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We consider the heat equation on a polygonal domain Ω of the plane in weighted

Here h belongs to L p (0, T ; L p µ (Ω)), where L p µ (Ω) = {v ∈ L p loc (Ω) : r µ v ∈ L p (Ω)}, with a real parameter µ and r(x) the distance from x to the set of corners of Ω. We give sufficient conditions on µ, p and Ω that guarantee that problem (0.1) has a unique solution u ∈ L p (0, T ; L p µ (Ω)) that admits a decomposition into a regular part in weighted L p -Sobolev spaces and an explicit singular part.

Introduction

In this work we consider the Cauchy-Dirichlet problem for the heat equation (0.1) on a polygonal domain Ω of the plane. We give the singular decomposition of the solution of (0.1) in weighted L p -Sobolev spaces with precise regularity information on the regular and singular parts. The classical Fourier transform techniques do not allow to handle such a general case. Hence we use the theory of sums of operators as in G. Da Prato and P. Grisvard [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] and G. Dore and A. Venni [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF]. These results have been fruitfully used to prove the singular behavior of elliptic problems in non-Hilbertian Sobolev spaces in [START_REF] Grisvard | Singular behavior of elliptic problems in non hilbertian Sobolev spaces[END_REF].

Although the analysis of the heat equation is well developed in weighted L 2 -Sobolev spaces [START_REF] Grisvard | Edge behavior of the solution of an elliptic problem[END_REF][START_REF] Kozlov | Singularities of solutions of the first boundary value problem for the heat equation in domains with conical points[END_REF][START_REF] Kozlov | Coefficients in the asymptotic solutions of the Cauchy boundary-value parabolic problems in domains with a conical point[END_REF][START_REF] Anh | Asymptotic formulas for solutions of parameterdepending elliptic boundary-value problems in domains with conical points[END_REF] or in L p -Sobolev spaces [START_REF] Grisvard | Singular behavior of elliptic problems in non hilbertian Sobolev spaces[END_REF], to the best of our knowledge such a singularity result does not exist in the framework of weighted L p -Sobolev spaces. For maximal regularity type results in weighted L p -Sobolev spaces, we refer to [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF][START_REF] Nazarov | L p -estimates for the solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension[END_REF][START_REF] Solonnikov | L p -estimates for solutions of the heat equation in a dihedral angle[END_REF][START_REF] Nazarov | Dirichlet problem for quasilinear parabolic equations in domains with smooth closed edges[END_REF][START_REF] Prüss | H ∞ -Calculus for the sum of non-commuting operators[END_REF].

In [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF], we have considered the same kind of results for the periodic-Dirichlet problem

∂ t u -∆u = g, in Ω × ] -π, π[, u = 0, on ∂Ω × [-π, π], u(•, -π) = u(•, π), in Ω.
Some of the results presented there are useful in our context too.

The first step, which consists in the study of the Helmholtz equation

-∆u + zu = g, in Ω, u = 0, on ∂Ω, (1.1) 
where z is a complex number, was performed in [START_REF] Coster | Singular behavior of the solution of the Helmholtz equation in weighted L p -Sobolev spaces[END_REF].

The paper is organized as follows: In section 2 we apply the approach of Da Prato-Grisvard [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] to obtain a decomposition but with non-optimal regularity informations. Section 3 is devoted to the proof of the regularity of (∂ t -∆)S, where S is the singular part of the solution obtained before. The use of the approach of Dore-Venni [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF] and the results from section 3 allows to get the optimal regularity result in section 4.

In the whole paper the notation a b means the existence of a positive constant C, which is independent of the quantities a, b (and eventually of the above parameter z) under consideration such that a ≤ Cb.

2 Application of Da Prato-Grisvard's approach [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] Let us assume in the future that the assumptions of [6, Theorem 2.3] are satisfied, i.e., (H) Let p ≥ 2 and Ω be a bounded polygonal domain of R 2 , i.e., its boundary is the union of a finite number of line segments. Denote by S j , j = 1, . . . , J, the vertices of ∂Ω enumerated clockwise and, for j ∈ {1, 2, . . . , J}, let ψ j be the interior angle of Ω at the vertex S j and λ j = π ψ j . For all j = 1, . . . , J, let µ j > -λ j satisfy 2 -2 p -µ j = kλ j , for all k ∈ Z * , and

µ j < 2p -2 p , if p > 2, µ j ≤ 1, if p = 2; |µ j | < 2 √ p -1 p λ j . (2.1) 
We shall apply the results from [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] (see also [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]Theorem 2.1]) on the space

E = L p (I; L p µ (Ω)) with L p µ (Ω) = {f ∈ L p loc (Ω) | wf ∈ L p (Ω)}, where I = [0, T ], w(x)
r(x) µ j near S j , w(x) 1 far from the corners and with the operators

A : D(A) ⊂ E → E : u → -∆u, with D(A) = L p (I; D(∆ p, µ )) where D(∆ p, µ ) = {u ∈ H 1 0 (Ω) | ∆u ∈ L p µ (Ω)}, and 
B T : D(B T ) ⊂ E → E : u → ∂ t u, with D(B T ) = W 1,p left (I; L p µ (Ω)) = {u ∈ E | ∂ t u ∈ E, u(•, 0) = 0}. Proposition 2.1.
Under assumptions (H), the operator A + B T has an inverse closure i.e., for all g ∈ L p (I; L p µ (Ω)), there exists a unique strong solution u ∈ L p (I; L p µ (Ω)) of (A + B T )u = g i.e. there exists

(u n ) n ⊂ D(A) ∩ D(B T ) such that u n → u and Au n + B T u n → g. Moreover we have u = 1 2πi γ (A + z I) -1 (z I -B T ) -1 g dz, (2.2) 
with γ : R → C defined for example by γ(s)

= |s| e -i( π 2 +δ) for s ≤ 0, γ(s) = |s| e i( π 2 +δ) for s > 0, with δ ∈ ]0, θ A -π 2 [ and θ A ∈] π 2 , π[ given by [6, Theorem 2.3].
Proof. The proof follows the lines of [6, Proposition 3.1] with minor changes concerning B T : a simple calculation proves that ρ(B T ) = C and, in the verification that, for all θ B < π 2 , there exists M ≥ 0 such that, for all µ

∈ S B T = {µ ∈ C | | arg(µ)| ≤ θ B }, (B T + µ I) -1 ≤ M |µ| -1 , denoting v = w p |u| p-2 ū, we have to replace p 2 Ω π -π v∂ t u dtdx + Ω π -π v∂ t u dtdx = 0, valid in the periodic case, by p 2 Ω T 0 v∂ t u dtdx + Ω T 0 v∂ t u dtdx = Ω |u(x, T )| p w(x) p dx.
The remainder of the proof follows in the same way as in [6, Proposition 3.1].

Remark 2.1 As in [6, Remark 3.1], we obtain also

(1 + |z|) (z I -B T ) -1 g L p (I;L p µ (Ω)) g L p (I;L p µ (Ω)) .
As it is clear that, for each t, we have

[(A + z I) -1 h](t) = (-∆ + z I) -1 (h(t)),
we can use the decomposition in regular and singular parts of the solution of the Helmholtz equation (1.1) obtained in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF] (see [6, (2.4)]) and rewrite (2.2) as

u = u R + J j=1 η j k∈N:0<λ j =kλ j <2-2 p -µ j u λ j , (2.3) 
where u R = 1 2πi γ R(z)(z I -B T ) -1 g dz, u λ j = 1 2πi γ T λ j (z), (z I -B T ) -1 g ψλ j ,z dz, (2.4) with R(z) : L p µ (Ω) → V 2,p µ (Ω)
the operator which gives the regular part of the solution of (1.1), T λ j (z) :

L p µ (Ω) → C : g → c λ j (z) = T λ j (z)
, g the one which gives the singular coefficient of the solution of (1.1); η j is a radial cut-off function such that η j ≡ 1 in a small ball centered at S j and η j ≡ 0 outside a larger ball; P j,λ j (s) =

l j,λ j -1 i=0 s i i! with l j,λ j > 2 -µ j -2 p -λ j and ψλ j ,z (r, θ) = P j,λ j (r √ z)e -r √ z r λ j sin(λ j θ). Recall that V 2,p µ (Ω) is defined as the closure of C ∞ S (Ω) = {v ∈ C ∞ (Ω) | S j ∈ supp v} with respect to the norm u V 2,p µ (Ω) = ( |γ|≤2 Ω |D γ u(x)| p w p (x) r (|γ|-k)p (x) dx) 1/p .
For more details, see [6, end of Section 2].

Proposition 2.2. Let the assumptions (H) be satisfied and denote σ j := 1 -1 p -µ j +λ j 2 . Then for all s ∈ ]0, min(1 -σ j , 1/p)[, for all g ∈ W s,p (I, L p µ (Ω)), there exist q λ j ∈ W s+σ j ,p (I) and E λ j such that u λ j defined by (2.4) can be written as u λ j = (E λ j * t q λ j ) r λ j sin(λ j θ).

(2.5) Moreover we have

q λ j = 1 2πi γ T λ j (z), (z I -B T ) -1 g dz, E λ j (x, t) = 1 2π R e iξt P j,λ j (r √ iξ) e -r √ iξ dξ,
(2.6) and the operator U : W s,p (I, L p µ (Ω)) → W s+σ j ,p (I) : g → q λ j is continuous.

Proof. Recall that for all f ∈ L p µ (Ω), the mapping

C → C : z → T λ j (z), f is holomor- phic on A := {z ∈ C | | arg(z)| < θ A }
and continuous on A (see [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]).

Step 1: Extension. Let us consider the extension of g to Ω × R, defined by

g(x, t) = g(x, t) if t ∈ [0, T ], g(x, t) = 0 if t ∈ [0, T ],
and denote by ũz = (z I -B ∞ ) -1 g, the solution of

z ũ -∂ t ũ = g, in Ω × R, ũ(•, 0) = 0, in Ω.
Observe that, by uniqueness of the solution of the Cauchy problem, we have ũz

| [0,T ]×Ω = (z I -B T ) -1 g. Moreover we easily see that ũz (x, t) = 0, if t < 0, = - t 0 e z(t-s) g(x, s) ds, if t ∈ [0, T ],
= -e zt T 0 e -zs g(x, s) ds, if t > T.

Consider the function ũλ

j (x, t) = 1 2πi γ T λ j (z), (z I -B ∞ ) -1 g ψλ j ,z (r, θ) dz. (2.7)
Observe that ũλ j | Ω×[0,T ] = u λ j and that, for t > T , z = ρe ±iθ 0 with ρ > 0, θ 0 = π 2 + δ, using [6, (2.6)], we have

T λ j (z), (z I -B ∞ ) -1 g ψλ j ,z (r, θ) T λ j (z), (z I -B ∞ ) -1 g |e z(t-T ) | T λ j (z) (L p µ (Ω))
T 0 e z(T -s) g(x, s) ds

L p µ (Ω) e -ρ| cos θ 0 |(t-T ) 1 1 + ρ σ j T 0 e -qρ| cos θ 0 |(T -s) ds 1/q g L p (0,T ;L p µ (Ω))
e -ρ| cos θ 0 |(t-T ) 1 1 + ρ σ j g L p (0,T ;L p µ (Ω))

On the other hand, for 0 < t < 2T and |z| = ρ we have, by Remark 2.1,

| T λ j (z), (z I -B ∞ ) -1 g ψλ j ,z (r, θ)| | T λ j (z), (z I -B ∞ ) -1 g | | T λ j (z), (z I -B 2T ) -1 g | 1 1 + ρ σ j 1 1 + ρ g L p (0,T ;L p µ (Ω)) .
Step 2: For all x ∈ Ω, the function ũλ j (x, •) ∈ L 2 (R) and hence admits a partial Fourier transform in t. For all t > 2T by the previous considerations, we have

|ũ λ j (x, t)| γ T λ j (z), (z I -B ∞ ) -1 g ψλ j ,z (r, θ) dz ∞ 0 e -ρ| cos θ 0 |(t-T ) dρ g L p (0,T ;L p µ (Ω)) 1 t -T g L p (0,T ;L p µ (Ω)
) . For t < 2T we use a similar argument using here the last estimate of Step 1. This shows that, for all x ∈ Ω, ũλ j (x, •) ∈ L 2 (R), and we can take its partial Fourier transform in t.

Step 3: The partial Fourier transform in t of ũλ j (x, •) satisfies, for all ξ = 0,

F t (ũ λ j )(x, ξ) = -T λ j (iξ), F t (g)(•, ξ) ψλ j ,iξ (x).
As ũλ j (x, •) ∈ L 2 (R), using [17, Cor 1, p.154], we know that

F t (ũ λ j )(x, ξ) = lim k→∞ k -k e -itξ ũλ j (x, t) dt.
Hence by the above computations we have, for k > 2T , k -k R T λ j (ρe i sgn(ρ)θ 0 ), (ρe i sgn(ρ)θ 0 I -B ∞ ) -1 g ψλ j ,ρe i sgn(ρ)θ 0 (x)e -iξt e i sgn(ρ)θ 0 dρ dt

2T 0 +∞ 0 1 1 + ρ σ j 1 1 + ρ dρ dt + k 2T +∞ 0 1 1 + ρ σ j e -ρ | cos θ 0 |(t-T ) dρ dt g L p (0,T ;L p µ (Ω)) 2T 0 +∞ 0 1 1 + ρ σ j 1 1 + ρ dρ dt + k 2T 1 | cos θ 0 |(t -T ) dt g L p (0,T ;L p µ (Ω)) < +∞.
Hence, by Fubini's theorem, we obtain

F t (ũ λ j )(x, ξ) = 1 2πi γ T λ j (z), F t ((zI -B ∞ ) -1 g)(•, ξ) ψλ j ,z (x) dz = 1 2πi γ T λ j (z), F t (g)(•, ξ) z -iξ ψλ j ,z (x) dz.
The rest of the proof follows [6, Step 2 of the Proof of Proposition 3.2] observing that, by Hölder inequality, we have

F t (g)(•, ξ) p L p µ (Ω) = Ω w p (x) R e -iξt g(x, t) dt p dx Ω w p (x) R |g(x, t)| dt p dx Ω w p (x) T 0 |g(x, t)| dt p dx g p L p (I;L p µ (Ω)) .
Step 4: The operator U : W s,p (I; L p µ (Ω)) → W s+σ j ,p (I) : g → q λ j with q λ j given by (2.6) is continuous. By the results of [START_REF] Grisvard | Equations différentielles abstraites[END_REF], as 0 < s < 1/p, we know that

W s,p (I; L p µ (Ω)) = g ∈ E | ∞ 0 ρ sp B T (B T -ρe ±i( π 2 +δ) I) -1 g p E ρ -1 dρ < ∞ .
We have a similar characterization of W s+σ j ,p (I) by considering the operator

N : D(N ) ⊂ L p (I) → L p (I) : u → ∂ t u with D(N ) = {u ∈ W 1,p (I) | u(0) = 0}.
Hence if s + σ j < 1/p, we have

W s+σ j ,p (I) = g ∈ L p (I) | ∞ 0 τ (s+σ)p N (N + τ I) -1 g p L p (I) τ -1 dτ < ∞ , while if s + σ j > 1/p, defining W s+σ j ,p left (I) = {g ∈ W s+σ j ,p (I) | g(0) = 0}, we have W s+σ j ,p left (I) = g ∈ L p (I) | ∞ 0 τ (s+σ)p N (N + τ I) -1 g p L p (I) τ -1 dτ < ∞ .
Claim 1: For τ ≥ 0, we have

N (N + τ I) -1 q λ j = 1 2πi γ T λ j (z), B T (zI -B T ) -1 g dz z + τ . (2.8)
First observe that

N (N + τ I) -1 q λ j = 1 2πi γ T λ j (z), B T (B T + τ I) -1 (zI -B T ) -1 g dz = 1 2πi γ T λ j (z), B ∞ (B ∞ + τ I) -1 (zI -B ∞ ) -1 g dz Ω×[0,T ]
.

Let us show that we can take the Fourier transform in

t of 1 2πi γ T λ j (z), B ∞ (B ∞ + τ I) -1 (zI -B ∞ ) -1 g dz.
We have

B ∞ (B ∞ + τ I) -1 (zI -B ∞ ) -1 g = (zI -B ∞ ) -1 g -τ (B ∞ + τ I) -1 (zI -B ∞ ) -1 g =: ṽz (x, t) -τ ṽzτ (x, t).
Observe that, for t > T , we have ṽz (x, t) = -e z(t-T )

T 0 e z(T -s) g(x, s) ds and ṽzτ (x, t) = -

T 0 e -τ (t-s) s 0 e z(s-σ) g(x, σ) dσds - t T e -τ (t-s) e z(s-T ) T 0 e z(T -σ) g(x, σ) dσds = - T 0 e z(t-σ) -e -τ (t-σ) z + τ g(x, σ) dσ.
Hence, for τ ≥ 0 and if t > 2T we have as above, using [6, (2.6)],

1 2πi γ T λ j (z), B ∞ (B ∞ + τ I) -1 (zI -B ∞ ) -1 g dz 1 t -T g L p (I;L p µ (Ω)) + γ τ |e z(t-T ) | |z + τ | T λ j (z), T 0 e z(T -σ) g(x, σ) dσ dz + γ τ |e -τ (t-T ) | |z + τ | T λ j (z), T 0 e -τ (T -σ) g(x, σ) dσ dz ≤ 1 t -T + γ τ |z + τ | |e z(t-T ) | dz + τ e -τ (t-T ) γ 1 (|z + τ |)(1 + |z| σ j ) dz g L p (I;L p µ (Ω)) 1 t -T + 1 sin θ 0 1 | cos θ 0 | 1 t -T +τ e -τ (t-T ) ∞ 1 1 1 + ρ σ j 1 ρ sin θ 0 dρ + e -τ (t-T ) sin θ 0 g L p (I;L p µ (Ω)) .
We conclude that this function belongs to L 2 (R, L p µ (Ω)) and we can take its Fourier transform in t. By Cauchy theorem, we obtain, as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF], that its Fourier transform in t is given by

-T λ j (iξ), F t (g)(•, ξ) iξ iξ + τ . (2.9) 
In the same way, we can take the Fourier transform in t of the right-hand side of (2.8) since, for t > 2T we have

1 2πi γ T λ j (z), B ∞ (zI -B ∞ ) -1 g(x, t) dz z + τ = - 1 2πi γ ze z(t-T ) T λ j (z), T 0 e z(T -s) g(x, s) ds dz z + τ 1 t -T .
Hence by Cauchy theorem, as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF], its Fourier transform in t is given by (2.9). As the Fourier transform of the two functions coincide, the two functions are equal. Claim 2: For 0 < s < min(1 -σ j , 1/p), the operator U : W s,p (I; L p µ (Ω)) → W s+σ j ,p (I) : g → q λ j is continuous. The proof is the same as the corresponding one in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF].

Conclusion. By

Step 3, we have, for all ξ = 0,

F t (ũ λ j )(x, ξ) = -T λ j (iξ), F t (g)(•, ξ) ψλ j ,iξ (x).
(2.10)

Let qλ j (t) = 1 2πi γ T λ j (z), (z I -B ∞ ) -1 g(•, t) dz. (2.11) 
As previously we can take its Fourier transform and we see, applying again the Cauchy theorem as above, that its Fourier transform is given by

F(q λ j )(ξ) = 1 2πi γ T λ j (z), F t (g)(•, ξ) z -iξ dz = -T λ j (iξ), F t (g)(•, ξ) .
Consider the function E λ j (x, t) which has as Fourier transform in t

F t (E λ j )(x, ξ) = P j,λ j (r √ iξ) e -r √ iξ .
As P j,λ j (r √ iξ) e -r √ iξ ∈ L ∞ (R) and by [18, p.113], L ∞ (R) ⊂ S , we have also by [START_REF] Zuily | Eléments de distributions et d'équations aux dérivées partielles[END_REF]p.114] that E λ j (x, •) ∈ S . Now observe that by [18, p.112], S ⊂ D . As qλ j ∈ L 2 (R), there exists a sequence (q n ) n ⊂ D(R) such that q n → qλ j in L 2 (R). By [START_REF] Zuily | Eléments de distributions et d'équations aux dérivées partielles[END_REF]Thm 6.3,p.120] or [START_REF] Yosida | Functional Analysis, Fourth Edition[END_REF]Thm 6,p.160], as F t (E λ j ) is bounded, we have that

F t (E λ j * q n ) = F t (E λ j ) F t (q n ) → F t (E λ j ) F t (q λ j ), in L 2 (R).
Hence, we have E λ j * q n → E λ j * qλ j , in L 2 (R), which proves that ũλ j = (E λ j * t qλ j ) r λ j sin(λ j θ) and the result follows.

As in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF] we can extend the previous Proposition to g ∈ L p (I, L p µ (Ω)).

Theorem 2.3. Let the assumptions (H) be satisfied and denote σ j := 1 -1 p -

µ j +λ j 2 .
Then for all g ∈ L p (I, L p µ (Ω)), the problem (0.1) has a unique strong solution u which can be written in the form

u = u R + J j=1 η j k∈N:0<λ j =kλ j <2-2 p -µ j u λ j ,
where u R (resp. u λ j ) is given by (2.4) (resp. (2.5)) with q λ j ∈ W σ j ,p (I) and E λ j given by (2.6). Moreover the mapping L p (I, L p µ (Ω)) → W σ j ,p (I) : g → q λ j is continuous.

3 Regularity of q λ j → ( ∂ ∂t -∆)(η j u λ j )

In order to consider the regularity of u R we observe that u R satisfies

∂ t u R -∆u R = g - J j=1 k∈N:0<λ j =kλ j <2-2 p -µ j (∂ t (η j u λ j ) -∆(η j u λ j )). (3.1)
Hence we need informations on the regularity of ∂ t (η j u λ j ) -∆(η j u λ j ). This is the aim of this section. 

where M (t) = 1 if t > 0 and M (t) = 0 if t < 0. Recall that E is a tempered distribution. We easily check that the partial Fourier transform F t E in t of E is given by

F t E(r, ξ) = e -|r| √ iξ 2 √ iξ . As F t ( ∂ 2 ∂r 2 E) = ∂ 2 ∂r 2 (F t E) = √ iξ 2 e -|r| √ iξ -δ 0 (r) = F t ( H(|r|, t) 2 -δ 0 (r)δ 0 (t)),
and since F t is an isomorphism from S (R 2 ) into itself, we deduce that

H(|r|, t) = 2 ∂ 2 ∂r 2 E(r, t) + 2δ 0 (r)δ 0 (t).
Hence, for r > 0, H(r, t) = 2 ∂ 2 E ∂r 2 (r, t) and we conclude as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]. Theorem 3.2. Under assumptions (H) and recalling that σ j = 1 -1 p -µ j +λ j 2 , the mapping q λ j → ( ∂ ∂t -∆)(η j u λ j ) is continuous from W σ j ,p (I) into L p (I; L p µ (Ω)).

Proof. Recall that, by [6, Remark 3.2], 0 < σ j < 1.

Case 1: P j,λ j ≡ 1 i.e. λ j + µ j -1 + 2 p > 0. As in the proof of Proposition 2.2, consider the functions qλ j given by (2.11) and ũλ j given by (2.7).

Let us take the Fourier transform in t of f (x, t) = η j (r)( ∂ ∂t -∆)ũ λ j (x, t). We obtain F t f (x, ξ) = η j (r) F t (( ∂ ∂t -∆)ũ λ j ) = η j (r) (iξ I -∆) F t (ũ λ j ).

As in Step 3 of the proof of Proposition 2.2, we have F t (ũ λ j )(x, ξ) = -T λ j (iξ), F t (g)(•, ξ) ψλ j ,iξ (x). and hence (iξ I -∆) F t (ũ λ j ) = -c λ j (iξ) (iξ I -∆) (e -r √ iξ r λ j sin(λ j θ))

= -c λ j (iξ) √ iξ e -r √ iξ r λ j -1 sin(λ j θ) (2λ j + 1), with c λ j (iξ) = T λ j (iξ), F t (g)(•, ξ) = -F t (q λ j )(ξ). Using the kernel H given by (3.2), as previously, we obtain that f (x, t) = (H * t qλ j )(r) (2λ j + 1) r λ j -1 sin(λ j θ) η j (r). As = 0, we have f (x, t) = (2λ j + 1) r λ j -1 sin(λ j θ) η j (r) R H(r, s) [q λ j (t -s) -qλ j (t)] ds.

¿From this point on, the proof proceeds as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]. Case 2: deg(P j,λ j ) = l j,λ j -1 ≥ 1. This case is treated as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF] using Lemma 3.1.

4 Application of Dore-Venni's approach [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF] Now we are able to consider the regularity of u R and to prove our main result.

R

  H(r, s) ds= R e -itξ H(r, t) dt ξ=0 = F t H(r, 0) = iξe -r √ iξ ξ=0

  Proof. Let E be the elementary solution of the heat equation in R 2 , i.e.,

			E(r, t) =	M (t) √ 4πt	e -r 2 4t ,
		H(r, t) =	1 2π R	iξ e -r	√	iξ e iξt dξ	(3.2)
	satisfies, for all ∈ N,	∂ ∂r	H(r, t)	(|t| + r 2 ) -3+ 2 .	(3.3)

Lemma 3.1. The kernel H defined on R + × R by

Theorem 4.1. Let p ≥ 2, Ω be a bounded polygonal domain of R 2 . Denote by S j , j = 1, . . . , J, the vertices of ∂Ω enumerated clockwise and, for j ∈ {1, 2, . . . , J}, let ψ j be the interior angle of Ω at the vertex S j and λ j = π ψ j . For all j = 1, . . . , J, let µ j satisfies

and, for all k ∈ Z * , 2 -2 p -µ j = kλ j and µ j + kλ j = 1. Let σ j = -µ j +λ j 2

+ 1 -1 p , then, for every g ∈ L p (0, T ; L p µ (Ω)), there exists a unique solution u ∈ L p (0, T ;

Moreover u admits the decomposition

where q λ j ∈ W σ j ,p (I) and

Proof. As in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF], we prove that u R defined by (2.4) satisfies, for all θ ∈ ]0, 1[,

. We now observe that u R is a strong solution of (3.1) with a right-hand side in L p (I; L p µ (Ω)) according to the previous results. Then we apply Dore-Venni's approach [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF] (see also Theorem 2.2 of [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]) with E = L p (I; L p µ (Ω)), and

). The assumptions (H 3 ), (H 4 ), (H 5 ) of [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF] can be verified as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]. To verify (H 6 ) we apply the following result of Coifman -Weiss (see [START_REF] Coifman | Transference methods in analysis[END_REF] or for example [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF]). If -C is the infinitesimal generator of a strongly continuous contraction semi-group in E which preserves the positivity then there exists K > 0 such that, for all s ∈ R,

For what concerns the operator A, the argument is the same as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF]. For what concerns B, we already know that -B is the generator of a C 0 semigroup of contractions S. It remains to verify that S preserves the positivity. As usual it suffices to check that its resolvent preserves positivity: Namely for λ > 0 consider the solution u ∈ D(B) of

Then u(x, t) = (B + λ I) -1 f = t 0 e -λ(t-s) f (x, s) ds which is clearly non negative.

We conclude as in [START_REF] Coster | Singular behavior of the solution of the periodic-Dirichlet heat equation in weighted L p -Sobolev spaces[END_REF] that u R ∈ L p (I; V 2,p µ (Ω)) ∩ W 1,p (I; L p µ (Ω)).