the goal of this paper is to make this analysis in
Lp(−π, π;Lpµ(Ω)) for a large range of values of µ and p. Our results extend
the ones from [13, 14] to the Lpµ(Ω) setting.

This theory also requires, in a first step, to obtain uniform estimates of
the solution of the Helmholtz equation

−∆u+ zu = g in Ω,
u = 0, on ∂Ω,

(1.2)

where z is a complex number. This was performed in the companion paper
[8].

For the sake of simplicity we have restricted ourselves to two-dimensional
domains Ω. The results of this paper can be easily extended to the case of
domains with conical points.

The paper is organized as follows: In section 2 we recall some results on
the sums of operators in Banach spaces of Da Prato-Grisvard [6] and of Dore-
Venni [9]; we also state some basic results from [8] used later on. In section 3
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we apply the approach of Da Prato-Grisvard to obtain a decomposition but
with non-optimal regularity informations. Section 4 is devoted to the proof
of the regularity of (∂t − ∆)S, where S is the singular part of the solution
obtained before. The use of the approach of Dore-Venni and the results of
section 4 allows to get the optimal regularity result obtained in section 5.

In the whole paper the notation a . b means the existence of a positive
constant C, which is independent of the quantities a, b (and eventually the
above parameter z) under consideration such that a ≤ Cb.

2 Preliminary results

Results on the sums of operators in Banach spaces, such as the result of G. Da
Prato and P. Grisvard [6] and of G. Dore and A. Venni [9], can be fruitfully
used to prove the singular behaviour of elliptic problems in non-Hilbertian
Sobolev spaces as in [14]. Let us recall these results.

Fix a complex Banach space E and a pair of closed linear densely defined
operators A : D(A) ⊂ E → E and B : D(B) ⊂ E → E. Hence we can define
their sum

L : D(L) := D(A) ∩D(B) ⊂ E → E : x 7→ Lx := Ax+ Bx.

For an operator C we denote by σ(C) and ρ(C) respectively its spectrum
and its resolvent set.

2.1 First strategy

Assumptions on A and B:
(H1) There exist M ≥ 0, R ≥ 0, θA ∈ ]0, π], θB ∈ ]0, π] such that

θA + θB > π,
SA := {λ | |λ| ≥ R, | arg λ| ≤ θA} ⊂ ρ(−A),
SB := {λ | |λ| ≥ R, | arg λ| ≤ θB} ⊂ ρ(−B),

and, for all λ ∈ SA and all µ ∈ SB,

‖(A+ λ I)−1‖ ≤ M

|λ| , ‖(B + µ I)−1‖ ≤ M

|µ| ;

(H2) σ(−A) ∩ σ(B) = ∅;

September 2, 2010



4

(H3) The resolvent of A and B commute, i.e., for every λ ∈ ρ(−A) and every
µ ∈ ρ(−B),

(A+ λ I)−1(B + µ I)−1 = (B + µ I)−1(A+ λ I)−1.

Theorem 2.1. [6] Under assumptions (H1), (H2) and (H3), the operator L
has an invertible closure.

Definition 2.1. The closure of L is defined by x ∈ D(L̄) and L̄x = y if there
exists a sequence (xn)n ⊂ D(L), which satisfies xn → x and Lxn → y.

A solution of L̄x = y is called a strong solution of Lx = y.

The inverse of L̄ is obtained as the integral

(L̄)−1 =
1

2iπ

∫

γ

(A+ λ I)−1(λ I −B)−1dλ,

where γ is a path which separates σ(−A) and σ(B) and joins∞e−iθγ to∞eiθγ

where θγ is chosen so that π − θB < θγ < θA.

2.2 Second strategy

Assumptions on A, B and E:
(H4) E is a U.M.D. space;
(H5) ] − ∞, 0] ⊂ ρ(A) ∩ ρ(B) and there exists M ≥ 0 such that, for every

t ≥ 0,

‖(A+ t I)−1‖ ≤ M

t+ 1
, ‖(B + t I)−1‖ ≤ M

t+ 1
;

This allows to define the complex power of A and B by setting, for ℜ(z) < 0,

Az = −sin(πz)

π

∫ +∞

0

tz(A+ t I)−1dt.

This definition can be extended to ℜ(z) = 0 by taking limits when they exist.

(H6) For every s ∈ R, the complex power Ais and Bis exist and are bounded
operators. In addition there exist K > 0, τA > 0, τB > 0 such that

τA + τB < π,

and, for all s ∈ R,

‖Ais‖ ≤ Ke|s|τA , ‖Bis‖ ≤ Ke|s|τB .

Theorem 2.2. [9] Under assumptions (H3), (H4), (H5) and (H6), the op-
erator L is invertible.
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2.3 Results on the Helmholtz equation

In this paper, we work with a polygonal domain Ω of R2 with a Lipschitz
boundary ∂Ω, in the following sense.

Definition 2.2. Let Ω be a bounded domain of R2. We say that Ω is a
polygonal domain if its boundary is the union of a finite number of line
segments Γ̄j, j ∈ {1, . . . , J} (Γj being supposed to be open). Hence we do
not assume that Ω is a Lipschitz domain, that is we include the presence of
cracks.

Denote by Sj, j = 1, · · · , J the vertices of ∂Ω enumerated clockwise.
Without loss of generality we may assume that B(Sj, 1)∩Ω does not contain
any other vertex of Ω. For j ∈ {1, 2, · · · , J}, let ψj be the interior angle of
Ω at the vertex Sj, λj =

π
ψj

and (rj, θj) the polar coordinates centered at Sj
such that

B(Sj, 1) ∩ Ω = {(rj cos θj, rj sin θj) | 0 < rj < 1, 0 < θj < ψj} =: Dj.

For ~µ = (µj)
J
j=1, we define the spaces Lp~µ(Ω) = {f ∈ Lploc(Ω) | wf ∈

Lp(Ω)} with

w = 1 +
J∑

j=1

ηj(r
µj
j − 1), (2.1)

where rj(x) is the distance from x to the vertex Sj and ηj ∈ D(R2) are such
that

ηj ≡ 1 in Dj(1/2), ηj ≡ 0 on Ω \Dj(1),

where Dj(r) is the truncated cone Dj(r) = Ω ∩B(Sj, r).
The space Lp~µ(Ω) is a Banach space for the norm

‖f‖Lp
~µ
(Ω) =

(∫

Ω

|f(x)|pwp(x) dx
)1/p

.

V k,p
~µ (Ω) is defined as the closure of

C∞
S (Ω) = {v ∈ C∞(Ω) | Sj 6∈ supp v}

with respect to the norm

‖u‖V k,p
~µ

(Ω) =


∑

|γ|≤k

∫

Ω

|Dγu(x)|pwp(x) r(|γ|−k)p(x) dx




1/p

.
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We use the following notation for the semi-norm

|u|V k,p
~µ

(Ω) =


∑

|γ|=k

∫

Ω

|Dγu(x)|pwp(x) r(|γ|−k)p(x) dx




1/p

.

In H1
0 (Ω) we will denote the norms in the following way

|u|2H1
0
=

∫

Ω

|∇u|2 and ‖u‖2H1
0
=

∫

Ω

(|∇u|2 + |u|2).

For ~µ and ~γ, we write ~µ > ~γ in case, for all j ∈ {1, . . . , J}, µj > γj.

Let us finish this subsection by stating two theorems obtained in [8] that
concern uniform regularity results for the Helmholtz equation in weighted
Sobolev spaces.

Theorem 2.3. [8] Let R > 0, p ≥ 2 and Ω be a bounded polygonal domain

of R2. Denote ~λ = (λj)1≤j≤J .

Let ~µ > −~λ satisfies, for all j = 1, . . . , J,

µj <
2p−2
p
, if p > 2, µj ≤ 1, if p = 2,

4(p− 1)λ2j − µ2
jp

2 > 0
(2.2)

and, for all k ∈ Z∗ and all j ∈ {1, 2, · · · , J}, 2− 2
p
− µj 6= kλj.

Then, there exists θA ∈ ]π
2
, π[ such that, for all g ∈ Lp~µ(Ω), all z ∈ π+∪SA,

with

π+ = {z ∈ C | ℜ(z) ≥ 0}, SA = {z ∈ C | |z| ≥ R and | arg z| ≤ θA},

the problem {
−∆u+ zu = g, in Ω,

u = 0, on ∂Ω,

has a unique solution u ∈ H1
0 (Ω). Moreover this solution is in D(∆p,~µ) :=

{u ∈ H1
0 (Ω) | ∆u ∈ Lp~µ(Ω)} and admits the decomposition

u = uR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

cλ′j(z)Pj,λ′j(r
√
z)e−r

√
z rλ

′

j sin(λ′jθ), (2.3)
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with uR ∈ V 2,p
~µ (Ω), cλ′j(z) ∈ C and Pj,λ′j(s) =

lj,λ′
j
−1

∑

i=0

si

i!
with lj,λ′j > 2 − µj −

2
p
− λ′j.
Moreover, the following inequalities are satisfied

(a) |uR|V 2,p
~µ

(Ω) + |uR|V 1,p
~µ−1

(Ω) + ‖uR‖Lp
~µ−2

(Ω) . ‖g‖Lp
~µ
(Ω);

(b) |uR|V 2,p
~µ

(Ω) + |z|1/2 |uR|V 1,p
~µ

(Ω) + |z| ‖uR‖Lp
~µ
(Ω) . ‖g‖Lp

~µ
(Ω);

(c)
J∑

j=1

∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

|cλ′j(z)| (1 + |z|1− 1
p
−

µj+λ′j
2 ) . ‖g‖Lp

~µ
(Ω).

Theorem 2.4. [8] Under the assumptions of Theorem 2.3, D(∆p,~µ) ⊂ Lp~µ(Ω)
and we have

(a) If z ∈ C satisfies ℜ(z) ≥ 0 then ℜ(z) ‖u‖Lp
~µ
(Ω) ≤ ‖g‖Lp

~µ
(Ω);

(b) If z ∈ C satisfies | arg z| ≤ θA then (1 + |z|)‖u‖Lp
~µ
(Ω) . ‖g‖Lp

~µ
(Ω).

Theorem 2.3 can be rephrased as follows. The operator (−∆+ z I)−1 can
be decomposed as

(−∆+ z I)−1 = R(z) +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

Tλ′j(z)⊗ ψ̃λ′j ,z (2.4)

where we use the linear and continuous operators

R(z) : Lp~µ(Ω) → V 2,p
~µ (Ω) : g 7→ uR,

Tλ′j(z) : L
p
~µ(Ω) → C : g 7→ cλ′j(z) = 〈Tλ′j(z), g〉

and the function ψ̃λ′j ,z(r, θ) = Pj,λ′j(r
√
z)e−r

√
z rλ

′

j sin(λ′jθ). Recall that

(Tλ′j(z)⊗ ψ̃λ′j ,z)(g) = 〈Tλ′j(z), g〉 ψ̃λ′j ,z.
Moreover, for all z ∈ π+ ∪ SA, we have

‖R(z)‖Lp
~µ
(Ω)→V 2,p

~µ
(Ω) + |z|1/2‖R(z)‖Lp

~µ
(Ω)→V 1,p

~µ
(Ω) + |z| ‖R(z)‖Lp

~µ
(Ω)→Lp

~µ
(Ω) . 1,

(2.5)
and

‖Tλ′j(z)‖(Lp
~µ
(Ω))′ .

1

1 + |z|(1− 1
p
)−

µj+λ′
j

2

. (2.6)
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3 Application of the first strategy

Let us assume in the future that the assumptions of Theorem 2.3 are satisfied.

Consider the problem (1.1) with h ∈ Lp(I;Lp~µ(Ω)) with I = ] − π, π[. In
that case, h admits the decomposition

h(x, t) = g1(x) + g(x, t) with, for a.e. x ∈ Ω,

∫ π

−π
g(x, t) dt = 0,

g1 ∈ Lp~µ(Ω) and g ∈ Lp(I;Lp~µ(Ω)). To obtain such a decomposition, we just
have to define

g1(x) =
1

2π

∫ π

−π
h(x, s) ds.

Hence u is a solution of (1.1) if and only if u(x, t) = ū(x) + v(x, t) with ū
solution of

−∆ū = g1(x), in Ω,
u = 0, on ∂Ω,

(3.1)

and v(x, t) solution of

∂tv −∆v = g(x, t), in Ω× ]− π, π[,
v = 0, on ∂Ω× [−π, π],

v(·,−π) = v(·, π), in Ω,
∫ π

−π
v(x, t) dt = 0, for all x ∈ Ω.

(3.2)

By [18] and as in [8], ū admits the decomposition

ū = ūR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

c̄λ′j r
λ′j sin(λ′jθ) (3.3)

with ūR ∈ V 2,p
~µ (Ω),

‖ūR‖V 2,p
~µ

(Ω) . ‖g1‖Lp
~µ
(Ω) and |c̄λ′j | . ‖g1‖Lp

~µ
(Ω).

Hence we concentrate on (3.2).
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We shall apply the First Strategy (Theorem 2.1) on the space

E = {h ∈ Lp(I;Lp~µ(Ω)) | for a.e. x ∈ Ω,

∫ π

−π
h(x, t) dt = 0}.

In the future, we will use the index m to denote the fact that the functions

h of the space satisfy, for a.e. x ∈ Ω,

∫ π

−π
h(x, t) dt = 0. In that way

E =: Lpm(I;L
p
~µ(Ω)).

We consider the operators

A : D(A) ⊂ E → E : u 7→ −∆u, with
D(A) = Lpm(I;D(∆p,~µ)) where D(∆p,~µ) = {u ∈ H1

0 (Ω) |∆u ∈ Lp~µ(Ω)},
and

B0 : D(B0) ⊂ E → E : u 7→ ∂tu, with

D(B0) =W 1,p
2π,m(I;L

p
~µ(Ω))

= {u ∈ E | ∂tu ∈ Lp(I;Lp~µ(Ω)), u(·,−π) = u(·, π)}.
Proposition 3.1. Under the assumptions of Theorem 2.3, the operator A+
B0 has an inverse closure i.e., for all g ∈ Lpm(I;L

p
~µ(Ω)), there exists a unique

strong solution v ∈ Lpm(I;L
p
~µ(Ω)) of (A + B0)v = g i.e. there exists (vn)n ⊂

D(A) ∩D(B0) such that vn → v and Avn +B0vn → g.
Moreover we have

v =
1

2πi

∫

γ

(A+ z I)−1(z I −B0)
−1g dz, (3.4)

with γ : R → C defined for example by

γ(s) = |s| e−i(π2+δ), for s ≤ 0,
= |s| ei(π2+δ), for s > 0,

with δ ∈ ]0, θA − π
2
[ and θA given by Theorem 2.3.

Proof. Observe that by Theorem 2.4, we have D(A) ⊂ E and, for all λ > 0,

‖(A+ λI)−1‖ ≤ 1

λ
.

By [21, Thm I-4.2], this implies that −A is dissipative. As E is reflexive
and R(I + A) = E, we have by [21, Thm I-4.6] that D(A) is dense in E.
Hence by Lumer-Phillips and Hille-Yosida Theorems, A is closed. It is easy
to observe also that σ(−A) = {−νk | k ∈ N} where (νk)k is the strictly
increasing sequence of eigenvalues of −∆ in H1

0 (Ω). In particular ν1 > 0 and
lim
k→∞

νk = +∞.
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Concerning B0 it is easy to observe that D(B0) is a dense subset of E and
that B0 is closed. Moreover a simple calculation proves that σ(B0) = iZ∗

and therefore ρ(−B0) ⊃ {λ ∈ C | ℜλ > 0}. Let us show that for all θB <
π
2
,

there exists M ≥ 0 such that, for all µ ∈ SB0 = {µ ∈ C | | arg(µ)| ≤ θB},
‖(B0+µ I)

−1‖ ≤ M
|µ| . To this aim, it is enough to prove that if u is a solution

of
∂tu(x, t) + µu(x, t) = f(x, t), in Ω× ]− π, π[,

u(·,−π) = u(·, π), in Ω,∫ π

−π
u(x, t) dt = 0,

(3.5)

then
|µ| ‖u‖Lp(I;Lp

~µ
(Ω)) . ‖f‖Lp(I;Lp

~µ
(Ω)).

Multiplying the equation in (3.5) by v := wp|u|p−2ū and integrating, we
obtain
∫

Ω

∫ π

−π
∂tu v dtdx+ µ

∫

Ω

∫ π

−π
wp |u|p dtdx =

∫

Ω

∫ π

−π
wpf |u|p−2ū dtdx. (3.6)

Observe that, by periodicity,

∫

Ω

∫ π

−π
∂tu v dtdx = −

∫

Ω

∫ π

−π
∂tv u dtdx.

Moreover by [2], we have

∫

Ω

∫ π

−π
∂tu v dtdx

= −p
2

∫

Ω

∫ π

−π
wp|u|p−2u ∂tu dtdx−

p− 2

2

∫

Ω

∫ π

−π
wp|u|p−4u2u ∂tu dtdx

= −p
2

∫

Ω

∫ π

−π
v ∂tu dtdx−

p− 2

2

∫

Ω

∫ π

−π
wp|u|p−2u ∂tu dtdx,

i.e.
p

2

(∫

Ω

∫ π

−π
v∂tu dtdx+

∫

Ω

∫ π

−π
v∂tu dtdx

)
= 0.

Hence taking the real part of (3.6) gives

ℜ(µ) ‖u‖Lp(I;Lp
~µ
(Ω)) ≤ ‖f‖Lp(I;Lp

~µ
(Ω)).
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As | arg(µ)| ≤ θB <
π
2
, we have |ℑ(µ)| . ℜ(µ) and hence

|µ| ‖u‖Lp(I;Lp
~µ
(Ω)) . ‖f‖Lp(I;Lp

~µ
(Ω)). (3.7)

We conclude that (H1) is satisfied with θA given by Theorem 2.3 and θB =
π
2
− δB with 0 < δB < δ < θA − π

2
.

It remains to verify (H3). This can be easily deduced from the fact that
the variables are separate in these two operators.

Hence we can apply Theorem 2.1 to conclude.

Remark 3.1 Observe that, multiplying the equation

∂tu = f − µu,

by |∂tu|p−2∂tu, integrating and using the inequality (3.7), we obtain also

(1 + |µ|) ‖u‖Lp(I;Lp
~µ
(Ω)) . ‖f‖Lp(I;Lp

~µ
(Ω)). (3.8)

As it is clear that, for each t, we have

[(A+ z I)−1h](t) = (−∆+ z I)−1(h(t)),

we can use the decomposition (2.4) and rewrite (3.4) as

v = vR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

vλ′j (3.9)

with

vR(x, t) =
1

2πi

∫

γ

R(z)(z I −B0)
−1g dz

vλ′j(x, t) =
1

2πi

∫

γ

〈
Tλ′j(z), (z I − B0)

−1g
〉
ψ̃λ′j ,z(x) dz

=
1

2πi

∫

γ

〈
Tλ′j(z), (z I − B0)

−1g
〉
Pj,λ′j(r

√
z)e−r

√
z rλ

′

j sin(λ′jθ) dz.

(3.10)
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Proposition 3.2. Under the assumptions of Theorem 2.3, let us denote

σj := 1− 1
p
−µj+λ

′

j

2
. For all s ∈ ]0,min(1−σj , 1/p)[, for all g ∈ W s,p

m (I, Lpµ(Ω)),

there exist q̃λ′j ∈ W
s+σj ,p
m (I) and Ẽλ′j such that vλ′j defined by (3.10) can be

written as

vλ′j = (Ẽλ′j ∗t q̃λ′j) r
λ′j sin(λ′jθ) = (

∫ π

−π
Ẽλ′j(x, τ) q̃λ′j(t− τ) dτ) rλ

′

j sin(λ′jθ).

Moreover we have

q̃λ′j(t) =
1

2πi

∫

γ

〈
Tλ′j(z), (z I −B0)

−1g
〉
dz,

Ẽλ′j(x, t) =
∑

k∈Z∗

eiktPj,λ′j(r
√
ik) e−r

√
ik,

where we used the notations introduced at the end of Section 2, and the
operator

U0 : W
s,p
m (I, Lpµ(Ω)) → W s+σj ,p

m (I) : g 7→ q̃λ′j

is continuous.

Remark 3.2 Observe that, by the domain of summation in (3.9), we have
σj > 0 and the condition µj > −λj implies that σj < 1.

Proof. First observe that vλ′j ∈ Lp([−π, π];Lp~µ(Ω)) and hence we can take its
partial Fourier series in t.

Step 1: For all f ∈ Lp~µ(Ω), the application C → C : z 7→
〈
Tλ′j(z), f

〉
is

holomorphic on A := {z ∈ C | | arg(z)| < θA} and continuous on A. In fact
the problem {

−∆u+ zu = f, in Ω,
u = 0, on ∂Ω,

(3.11)

is equivalent to {
−∆u = f − zu, in Ω,

u = 0, on ∂Ω.
(3.12)

By [18] as in [8], we know that the solution u of this second problem admits
the decomposition

u = uR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

dλ′j r
λ′j sin(λ′jθ)
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with

dλ′j = dλ′j(f − zu) =

∫

Ω

(f − zu)wλ′j

and wλ′j independent of z. Moreover we have

〈
Tλ′j(z), f

〉
= dλ′j(f − zu).

Hence it remains to consider the regularity of u with respect to z.

Let us consider the operator

S : C → L(Lp~µ(Ω), Lp~µ(Ω)) : z 7→ (−∆+ z I)−1.

Observe that
S(z)f − S(z + h)f = −hS(z)S(z + h) f

and hence

〈Tλ′j(z + h), f〉 − 〈Tλ′j(z), f〉
h

=
1

h

(∫

Ω

wλ′j(f − (z + h)S(z + h)f)−
∫

Ω

wλ′j(f − zS(z)f)

)

=
1

h

(
z

∫

Ω

wλ′j(S(z)f − S(z + h)f)− h

∫

Ω

wλ′jS(z + h)f

)

= −z
∫

Ω

wλ′j S(z)S(z + h) f −
∫

Ω

wλ′jS(z + h)f.

By Theorem 2.4 we have C > 0 such that, for all f ∈ Lp~µ(Ω), z ∈ A and for
h ∈ C small enough,

‖S(z + h)f − S(z)f‖Lp
~µ
(Ω) = |h| ‖S(z)S(z + h) f‖Lp

~µ
(Ω)

≤ C |h|
(1 + |z|) (1 + |z + h|)‖f‖L

p
~µ
(Ω).

Hence we conclude that, for z ∈ A,

lim
h→0

〈Tλ′j(z + h), f〉 − 〈Tλ′j(z), f〉
h

= −z
∫

Ω

wλ′j S(z)
2f −

∫

Ω

wλ′jS(z)f,

and, for all f ∈ Lp~µ(Ω), the application C → C : z 7→
〈
Tλ′j(z), f

〉
is holomor-

phic on A. In a similar way, we prove the continuity of this application on
A.
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Step 2: The Fourier series coefficient in t of vλ′j(x, t) satisfies

v̂λ′j(x, k) = −
〈
Tλ′j(ik), ĝ(·, k)

〉
ψ̃λ′j ,ik(x).

By definition of the Fourier series in t and applying Fubini’s theorem we
obtain

v̂λ′j(x, k) =

∫ π

−π
e−iktvλ′j(x, t) dt =

1

2πi

∫

γ

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz.

For R > k, let us consider the domain DR bounded by γ1,R : [−1, 1] → C

defined by γ1,R(s) = Rei(
π
2
+δ)s and γ2,R := −γ|[−R,R] and, for ǫ > 0 its

subdomain DR,ǫ, bounded by γ1,R and γ2,R,ǫ := −γ|[−R,R] + ǫ.

As, for ǫ > 0, the function

z →
〈
Tλ′j(z), ĝ(·, k)

〉
ψ̃λ′j ,z(x)

is holomorphic in an open domain containing DR,ǫ then, by the Cauchy for-
mula,

1

2πi

∫

∂DR,ǫ

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz =

〈
Tλ′j(ik), ĝ(·, k)

〉
ψ̃λ′j ,ik(x).

As this fonction of ǫ is continuous for ǫ ∈ [0, ǫ0[ and constant, we deduce

1

2πi

[∫

γ1,R

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz +

∫

γ2,R

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz

]

=
〈
Tλ′j(ik), ĝ(·, k)

〉
ψ̃λ′j ,ik(x).

Let us prove that

lim
R→+∞

∫

γ1,R

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz = 0,

and
∫

γ

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz = − lim

R→+∞

∫

γ2,R

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz.
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Observe that by Hölder’s inequality, we have

‖ĝ(·, k)‖p
Lp
~µ
(Ω)

=

∫

Ω

wp(x) |
∫ π

−π
e−iktg(x, t) dt|p dx

.

∫

Ω

wp(x)

∫ π

−π
|g(x, t)|p dt dx . ‖g‖p

Lp(I;Lp
~µ
(Ω))

.

Hence by (2.6) we have

∣∣∣∣∣∣

〈
Tλ′j(z), ĝ(·, k)

〉

z − ik
ψ̃λ′j ,z(x)

∣∣∣∣∣∣

.
|z|

µj+λ′j
2

−(1− 1
p
)

|z| − |k| |Pj,λ′j(r
√
z)e−r

√
z| |rλ′j sin(λ′jθ)| ‖g‖Lp(I;Lp

~µ
(Ω)),

with
µj+λ

′

j

2
− (1− 1

p
) = −σj < 0. This implies

∣∣∣∣∣∣

∫

γ1,R

〈
Tλ′j(z), ĝ(·, k)

〉

z − ik
ψ̃λ′j ,z(x) dz

∣∣∣∣∣∣

.
1

Rσj

∫ 1

−1

|Pj,λ′j(r
√
Rei(

π
2
+δ)s) e−r

√
Rei(

π
2 +δ)s | |rλ′j sin(λ′jθ)| ds‖g‖Lp(I;Lp

~µ
(Ω)),

from which we deduce that

lim
R→+∞

∫

γ1,R

〈
Tλ′j(z), ĝ(·, k)

〉

z − ik
ψ̃λ′j ,z(x) dz = 0.

The argument to prove

∫

γ

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz = − lim

R→+∞

∫

γ2,R

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
ψ̃λ′j ,z(x) dz,

is similar. Step 2 is then proved.

Step 3: The operator U0 : W
s,p
m (I;Lp~µ(Ω)) → W s+σj ,p

m (I) : g 7→ q̃λ′j with

q̃λ′j(t) =
1

2πi

∫

γ

〈
Tλ′j(z), (zI −B0)

−1g
〉
dz
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is continuous. By the results of [11], as 0 < s < 1/p, we know that

W s,p
m (I;Lp~µ(Ω)) = {g ∈ E |

∫ ∞

0

ρsp‖B0(B0 − ρe±i(
π
2
+δ)I)−1g‖pE

dρ

ρ
<∞}.

We have a similar characterization of W s+σ,p
m (I) by considering the operator

N : D(N) ⊂ E1 → E1 : u 7→ ∂tu

with
E1 = Lpm(I),

D(N) = {u ∈ E1 | ∂tu ∈ Lp(I), u(−π) = u(π)}.
Hence
if s+ σj < 1/p then

W s+σj ,p
m (I) = {g ∈ E1 |

∫ ∞

0

τ (s+σ)p‖N(N + τ I)−1g‖pLp(I)

dτ

τ
<∞},

if s+ σj > 1/p then

W
s+σj ,p
2π,m (I) = {g ∈ E1 |

∫ ∞

0

τ (s+σ)p‖N(N + τ I)−1g‖pLp(I)

dτ

τ
<∞},

Claim 1: For τ ≥ 0, we have

N(N + τI)−1q̃λ′j =
1

2πi

∫

γ

〈
Tλ′j(z), B0(zI −B0)

−1g
〉 dz

z + τ
. (3.13)

First observe that

N(N + τI)−1q̃λ′j =
1

2πi

∫

γ

〈
Tλ′j(z), B0(B0 + τI)−1(zI − B0)

−1g
〉
dz. (3.14)

Let us take the Fourier coefficients in t of

1

2πi

∫

γ

〈
Tλ′j(z), B0(B0 + τI)−1(zI −B0)

−1g
〉
dz.

By Cauchy theorem, we obtain

1

2πi

∫

γ

〈
Tλ′j(z),

ik

(ik + τ)(z − ik)
ĝ(·, k)

〉
dz = −

〈
Tλ′j(ik), ĝ(·, k)

〉 ik

ik + τ
.
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In the same way, if we take the Fourier coefficients in t of

1

2πi

∫

γ

〈
Tλ′j(z), B0(zI −B0)

−1g
〉 dz

z + τ
,

by Cauchy theorem, we obtain

1

2πi

∫

γ

〈
Tλ′j(z),

ik

z − ik
ĝ(·, k)

〉
dz

z + τ

=
1

2πi

∫

γ

〈
Tλ′j(z), (

ik

τ + ik

1

z − ik
− ik

τ + ik

1

z + τ
)ĝ(·, k)

〉
dz

=
1

2πi

∫

γ

〈
Tλ′j(z),

ik

τ + ik

1

z − ik
ĝ(·, k)

〉
dz

= −
〈
Tλ′j(ik), ĝ(·, k)

〉 ik

τ + ik

as
〈
Tλ′j(z),

ĝ(·,k)
z+τ

〉
is holomorphic on the right of γ.

As the Fourier coefficients of the two functions coincide, the two functions
are equal.

Claim 2: For 0 < s < min(1 − σj, 1/p), the operator U0 : W s,p
m (I;Lp~µ(Ω)) →

W s+σj ,p
m (I) : g 7→ q̃λ′j is continuous. As 0 < s < 1/p, for g ∈ W s,p

m (I;Lp~µ(Ω))
we have

‖B0(B0 − ρei(
π
2
+δ)I)−1g‖E = η(ρ),

with ∫ ∞

0

ρsp|η(ρ)|p dρ
ρ
<∞.

By (3.13), denoting θ0 =
π
2
+ δ, we have

N(N + τI)−1q̃λ′j =
1

2πi

∫ +∞

0

〈
Tλ′j(ρe

iθ0), B0(ρe
iθ0I −B0)

−1g
〉 eiθ0dρ

ρeiθ0 + τ

− 1

2πi

∫ +∞

0

〈
Tλ′j(ρe

−iθ0), B0(ρe
−iθ0I − B0)

−1g
〉 e−iθ0dρ

ρe−iθ0 + τ
,

and hence

τ (s+σj)p‖N(N + τI)−1q̃λ′j‖
p
Lp(I)

= τ (s+σj)p
∫ π

−π

∣∣∣∣
1

2πi

∫ +∞

0

〈
Tλ′j(ρe

iθ0), B0(ρe
iθ0I −B0)

−1g
〉 eiθ0dρ

ρeiθ0 + τ

− 1

2πi

∫ +∞

0

〈
Tλ′j(ρe

−iθ0), B0(ρe
−iθ0I − B0)

−1g
〉 e−iθ0dρ

ρe−iθ0 + τ

∣∣∣∣
p

dt.
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Using the inequality ‖
∫ +∞

0

f‖Lp(I) ≤
∫ +∞

0

‖f‖Lp(I), we have

τ (s+σj)p‖N(N + τI)−1q̃λ′j‖
p
Lp(I)

. τ (s+σj)p



∫ +∞

0



∫ π

−π

∣∣∣∣∣∣

〈
Tλ′j(ρe

iθ0), B0(ρe
iθ0I −B0)

−1g
〉

|ρeiθ0 + τ |

∣∣∣∣∣∣

p

dt




1/p

dρ




p

+τ (s+σj)p



∫ +∞

0



∫ π

−π

∣∣∣∣∣∣

〈
Tλ′j(ρe

−iθ0), B0(ρe
−iθ0I −B0)

−1g
〉

|ρe−iθ0 + τ |

∣∣∣∣∣∣

p

dt




1/p

dρ




p

.

As the two terms behave in the same way, let us consider only the first term
of the sum. We have, using (2.6),

τ (s+σj)p



∫ +∞

0



∫ π

−π

∣∣∣∣∣∣

〈
Tλ′j(ρe

iθ0), B0(ρe
iθ0I −B0)

−1g
〉

|ρeiθ0 + τ |

∣∣∣∣∣∣

p

dt




1/p

dρ




p

. τ (s+σj)p

(∫ +∞

0

(∫ π

−π

[
ρ

µj+λ′j
2

−1+ 1
p‖B0(ρe

iθ0I−B0)
−1g‖Lp

~µ
(Ω)

]p
dt

)1/p
dρ

|ρeiθ0 + τ |

)p

. τ (s+σj)p
(∫ +∞

0

ρ
µj+λ′j

2
−1+ 1

p‖B0(ρe
iθ0I −B0)

−1g‖Lp(I,Lp
~µ
(Ω))

dρ

|ρeiθ0 + τ |

)p

. τ (s+σj)p
(∫ +∞

0

ρ
µj+λ′j

2
−1+ 1

pη(ρ)
1

|ρeiθ0 + τ |dρ
)p

.



∫ +∞

0

ρsη(ρ)
τ s+σjρ

µj+λ′j
2

−1+ 1
p
−s

|ρeiθ0 + τ | dρ



p

.

As σj = −µj+λ
′

j

2
+ 1− 1

p
we obtain

τ (s+σj)p‖N(N + τI)−1q̃λ′j‖
p
Lp(I) .

(∫ +∞

0

ρsη(ρ)
τ s+σj |ρ|−(s+σj)

|ρeiθ0 + τ | dρ

)p

=

(∫ +∞

0

ρsη(ρ)
(τ/ρ)s+σj

|eiθ0 + τ
ρ
|
dρ

ρ

)p

.

This is a multiplicative convolution and we have, by Young inequality, that
q̃λ′j ∈ W s+σj ,p(I) if ∫ +∞

0

ξs+σj

|eiθ0 + ξ|
dξ

ξ
<∞,
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which is true as 0 < s+ σj < 1.

Conclusion. By Step 2, we have

v̂λ′j(x, k) = −
〈
Tλ′j(ik), ĝ(·, k)

〉
ψ̃λ′j ,ik(x)

= −
〈
Tλ′j(ik), ĝ(·, k)

〉
Pj,λ′j(r

√
ik)e−r

√
ik rλ

′

j sin(λ′jθ).
(3.15)

Let q̃λ′j(t) =
1

2πi

∫

γ

〈
Tλ′j(z), (z I − B0)

−1g
〉
dz. Applying again the Cauchy

theorem as above, we see that its Fourier series coefficient in t is given by

q̂λ′j(k) =
1

2πi

∫

γ

〈
Tλ′j(z),

ĝ(·, k)
z − ik

〉
dz = −

〈
Tλ′j(ik), ĝ(·, k)

〉
.

Moreover the function Ẽλ′j(x, t) =
∑

k∈Z∗

eiktPj,λ′j(r
√
ik) e−r

√
ik is such that, for

all r > 0, Ẽλ′j(r, ·) ∈ L2(−π, π) and even Ẽλ′j(r, ·) ∈ C∞([−π, π]). Hence we

deduce from (3.15) that

vλ′j(x, t) = (Ẽλ′j ∗t q̃λ′j) r
λ′j sin(λ′jθ),

which allows to conclude.

Let us go back to the problem (1.1).

Proposition 3.3. Under the assumptions of Theorem 2.3, let σj = 1− 1
p
−

µj+λ
′

j

2
. Then, for all s ∈ ]0,min(1− σj, 1/p)[ and for all h ∈ W s,p(I, Lp~µ(Ω)),

the problem (1.1) has a unique strong solution u with

u = uR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

uλ′j

and, with the notations of Propositions 3.1, 3.2 and of (3.3),

uR(x, t) =
1

2πi

∫

γ

R(z)(z I −B0)
−1(h− 1

2π

∫ π

−π
h(·, s) ds) dz + ūR(x)

uλ′j(x, t) = (Eλ′j ∗t qλ′j) r
λ′j sin(λ′jθ)
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with qλ′j ∈ W s+σj ,p(I) and Eλ′j verifying

qλ′j(t) = q̃λ′j(t) + c̄λ′j

=
1

2πi

∫

γ

〈
Tλ′j(z), (z I −B0)

−1(h− 1

2π

∫ π

−π
h(·, s) ds)

〉
dz + c̄λ′j ,

Eλ′j(x, t) = Ẽλ′j(x, t) +
1

2π
=
∑

k∈Z∗

eiktPj,λ′j(r
√
ik) e−r

√
ik +

1

2π
.

Moreover, the operator

U : W s,p(I, Lpµ(Ω)) → W s+σj ,p(I) : h 7→ qλ′j

is continuous.

Proof. By the previous results it is enough to prove that

(Eλ′j ∗t qλ′j) r
λ′j sin(λ′jθ) = vλ′j(x, t) + c̄λ′j .

Observe that, as

∫ π

−π
q̃λ′j(s) ds = 0 and

∫ π

−π
Ẽλ′j(r, t− s) ds = 0, we have

(Eλ′j ∗t qλ′j)(x, t) =

∫ π

−π
Eλ′j(r, t− s) qλ′j(s) ds

=

∫ π

−π
Ẽλ′j(r, t− s) qλ′j(s) ds+

1

2π

∫ π

−π
qλ′j(s) ds

=

∫ π

−π
Ẽλ′j(r, t− s) qλ′j(s) ds+ c̄λ′j

=

∫ π

−π
Ẽλ′j(r, t− s) q̃λ′j(s) ds+ c̄λ′j

= (Ẽλ′j ∗t qλ′j)(x, t) + c̄λ′j

= vλ′j(x, t) + c̄λ′j .

The result follows.

In the next result we extend Proposition 3.3 to h ∈ Lp(I, Lp~µ(Ω)).

Theorem 3.4. Under the assumptions of Theorem 2.3, let σj = 1− 1
p
− µj+λ

′

j

2
.

Then, for all h ∈ Lp(I, Lp~µ(Ω)), the problem (1.1) has a unique strong solution
u with

u = uR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

uλ′j
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and, with the notations of Propositions 3.1, 3.2 and of (3.3),

uR(x, t) =
1

2πi

∫

γ

R(z)(z I −B0)
−1(h− 1

2π

∫ π

−π
h(·, s) ds) dz + ūR(x)

uλ′j(x, t) = (Eλ′j ∗t qλ′j) r
λ′j sin(λ′jθ)

with qλ′j ∈ W σj ,p(I) and Eλ′j verifying

qλ′j(t) = q̃λ′j(t) + c̄λ′j

=
1

2πi

∫

γ

〈
Tλ′j(z), (z I −B0)

−1(h− 1

2π

∫ π

−π
h(·, s) ds)

〉
dz + c̄λ′j ,

Eλ′j(x, t) = Ẽλ′j(x, t) +
1

2π
=
∑

k∈Z∗

eiktPj,λ′j(r
√
ik) e−r

√
ik +

1

2π
.

Moreover the mapping Lp(I, Lp~µ(Ω)) → W σj ,p(I) : h 7→ qλ′j is continuous.

Proof. We already know by Proposition 3.3 that, for 0 < s < min(1−σj, 1/p),
the operator U which maps h to qλ′j is continuous from W s,p(I;Lp~µ(Ω)) to

W s+σj ,p(I). We prove that U is also continuous from W s−1,p(I;Lp~µ(Ω)) to

W s−1+σj ,p(I), which allows to conclude by interpolation.

Claim 1: For 0 < s < min(1− σj, 1/p), the operator U : W s−1,p(I;Lp~µ(Ω)) →
W s−1+σj ,p(I) : h 7→ qλ′j is continuous. We have

h ∈ W s−1,p(I;Lp~µ(Ω)) ⇔ ∃h0, h1 ∈ W s,p(I;Lp~µ(Ω)), h = h0 +
∂

∂t
h1.

Hence we define

U : W s−1,p(I;Lp~µ(Ω)) → W s−1+σj ,p(I)

by

Uh = Uh0 +
∂

∂t
Uh1,

where h = h0 +
∂
∂t
h1 with h0, h1 ∈ W s,p(I;Lp~µ(Ω)).

Let us show that U is well defined. Assume that h admits a second
decomposition h = h̃0 +

∂
∂t
h̃1 with h̃0, h̃1 ∈ W s,p(I;Lp~µ(Ω)). In that case we

have

h0 − h̃0 =
∂

∂t
(h̃1 − h1),
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and hence w := h̃1 − h1 ∈ W s+1,p(I;Lp~µ(Ω)). As w ∈ W s+1,p(I;Lp~µ(Ω))

we have that Dτw = w(t+τ)−w(t)
τ

→ w′ in W s,p(I;Lp~µ(Ω)) as τ → 0. As
U : W s,p(I;Lp~µ(Ω)) → W s+σj ,p(I) is linear and continuous we have

DτUw = UDτw → Uw′ as τ → 0,

from which we deduce that Uw is derivable and

∂

∂t
Uw = U

∂

∂t
w

and hence, if h0 +
∂
∂t
h1 = h̃0 +

∂
∂t
h̃1, we have

U(h0 − h̃0) = U(
∂

∂t
(h̃1 − h1)) =

∂

∂t
U(h̃1 − h1)

which means

Uh0 +
∂

∂t
Uh1 = Uh̃0 +

∂

∂t
Uh̃1

i.e. U is well defined.

It remains to prove that U is continuous. We have for h = h0+
∂
∂t
h1 with

h0, h1 ∈ W s,p(I;Lp~µ(Ω)),

‖Uh‖W s−1+σj,p(I) . ‖Uh0‖W s+σj,p(I) + ‖Uh1‖W s+σj,p(I)

. ‖h0‖W s,p(I;Lp
~µ
(Ω)) + ‖h1‖W s,p(I;Lp

~µ
(Ω))

. ‖h‖W s−1,p(I;Lp
~µ
(Ω)),

which proves the Claim.

Claim 2: Lp(I;Lp~µ(Ω)) →֒ (W s,p(I;Lp~µ(Ω)),W
s−1,p(I;Lp~µ(Ω)))s,p. By Fubini’s

theorem, we have

W s,p(I, Lp~µ(Ω)) = Lp~µ(Ω,W
s,p(I)),

as well as
W 1−s,p

0 (I, Lp~µ(Ω)) = Lp~µ(Ω,W
1−s,p
0 (I)),

and then by duality

W s−1,p(I, Lp~µ(Ω)) = Lp~µ(Ω,W
s−1,p(I)).

September 2, 2010



23

Hence we may write

(W s,p(I, Lp~µ(Ω)),W
s−1,p(I, Lp~µ(Ω)))s,p = (Lp~µ(Ω,W

s,p(I)), Lp~µ(Ω,W
s−1,p(I)))s,p,

and applying [25, Theorem 1.18.4, p.128], we deduce that

(W s,p(I, Lp~µ(Ω)),W
s−1,p(I, Lp~µ(Ω)))s,p = Lp~µ(Ω, (W

s,p(I),W s−1,p(I))s,p).

Hence by [10, Thm 6.2], we obtain

(W s,p(I, Lp~µ(Ω)),W
s−1,p(I, Lp~µ(Ω)))s,p = Lp~µ(Ω, B

0,p(I)).

As Taibleson’s results [24] yield Lp(I) →֒ B0,p(I), we have shown that

Lp~µ(Ω, L
p(I)) →֒ Lp~µ(Ω, B

0,p(I)) = (W s,p(I, Lp~µ(Ω)),W
s−1,p(I, Lp~µ(Ω)))s,p.

We conclude by Fubini’s theorem that

Lp(I, Lp~µ(Ω)) = Lp~µ(Ω, L
p(I)).

Conclusion. By interpolation the application

U : (W s,p(I;Lp~µ(Ω)),W
s−1,p(I;Lp~µ(Ω)))s,p

→ (W s+σj ,p(I),W s−1+σj ,p(I))s,p : h 7→ qλ′j

is continuous.

As, for σj 6∈ N,

(W s+σj ,p(I),W s−1+σj ,p(I))s,p = Bσj ,p(I) = W σj ,p(I),

and, by Remark 3.2, σj ∈ ]0, 1[, we have a continuous operator

U : Lp(I;Lp~µ(Ω)) → W σj ,p(I) : h 7→ qλ′j ,

and the result follows.
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4 Regularity of qλ′j → ( ∂∂t −∆)(ηjuλ′j)

In order to consider the regularity of uR we observe that uR satisfies

∂tuR + uR −∆uR = h−
J∑

j=1

∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

(∂t(ηjuλ′j)−∆(ηjuλ′j)) + uR

Hence we need informations on the regularity of ∂t(ηjuλ′j) −∆(ηjuλ′j). This
is the aim of this section.

Lemma 4.1. The kernel H defined on R+ × [−π, π] by

H(r, t) =
∑

k∈Z

√
ik e−r

√
ik eikt =

∑

k∈Z
Hk(r) e

ikt (4.1)

admits the decomposition

H(r, t) = H1(r, t) +H2(r, t), (4.2)

with
|H1(r, t)| . 1, (4.3)

and

|H2(r, t)| .
1

(r2 + |t|)3/2 . (4.4)

Moreover, for l ∈ N,

∂1+l

∂r1+l
H(r, t) = H

(l)
1 (r, t) +H

(l)
2 (r, t),

with H
(l)
1 and H

(l)
2 satisfying

|H(l)
1 (r, t)| . 1 (4.5)

and
|H(l)

2 (r, t)| . (|t|+ r2)−(2+l/2). (4.6)
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Proof. Let us define the function

E(0)
p (r, t) =

∑

k 6=0

e−|r|
√
ik

√
ik

eikt. (4.7)

We verify that E
(0)
p ∈ L2(R× [−π, π]) as, using Parseval identity,

∫ +∞

−∞

∑

k 6=0

|e−|r|
√
ik|2

|k| dr = 4

∫ +∞

0

∑

k>0

e−2r
√
k cos(π/4)

|k| dr

= 2

∫ +∞

0

∑

k>0

e−s cos(π/4)

|k|3/2 ds

= 2

(∑

k>0

1

|k|3/2

)∫ +∞

0

e−s cos(π/4) ds < +∞.

Considering the finite sum for |k| ≤ K and passing to the limit as K → +∞,

we can take the Fourier transform in r of E
(0)
p using the fact that the Fourier

transform is an isometry and E
(0)
p ∈ L2(R× [−π, π]). This gives

Ê(0)
p (ξ, t) =

∑

k 6=0

1√
ik

̂e−|r|
√
ik(ξ)eikt.

As, for k 6= 0,

̂e−|r|
√
ik(ξ) =

∫ +∞

−∞
e−|r|

√
ike−iξr dr =

∫ +∞

0

e−r
√
ike−iξr dr +

∫ 0

−∞
er

√
ike−iξr dr

=

∫ +∞

0

e−r
√
ik(e−iξr + eiξr) dr =

2
√
ik

ξ2 + ik
,

we obtain

Ê(0)
p (ξ, t) = 2

∑

k 6=0

1

ξ2 + ik
eikt. (4.8)

Let E be the elementary solution of the heat equation in R2 i.e.

E(r, t) =
M(t)√
4πt

e−
r2

4t , (4.9)

where
M(t) = 1, if t > 0,

= 0, if t < 0.
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Then we have that the Fourier transform of E in r is given by

Ê(ξ, t) =
M(t)√
4πt

∫ +∞

−∞
e−

r2

4t e−iξr dr =
M(t)√
πt

∫ +∞

0

e−
r2

4t cos(ξr) dr =M(t)e−ξ
2t.

Consider now the function R0(r, t) which has as Fourier transform in r the
function

R̂0(ξ, t) = − e−ξ
2(t+π)

2 sinh(ξ2π)
+

1

2ξ2π
.

With these notations we have

(Ê − R̂0)(ξ, t) =
1

2π

∑

k∈Z
βke

ikt,

with

βk =
1

2

∫ π

−π

(
e−ξ

2(t+π)

sinh(ξ2π)
+ 2M(t)e−ξ

2t

)
e−ikt dt− 1

2ξ2π

∫ π

−π
e−ikt dt.

Hence we have, for k 6= 0,

βk =
1

2

{
e−ξ

2π

sinh(ξ2π)

∫ π

−π
e−(ξ2+ik)t dt+ 2

∫ π

0

e−(ik+ξ2)t dt

}

=
−1

2(ξ2 + ik)

{
e−ξ

2π

sinh(ξ2π)
(e−(ξ2+ik)π − e(ξ

2+ik)π) + 2(e−(ξ2+ik)π − 1)

}

=
1

ξ2 + ik
,

and, in the same way,
β0 = 0.

Hence, we obtain

(Ê − R̂0)(ξ, t) =
1

2π

∑

k 6=0

1

ξ2 + ik
eikt. (4.10)

By (4.8) and (4.10), we deduce that

Ê(0)
p (ξ, t) = 4π(Ê(ξ, t)− R̂0(ξ, t))
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and hence
E(0)
p (r, t) = 4π(E(r, t)−R0(r, t)).

Now observe that

∂2

∂r2
E(0)
p (r, t) =

∑

k 6=0

√
ike−|r|

√
ikeikt − 2δ0(r)

∑

k 6=0

eikt

= H(|r|, t)− 2δ0(r)(
∑

k∈Z
eikt − 1)

= H(|r|, t)− 2δ0(r)(2πδ0(t)− 1)
= H(|r|, t)− 4πδ0(r)δ0(t) + 2δ0(r).

In the same way, we have

∂2

∂r2
(E −R0)(r, t) =

∂2

∂r2
E(r, t)− ∂2

∂r2
R0(r, t),

and, denoting R̂(ξ, t) = − e−ξ2(t+π)

2 sinh(ξ2π)
, we obtain

∂̂2

∂r2
R0(ξ, t) = −ξ2R̂0(ξ, t) = −ξ2(R̂(ξ, t) + 1

2ξ2π
)

= −ξ2R̂(ξ, t)− 1

2π
= −ξ2R̂(ξ, t)− 1

2π
δ̂0(ξ)

=
∂̂2R

∂r2
(ξ, t)− 1

2π
δ̂0(ξ).

Hence we deduce

H(|r|, t)− 4πδ0(r)δ0(t) =
∂2

∂r2
E(0)
p (r, t)− 2δ0(r)

= 4π
∂2E

∂r2
(r, t)− 4π(

∂2R

∂r2
(r, t)− 1

2π
δ0(r))− 2δ0(r)

and therefore, for r > 0,

H(r, t) = 4π
∂2E

∂r2
(r, t)− 4π

∂2R

∂r2
(r, t).

This suggests to decompose H(r, t) for r > 0 in the following way

H = H1 +H2 with H1 = −4π
∂2R

∂r2
and H2 = 4π

∂2E

∂r2
. (4.11)
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For H1 we have

Ĥ1(ξ, t) = 4πξ2R̂(ξ, t) = −2π
ξ2e−ξ

2(t+π)

sinh(ξ2π)
.

Hence

H1(r, t) =
1

2π

∫ +∞

−∞
eirξĤ1(ξ, t) dξ

= − 1

π

∫ +∞

−∞
eirξ

ξ2π

sinh(ξ2π)
e−ξ

2(t+π) dξ

As t+ π ≥ 0 we have e−ξ
2(t+π) ≤ 1 and hence

|H1(r, t)| ≤
1

π

∫ +∞

−∞

ξ2π

sinh(ξ2π)
dξ ≤ 1

π
√
π

∫ +∞

−∞

x2

sinh(x2)
dx,

which implies (4.3) as

∫ +∞

−∞

x2

sinh(x2)
dx <∞.

Now let us consider the estimate (4.4). We have chosen

H2 = 4π
∂2E

∂r2
,

and hence we have,

H2(r, t) = −2π
M(t)√
π
t−3/2 (

1

2
− r2

4t
) e−

r2

4t .

This implies

|H2(r, t)| ≤ 2π
t−3/2

√
π

∣∣∣∣
1

2
− r2

4t

∣∣∣∣ e−
r2

4t .

Recall that for all x ≥ 0 we have

|1− x|e−x . (1 + x)−3/2

and hence

|H2(r, t)| . t−3/2(1 +
r2

t
)−3/2 . (t+ r2)−3/2.

The result concerning the derivatives can be deduced easily by similar
considerations. For what concerns H

(l)
1 , we just have to observe that

H
(l)
1 (r, t) =

∂1+lH1(r, t)

∂r1+l
=

∫ +∞

−∞
eirξ

(iξ)3+l

sinh(ξ2π)
e−ξ

2(t+π) dξ
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and hence, as above,
|H(l)

1 (r, t)| . 1.

On the other hand, by recurrence, we can prove that, for some ai ∈ R,

H
(l)
2 (r, t) =

∂1+lH2(r, t)

∂r1+l
= 4π

∂3+lE(r, t)

∂r3+l

= 2π
M(t)√
π

1√
t
e−

r2

4t



[ 3+l

2
]∑

i=0

ai
r3+l−2i

t3+l−i




= 2π
M(t)√
π

1

t
4+l
2

e−
r2

4t



[ 3+l

2
]∑

i=0

ai

(
r2

t

) 3+l
2

−i

 ,

and we conclude as above.

Theorem 4.2. Under the assumptions of Theorem 3.4 and recalling that

σj = 1 − 1
p
− µj+λ

′

j

2
, the mapping qλ′j → ( ∂

∂t
− ∆)(ηjuλ′j) is continuous from

W σj ,p(I) into Lp(I;Lp~µ(Ω)).

Proof. Recall that, by Remark 3.2, 0 < σj < 1.

Case 1: Pj,λ′j ≡ 1 i.e. λ′j + µj − 1 + 2
p
> 0. Let us take the Fourier series in

t of f = ηj(
∂
∂t
−∆)uλ′j . We obtain

f̂k = ηj(r)
̂(( ∂

∂t
−∆)uλ′j)k

= ηj(r) (ik I −∆) ûλ′j ,k

= −cλ′j(ik) (2λ′j + 1)
√
ik e−r

√
ik rλ

′

j−1 sin(λ′jθ) ηj(r),

with cλ′j(ik) = 〈Tλ′j(ik), ĝ(·, k)〉 = −q̂λ′j(k).
Let us consider the kernel H given by Lemma 4.1 i.e.

H(r, t) =
∑

k∈Z

√
ik e−r

√
ik eikt =

∑

k∈Z
Hk(r) e

ikt.

Hence, we have

f = (H ∗t qλ′j) (2λ′j + 1) rλ
′

j−1 sin(λ′jθ) ηj(r)

= (2λ′j + 1) rλ
′

j−1 sin(λ′jθ) ηj(r)

∫ π

−π
H(r, s) qλ′j(t− s) ds.
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As
1

2π

∫ π

−π
H(r, s) ds = H0(r) = 0,

we have

f = (2λ′j + 1) rλ
′

j−1 sin(λ′jθ) ηj(r)

∫ π

−π
H(r, s) [qλ′j(t− s)− qλ′j(t)] ds. (4.12)

By (4.2) we define f = f1 + f2 with

fi = (2λ′j + 1) rλ
′

j−1 sin(λ′jθ) ηj(r)

∫ π

−π
Hi(r, s) [qλ′j(t− s)− qλ′j(t)] ds.

Step 1: Study of f1. By (4.3) we have

|f1(x, t)| . rλ
′

j−1ηj(r)

∫ π

−π
|qλ′j(t− s)− qλ′j(t)| ds

. rλ
′

j−1ηj(r) {
∫ π

−π
|qλ′j(s)| ds+ 2π |qλ′j(t)|}

. rλ
′

j−1ηj(r) {‖qλ′j‖Wσj,p(I) + |qλ′j(t)|}.
This implies that
∫ π

−π

∫

Ω

|f1(x, t)|prµjpr drdt . (

∫ 1

0

r(λ
′

j−1)p+µjp+1dr)[
2π‖qλ′j‖

p
Wσj,p(I)

+

∫ π

−π
|qλ′j(t)|

pdt

]

. ‖qλ′j‖
p
Wσj,p(I)

∫ 1

0

r(λ
′

j−1)p+µjp+1dr.

The integral

∫ 1

0

r(λ
′

j−1)p+µjp+1dr converges if (λ′j − 1) + µj +
2
p
> 0 which is

the condition to have Pj,λ′j ≡ 1.

Step 2: Study of f2. By (4.4), we have

|f2(x, t)| . rλ
′

j−1ηj(r)

∫ π

−π

|qλ′j(t− s)− qλ′j(t)|
(r2 + |s|)3/2 ds

from which we deduce
(∫ π

−π
|f2(x, t)|p dt

)1/p

. rλ
′

j−1ηj(r)

∫ π

−π
(r2 + |s|)− 3

2 (

∫ π

−π
|qλ′j(t− s)− qλ′j(t)|

p dt)
1
p ds.

(4.13)
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By the assumption qλ′j ∈ W σj ,p(I) we have

∫

I2

|qλ′j(x)− qλ′j(y)|p
|x− y|1+σjp dxdy ≤ ‖qλ′j‖

p
Wσj,p(I)

<∞. (4.14)

Making the change of variables (x, y) = (t− s, t), (4.14) becomes

∫

I2

|qλ′j(t− s)− qλ′j(t)|p
|s|1+σjp dsdt ≤ ‖qλ′j‖

p
Wσj,p(I)

.

Denoting

κ(s) =

(∫ π

−π

|qλ′j(t− s)− qλ′j(t)|p
|s|1+σjp dt

)1/p

,

this estimates is equivalent to
∫ π

−π
|κ(s)|pds ≤ ‖qλ′j‖

p
Wσj,p(I)

. (4.15)

Going back to (4.13), we obtain

‖f2(x, ·)‖Lp(I) . rλ
′

j−1ηj(r)

∫ π

−π
(r2 + |s|)− 3

2 |s| 1p+σjκ(s) ds,

which implies
∫ π

−π

∫

Ω

|f2(x, t)|prµjp rdrdθdt

≤
∫ 1

0

r(λ
′

j−1+µj)p+2

(∫ π

−π
(r2 + |s|)− 3

2 |s| 1p+σj+1κ(s)
ds

|s|

)p
dr

r
.

(4.16)
Observe that, by definition of σj,

r(λ
′

j−1+µj)+
2
p (r2 + |s|)− 3

2 |s|σj+1 = r(λ
′

j−1+µj)+
2
p |s|σj+1− 3

2 ( r
2

|s| + 1)−
3
2

= r(λ
′

j−1+µj)+
2
p |s|2− 1

p
−

µj+λ′j
2

− 3
2 ( r

2

|s| + 1)−
3
2

= ( r
2

|s|)
(λ′j−1+µj)+

2
p

2 ( r
2

|s| + 1)−
3
2

= k( r
2

|s|)

where

k(τ) = τ
(λ′j−1+µj)+

2
p

2 (τ + 1)−
3
2 .
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With these notations, (4.16) becomes

‖f2‖pLp(I;Lp
~µ
(Ω))

≤
∫ 1

0

(

∫ π

−π
k(
r2

|s|) |s|
1
p κ(s)

ds

|s|)
pdr

r
. (4.17)

Making the change of variables r′ = r2, (4.17) becomes

‖f2‖pLp(I;Lp
~µ
(Ω))

.

∫ 1

0

(

∫ π

−π
k(
r′

|s|) |s|
1
p κ(s)

ds

|s|)
pdr

′

r′

.

∫ 1

0

(

∫ π

0

k(
r′

|s|) |s|
1
p κ(s)

ds

|s|)
pdr

′

r′
.

Let us define
κ̃(s) = κ(s), if s ∈ ]0, π[,

= 0, otherwise.

In that case
∫ π

0

k(
r′

s
) s

1
p κ(s)

ds

s
=

∫ ∞

0

k(
r′

s
) s

1
p κ̃(s)

ds

s
= (k ∗m (s

1
p κ̃))(r′)

where ∗m denotes the multiplicative convolution. Now observe that, by
(4.15), we have

∫ ∞

0

|s 1
p κ̃(s)|pds

s
=

∫ ∞

0

|κ̃(s)|p ds =
∫ π

0

|κ(s)|p ds ≤ ‖qλ′j‖
p
Wσj,p(I)

.

It remains to verify that k ∈ L1(0,∞; dr
r
) i.e.

∫ ∞

0

r
µj+λ′j−1+ 2

p
2 (r + 1)−

3
2
dr

r
<∞.

This is true as, by the summation domain λ′j + µj +
2
p
< 2 and as Pj,λ′j ≡ 1,

λ′j + µj − 1 + 2
p
> 0.

Case 2: deg(Pj,λ′j) = lj,λ′j − 1 ≥ 1. In that case, we have

f̂k = ηj(r) (ikI−∆)ûλ′j ,k = cλ′(ik) ik e
−r

√
ik rλ

′

j sin(λ′jθ) ηj(r)P̃ (r
√
ik) (4.18)

with P̃ a polynomial function of degree lj,λ′j − 2 and lj,λ′j such that

lj,λ′j + λ′j + µj − 2 +
2

p
> 0. (4.19)
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Let us introduce the kernel

H(l)(r, t) =
∑

k∈Z
(ik)1+l/2 e−r

√
ik eikt,

where l = 0, 1, ...lj,λ′j − 2. We see that

|H(l)| =
∣∣∣∣
∂1+l

∂r1+l
H

∣∣∣∣ .

By Lemma 4.1, we have
H(l) = H

(l)
1 +H

(l)
2 , (4.20)

with H
(l)
1 and H

(l)
2 satisfying (4.5) and (4.6).

In the same way as before, we define

f
(l)
i = rλ

′

j+l sin(λ′jθ) ηj(r)

∫ π

−π
H

(l)
i (r, s) [qλ′j(t− s)− qλ′j(t)] ds.

and we have

|f | .
lj,λ′

j
−2

∑

l=0

(|f (l)
2 |+ |f (l)

1 |), (4.21)

with

|f (l)
i (x, t)| = rλ

′

j+lηj(r)

∫ π

−π
|H(l)

i (r, s)| |qλ′j(t− s)− qλ′j(t)| ds. (4.22)

Hence we have, as in the first case,

∫ π

−π

∫

Ω

|f (l)
1 (r, t)|prµjp rdrdt . ‖qλ′j‖Wσj,p(I)

∫ 1

0

r(λ
′

j+µj+l)p+1 dr,

where the last integral converges as λ′j+µj+ l+
2
p
> 0 which is true as σj < 1

and l ≥ 0.

In the same way as before, we have

‖f (l)
2 ‖p

Lp(I;Lp
~µ
(Ω))

.

∫ 1

0

r(λ
′

j+l+µj)p+2

(∫ π

−π
(r2 + |s|)−(2+ l

2
)|s| 1p+σj+1κ(s)

ds

|s|

)p
dr

r

.

∫ 1

0

|k(l) ∗m (s1/pκ̃))(r)|p dr
r
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with

k(l)(u) = u
λ′j+l+µj

2
+ 1

p (u+ 1)−(2+l/2).

We conclude observing that, as 0 < σj < 1, we have

∫ ∞

0

k(l)(u)
du

u
<∞.

Conclusions. Now observe that

(
∂

∂t
−∆)(ηjuλ′j) = ηj(

∂

∂t
−∆)uλ′j − 2

∂ηj
∂r

∂uλ′j
∂r

− uλ′j ∆ηj

with
∂ηj
∂r

and ∆ηj equals to zero on Dj(1/2) ∪ (Ω \Dj(1)). Hence it is easy
to deduce that

ηj(
∂

∂t
−∆)uλ′j − 2

∂ηj
∂r

∂uλ′j
∂r

− uλ′j ∆ηj ∈ Lp(I, Lp~µ(Ω)),

which concludes the proof.

5 Application of the second strategy

Now we are able to consider the regularity of uR and to prove our main result.

Theorem 5.1. Let p ≥ 2, Ω be a bounded polygonal domain of R2 and denote
~λ = (λj)1≤j≤J .

Let ~µ satisfies, for all j = 1, . . . , J,

−λj < µj <
2p−2
p
,

4(p− 1)λ2j − µ2
jp

2 > 0

and, for all k ∈ Z∗ and all j ∈ {1, 2, · · · , J}, 2− 2
p
−µj 6= kλj and µj+kλj 6= 1.

Let σj = −µj+λ
′

j

2
+ 1 − 1

p
, then, for every h ∈ Lp(I;Lp~µ(Ω)), there exists a

unique solution u ∈ Lp(I;Lp~µ(Ω)) of

∂tu−∆u = h(x, t), in Ω× ]− π, π[,
u = 0, on ∂Ω× [−π, π],

u(·,−π) = u(·, π), in Ω.
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Moreover u admits the decomposition

u = uR +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

uλ′j ,

with
uR ∈ Lp(I;V 2,p

~µ (Ω)) ∩W 1,p
2π (I;L

p
~µ(Ω))

and
uλ′j = (Eλ′j ∗t qλ′j)r

λ′j sin(λ′jθ)

where
qλ′j ∈ W σj ,p(I)

and

Eλ′j(x, t) =
∑

k∈Z∗

eiktPj,λ′j(r
√
ik) e−r

√
ik +

1

2π
.

Proof. Recall that, in the notations of the end of Section 2, we define

R(z) : Lp~µ(Ω) → V 2,p
~µ (Ω) : g 7→ uR

where uR is the regular part of the solution of

{
−∆u+ zu = g, in Ω,

u = 0, on ∂Ω,

and, for all z ∈ π+ ∪ SA,

‖R(z)‖Lp
~µ
(Ω)→V 2,p

~µ
(Ω) + (1 + |z|) ‖R(z)‖Lp

~µ
(Ω)→Lp

~µ
(Ω) . 1.

Hence by interpolation we have (see for example [1, Thm 7.22]), for all θ ∈
[0, 1[,

‖R(z)‖Lp
~µ
(Ω)→(Lp

~µ
(Ω),V 2,p

~µ
(Ω))θ

.
1

(1 + |z|)1−θ .
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In that case, by Theorem 3.4 and Remark 3.1

‖uR‖Lp(I;(Lp
~µ
(Ω),V 2,p

~µ
(Ω))θ)

≤ ‖ 1

2πi

∫

γ

R(z) (zI − B0)
−1(h− 1

2π

∫ π

−π
h(s, ·) ds)dz + ūR‖Lp(I;(Lp

~µ
(Ω),V 2,p

~µ
(Ω))θ)

≤ 1

2π

∫

γ

‖R(z) (z I −B0)
−1(h− 1

2π

∫ π

−π
h(s, ·) ds)‖Lp(I;(Lp

~µ
(Ω),V 2,p

~µ
(Ω))θ)

dz

+‖ūR‖Lp(I;(Lp
~µ
(Ω),V 2,p

~µ
(Ω))θ)

.
1

2π

∫

γ

1

(1 + |z|)1−θ ‖(z I − B0)
−1(h− 1

2π

∫ π

−π
h(s, ·) ds)‖Lp(I;Lp

~µ
(Ω)) dz

+‖ūR‖Lp(I;(Lp
~µ
(Ω),V 2,p

~µ
(Ω))θ)

.
1

2π

∫

γ

1

(1 + |z|)2−θ ‖h‖Lp(I;Lp
~µ
(Ω)) dz +K ‖h‖Lp(I;Lp

~µ
(Ω))

Hence, for all θ ∈ [0, 1[,

uR ∈ Lp(I; (Lp~µ(Ω), V
2,p
~µ (Ω))θ),

with the estimate

‖uR‖Lp(I;(Lp
~µ
(Ω),V 2,p

~µ
(Ω))θ)

≤ K(θ)‖h‖Lp(I;Lp
~µ
(Ω)), (5.1)

for some positive constant K(θ) that may depend on θ but not on h.

Let us show that

uR ∈ Lp(I;V 2,p
~µ (Ω)) ∩W 1,p

2π (I;L
p
~µ(Ω)).

First observe that uR is a strong solution of

∂tuR + uR −∆uR = h−
J∑

j=1

∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

(∂t −∆)(ηjuλ′j) + uR =: hR

with, by the previous results, hR ∈ Lp(I;Lp~µ(Ω)).

Then we apply the second strategy with

E = Lp(I;Lp~µ(Ω)),
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and

A : D(A) ⊂ E → E : u 7→ −∆u, with D(A) = Lp(I;D(∆p,~µ)),

B : D(B) ⊂ E → E : u 7→ ∂tu+ u, with D(B) = W 1,p
2π (I;L

p
~µ(Ω)).

The assumptions (H3) and (H5) can be verified as previously. The assump-
tion (H4) is satisfied by all Lp~µ(Ω) spaces (see for example [3]). It remains
to verify (H6). To this aim we will apply the following result of Coifman -
Weiss (see [5] or for example [3]).

If −A is the infinitesimal generator of a strongly continuous contraction semi-
group in E which preserves the positivity then there exists K > 0 such that,
for all s ∈ R,

‖Ais‖ ≤ K(1 + |s|) eπ
2
|s|.

For what concerns the operator A, we already know (see [8, proof of
Corollary 2.14]) that −A generates a C0 semigroup of contractions T (t). It
remains to prove that T (t) preserves the positivity.

Let f ∈ Lp~µ(Ω) with f ≥ 0, λ ∈ [0,+∞[ and u ∈ H1
0 (Ω) be the solution of

∀w ∈ H1
0 (Ω),

∫

Ω

∇u · ∇w + λ

∫

Ω

uw =

∫

Ω

f w. (5.2)

As f is real, the solution u is real. Let us decompose u = u+ − u− with
u+ = max(u, 0) and u− = max(−u, 0). Hence we have u+, u− ∈ H1

0 (Ω) and
by (5.2) applied with w = u−, we obtain

∫

Ω

|∇u−|2 + λ

∫

Ω

|u−|2 = −
∫

Ω

f u− ≤ 0.

Hence u− ≡ 0 and u ≥ 0.
By [21, Cor I-3.5] we have that if −A is the generator of T (t) then, for

all f ∈ E,
T (t)f = lim

λ→∞
et(λ

2(λI+A)−1−λI)f

= lim
λ→∞

e−λtetλ
2(λI+A)−1

f

= lim
λ→∞

e−tλ
∑

k≥0

(tλ2)k

k!
(λI + A)−kf.

By what we prove just before we have (λI+A)−1f ≥ 0 and hence T (t)f ≥ 0.
We then deduce that the semi-group preserves the positivity. Hence, there
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exists K > 0 such that, for all s ∈ R,

‖Ais‖Lp(I;Lp
~µ
(Ω)) ≤ K(1 + |s|) eπ

2
|s|.

As −A is symmetric on the Hilbert space L2(I, L2(Ω)), we have also (see for
example [3, p. 164])

‖Ais‖L2(I,L2(Ω)) ≤ 1.

Hence under the assumptions of Theorem 2.3, for θ ∈ ]0, 1[ close enough to
1 in such a way that ~ν = ~µ

θ
and q = 2pθ

2−p(1−θ) satisfy the assumptions of

Theorem 2.3, we have, by [25, 1.18.7/Th 4],

‖Ais‖Lp(I,Lp
~µ
(Ω)) ≤ ‖Ais‖1−θL2(I,L2(Ω)) ‖Ais‖θLq(I,Lq

~ν
(Ω))

≤ Kθ (1 + |s|)θ eθ π
2
|s|.

Hence, for all such θ, for all ǫ > 0 there exists K(ǫ, θ) > 0 such that

‖Ais‖Lp(I,Lp
~µ
(Ω)) ≤ K(ǫ, θ) e(θ

π
2
+ǫ)|s|,

from which we deduce the existence of τA <
π
2
such that

‖Ais‖Lp(I,Lp
~µ
(Ω)) = 0(eτA|s|).

For what concerns B, observe that σ(−B) = {−(ki + 1) | k ∈ Z} and
hence σ(−B) ∩ [0,+∞[ = ∅. Moreover we have seen that R+ ⊂ ρ(−B) and,
for all λ ∈ R+,

‖(λI + B)−1‖ ≤ 1

λ+ 1
,

and hence, as in [8, proof of Corollary 2.14], we see that −B is the generator
of a C0 semigroup S(t) of contraction.

Let us show that S(t) preserves the positivity. Consider the solution
u ∈ D(B) of

∂tu+ u+ λu = f ≥ 0,
u(−π) = u(π),

then

u(x, t) = (B + λ I)−1f

=

∫ π

−π

e−(1+λ)(π−s)

e(1+λ)π − e−(1+λ)π
f(x, s) ds e−(1+λ)t

+

∫ t

−π
e−(1+λ)(t−s) f(x, s) ds ≥ 0.
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As above we deduce that S(t) preserves the positivity. By the previous result
of Coifman-Weiss, there exists K > 0 such that, for all s ∈ R,

‖Bis‖ ≤ K (1 + |s|) eπ
2
|s|.

Hence we obtain τA < π/2 and τB ∈ ]π/2, π − τA[ such that

‖Ais‖ = 0(eτA|s|),

‖Bis‖ = 0(eτB |s|).

As all the assumptions of the second strategy are satisfied, we have the
existence of wR ∈ W 1,p

2π (I;L
p
~µ(Ω)) ∩ Lp(I;D(∆p,~µ)) solution of

∂tw + w −∆w = hR, in Ω× ]− π, π[,
w = 0, on ∂Ω× [−π, π],

w(·,−π) = w(·, π), in Ω.

Claim: wR = uR and hence

uR ∈ W 1,p
2π (I;L

p
~µ(Ω)) ∩ Lp(I;D(∆p,~µ)) ∩ Lp(I; (Lp~µ(Ω), V 2,p

~µ (Ω))θ).

It is easy to observe that uR is a strong solution of

∂tuR + uR −∆uR = h

−
J∑

j=1

∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

(∂t(ηjuλ′j)−∆(ηjuλ′j)) + uR, in Ω× I,

uR = 0, on ∂Ω× Ī ,
uR(·,−π) = uR(·, π), in Ω.

(5.3)

In fact, by Theorem 3.4, we know that u is a strong solution of

∂tu−∆u = h, in Ω× I,
u = 0, on ∂Ω× Ī ,

u(·,−π) = u(·, π), in Ω,

i.e., for every n ∈ N, there exist un ∈ D(A) ∩ D(B) and hn ∈ E such that
(A + B)un = hn, un → u and hn → h in E. Moreover, as in Section 3, for
every n, we have the decomposition

un = un,R +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

un,λ′j .
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By Theorems 3.4 and 4.2, we have

∂t(ηjun,λ′j)−∆(ηjun,λ′j) → ∂t(ηjuλ′j)−∆(ηjuλ′j).

By the estimate (5.1) we see that un,R → uR in E.
Now observe that wR is a strong solution of (5.3) as wn,R = wR are such

that wn,R ∈ D(A) ∩D(B) and wn,R → wR.
Hence applying the first strategy to (5.3) with

E = Lp(I, Lpµ(Ω))
A : D(A) := Lp(I;D(∆p,~µ)) ⊂ E → E : u 7→ −∆u,

B : D(B) := W 1,p
2π (I;L

p
~µ(Ω)) ⊂ E → E : u 7→ ∂tu+ u,

we have by uniqueness of the strong solution that wR = uR and hence

uR ∈ W 1,p
2π (I;L

p
~µ(Ω)) ∩ Lp(I;D(∆p,~µ)) ∩ Lp(I; (Lp~µ(Ω), V 2,p

~µ (Ω))θ).

Claim: D(∆p,µ) ∩ (Lp~µ(Ω), V
2,p
~µ (Ω))θ ⊂ V 2,p

~µ (Ω).

If u ∈ D(∆p,µ) then, by [18] as in [8], u admits the decomposition

u = u1 +
J∑

j=1

ηj
∑

0<λ′j<2− 2
p
−µj

∃k∈N,λ′j=kλj

cλ′j r
λ′j sin(λ′jθ).

Recall that by [7] we have that

V 2,p
~µ (Ω) → W 2,p(Ω) : u 7→ w u

as well as
Lp~µ(Ω) → Lp(Ω) : u 7→ w u

are continuous. Hence, if u ∈ (Lp~µ(Ω), V
2,p
~µ (Ω))θ we have w u ∈ (Lp(Ω),W 2,p(Ω))θ.

By [1] we know (Lp(Ω),W 2,p(Ω))θ = W 2θ,p(Ω) and in particular rµju ∈
W 2θ,p(Dj).

By [12] we have
if µj + λ′j > 2θ − 2

p
, then rµj+λ

′

j sin(λ′jθ) ∈ W 2θ,p(Dj),

if µj + λ′j ≤ 2θ − 2
p
and µj + λ′j 6∈ N, then rµj+λ

′

j sin(λ′jθ) 6∈ W 2θ,p(Dj).

As µj + λ′j < 2− 2
p
, for θ close to 1, we have µj + λ′j ≤ 2θ − 2

p
and hence

u = u1 ∈ V 2,p
~µ (Ω).
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