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colette.de.coster@lmpa.univ-littoral.fr

1 Introduction

In 1982, H. Höfer [17] considered the problem

−∆u = f(u), in Ω,
u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, and proved that if f ∈ C1(R) is such that f(0) = 0, f ′(0) ∈
]λi, λi+1[ for some i ≥ 2 (where λi denotes the i-th eigenvalue of −∆ on H1

0 (Ω)) and lim sup|u|→∞
f(u)
u < λ1

then the above problem has at least four nontrivial solutions, among them, one positive and one negative.

This result has been generalized in several papers. The fact that the last two solutions are sign-changing
was proved using Conley index in [9] (it was proved using variational methods related to invariant sets of the
minus gradient flow in C1

0 in [19]). In [2], in case lim
|u|→∞

f ′(u) < λ1 < λ2 < f ′(0), the authors prove the existence

of three nontrivial solutions: one positive, one negative and one sign-changing wedged between the two others.
In [8] using Conley index (see also [20] for an argument based on variational methods related to invariant sets

of the minus gradient flow in C1
0), the assumption in 0 was generalized considering the situation lim

u→0+

f(u)
u = a

and lim
u→0−

f(u)
u = b, with (a, b) above the D’Aujourd’hui curve Γ and not on the Fuč́ık spectrum. At last, the

restriction f ∈ C1(R), made by Höfer in order to obtain the fourth solution, was weakened to f locally Lipschitz
in [23].

In the recent paper [26] the authors consider a new direction of generalization. They prove that if Ω ⊂ RN
is a bounded smooth domain and f ∈ C1(Ω× R) is such that
(i) the origin is a solution around which the nonlinearity has a slope between two consecutive eigenvalues of

order i ≥ 2, i.e.
f(x, 0) = 0 and λi < f ′u(x, 0) < λi+1 for some i ≥ 2;

(ii) in a neighbourhood of +∞, the slope f(x, u)/u is smaller than the first eigenvalue λ1 i.e.

lim sup
u→+∞

f(x, u)/u < λ1 uniformly in x;

(iii) in a neighbourhood of −∞, the slope f(x, u)/u is bounded and strictly above the first eigenvalue i.e.

λ1 < lim inf
u→−∞

f(x, u)/u ≤ lim sup
u→−∞

f(x, u)/u < +∞ uniformly in x,

then the problem
−∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)
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has one positive solution and two sign-changing solutions. They also suggest that condition (iii) seems technical
and ask if it could be dropped. This is the question we are interested in and that we solve partially in this
paper.

In Theorems 4.1 and 4.2 we replace the condition (iii) by requiring that

−∞ < lim inf
u→−∞

f(x, u)/u ≤ lim sup
u→−∞

f(x, u)/u < +∞ uniformly in x.

In other words, we again require f to be asymptotically linear at −∞ but without restriction on the coefficient.
In Theorem 4.4 we consider the superlinear case for u ≤ 0. This is done in case λ1 is, in some appropriate

sense, an asymptotically lower bound (not strict) for f(x, u)/u if u → −∞. There are mainly three methods
to treat the superlinear problems: the method of Rellich-Pohozaev identities and moving planes as introduced
in [14], the scaling or blow-up method introduced in [15] and the method of Hardy-Sobolev inequalities as
introduced by H. Brezis and R.E.L. Turner in [3]. An advantage of this third method is that, unlike the other
two, it requires only upper bounds on the growth of the nonlinearity and allows f to depend on x. As a
disadvantage, it does not provide optimal results in terms of growth rate on f . Here we use the ideas of this
third method, but without requiring λ1 < lim inf

u→−∞
f(x, u)/u. Hence, from a technical point of view, we do not

have an a priori bound on the part of the solution in the first eigenspace which gives some difficulties.
In Theorem 4.5 we consider the ordinary differential case and require only a lower bound on f(t, u)/u for

u→ −∞ instead of (iii).
Finally in Theorems 4.3 and 4.6, we consider the case where f depends only on u. In that case, the lower

bound in (iii) is not required. This implies that for the ordinary autonomous case, condition (iii) is not needed
at all. An open question is to know whether such a result still holds for the nonautonomous elliptic case.

In all these results we do not attempt to have the best conditions. Our purpose is mainly to exemplify the
variational methods related to invariant sets of the minus gradient flow in C1

0 . These sets arise naturally in
relation with lower and upper solutions. Development of this method is one of the main interest of this paper.

The idea to combine variational methods with invariant sets of the minus gradient flow in C1
0 seems to go

back to K.C. Chang [4, 5, 6]. Under the existence of well-ordered strict lower and upper solutions α and β,
he proves the existence of a local minimum of the functional and localize it in intC10{u ∈ C

1
0(Ω) | α ≤ u ≤ β}.

In [19], the authors prove a mountain pass theorem in order intervals in a situation related to the Amann’s
three solutions theorem and obtain the localization of the critical point of mountain pass type. In [24, 25], the
authors gives conditions in order to get critical points in the border of the attractive set of invariant sets for
the minus gradient flow in C1

0 . In [11], for an O.D.E., the authors consider the minus gradient flow in C1
0 in

the non-well ordered lower and upper solutions case and obtain the existence and localization of a solution.
All these results define the flow in C1

0 . This is justified by that fact that sets such as {u ∈ X | u ≤ β} and
{u ∈ X | u ≥ α}, where α and β are lower and upper solutions that can satisfy the boundary conditions, may
have empty interior in the H1

0 -topology. This creates major difficulties. An alternative approach, defining the
flow in H1

0 , has been used by M. Conti, L. Merizzi, and S. Terracini [7]. Here we use this point of view of [11].

In Section 2, we recall some well known facts about the maximum principle and the first eigenfunction, and
give several definitions. Section 3 is devoted to the lower and upper solutions method. After some definitions,
we recall the existence result in case the lower and upper solutions are well ordered. This result is well known
in other contexts. Then we develop our variational method in the case where the lower and upper solutions are
not well ordered. The results of this section are direct extensions of corresponding ones developed in [11] for
ordinary differential equations. Finally in Section 4, we prove our multiplicity results by applying the theory
developed in Section 3.

2 Preliminaries

Theorem 2.1 (Strong Maximum Principle) Let Ω1 be a bounded domain in RN with ∂Ω1 of class C1,1,
p > N and λ ≥ 0. If u ∈W 2,p(Ω1) satisfies

−∆u+ λu ≥ 0, in Ω1,
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then u cannot achieve a minimum m ≤ 0 in Ω1 unless u is constant.

Proof : [30, Theorem 3.27].

Theorem 2.2 (Hopf Boundary Point Lemma) Let Ω1 be a bounded domain in RN with ∂Ω1 of class C1,1,
p > N , λ ≥ 0, x0 ∈ ∂Ω1 and b0 such that (b0|ν(x0)) > 0 for ν(x0) the outward normal at x0. If u ∈W 2,p(Ω1)
satisfies −∆u+ λu ≥ 0 in Ω1 and u achieves a strict local minimum m ≤ 0 at x0, then

(b0|∇u(x0)) < 0.

Proof : [30, Lemma 3.26].

Let ϕ1 denote the first eigenfunction of −∆ on H1
0 (Ω). We know that ϕ1 > 0 in Ω and ∂νϕ1 < 0 on ∂Ω.

Definition 2.1 Given functions u, v : Ω→ R, we write
• u ≤ v if for all x ∈ Ω, u(x) ≤ v(x);
• u < v if u ≤ v and u 6= v;
• u� v if there exists ε > 0 such that u+ εϕ1 ≤ v.

Remark 2.1 Defining in C1
0(Ω), the order cone K = {v ∈ C1

0(Ω) | v ≥ 0}, we observe that u � v if and only
if v − u ∈ int(K).

A simple consequence of Theorems 2.1 and 2.2 is the following corollary.

Corollary 2.3 Let Ω be a bounded domain in RN , p > N and λ ≥ 0. If u ∈W 2,p(Ω) satisfies

−∆u+ λu ≥ 0, in Ω,
u ≥ 0, on ∂Ω,

then either u ≡ 0 in Ω or u� 0.

Definition 2.2 We say that a function f : Ω× R→ R is an Lp-Carathéodory function if
• for every u ∈ R, f(·, u) is measurable on Ω;
• for a.e. x ∈ Ω, f(x, ·) is continuous on R;
• for each ρ > 0, there exists γ ∈ Lp(Ω) such that, for all (x, u) ∈ Ω× [−ρ, ρ],

|f(x, u)| ≤ γ(x).

3 Lower and upper solutions

3.1 Definitions

We define lower and upper solutions in the following way.

Definition 3.1 A function α ∈W 2,p(Ω) is a lower solution of (1.1) if
(i) for a.e. x ∈ Ω, −∆α(x) ≤ f(x, α(x));
(ii) for all x ∈ ∂Ω, α(x) ≤ 0.

Similarly, a function β ∈W 2,p(Ω) is an upper solution of (1.1) if
(i) for a.e. x ∈ Ω, −∆β(x) ≥ f(x, β(x));
(ii) for all x ∈ ∂Ω, β(x) ≥ 0.

Definition 3.2 A lower solution (resp. an upper solution) of (1.1) is said proper if it is not a solution.
A lower solution α of (1.1) is said strict if, for all u solution of (1.1) with u ≥ α, we have u� α.
In a similar way, an upper solution β of (1.1) is said strict if, for all u solution of (1.1) with u ≤ β, we

have u� β.
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Proposition 3.1 Let f : Ω×R be an Lp-Carathéodory function such that for some k ≥ 0, for a.e. x ∈ Ω and
all u1, u2 ∈ R with u2 ≥ u1,

f(x, u2)− f(x, u1) ≥ −k (u2 − u1).

Let α (resp. β) be a proper lower (resp. upper) solution of (1.1). Then α (resp. β) is a strict lower (resp.
upper) solution of (1.1).

Proof : Let u be a solution of (1.1) such that u ≥ α and define w = u− α. Observe that w satisfies

−∆w + kw ≥ f(x, u(x))− f(x, α(x)) + k(u(x)− α(x)) ≥ 0, in Ω,
w ≥ 0, on ∂Ω.

Hence we deduce from Corollary 2.3 that w � 0 which means that α is strict.

3.2 Well ordered lower and upper solutions

Theorem 3.2 Let αi ∈ W 2,p(Ω) (i = 1, · · · , n) and βj ∈ W 2,p(Ω) (j = 1, · · · ,m) be respectively lower and
upper solutions of (1.1). Assume

α = max
i=1,··· ,n

αi ≤ min
j=1,··· ,m

βj = β.

Define E = {(x, u) ∈ Ω × R | mini=1,··· ,n αi ≤ u ≤ maxj=1,··· ,m βj}. Assume f : E → R satisfies Lp-
Carathéodory conditions with p > N . Then the problem (1.1) has a minimum solution umin ∈ W 2,p(Ω) and a
maximum solution umax ∈W 2,p(Ω) in [α, β] i.e.

α ≤ umin ≤ umax ≤ β

and any other solution u of (1.1) such that α ≤ u ≤ β satisfies

umin ≤ u ≤ umax.

Further if α and β are strict then for R > 0 large enough

deg(I − S,U) = 1,

where
U = {u ∈ C1

0(Ω) | α� u� β, ‖u‖C10 < R}

and S : C1
0(Ω)→ C1

0(Ω) is defined by Su = v where v ∈W 2,p(Ω) is the unique solution of

−∆v = f(x, u), in Ω,
v = 0, on ∂Ω.

Proof : This can be proved using ideas developed in [12] in order to adapt to the elliptic case the results of [11,
Theorem I-3.2, I-2.4, III-2.8].

Remark 3.1 In case N = 1, we can work with L1-Carathéodory functions. See [11] for details.

3.3 Non well ordered lower and upper solutions

3.3.1 The Minus Gradient Flow

We shall define the minus gradient flow using the following assumptions :
(H) (i) for some p > N , f : Ω × R → R : (x, u) 7→ f(x, u) is an Lp-Carathéodory function, locally Lipschitz

in u uniformly in x;
(ii) there exists m ∈ R+ such that f(x, u) +mu is increasing in u;
(iii) if N > 2 (resp. N = 2), there exist a > 0 and γ ∈ ]1, N+2

N−2 [ (resp. γ ∈ ]1,+∞[) and d ∈ Lp(Ω) such
that for all (x, u) ∈ Ω× R we have

|f(x, u)| ≤ a|u|γ + d(x).
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Remark 3.2 In case N = 1, we can work with L1-Carathéodory functions locally Lipschitz in u uniformly in
x, satisfying (ii). See [11] for details.

Now, let us define on H1
0 (Ω) the scalar product

(u, v)H1
0

=

∫
Ω

[∇u(x)∇v(x) +mu(x)v(x)] dx

and let

F (x, u) =

∫ u

0

f(x, s) ds.

It is then easy to see that the functional

φ : H1
0 (Ω)→ R, u 7→

∫
Ω

[
|∇u(x)|2

2
− F (x, u(x))] dx (3.2)

is of class C1 and

∇φ(u) = u−A(u), (3.3)

where

A : H1
0 (Ω)→ H1

0 (Ω), u 7→ Au (3.4)

and v := Au is defined to be the unique solution of

−∆v +mv = f(x, u) +mu, in Ω,
v = 0, on ∂Ω.

Let us notice at last that if Assumptions (H) are satisfied, the function

∇φ : C1
0(Ω)→ C1

0(Ω),

defined from (3.3) is locally lipschitzian. Next, we define a C1-function ψr : R → [0, 1] such that ψr(s) = 1 if
s ≥ r and ψr(s) = 0 if s ≤ r − 1.

We consider then the Cauchy problem

d
dtu = −ψr(φ(u))∇φ(u) = −ψr(φ(u))(u−A(u)),

u(0) = u0,
(3.5)

where u0 ∈ C1
0(Ω). From the theory of ordinary differential equations, we know that the solution u( · ;u0) of

(3.5) exists, is unique, and is defined in the future on a maximal interval [0, ω(u0)[. We also know that for any
t ∈ [0, ω(u0)[, the function u(t; · ) : C1

0(Ω) → C1
0(Ω) is continuous. We call the minus gradient flow the local

dynamical system defined on C1
0(Ω) by u(t;u0).

A first result shows that the solutions of (3.5) are defined for all t ≥ 0.

Proposition 3.3 Let Assumptions (H) be satisfied and u(t;u0) be the minus gradient flow defined for some
r ∈ R. Then for any u0 ∈ C1

0(Ω) we have ω(u0) = +∞.

Proof : The proof follows the line of [11, Proposition IV-3.1] together with a bootstrap argument that can be
found for example in [21].
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3.3.2 Invariant Sets

An important property of the cones
Cα = {u ∈ C1

0(Ω) | u� α} (3.6)

and
Cβ = {u ∈ C1

0(Ω) | u� β}, (3.7)

which are associated to lower and upper solutions α and β of (1.1) is that they are positively invariant. To
make this precise, let us introduce the following definitions.

Definition 3.3 Let u(t;u0) be the minus gradient flow defined for some r ∈ R. A nonempty set M ⊂ C1
0(Ω)

is called a positively invariant set if

∀u0 ∈M, ∀t ≥ 0, u(t;u0) ∈M.

As a first example, notice that the set

φc = {u ∈ C1
0(Ω) | φ(u) < c}

is positively invariant. Also, unions and intersections of positively invariant sets are positively invariant.

Proposition 3.4 Let Assumptions (H) be satisfied and u(t;u0) be the minus gradient flow defined for some
r ∈ R.

Assume α ∈W 2,p(Ω) is a lower solution of (1.1). Then the set Cα defined from (3.6) is positively invariant.
Similarly, if β ∈W 2,p(Ω) is an upper solution of (1.1), the set Cβ defined from (3.7) is positively invariant.

Proof : See [11, Proposition IV-3.3].

3.3.3 Non Well-ordered Lower and Upper Solutions

The first result of this section provides Palais-Smale type sequences from non well-ordered lower and upper
solutions. As usual, this proposition gives a solution of (1.1) with the help of the Palais-Smale condition.

In order to obtain existence of solutions of (1.1), we need to prove that the sequence (u(tn;u0))n converges
toward such a solution, which holds true in case we assume the Palais-Smale Condition (PS).

Recall that the functional φ : X → R satisfies the Palais-Smale Condition (PS) if for every sequence
(un)n ⊂ X such that φ(un) is bounded and ∇φ(un) → 0, there exists a subsequence that converges to some
function u ∈ X.

Theorem 3.5 Let Assumptions (H) be satisfied. Suppose that α and β ∈ W 2,p(Ω) are lower and upper
solutions of (1.1) with α 6≤ β. Define Cα and Cβ from (3.6) and (3.7),

Γ = {γ ∈ C([0, 1], C1
0(Ω)) | γ(0) ∈ Cβ , γ(1) ∈ Cα},

Tγ = {s ∈ [0, 1] | γ(s) ∈ C1
0(Ω) \ (Cβ ∪ Cα)}

(3.8)

and assume
c := inf

γ∈Γ
max
s∈Tγ

φ(γ(s)) ∈ R,

where φ(u) is defined from (3.2). At last, let u(t;u0) be the minus gradient flow defined with r = c− 1.
Then, for any δ ∈ ]0, 1[, there exists u0 ∈ C1

0(Ω) such that

∀t > 0, u(t;u0) ∈ φ−1([c− δ, c+ δ]) \ (Cβ ∪ Cα)

and there exists an increasing unbounded sequence (tn)n ⊂ R+ such that

∇φ(u(tn;u0))
H1

0→ 0 as n→∞.

If moreover the Palais-Smale Condition (PS) is satisfied, then there exists v ∈ C1
0(Ω) \ (Cβ ∪ Cα) solution

of (1.1) such that φ(v) = c.
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Proof : The first part of the result can be proved as in [11, Proposition IV-3.4]. The second part is proved
following the ideas of [11, Theorem IV-3.5] together with a bootstrap argument that can be found for example
in [21].

4 Multiplicity results

In this section we will apply the previous results on a modified problem. Hence we can assume weaker condition
than (H).

(H ′) Let p > N and f : Ω × R → R : (x, u) 7→ f(x, u) be an Lp-Carathéodory function, locally L∞-Lipschitz
in u uniformly in x.

Remark 4.1 As in the previous section, in case N = 1, we can work with L1-Carathéodory functions locally
Lipschitz in u uniformly in x.

We denote by λk the k-th eigenvalue of −∆ on H1
0 (Ω) and ϕk the corresponding eigenfunction with ‖ϕk‖∞ =

1.

Theorem 4.1 Let Assumptions (H ′) be satisfied and assume
(i) there exist λ > λ2 and δ > 0 such that for a.e. x ∈ Ω and all u ∈ [−δ, δ] \ {0},

f(x, u)

u
≥ λ;

(ii) there exist µ < λ1 and R > 0 such that for a.e. x ∈ Ω and all u ≥ R,

f(x, u)

u
≤ µ;

(iii) there exist a < 0 < b and R′ > 0 such that for a.e. x ∈ Ω and all u ≤ −R′,

a ≤ f(x, u)

u
≤ b.

Then the problem (1.1) has at least two nontrivial solutions: one positive and the other one sign-changing.

Proof : Step 1 – There exists β1 � 0 which is a proper upper solution of (1.1). Let h ∈ Lp(Ω) be such that
h ≥ 0 and for a.e. x ∈ Ω and all u ≥ 0,

f(x, u) < µu+ h(x).

Define then β1 to be the solution of
−∆u = µu+ h(x), in Ω,

u = 0, on ∂Ω.

As µ < λ1 and h ≥ 0 we have from the maximum principle and the Krein-Rutmann theorem that β1 � 0 and

−∆β1(x) = µβ1(x) + h(x) > f(x, β1(x)), in Ω,
β1 = 0, on ∂Ω,

i.e. β1 � 0 is a proper upper solution.

Step 2 – For every nontrivial nonnegative solution u of (1.1) we have u ≥ δϕ1. Let u∗ be a nontrivial
nonnegative solution of (1.1) and define η = max{τ ≥ 0 | u∗ − τϕ1 ≥ 0}.

Observe first that, as f is locally L∞-Lipschitz in u uniformly in x, we have k > 0 such that

−∆u∗ + ku∗ = f(x, u∗) + ku∗ ≥ f(x, 0) = 0, in Ω,
u∗ = 0, on ∂Ω.
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Hence, by Corollary 2.3, u∗ � 0 and η > 0.
Assume now that η < δ. By definition of η, two cases may occur.
If there exists x0 ∈ Ω such that u∗(x0)−ηϕ1(x0) = 0 then there exists Ω1 ⊂ Ω such that x0 ∈ Ω1, u∗(x) ≤ δ

on Ω1 and a.e. in Ω1

−∆(u∗ − ηϕ1)(x) = f(x, u∗(x))− ηλ1ϕ1(x) ≥ λu∗(x)− ηλ1ϕ1(x) > λ1(u∗ − ηϕ1)(x) ≥ 0.

By the maximum principle u∗ − ηϕ1 = 0 on Ω1 which contradicts the above strict inequality.
If not, by definition of η, there exists x0 ∈ ∂Ω with ∂ν(u∗− ηϕ1)(x0) = 0 and there exists Ω1 ⊂ Ω such that

u∗ ≤ δ on Ω1. As above we have −∆(u∗ − ηϕ1) > 0 on Ω1 which contradicts the Hopf maximum principle.

Step 3 – For every nontrivial nonpositive solution u of (1.1) we have u ≤ −δϕ1. The proof is similar to the
one of Step 2.

Step 4 – Existence of proper lower and upper solutions α1 and β2 with −δϕ1 ≤ β2 � 0� α1 ≤ δϕ1. Fix ε > 0
small enough so that ε < min{δ/4, λ− λ2} and 4εϕ1 � β1. It is easy to see that β2 = −εϕ1 and α1 = εϕ1 are
respectively proper upper and lower solutions of (1.1) since

−∆β2(x) = −ελ1ϕ1(x) > f(x,−εϕ1(x)) = f(x, β2(x)),
−∆α1(x) = ελ1ϕ1(x) < f(x, εϕ1(x)) = f(x, α1(x)).

Step 5 – Existence of a positive solution By construction we have lower and upper solutions α1 and β1 of (1.1)
with α1 ≤ β1. Hence, by Theorem 3.2 there is a solution u1 of (1.1) with α1 ≤ u1 ≤ β1. As α1 � 0 we have
u1 � 0.

Step 6 – The modified problem. Consider the modified problem

−∆u = fr(x, u), in Ω,
u = 0, on ∂Ω,

(4.9)

where
fr(x, u) = 0, if u < −r − 1,

= (1 + r + u)f(x, u), if − r − 1 ≤ u < −r,
= f(x, u), if − r ≤ u ≤ β1(x),
= f(x, β1(x)), if u > β1(x).

Observe that, by the maximum principle as in Theorem 3.2, every solution u of (4.9) satisfies u ≤ β1.

Claim: There exists K > 0 such that for all r > K and all solutions u of (4.9) with u 6∈ Cβ2 ∪ Cα1 we have
‖u‖C1 < K. By assumption (H’) and (iii), there exists γ ∈ Lp(Ω) such that, for all r

fr(x, u) = −gr(x, u)u− + hr(x, u),

with
a ≤ gr(x, u) ≤ b,
|hr(x, u)| ≤ γ(x).

Assume by contradiction there exist sequences (rn)n and (un)n 6∈ Cβ2 ∪Cα1
, where rn ≥ n and un is a solution

of (4.9) with r = rn such that ‖un‖C1 ≥ n.
Consider now the functions vn = un/‖un‖C1 which solve the problems

−∆vn = −grn(x, un)v−n +
hrn (x,un)
‖un‖C1

, in Ω,

vn = 0, on ∂Ω.

Going to subsequence, we can assume that

grn(·, un) ⇀ q in Lp(Ω),

with a ≤ q ≤ b,
hrn(·, un)

‖un‖C1
→ 0 in Lp(Ω),
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vn is bounded in W 2,p(Ω) and hence

vn ⇀ v in W 2,p(Ω) and vn → v in C1
0(Ω) with ‖v‖C1 = 1.

As un ≤ β1, we deduce that v ≤ 0 is a solution of

−∆v = −qv−, in Ω,
v = 0, on ∂Ω.

Hence we have
−∆v − av = (q − a)v ≤ 0, in Ω,

v = 0, on ∂Ω,

which implies v � 0 by Corollary 2.3.

By [16, Lemma 3.1], there exist C1, C2 > 0 such that, for any n large enough, vn ≤ C1v and C2v � β2. As
vn = un/‖un‖C1 this implies that, for n large enough, un � β2 which contradict the assumption un 6∈ Cβ2∪Cα1 .

Now let r > K be fixed and consider the modified functional

φr(u) =

∫
Ω

[
|∇u(x)|2

2
− Fr(x, u(x))] dx,

with Fr(x, u) =

∫ u

0

fr(x, ξ) dξ. Observe that fr satisfies assumption (H) and that, by Proposition 3.1, every

proper lower (resp. upper) solution of (4.9) is strict. In particular α1 is strict and u1 � α1.

Step 7 – Existence of a second nontrivial solution. We apply Theorem 3.5 on φr with α = α1 and β = β2.
Observe that as φr is coercive, it satisfies the Palais-Smale Condition and c ∈ R. This observation proves the
existence of a solution u2 ∈ C1

0(Ω) \ (Cβ2 ∪ Cα1), i.e. u2 6= u1. The main problem is to see that u2 is not the
trivial solution. To this aim, we prove that c = φr(u2) < 0 = φr(0).

Define Γ from (3.8), with α = α1, β = β2, and γ ∈ Γ by

γ(s) = 2ε[(2s− 1)ϕ1 + (1− |2s− 1|)ϕ2].

Observe that
γ(0) = −2εϕ1 � β2, γ(1) = 2εϕ1 � α1,

−4εϕ1 ≤ γ(s) ≤ 4εϕ1 � β1 for all s ∈ [0, 1].

Moreover we have

φr(γ(s)) =

∫
Ω

[
2ε2[(2s− 1)2∇ϕ2

1(x) + (1− |2s− 1|)2∇ϕ2
2(x)]

−Fr(x, 2ε[(2s− 1)ϕ1(x) + (1− |2s− 1|)ϕ2(x)])] dx

≤
∫

Ω

[
2ε2[(2s− 1)2λ1ϕ

2
1(x) + (1− |2s− 1|)2λ2ϕ

2
2(x)]

−λ2ε2[(2s− 1)ϕ1(x) + (1− |2s− 1|)ϕ2(x)]2
]
dx

≤ 2ε2|Ω|[(2s− 1)2(λ1 − λ) + (1− |2s− 1|)2(λ2 − λ)]

≤ 2ε2|Ω|[(2s− 1)2 + (1− |2s− 1|)2](λ2 − λ)

≤ −ε3|Ω|.

Hence, by definition of c, we have c ≤ −ε3|Ω| < 0, which implies the second solution u2 is nontrivial.

Step 8 – The function u2 changes sign. Assume u2 > 0, then by Step 2 u2 ≥ δϕ1 ≥ α1 which contradicts the
localization of u2. We prove in a similar way that u2 cannot be nonpositive. Therefore u2 changes sign.
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An additional solution can be obtained combining variational method and degree theory. Here we impose

that the slope f(t,u)
u lies between two consecutive eigenvalues for small values of u.

Theorem 4.2 Assume that f ∈ C1(Ω× R) satisfies
(i’) there exist p, q, k ≥ 2 (k ∈ N) and δ > 0 such that for a.e. x ∈ Ω and all u ∈ [−δ, δ] \ {0},

λk < p ≤ f(x, u)

u
≤ q < λk+1;

(ii) there exist µ < λ1 and R > 0 such that for a.e. x ∈ Ω and all u ≥ R,

f(x, u)

u
≤ µ;

(iii) there exist a < 0 < b and R′ > 0 such that for a.e. x ∈ Ω and all u ≤ −R′,

a ≤ f(x, u)

u
≤ b.

Then the problem (1.1) has at least three nontrivial solutions ui: one positive and two sign-changing.

Proof : Part 1 – Modified problem. As in the proof of Theorem 4.1, we choose a lower solutions α1 and upper
solutions βi such that

−δϕ1 � β2 = −εϕ1, α1 = εϕ1 � δϕ1 and α1 � β1,

where ε ∈ ]0, δ[. Moreover as in that proof we have a constant K > 0 such that for all r > K and all solutions
u 6∈ Cβ2 ∪ Cα1

of (4.9) we have ‖u‖C1 < K and moreover u ≤ β1. Hence we consider the problem (4.9) with
r > K. Observe that α2 = −r − 2 is a lower solution of that problem with α2 � β2. From Theorem 3.2, the
problem (4.9) has two solutions u2 ≤ β2 and u1 ≥ α1 such that u2 is the maximum solution in [α2, β2] and u1

is the minimum solution in [α1, β1] of (4.9). Moreover we can prove as in the proof of Steps 2 and 3 of Theorem
4.1 that

u2 ≤ −δϕ1 and u1 ≥ δϕ1.

Consider now the modified problem
−∆u = f̄(x, u), in Ω,

u = 0, on ∂Ω,
(4.10)

where
f̄(x, u) = fr(x, u2(x)), if u < u2(x),

= fr(x, u), if u2(x) ≤ u < u1(x),
= fr(x, u1(x)), if u1(x) ≤ u,

and the corresponding functional

φ̄(u) =

∫
Ω

[
|∇u(x)|2

2
− F̄ (x, u(x))] dx,

with F̄ (x, u) =

∫ u

0

f̄(x, s) ds. Observe that f̄ satisfies conditions (H) with m given by the locally L∞-Lipschitz

condition of f on [minu2,maxu1]. By the maximum principle as in Theorem 3.2, it is easy to see that every
solution u of (4.10) satisfies u2 ≤ u ≤ u1 and is a solution of (4.9). Moreover, by extremality of u1 and u2,
every solution u of (4.10) but u1 and u2 satisfies u 6∈ Cβ2 ∪ Cα1

and therefore, by the choice of r, is a solution
of (1.1).

As in the proof of Theorem 4.1, we see that the problem (4.10) has a third solution u3 6= 0, which changes
sign and is such that

φ̄(u3) = inf
γ∈Γ

max
s∈Tγ

φ̄(γ(s)) < 0,

where Γ and Tγ are defined from (3.8). Notice also that φ̄ satisfies the Palais-Smale Condition.
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Part 2 – Existence of a further nontrivial solution u4. Assume by contradiction that the only solutions of (4.10)
are u1, u2, u3 and 0. As u2 − 1 and α1 are strict lower solutions of (4.10) and β2 and u1 + 1 are strict upper
solutions of (4.10), we have, by Theorem 3.2,

deg (I − Ā,Ω1) = 1 and deg (I − Ā,Ω2) = 1

where, for R large enough,

Ω1 = {u ∈ C1
0(Ω) | u2 − 1� u� β2, ‖u‖C1 < R},

Ω2 = {u ∈ C1
0(Ω) | α1 � u� u1 + 1, ‖u‖C1 < R},

and Ā is defined from
Ā : C1

0 → C1
0(Ω), u 7→ Āu

where v := Āu is the unique solution of

−∆v = f̄(x, u), in Ω,
v = 0, on ∂Ω.

Suppose φ̄(u1) ≥ φ̄(u2), a similar argument holds if φ̄(u2) > φ̄(u1). As the only critical points are
{u1, u2, u3, 0}, by [13, Theorem 5.10] (see also [11, Theorem A-2.4]), there exists γ > 0 such that

inf{φ̄(u) | ‖u− u1‖H1
0

= γ} > φ̄(u1).

Next, by [28, Theorem 4.10] and [18] (see also [11, Theorem A-2.3]), there is a critical point of mountain pass
type. As k ≥ 2, it cannot be 0. Hence this point is u3 and from [18] and [1] (see also [6, Corollary 2-3.1] and
[11, Theorem A-2.6, Corollary A-2.7]) and [11, Theorem A-1.7], there exists ε > 0 such that

deg (I − Ā, B(u3, ε)) = −1.

Moreover, as Ā(C1
0(Ω)) ⊂ B(0, R̄) for some R̄ > 0,

deg (I − Ā, B(0, R̄)) = 1.

Let us prove next that, for r small enough,

|deg (I − Ā, B(0, r))| = 1.

Consider the homotopy
−∆u = sf̄(x, u) + (1− s)p+q2 u = 0, in Ω,

u = 0, on ∂Ω.
(4.11)

Notice that for a.e. x ∈ Ω and all u ∈ [max(−δ, u2(x)),min(u1(x), δ)]

λk < p ≤ s f̄(x, u)

u
+ (1− s)p+ q

2
≤ q < λk+1.

Any solution u of (4.11) is such that
−∆u = P (x)u, in Ω,

u = 0, on ∂Ω.

with P (x) := s f̄(x,u(x))
u(x) + (1 − s)p+q2 . We can find r > 0 small enough such that if u ∈ ∂B(0, r) we have

A(x) ∈ [p, q] ⊂ ]λk, λk+1[ for x ∈ Ω. By eigenvalue comparison, we conclude that u ≡ 0. Hence, using [27, p.
66] or [29, vol. 2 p. 185] and the homotopy invariance of the degree, we obtain

|deg (I − Ā, B(0, r))| = 1.

We come now to the contradiction

deg (I − Ā, B(0, R̄)) = deg (I − Ā,Ω1) + deg (I − Ā,Ω2) + deg (I − Ā, B(u3, ε)) + deg (I − Ā, B(0, r))
= 1 + 1− 1± 1 6= 1,

which proves the existence of an additional nontrivial solution u4 of (4.10). Recall that such a solution lies in
[u1, u2] and from the definition of u1 and u2, we have u4 6∈ Cβ2 ∪Cα1

and u4 is a solution of (1.1). Arguing as
in Theorem 4.1, we prove then that this solution changes sign too.
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In case f is independent of x, we do not need the lower bound on f(u)/u for u ≤ −R′ in Theorems 4.1 and
4.2.

Theorem 4.3 Let f : R→ R : u 7→ f(u) be a locally Lipschitz continuous function. Assume
(i) there exist λ > λ2 and δ > 0 such that for all u ∈ [−δ, δ] \ {0},

f(u)

u
≥ λ;

(ii) there exist µ < λ1 and R > 0 such that for all u ≥ R,

f(u)

u
≤ µ;

(iv) there exist b > 0 and R′ > 0 such that for all u ≤ −R′,

f(u)

u
≤ b.

Then the problem
−∆u = f(u), in Ω,

u = 0, on ∂Ω,
(4.12)

has at least two nontrivial solutions: one positive and the other one sign-changing.

If moreover f ∈ C1(R) and there exist p, q, k ≥ 2 (k ∈ N) and δ > 0 such that for all u ∈ [−δ, δ] \ {0},

λk < p ≤ f(u)

u
≤ q < λk+1,

then the problem (4.12) has a second sign-changing solution.

Proof : As in the proof of Theorem 4.1, we have proper upper solutions βi (i = 1, 2) and a proper lower solution
α1 such that

β2 � 0� α1 < β1.

In case there exists a < 0 such that for u ≤ −R′, f(u)/u ≥ a, we are reduced to Theorems 4.1 and 4.2. So
assume

lim inf
u→−∞

f(u)

u
= −∞.

This implies the existence of a sequence Rn → −∞ such that f(Rn) > 0 and hence, for n large enough, α2 = Rn
is a proper lower solution with α2 ≤ β2. We then apply the same arguments as in Theorems 4.1 and 4.2 on the
modified problem

−∆u = f̄(x, u), in Ω,
u = 0, on ∂Ω,

where

f̄(x, u) = f(α2), if u < α2,
= f(u), if α2 ≤ u < β1(x),
= f(β1(x)), if β1(x) ≤ u.

We can also consider the case where f is superlinear for u ≤ 0 if, in some sense, λ1 is asymptotically a lower

bound for f(x,u)
u as u→ −∞.

Theorem 4.4 Theorems 4.1 and 4.2 are valid if we replace condition (iii) by
(v) there are a constant δ ∈ ]1, N+1

N−1 [ and a function h ∈ Lp(Ω) such that

−|u|δ − h(x) ≤ f(x, u)− λ1u ≤ h(x),

for a.e. x ∈ Ω and all u ≤ 0.
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Proof : As in the proof of Theorem 4.1, we have a proper upper solution β1 � 0 and we prove that, for
ε < min{δ/4, λ− λ2} such that 4εϕ1 � β1, the function α1 = εϕ1 is a proper lower solution and the function
β2 = −εϕ1 is a proper upper solution. Hence we have a positive solution α1 ≤ u1 ≤ β1. Moreover we prove
that every nontrivial nonnegative (resp. nonpositive) solution of (1.1) is such that u ≥ δϕ1 (resp. u ≤ −δϕ1).

Part 1 – First modified problem. Consider the modified problem

−∆u = fr(x, u), in Ω,
u = 0, on ∂Ω,

(4.13)

where
fr(x, u) = λ1u, if u < −r − 1,

= (1 + r + u)f(x, u)− (r + u)λ1u, if − r − 1 ≤ u < −r,
= f(x, u), if − r ≤ u ≤ β1(x),
= f(x, β1(x)), if u > β1(x).

Observe that, by the maximum principle as in Theorem 3.2, every solution u of (4.13) satisfies u ≤ β1.

Claim 1: There exists K1 > 0 such that for all r > K1 and all solutions u of (4.13) with u 6∈ Cβ2 ∪ Cα1
we

have ‖u‖C1 < K1. Define
gr(x, u) = min{max{fr(x, u)− λ1u,−|u|δ}, 0},

hr(x, u) = fr(x, u)− λ1u− gr(x, u).

Hence (4.13) becomes
−∆u = λ1u+ gr(x, u) + hr(x, u), in Ω,

u = 0, on ∂Ω,
(4.14)

and there exists γ1 ∈ Lp(Ω) such that, for a.e. x ∈ Ω, all u ≤ β1(x) and all r > 0, we have

−|u|δ ≤ gr(x, u) ≤ 0,
|hr(x, u)| ≤ γ1(x).

Assume by contradiction that for each n there exist rn > n and un, solution of (4.14) for r = rn, such that

un 6∈ Cβ2 ∪ Cα1 , un ≤ β1 and ‖un‖C1 ≥ n. Let us write un = ξnϕ1 + wn where

∫
Ω

wnϕ1 dx = 0.

Step 1. There exists D > 0 such that, for all n ∈ N,

‖wn‖H1
0
≤ D(|ξn|δ(1−µ) + 1), (4.15)

where µ = N+2−δ(N−2)
2(N+1)−δ(N−2) . Multiplying (4.14) by ϕ1 and integrating we obtain∫

Ω

|grn(x, un(x))|ϕ1(x) dx = −
∫

Ω

grn(x, un(x))ϕ1(x) dx

=

∫
Ω

hrn(x, un(x))ϕ1(x) dx ≤
∫

Ω

γ1(x)ϕ1(x) dx =: C1.

Multiplying (4.14) by wn and integrating we obtain, using Hölder inequality,

C2‖wn‖2H1
0
≤
∫

Ω

[|∇wn|2 − λ1w
2
n] dx =

∫
Ω

[grn(x, un)wn + hrn(x, un)wn] dx

≤
∫

Ω

|grn(x, un)|µϕµ1 |grn(x, un)|1−µ |wn|
ϕµ1

dx+

∫
Ω

hrn(x, un)wn dx

≤ (

∫
Ω

|grn(x, un)|ϕ1 dx)µ(

∫
Ω

|grn(x, un)| |wn|
1

1−µ

ϕ
µ

1−µ
1

dx)1−µ +

∫
Ω

hrn(x, un)wn dx

≤ C3(

∫
Ω

|un|δ
|wn|

1
1−µ

ϕ
µ

1−µ
1

dx)1−µ +

∫
Ω

hrn(x, un)wn dx

≤ C4

[
(

∫
Ω

|ξn|δϕδ1
|wn|

1
1−µ

ϕ
µ

1−µ
1

dx)1−µ + (

∫
Ω

|wn|δ+
1

1−µ

ϕ
µ

1−µ
1

dx)1−µ

]
+

∫
Ω

γ1wn dx

≤ C4|ξn|δ(1−µ)(

∫
Ω

|wn|
1

1−µ

ϕ
µ

1−µ−δ
1

dx)1−µ + C4(

∫
Ω

|wn|δ+
1

1−µ

ϕ
µ

1−µ
1

dx)1−µ + C5‖wn‖H1
0
.
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By Hardy-Sobolev inequality [3, Lemma 2.2], we deduce

‖wn‖H1
0
≤ C6[|ξn|δ(1−µ) + ‖wn‖δ(1−µ)

H1
0

+ 1],

and hence, as δ(1− µ) < 1, we obtain

‖wn‖H1
0
≤ C7(|ξn|δ(1−µ) + 1).

which proves Step 1.

Step 2. We have ξn → −∞. By (4.15) and a bootstrap argument, we have |ξn| → ∞ and as un ≤ β1 we obtain
moreover

ξn

∫
Ω

ϕ2
1 dx =

∫
Ω

unϕ1 dx ≤
∫

Ω

β1ϕ1 dx,

and hence ξn → −∞.

Step 3. For n large enough, un ≤ β2. Observe that this claim contradicts the localization un 6∈ Cβ2 ∪Cα1 and
hence proves the claim.

Recall that β2 = −εϕ1 is such that, for all r > δ,

−∆β2 = fr(x, β2) + q(x), in Ω,
u = 0, on ∂Ω,

where q(x) ≥ (λ− λ1)εϕ1(x).
Multiplying (4.13) by (un − β2)+ and integrating we obtain∫

Ω

|∇(un − β2)+|2 =

∫
Ω

[frn(x, un)− frn(x, β2)− q(x)](un − β2)+ dx

≤
∫

Ω

[frn(x, un)− frn(x, β2)− q(x)]+(un − β2)+ dx.

Hence, denoting by χA the characteristic function of the set A and using the Sobolev injections, we have that,
for every q′ > 2N

N+2 ,

‖(un − β2)+‖H1
0
≤ C8‖[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2}‖Lq′ . (4.16)

As un ≤ β1 we obtain

[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2} ≤ [frn(x, β2 + (un − β2)+)− frn(x, β2)− q(x)]+

≤ [λ1(β1 − β2)− |β2|δ + 2γ1 − q]+.
(4.17)

Combining (4.16) with (4.17), we deduce that

‖(un − β2)+‖H1
0
≤ C9.

Moreover we have, for n large enough,

un − β2

|ξn|
= −ϕ1 +

wn − β2

|ξn|
.

As wn/|ξn| → 0 in H1
0 (Ω) we deduce that

un − β2

|ξn|
→ −ϕ1 a.e. in Ω,

which means that, for a.e. x ∈ Ω, there exists Nx > 0 such that, for all n ≥ Nx, (un − β2)(x) ≤ 0 and hence
(un − β2)+(x) = 0. This implies that

(un − β2)+(x)→ 0 a.e. in Ω.
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By the first inequality of (4.17) we obtain

[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2} → 0, a.e. in Ω,

and by the second inequality of (4.17) we prove that

[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2} → 0, in Lq
′
(Ω),

for q′ < p. Using (4.16), we conclude that

‖(un − β2)+‖H1
0
→ 0 as n→∞.

Let us prove now that

lim
n→∞

‖[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2}‖Lq′
‖(un − β2)+‖H1

0

= 0.

Recall that, for a.e. x ∈ Ω, there exists Nx > 0 such that, for all n ≥ Nx, [frn(x, un) − frn(x, β2) −
q(x)]+χ{un≥β2} = 0 and hence

lim
n→∞

[frn(x, un(x))− frn(x, β2(x))− q(x)]+χ{un≥β2}(x)

‖(un − β2)+‖H1
0

= 0, a.e. in Ω.

Moreover, using the definition of fr, we have that a.e. in Ω,

[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2}

‖(un − β2)+‖H1
0

≤ [f(x, β2 + (un − β2)+)− f(x, β2)− q(x)]+

‖(un − β2)+‖H1
0

.

The function f being locally L∞-Lipschitz in u uniformly in x and using the inequality un ≤ β1, we obtain

|f(x, β2 + (un − β2)+)− f(x, β2)| ≤ C10|(un − β2)+|.

As (un−β2)+

‖(un−β2)+‖
H1

0

is bounded in H1
0 (Ω), up to a subsequence, for all q < 2N

N−2 , there exists γ2 ∈ Lq(Ω) such that,

a.e. in Ω,
[f(x, β2 + (un − β2)+)− f(x, β2)− q(x)]+

‖(un − β2)+‖H1
0

≤ C10
|(un − β2)+|
‖(un − β2)+‖H1

0

≤ C10γ2.

Hence as q > 2 > q′ we have, by the Lebesgue convergence theorem,

lim
n→∞

‖[frn(x, un)− frn(x, β2)− q(x)]+χ{un≥β2}‖Lq′
‖(un − β2)+‖H1

0

= 0,

which implies by (4.16) that, for n large enough, ‖(un − β2)+‖H1
0

= 0 and proves Step 3. As this contradicts
the localization, Claim 1 is proved.

Let R > K1 be fixed and consider the modified corresponding problem

−∆u = fR(x, u), in Ω,
u = 0, on ∂Ω.

(4.18)

Observe that, there exists γ3 ∈ Lp(Ω) such that, for a.e. x ∈ Ω and all u ≤ β1(x), we have

|fR(x, u)− λ1u| ≤ γ3(x).

Part 2 – Second modified problem. For every s > R, define the function f̃s : Ω× R→ R by

f̃s(x, u) = (λ1 − 1
s )u, if u < −s− 1,

= −(u+ s)(λ1 − 1
s )u+ (s+ 1 + u)fR(x, u), if − s− 1 ≤ u ≤ −s,

= fR(x, u), if u > −s.
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For every s > R, consider the modified problem

−∆u = f̃s(x, u), in Ω,
u = 0, on ∂Ω.

(4.19)

Observe that we can decompose f̃s(x, u) = ps(x, u)u+ qs(x, u) such that, for a.e. x ∈ Ω and all u ≤ β1(x),

λ1 − 1
s ≤ ps(x, u) ≤ λ1,

|qs(x, u)| ≤ γ3(x).

Moreover, as previously, for all s > R, every solution u of (4.19) satisfies u ≤ β1.

Claim 2: There exists K2 > R such that, for all s > K2 and for all u 6∈ Cβ2 ∪ Cα1 solution of (4.19), we have
‖u‖C1 < K2. Otherwise, for all n ≥ 1, there exist sn > n and un 6∈ Cβ2 ∪Cα1

solution of (4.19) for s = sn with
‖un‖C1 ≥ n. Then vn = un/‖un‖C1 satisfies

−∆vn = psn(x, un)vn +
qsn (x,un)
‖un‖C1

, in Ω,

vn = 0, on ∂Ω.

As {psn(x, un)vn +
qsn (x,un)
‖un‖C1

| n ∈ N} is bounded in Lp(Ω), we deduce that, up to a subsequence, vnk → v in

C1(Ω). It is then easy to see that psnk (x, unk)vnk +
qsnk

(x,unk )

‖unk‖C1
→ λ1v in Lp(Ω). Passing to the limit, v is a

solution of
−∆v = λ1v, in Ω,

v = 0, on ∂Ω,
v ≤ 0, in Ω.

We deduce that v = −ϕ1. Hence for k large enough, using [16, Lemma 3.1],

unk ≤ −
1

2
‖unk‖C1ϕ1 � β,

which contradicts the localization of unk and proves the claim.

Conclusions – Let s > K2 be fixed and consider the modified functional

φs(u) =

∫
Ω

[
|∇u(x)|2

2
− F̃s(x, u(x))] dx,

where F̃s(x, u) =

∫ u

0

f̃s(x, ξ) dξ.

Observe that every critical point u of φs is a solution of (4.19). Moreover, if u 6∈ Cβ2 ∪ Cα1
, by Claim 2, u

is a solution of (4.18) and by Claim 1, it is a solution of (1.1). We also see that the problem (4.19) has a lower
solution α2 � β2. In fact, let w ∈W 2,p(Ω) be the solution of

−∆w = (λ1 − 1
s )w − (λ1 − 1

s )(s+ 2), in Ω,
w = 0, on ∂Ω.

Choose k > 0 large enough such that α2 := w− kϕ1− s− 2 ≤ −s− 2. Hence it is easy to see that α2 is a lower
solution of (4.19) with α2 � β2.

The rest of the proof is similar to the one of Theorems 4.1 and 4.2 respectively.

Remark 4.2 Observe that we can replace the minoration on f in (v) by

lim inf
u→−∞

f(x, u)

|u|
N+1
N−1

= 0, uniformly in x.
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In the ordinary differential case
−u′′ = f(t, u),

u(0) = 0, u(T ) = 0,
(4.20)

we can improve the above results by requiring just a lower bound on f(t, u)/u for u → −∞. We obtain the
following theorem.

Theorem 4.5 Let f : [0, T ] × R → R : (t, u) 7→ f(t, u) be an L1-Carathéodory function, locally L∞-Lipschitz
in u uniformly in t. Assume
(i) there exist λ > (2π/T )2 and δ > 0 such that for a.e. t ∈ [0, T ] and all u ∈ [−δ, δ] \ {0},

f(t, u)

u
≥ λ;

(ii) there exist µ < (π/T )2 and R > 0 such that for a.e. t ∈ [0, T ] and all u ≥ R,

f(t, u)

u
≤ µ.

(vi) there exist a function a ∈ L1(0, T ) and R′ > 0 such that for a.e. t ∈ [0, T ] and all u ≤ −R′,
f(t, u)

u
≥ a(t).

Then the problem (4.20) has at least two nontrivial solutions: one positive and the other one sign-changing.

If moreover f ∈ C1([0, T ] × R) and there exist p, q, k ≥ 2 (k ∈ N) and δ > 0 such that for a.e. t ∈ [0, T ]
and all u ∈ [−δ, δ] \ {0},

k2π2

T 2
< p ≤ f(t, u)

u
≤ q < (k + 1)2π2

T 2
,

then the problem (4.20) has a second sign-changing solution.

Proof : The only modification concerns the proof of the Step 6 in the proof of Theorem 4.1. Consider the
modified problem

−u′′ = fr(t, u),
u(0) = 0, u(T ) = 0,

(4.21)

where
fr(t, u) = 0, if u < −r − 1,

= (1 + r + u)f(t, u), if − r − 1 ≤ u < −r,
= f(t, u), if − r ≤ u ≤ β1(t),
= f(t, β1(t)), if u > β1(t).

By the maximum principle as in Theorem 3.2 we have that every solution u of (4.21) satisfies u ≤ β1.

Claim: There exists K > 0 such that for all r > K and all solutions u of (4.21) with u 6∈ Cβ2 ∪ Cα1
we have

‖u‖C1 < K. As u 6∈ Cβ2 ∪ Cα1 , there exists t1 ∈ [0, T ] such that u(t1) ≥ β2(t1) and u′(t1) = β′2(t1).
Let â ∈ L1(0, T ;R+) and h ∈ L1(0, T ) such that, for a.e. t ∈ [0, T ], all u ≤ β1(t) and all r > ‖β2‖∞,

fr(t, u) ≤ â(t)|u|+ h(t).

Hence we have

u(t) = u(t1) + u′(t1)(t− t1)−
∫ t

t1

(t− s)fr(s, u(s)) ds

≥ β2(t1) + β′2(t1)(t− t1)−
∫ t

t1

(t− s)[â(s)|u(s)|+ h(s)] ds

≥ −ε− ε π
T
− T‖h‖L1 −

∫ t

t1

(t− s)â(s)|u(s)| ds

i.e. we have C > 0 such that, for all t ∈ [0, T ],

|u(t)| ≤ C +

∫ t

t1

T â(s)|u(s)| ds.

The Claim follows from Gronwall’s Lemma.
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The rest of the proof follows as in Theorems 4.1 and 4.2 respectively.

As in Theorem 4.3, in case f is independent of t, the condition (vi) is not needed.

Theorem 4.6 Let f : R→ R : u 7→ f(u) be a locally Lipschitz continuous function. Assume
(i) there exist λ > (2π/T )2 and δ > 0 such that for all u ∈ [−δ, δ] \ {0},

f(u)

u
≥ λ;

(ii) there exist µ < (π/T )2 and R > 0 such that for all u ≥ R,

f(u)

u
≤ µ.

Then the problem
−u′′ = f(u),

u(0) = 0, u(T ) = 0,
(4.22)

has at least two nontrivial solutions: one positive and the other one sign-changing.

If moreover f ∈ C1(R) and there exist p, q, k ≥ 2 (k ∈ N) and δ > 0 such that for all u ∈ [−δ, δ] \ {0},

(
kπ

T
)2 < p ≤ f(u)

u
≤ q < (

(k + 1)π

T
)2,

then the problem (4.22) has a second sign-changing solution.

Remark 4.3 Remark that in all the results of this section, the condition (ii) was just used to construct the
upper solution β1. Hence we can replace (ii) by requiring the existence of such an upper solution β1 � 0 or by
any condition ensuring this existence.
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[17] H. Höfer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261 (1982),
493-514.
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