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INFINITELY MANY RADIAL SOLUTIONS OF A MEAN

CURVATURE EQUATION IN LORENTZ-MINKOWSKI SPACE

DENIS BONHEURE, COLETTE DE COSTER, AND ANN DERLET

Abstract. In this paper, we show that the quasilinear equation

−div

(
∇u√

1− |∇u|2

)
= |u|α−2u, in RN

has a positive smooth radial solution at least for any α > 2? = 2N/(N − 2),

N ≥ 3. Our approach is based on the study of the optimizers for the best

constant in the inequality∫
RN

(1−
√

1− |∇u|2) ≥ C
(∫

RN
|u|α

) N
α+N

,

which holds true in the unit ball of W 1,∞(RN ) ∩ D1;2(RN ) if and only if
α ≥ 2?. We also prove that the best constant is not achieved for α = 2?. As

a byproduct, our arguments combined with Lusternik-Schnirelmann category

theory allow to construct a sequence of radial solutions.

1. Introduction

It is well known [19] that the Lane-Emden equation

(1) −∆u = |u|α−2u in RN ,
admits no nontrivial nonnegative solution for 2 < α < 2?, N ≥ 3, while, for α = 2?,
any positive solution can be written in the form

uδ,a(x) = βN

(
δ

δ2 + |x− a|2

)N−2
2N

,

as proved by Caffarelli, Gidas and Spruck [11]. For α > 2?, the set of all positive
radial solutions is a one-parameter family {ua(r) = au1(a(α−2)/2r) : a > 0}, where
u1 is strictly decreasing in r (see for instance [20]). Non radial singular solutions
have been constructed by Dancer, Guo and Wei [15]. We mention that it is still
open whether all smooth positive solutions are radially symmetric around some
point or not.

The prescribed mean curvature equation in Euclidian space

−div

(
∇u√

1 + |∇u|2

)
= |u|α−2u in RN ,

has also been the object of many studies. It has been considered, among others, by
Ni and Serrin [26] and del Pino and Guerra [17]. It is known that this problem has
infinitely many radial positive solution if α ≥ 2? and no smooth positive solutions
if α ≤ (2N − 2)/(N − 2). In contrast with the non-existence result for the Lane-
Emden equation in the subcritical range, del Pino and Guerra proved the existence
of many positive solutions when α = 2? − ε, for sufficiently small ε > 0.
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In this work, we aim to study the following prescribed mean curvature equation
in the Lorentz-Minkowski space

(2) Q(u) = |u|α−2u in RN ,
where

(3) Q(u) = −div

(
∇u√

1− |∇u|2

)
.

The quasilinear operator Q is a classical object in Riemannian geometry. The

Lorentz-Minkowski space LN+1 = {(x, t) ∈ RN×R}, with the flat metric
∑N
j=1(dxj)

2−
(dt)2 is the natural framework of classical relativity. If M is an N -dimensional
hypersurface of LN+1 that is the graph of a smooth function u ∈ C1(Ω) with
‖∇u‖L∞ < 1, the local mean curvature of M is given by Q(u), see for instance
[2, 12]. The determination of maximal or constant mean curvature hypersurfaces

is an important issue in classical relativity. The volume integral
∫

Ω

√
1− |∇u|2

gives the area integral in LN+1 and surfaces of maximal area (or simply maximal
surfaces) solve the equation Q(u) = 0 in Ω.

For functions defined on the whole of RN , the operator Q is relevant in Maxwell-
Born-Infeld field theory, see for instance [7, 8, 22, 23]. Basically, in this theory,
which is fully relativistic, it is assumed that there is a maximal field strength. This
lead Born and Infeld to consider the following Lagrangian density, expressed in
Lorentz-Minkowski space,

LBI = b2

1−

√
1− |

~E|2 − | ~B|2
b2

− ( ~E. ~B)2

b4

 ,

where ~E is the electric field, ~B is the magnetic field and b is the maximal admissible
value of the electric field.

Up to our knowledge, the equation (2) has never been considered in the literature,
at least in RN . We refer to [3, 4, 9, 14] for recent results on the existence of
radial solutions for BVPs involving Q in the ball with either Dirichlet or Neumann
conditions.

Supercritical problems are usually difficult to tackle through variational methods.
For instance, concerning the Lane-Emden equation, Farina [18] has obtained a
Liouville-type result for C2 solutions of (1) with finite Morse index. Basically, if the
dimension is small (N ≤ 10), the only finite Morse index solution is 0 except at the
critical exponent where the above-mentioned positive solutions arise as constrained
minimizers on a manifold of codimension 1.

In contrast, we show here that the quasilinear equation (2) has a smooth positive
radial solution for any α > 2?, N ≥ 3 by using simple arguments from Critical Point
Theory and the Calculus of Variations. In fact, when α > 2?, we have enough
compactness to deal with the problem in a standard way. Indeed, we minimize the
volume integral

(4)

∫
RN

(1−
√

1− |∇u|2),

truncated in a convenient way, constrained to the unit sphere of Lα(RN ). Then we
prove a gradient estimate which is uniform with respect to the truncation parame-
ter.
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Our first main result is the following.

Theorem 1.1. If α > 2?, equation (2) has a positive radial classical solution.

We restrict here our attention to the existence of radially symmetric solutions.
On the one hand, we expect that all positive smooth solutions are indeed radially
symmetric, though this is an open question. On the other hand, our solution
arises as a constrained minimizer and its Schwarz symmetric rearrangement yields
a radially symmetric minimizer (and therefore a radially symmetric solution).

Surprisingly, our approach to establish the existence of a solution of (2) fails in
the critical case α = 2?. Indeed, as stated in Theorem 1.2 below, the solution of
Theorem 1.1 realizes the best constant in an inequality between the volume integral
(4) and the Lα-norm. This inequality still holds for α = 2? but the best constant
is not achieved. We emphasize that this contrasts with the Sobolev inequality.

In the sequel, we denote by X the functional space

X :=
{
u ∈ D1;2(RN ) : ∇u ∈ L∞(RN ) and ‖∇u‖L∞ ≤ 1

}
,

endowed with the norm

‖u‖D1;2(RN ) :=

(∫
RN
|∇u|2

)1/2

.

We establish the following Sobolev-type inequality.

Theorem 1.2. There exists C > 0 such that

(5)

∫
RN

(1−
√

1− |∇u|2) ≥ C
(∫

RN
|u|α

) N
α+N

for every u ∈ X if and only if α ≥ 2?. Moreover, the best constant

inf
u∈X\{0}

∫
RN (1−

√
1− |∇u|2)(∫

RN |u|α
) N
N+α

is achieved by a radial solution of (2) for α > 2? while it is not achieved for α = 2?.

The fact that inequality (5) does not hold below the critical exponent is rather
clear since the volume integral (4) is bounded from above by the Dirichlet energy.
This does not mean that (2) has no non trivial nonnegative solutions for α < 2?

though we conjecture that this is indeed the case. One can for instance exclude
the existence of fast decaying solution but we are not able to prove a complete
non-existence result for α < 2?. Also the existence of a positive solution of (2) in
the critical case α = 2? remains an interesting open question.

At last, as a natural extension of our existence result, we combine our previous
approach with Lusternik-Schnirelmann category theory to obtain a sequence of
solutions whose volume integral diverge. Namely we prove the following multiplicity
result.

Theorem 1.3. For any α > 2?, equation (2) has a sequence of radial solutions
(uk)k∈N such that ∫

RN
(1−

√
1− |∇uk|2)→ +∞ as k →∞.
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Again, we first consider an auxiliary problem and conclude by a sharp uniform
estimate on the gradient of our solutions. Note that we do not provide sign informa-
tion on solutions though one could probably argue as in [27, 5] to obtain a sequence
of sign changing solutions. We leave this, as well as the existence of infinitely many
positive solutions, as open questions.

The paper is organized as follows. Section 2 contains some preliminary results on
the functional spaces we will work with. In Section 3, we establish the existence of
at least one classical solution of (2) (see Theorem 1.1 above). Section 4 is devoted
to the proof of the inequality in Theorem 1.2 and especially to the existence of
optimizers for the best constant in this inequality. Finally, in Section 5, we obtain
infinitely many solutions of (2) as stated in Theorem 1.3.

With some abuse of notation, we will sometimes consider radial functions as func-
tions of one variable, thus writing u(|x|) or u(x) or u(r). For any set A of functions,
Arad is defined as the set of all radially symmetric functions of A. Throughout the
paper, C denotes a positive constant that can change from line to line.

2. Functional framework and preliminary results

Let us set a0(s) = (1− s)−1/2 for all s < 1. Equation (2) can be written as

−div
(
a0(|∇u|2)∇u

)
= |u|α−2u in RN .

We introduce the energy functional

I0(u) :=
1

2

∫
RN

A0(|∇u|2),

where A0(t) =
∫ t

0
a0(s) ds for all t ≤ 1. This functional is well defined on X = {u ∈

D1;2(RN ) : ∇u ∈ L∞(RN ) and ‖∇u‖L∞ ≤ 1}, because we have

1

2
|∇u|2 ≤ 1−

√
1− |∇u|2 =

|∇u|2

1 +
√

1− |∇u|2
≤ |∇u|2.

Lemma 2.1. Let u ∈ X . Then |∇u| ∈ Lq(RN ) for every q ≥ 2, and u ∈ Ls(RN )
for every s ≥ 2?. Moreover, u can be assumed to be continuous and such that

lim
|x|→∞

u(x) = 0.

Proof. Since |∇u| ≤ 1 and |∇u| ∈ L2(RN ), we infer that |∇u| ∈ Lq(RN ) for
every q ≥ 2. It then follows that u ∈ LqN/(N−q)(RN ) for every q ≥ 2, and, by
interpolation, u ∈ Ls(RN ) for every s ≥ 2?. Observe also that since u ∈W 1,r(RN )
for some r > N , it can be assumed to be continuous and moreover lim|x|→∞ u(x) =
0. �

Working with the functional I0 in X requires some care. Since I0 is weakly lower
semi-continuous, a natural way to obtain a solution of (2) consists in minimizing
I0 constrained to the manifold

M0 :=

{
u ∈ X :

∫
RN
|u|α = 1

}
.

However, it is not clear that minimizers solve an associated Euler-Lagrange equa-
tion. Indeed, the functional I0 is C1 only at points u ∈ X with Lipschitz constant
Lip(u) strictly less than 1. Without this condition, minimizers solely solve a vari-
ational inequality.
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To overcome this lack of differentiability on the boundary of X , we will work
with an auxiliary functional. This type of truncation argument has already been
used in [13, 14] to deal with Dirichlet boundary condition in an interval or a ball.
Here, one of the novelties is that an a priori L∞ bound on minimizers cannot be
derived from the solely boundedness of the gradient. Therefore, we truncate the
volume integral in a different way than in [13, 14] and we deal with a different
functional framework.

We now define our auxiliary functional. For θ ∈ ]0, 1[, define aθ : R→ R+ by

(6) aθ(s) = a0(s) for 0 ≤ s ≤ 1− θ and aθ(s) = γsp + δ for s > 1− θ,

where γ and δ are chosen in such a way that aθ is C1. The exponent p will be
chosen later according to the value of α in (2).

In the sequel, we will work with the spaces D1;r
rad(RN ) and D1;(2,q)

rad (RN ), defined
respectively as the closure of the smooth compactly supported radially symmetric
functions for the norms

‖u‖D1;r :=

(∫
RN
|∇u|r

) 1
r

and

‖u‖D1;(2,q) :=

(∫
RN
|∇u|2

) 1
2

+

(∫
RN
|∇u|q

) 1
q

,

with 1 < q, r <∞. Consider the manifold

M :=

{
u ∈ D1;(2,q)

rad (RN ) :

∫
RN
|u|α = 1

}
.

We will look for critical points of Iθ constrained to M where

Iθ : D1;(2,q)
rad (RN )→ R+

is defined by

Iθ(u) :=
1

2

∫
RN

Aθ(|∇u|2),

and Aθ(t) =
∫ t

0
aθ(s) ds.

We next recall some elementary facts. We quote them in separate lemmas for
further references in the text. We do not provide the details for Lemma 2.2 which
follows from standard arguments. We refer for instance to [28, 25, 6] for Lemma 2.3,
whereas Lemma 2.4 can easily be deduced from [25, Corollary II-3]. Below, q? :=
qN/(N − q) for q < N .

Lemma 2.2. Let u ∈ D1;(2,q)
rad (RN ). Then u ∈ D1;r

rad(RN ) for every r ∈ [2, q]. If
q < N then u ∈ Ls(RN ) for every s ∈ [2?, q?]; if q = N then u ∈ Ls(RN ) for every
s ∈ [2?,+∞[; if q > N then u ∈ Ls(RN ) for every s ∈ [2?,+∞]. Moreover, the
embeddings are continuous.

Lemma 2.3. Let r ∈ [2, q] if q < N , and r ∈ [2, N [ if q ≥ N . Then there exists

C > 0 (depending only on N and r) such that for all u ∈ D1;(2,q)
rad (RN ), there holds

|u(x)| ≤ C|x|−
N−r
r ‖∇u‖Lr ,

for almost all x ∈ RN \ {0}.
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Lemma 2.4. Let (un)n ⊂ D1;(2,q)
rad (RN ) be a bounded sequence. If q < N then for

any s ∈ ]2?, q?[, there exists a subsequence which converges weakly in D1;(2,q)
rad (RN )

and strongly in Ls(RN ). If q > N , the same result holds for any s ∈ ]2?,+∞[.

We close this section by a uniform estimate on the regularization schema. Ob-
serve that for θ1 := 1/(2p+ 1), the function aθ defined in (6) is given by

aθ1(s) = 1/
√

1− s if 0 ≤ s ≤ 1− θ1 and aθ1(s) = γps
p if s > 1− θ1,

where γp =
√

2p+ 1 ((2p+ 1)/2p)
p
. Therefore, for all θ ∈ ]0, θ1] and s ∈ R+ we

have

(7)
γp
p+ 1

sp+1 ≤ Aθ1(s) ≤ Aθ(s),

and

(8)
Aθ(s) ≥ Aθ1(s) ≥ s, if s ≤ 2p

2p+1 ,

≥ γp
p+1

(
2p

2p+1

)p
s, if s > 2p

2p+1 .

Inequalities (7) and (8) lead to uniform estimates (with respect to θ) inD1;(2,2p+2)
rad (RN ).

They will be important keys in the sequel to obtain a priori bounds independent of
the truncation parameter θ. As for an upper bound on Iθ, we observe that for all
u ∈ D1;(2,2p+2)(RN ),

(9) Aθ(|∇u|2) ≤ C (|∇u|2p+2 + |∇u|2).

for some constant C depending on θ. The functional Iθ is then well defined in

D1;(2,q)
rad (RN ) with q := 2p+2 and it is straightforward that Iθ is C1 on D1;(2,q)

rad (RN ).
The preceding lemmas suggest to choose p in the definition of aθ such that

q = 2p + 2 satisfies q? > α. Indeed, a lower bound in D1;(2,2p+2)(RN ) will follow
from (7) and (8) whereas M is weakly closed as soon as q? > α.

3. Existence of a positive solution for supercritical exponents

In this section, we prove that equation (2) has at least one positive solution.

3.1. The auxiliary problem. We will first look for a solution of the modified
problem

−div
(
aθ(|∇uθ|2)∇uθ

)
= λθα|uθ|α−2uθ in RN ,

where aθ is defined in (6). It will turn out that if the parameter θ is small enough,
this solution also solves the original equation (2). From now on, we assume θ ∈
]0, θ1]. Recall also that q? > α (which can be written as q > Nα/(N + α)),
θ1 = 1/(2p+ 1) and q = 2p+ 2.

Proposition 3.1. Let α > 2? and q > Nα
N+α . Then there exists uθ ∈ D1;(2,q)

rad (RN )
such that

(10) c1θ := min
v∈M

Iθ(v) = Iθ(uθ) > 0.

For any minimizer uθ of (10), there exists λθ ∈ R+ such that uθ is a weak solution
of the equation

(11) −
(
rN−1aθ(|u′θ|2)u′θ

)′
= λθαr

N−1|uθ|α−2uθ,
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i.e. ∫ +∞

0

rN−1aθ(|u′θ|2)u′θv
′ = λθα

∫ +∞

0

rN−1|uθ|α−2uθv,

for every v ∈ D1;(2,q)
rad (RN ).

Moreover, for every s ∈ [2?, q?], s ∈ [2?,+∞[ or s ∈ [2?,+∞] if q < N , q = N
and q > N respectively, there exist C1,M1 > 0 independent of θ ∈ ]0, θ1] such that

(12) max{‖uθ‖D1;(2,q) , ‖uθ‖Ls} ≤ C1 and c1θ ≤M1.

Proof. We proceed in several steps.

Step 1: Lower bounds on c1θ. The inequalities (7) and (8) imply the existence of
a positive constant C depending only on p such that, for all θ ∈ ]0, θ1] and all

u ∈ D1;(2,q)
rad (RN ),

(13) Iθ(u) ≥ C
∫
RN
|∇u|2 and Iθ(u) ≥ C

∫
RN
|∇u|q.

As α > 2?, we have 2 < Nα
N+α < q and we deduce by interpolation and Sobolev

inequality that for all u ∈M,

(14) Iθ(u) ≥ C
∫
RN
|∇u|

Nα
N+α ≥ C

(∫
RN
|u|α

) N
N+α

= C > 0,

for some C > 0 which depends only on p, α and N . This implies that inf
v∈M

Iθ(v) > 0.

Step 2: Existence of a minimizer. Let (un)n ⊂M be a minimizing sequence, i.e.

Iθ(un)→ inf
v∈M

Iθ(v)

as n→∞. Choosing ū ∈ M a smooth function such that |∇ū(x)| < 1− θ1 for all
x ∈ RN , we can assume w.l.g. that

(15) Iθ(un) ≤
∫
RN

(1−
√

1− |∇ū|2) =: M1

for any n ∈ N and any θ ∈ ]0, θ1].

It then follows from (13) and (15) that (un)n is bounded in D1;(2,q)
rad (RN ). Since

α > 2? and q > Nα
N+α , Lemma 2.4 implies that, up to a subsequence, (un)n con-

verges weakly to uθ in D1;(2,q)
rad (RN ) and strongly in Lα(RN ) as n→∞. Obviously,∫

RN |uθ|
α = 1 and uθ ∈M.

Moreover, Iθ being convex and continuous, Iθ is weakly lower semi-continuous
and

Iθ(uθ) ≤ lim inf
n→∞

Iθ(un) = inf
v∈M

Iθ(v).

Since uθ ∈M, we conclude that Iθ(uθ) = infv∈M Iθ(v).

Step 3: A priori bounds on the family {uθ : θ ∈ ]0, θ1]}. From (15), we infer that

(16) c1θ = Iθ(uθ) ≤M1.

By (13) and (16), uθ is bounded in D1;(2,q) uniformly in θ. The a priori bound in
Ls follows from Lemma 2.2 according to whether q < N , q = N or q > N .
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Step 4: The Euler-Lagrange equation. By the Lagrange multiplier rule, there exists

λθ ∈ R such that for all ϕ ∈ D1;(2,q)
rad (RN ),

I ′θ(uθ)(ϕ) = λθα

∫
RN
|uθ|α−2uθ ϕ.

This means that

−div
(
aθ(|∇uθ|2)∇uθ

)
= λθα|uθ|α−2uθ in RN ,

in the weak sense. As uθ is radial, (11) follows. �

Observe that it is standard to prove that uθ is a classical solution of (11) on
]0,+∞[. If q > N then the solution is bounded and we can apply the regularity
theory of Lieberman [24] to deduce that the weak solution uθ is also C1,α for some
0 < α < 1 in a neighborhood of the origin. We can deduce the regularity at the
origin from even simpler arguments if q < N . Observe that for α > 2?, we have
N −N/α > Nα/(N + α). In particular, Proposition 3.1 holds if q > N −N/α.

Lemma 3.2. Let α > 2? and N − N
α < q < N . If uθ is a minimizer of (10), it is

bounded in C1(RN ) and either uθ > 0 or uθ < 0 on RN .

Proof. As uθ is a solution of (11) on ]0,+∞[, it is standard to check that, for r > 0,
uθ is regular. On the other hand, one observes that rN−1aθ(|u′θ|2)u′θ satisfies the
Cauchy condition at the origin so that it has a finite limit as r → 0. This limit
must be zero otherwise we have

rN−1aθ(|u′θ|2)|u′θ|2 ≥ Cr
−N−1
q−1

near 0, which is not integrable because q < N . This contradicts the fact that, as
uθ is a weak solution of (11), we have∫ +∞

0

rN−1aθ(|u′θ|2)|u′θ|2 = λθα.

We now claim that u′θ is bounded. Integrating the equation, we get∣∣aθ(|u′θ(r)|2)u′θ(r)
∣∣ =

λθα

rN−1

∫ r

0

sN−1|uθ(s)|α−1 ds,

for all r ∈ [0,∞[. Using the estimate from Proposition 3.1, it follows that

aθ(|u′θ(r)|2) |u′θ(r)| ≤ Cλθαr
N(q?−α+1)

q?
−N+1‖uθ‖α−1

Lq?
,

with C > 0. Moreover, we have N(q? − α + 1)/q? − N + 1 > 0 since we assume
N − N

α < q, and therefore u′θ(0) = 0 and, for r ≤ 1, we conclude that

aθ(|u′θ(r)|2) |u′θ(r)| ≤ Cλθα‖uθ‖α−1
Lq?

.

We next deduce from Lemma 2.3 and Proposition 3.1 that for all r > 1,∣∣aθ(|u′θ(r)|2)u′θ(r)
∣∣ =

λθα

rN−1

[∫ 1

0

sN−1|uθ(s)|α−1 ds+

∫ r

1

sN−1|uθ(s)|α−1 ds

]
≤ Cλθα‖uθ‖α−1

Lq?
+

λθα

rN−1
‖u′θ‖α−1

L2

∫ r

1

sN−1s−
(N−2)(α−1)

2 ds

≤ C
(

1 + r1− (N−2)(α−1)
2

)
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and since α > 2?, we have

1− N − 2

2
(α− 1) < −N

2

so that the claim follows.
As u′θ(0) = 0 on proves by standard arguments that uθ is a classical solution.
To show that any minimizer satisfies either uθ > 0 or uθ < 0, we argue by

contradiction. Indeed, if uθ changes sign, then |uθ| ∈ M and Iθ(|uθ|) = Iθ(uθ). In
other words, v = |uθ| is also a minimizer, and vanishes at some point r0 ∈ [0,∞[.
Since v is a solution of (11) with min

[0,+∞[
v = v(r0) = 0 and the solutions of (11)

are regular, we also have v′(r0) = 0, which contradicts the local uniqueness of the
solution of the Cauchy problem. This concludes the proof. �

3.2. Back to the original equation (2). We now prove that the solution obtained
in Proposition 3.1 is a solution of our original problem (2) provided the parameter
θ is small enough.

In the sequel, (uθ, λθ) is the solution of

(17) −div
(
aθ(|∇uθ|2)∇uθ

)
= λθα|uθ|α−2uθ in RN ,

obtained in Proposition 3.1. We first estimate the Lagrange multiplier through an
argument of the Calculus of Variations.

Lemma 3.3. For all θ ∈ ]0, θ1], we have 0 < λθ = N
N+αc

1
θ.

Proof. Multiplying (17) by uθ and integrating, we obtain

(18)

∫
RN

aθ(|∇uθ|2)|∇uθ|2 = λθα

∫
RN
|uθ|α = λθα.

Next, we prove that

(19)

∫
RN

aθ(|∇uθ|2)|∇uθ|2 =
Nα

2N + 2α

∫
RN

Aθ(|∇uθ|2).

To this end, consider the function f : R+ → R defined by f(t) := Iθ
(
t
N
α uθ(tx)

)
.

For all t ∈ R+, tN/αuθ(tx) ∈ M, and f achieves its minimum at t = 1. A change
of variable yields

f(t) =
1

2

∫
RN

Aθ

(
t
2N
α +2|∇uθ(tx)|2

)
dx =

1

2tN

∫
RN

Aθ

(
t
2N
α +2|∇uθ(y)|2

)
dy.

From the last equality and Lebesgue’s dominated convergence theorem, it is easy
to see that f is differentiable. Hence, as f(1) is a minimum, we have

f ′(1) =
1

2

[(
2N

α
+ 2

)∫
RN

aθ(|∇uθ|2)|∇uθ|2 −N
∫
RN

Aθ(|∇uθ|2)

]
= 0,

which proves (19).

Combining (19) with (18), we conclude that

λθ =
N

2N + 2α

∫
RN

Aθ(|∇uθ|2) =
N

N + α
c1θ > 0. �
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An important consequence of this lemma is that the uniform estimate on the
levels c1θ from Proposition 3.1 yields a uniform estimate on the Lagrange multiplier.
This estimate allows to deduce that, for θ small, our regularization leads to a
solution of an unperturbed equation (with Lagrange multiplier).

Proposition 3.4. Assume N − N/α < q < N . For α > 2? and θ small enough,
the function uθ obtained in Proposition 3.1 is a radial solution of

(20) −div

(
∇u√

1− |∇u|2

)
= λ|u|α−2u in RN ,

with

λ =

∫
RN

|∇u|2√
1− |∇u|2

> 0.

Moreover either uθ > 0 or uθ < 0 on RN .

Proof. Consider the solution (uθ, λθ) of

−div
(
aθ(|∇uθ|2)∇uθ

)
= λθα|uθ|α−2uθ in RN ,

obtained in Proposition 3.1. Let us prove the existence of a constant E > 0 such
that for all θ ∈ ]0, θ1] and all r > 0,

(21)
∣∣aθ(|u′θ(r)|2)u′θ(r)

∣∣ ≤ E.
We argue as in Lemma 3.2 to deduce uniform estimates. First, using the uniform

estimates from Proposition 3.1 and Lemma 3.3, it follows that for all r < 1 and all
θ ∈ ]0, θ1],

aθ(|u′θ(r)|2) |u′θ(r)| ≤ Cλθα‖uθ‖α−1
Lq?
≤ C,

with C > 0 independent of θ ∈ ]0, θ1]. Moreover, by Lemma 2.3, Proposition 3.1
and Lemma 3.3, we have for all r > 1 and θ ∈ ]0, θ1],∣∣aθ(|u′θ(r)|2)u′θ(r)

∣∣ ≤ Cλθα‖uθ‖α−1
Lq?

+
λθα

rN−1
‖∇uθ‖α−1

L2

∫ r

1

sN−1s−
(N−2)(α−1)

2 ds

≤ C
(

1 + r1− (N−2)(α−1)
2

)
,

where C > 0 is still independent of θ. As α > 2?, we have

1− N − 2

2
(α− 1) < −N

2
.

This proves (21).

Finally, by construction of aθ, (21) implies that |u′θ(r)| ≤ 1 − ε for some ε > 0,
and hence uθ solves (20) for θ small enough. More precisely, we have for all r ≥ 0
and all θ < min{θ1, 1/(1 + E2)},

|u′θ(r)| ≤
E√

1 + E2
,

and the result follows for θ < min{θ1, 1/(1+E2)}. The fact that λ := λθ is bounded
away from zero follows from Lemma 3.3. �
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Proof of Theorem 1.1. By Proposition 3.4, we know that for θ small enough, uθ is
a radial solution of (20) i.e. uθ is a solution of

−

(
rN−1 v′√

1− |v′|2

)′
= λrN−1|v|α−2v in ]0,+∞[.

Observe that wt defined by wt(r) = tuθ(r/t) solves

−

(
rN−1 w′√

1− |w′|2

)′
= λ

1

tα
rN−1|w|α−2w in ]0,+∞[.

Then wt is a solution of the original equation (2) if t = λ1/α. �

Remark 3.5. Note that, for θ ∈ ]0, θ1], wt satisfies in fact

Iθ(|∇wt|2) = min

{
Iθ(|∇v|2) : v ∈ D1;(2,q)

rad (RN ),

∫
RN
|v|α = λ

α+N
α

}
,

where λ = c1θN/(N + α) > 0.

4. Optimizers in the inequality involving the volume integral

This section deals with the proof of Theorem 1.2 stated in the introduction.
This theorem will follow from Proposition 4.1, Proposition 4.2, Proposition 4.4 and
Proposition 4.5 below.

Proposition 4.1. Assume α ≥ 2?. Then there exists a constant C > 0, depending
only on α and N , such that for all u ∈ X ,

(22)

∫
RN

(1−
√

1− |∇u|2) ≥ C
(∫

RN
|u|α

) N
α+N

.

Proof. If α ≥ 2? then 2 ≤ Nα/(N + α). Hence, using the fact that ‖∇u‖L∞ ≤ 1
and Sobolev inequality, we have for all u ∈ X ,∫

RN
(1−

√
1− |∇u|2) ≥ 1

2

∫
RN
|∇u|2 ≥ 1

2

∫
RN
|∇u|

Nα
N+α ≥ C

(∫
RN
|u|α

) N
N+α

,

where C > 0 depends only on α and N . �

Observe that the exponent Nα/(α +N) in the Lα-norm naturally arises in the
proof when using Sobolev inequality. The presence of this exponent can also be
explained from the invariance of the inequality (22) under the homeomorphisms
φt : u(·) 7→ tu(·/t) for t > 0.

We next show that the inequality (22) does not hold whatever C > 0 when
α < 2?.

Proposition 4.2. If α < 2? then

inf
u∈X\{0}

∫
RN (1−

√
1− |∇u|2)(∫

RN |u|α
) N
N+α

= 0.
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Proof. It is straightforward to construct a sequence (un)n ⊂ D1;2(RN ) such that
‖∇un‖L∞ ≤ 1, ‖un‖Lα = 1, and

∫
RN |∇un|

2 → 0 as n → ∞. Then we have for all
n ∈ N, ∫

RN
(1−

√
1− |∇un|2) =

∫
RN

|∇un|2

1 +
√

1− |∇un|2
≤
∫
RN
|∇un|2,

and the conclusion follows. �

We now focus on the best constant for which (22) holds when α > 2?. We will
use the following lemma. For the definition and basic properties of the symmetric
rearrangement, the reader is referred to [21, 29] (among many others). Since we
adapt a rather classical lemma from [29], we keep the notations therein. In par-
ticular, the symmetric rearrangement uF of u is the function whose graph is the
Schwarz symmetrization of |u|, see for instance [29, Definition 1.C].

Lemma 4.3. For all u ∈ X , we have the inequality

(23)

∫
RN

(
1−

√
1− |∇u|2

)
≥
∫
RN

(
1−

√
1− |∇uF|2

)
,

where uF : R→ R denotes the symmetric rearrangement of u.

Proof. First we observe that uF is well defined if u ∈ X because u is Lipschitz
continuous and all the level sets {x ∈ RN : u(x) > t} (t ∈ R) have finite measure.
In addition, by the Pólya-Szegö inequality (see for instance [10, Theorem 4.7]), we
have

‖∇uF‖L∞ ≤ ‖∇u‖L∞ ≤ 1

and ∫
RN
|∇uF|2 ≤

∫
RN
|∇u|2.

Therefore the right-hand side of (23) makes sense and both sides of the inequality
are finite because ∇u is square integrable for u ∈ X .

It is proven in [29, Theorem 1.C] (see also [21]) that the inequality∫
RN

Φ(|∇u|) ≥
∫
RN

Φ(|∇uF|)

holds for any Lipschitz-continuous u which decays at infinity and any convex, in-
creasing function Φ : [0,∞[→ [0,∞[ satisfying Φ(0) = 0.

For all n ∈ N, let us consider the functions Hn, Gn : [0,∞[→ [0,∞[ defined by

Hn(s) = 1− (1− s)1/2, for s < 1− 1/n2,

= 1− 1

n
+
n

2
(s− 1 +

1

n2
), for s ≥ 1− 1/n2,

and Gn(s) = Hn(s2). Observe that Gn is convex, increasing and satisfies Gn(0) = 0.
Hence, by [29, Theorem 1.C], we know that

(24)

∫
RN

Gn(|∇u|) ≥
∫
RN

Gn(|∇uF|).
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As u ∈ D1;2(RN ), the measure of the set A := {x ∈ RN : |∇u| ≥ 1/2} is finite
and the fact that u ∈ X implies that, for all n ≥ 2, |Gn(|∇u(x)|2)| ≤ h(x) with
h ∈ L1(RN ) defined by

h(x) = 1, for x ∈ A,
= |∇u|2, for x 6∈ A.

Hence, we can apply Lebesgue’s dominated convergence theorem to prove that

(25)

∫
RN

Gn(|∇u|)→
∫
RN

(
1−

√
1− |∇u|2

)
.

as n goes to infinity. We can argue in the same way to prove that

(26)

∫
RN

Gn(|∇uF|)→
∫
RN

(
1−

√
1− |∇uF|2

)
.

We then conclude by (24), (25) and (26). �

With this lemma at hand we can prove the following proposition.

Proposition 4.4. If α > 2?, the infimum

C(α) := inf
u∈X\{0}

∫
RN (1−

√
1− |∇u|2)(∫

RN |u|α
) N
N+α

is achieved by a radial solution of (2).

Proof. By Lemma 4.3 and the Lα-norm-preserving property of the symmetric re-
arrangement, we may restrict our attention to a minimizing sequence (un)n ⊂ X
of radial functions. Since the quotient is invariant under the family of homeomor-
phisms φt : v(·) 7→ tv(·/t) (t > 0), we may assume that

∫
RN |un|

α = 1. It is easily
seen that (un)n is a priori bounded in X . Lemma 2.1 then provides a bound in
D1;q(RN ) for every q ≥ 2. From Lemma 2.4, we deduce the required compactness
to conclude that (un)n weakly converges in D1;2(RN ) to a function u ∈ X with∫
RN |u|

α = 1. The fact that u realizes the infimum C(α) follows from the weak

lower semi-continuity (with respect to the weak convergence in D1;2(RN )) of the
volume integral.

To show that wt = t u(·/t) solves (2) for some t > 0, we first prove that |∇u|
is bounded away from 1. Denoting by uθ a minimizer of Iθ over M (see Proposi-
tion 3.1), we have for all θ > 0,

(27) Iθ(uθ) ≤ Iθ(u) ≤ I0(u),

where the second inequality follows from the ordering property of the family Iθ.
Moreover, we have established in Section 3 that Iθ(uθ) = I0(uθ) for θ small enough.
As u is a minimizer of I0 this implies that the inequalities in (27) are in fact
equalities. In particular, Iθ(u) = Iθ(uθ), and u is a minimizer of Iθ over M too.
The arguments of Proposition 3.4 now apply so that

|u′(r)| ≤ E√
1 + E2

< 1,

for some E > 0 and we conclude as in the proof of Theorem 1.1. �

We now turn to the case of the critical exponent α = 2?.
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Proposition 4.5. The infimum

C(2?) = inf
u∈X\{0}

∫
RN (1−

√
1− |∇u|2)(∫

RN |u|2
?
) N
N+2?

is not achieved.

Proof. Assume by contradiction that C(2?) is achieved by some u ∈ X . As above,
we may suppose that u is radial. Let us prove that

(28)

∫ ∞
0

rN−1

[(
1 +

N

α

)
u′2√

1− |u′|2
−N(1−

√
1− |u′|2)

]
≤ 0.

Define for all t ∈ [0, 1],

f(t) :=
1

2

∫
RN

A0

(
t
2N
α +2|∇u(tx)|2

)
dx =

1

2tN

∫
RN

A0

(
t
2N
α +2|∇u(y)|2

)
dy.

Let t ∈ (0, 1) be fixed. As 1 is a minimum of f , the mean value theorem yields the
existence of t̃ ∈ (t, 1) such that

(29) f ′(t̃) ≤ 0.

(Note that we cannot conclude as in Lemma 3.3 that f ′(1) = 0 because f may
not be well defined for t > 1.) Here, the mean value theorem applies because f is
continuous on [t, 1] and differentiable on (t, 1). In order to prove the differentiability
of f in s̃ ∈ (t, 1), observe first that from the strict inequality s̃(2N/α)+2 |∇u|2 < 1
a.e. in RN , we deduce the differentiability of the integrand. Moreover the derivative
of the integrand satisfies the uniform estimate

∣∣∣∣ (2N

α
+ 2

)
s̃

2N
α +1 |∇u|2√

1− s̃ 2N
α +2 |∇u|2

∣∣∣∣ ≤ C |∇u|2,
which holds for all s close to s̃ and almost every x ∈ RN . Lebesgue’s dominated
convergence theorem implies then that f is differentiable on (t, 1), and the inequality
(29) is equivalent to

(30) −Nt̃−N−1

∫
RN

(
1−

√
1− t̃ 2N

α +2 |∇u|2
)

+ t̃−N
∫
RN

1

2

(
2N

α
+ 2

)
t̃
2N
α +1 |∇u|2√

1− t̃ 2N
α +2 |∇u|2

≤ 0.

Next, we consider (tk) ⊂ (0, 1) such that tk → 1 as k →∞. From what precedes,
we infer the existence of a sequence (t̃k) ⊂ (0, 1) still converging to 1 as k goes to
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∞, and satisfying (30) with t̃ = t̃k for all k ∈ N. This implies that, for every k ∈ N,

0 ≤
∫
RN

(
N

α
+ 1

)
t̃
2N
α +1

k |∇u|2√
1− t̃

2N
α +2

k |∇u|2

≤ N

t̃k

∫
RN

(
1−

√
1− t̃

2N
α +2

k |∇u|2
)

≤ Nt̃
2N
α +1

k

∫
RN
|∇u|2

≤ N
∫
RN
|∇u|2.

Hence, it follows from Fatou’s Lemma, Lebesgue’s dominated convergence theorem

and (30) that |∇u|2√
1−|∇u|2

∈ L1(RN ) and

∫
RN

|∇u|2√
1− |∇u|2

≤ lim inf
k→∞

∫
RN

(
N

α
+ 1

)
t̃
2N
α +1

k |∇u|2√
1− t̃

2N
α +2

k |∇u|2

≤ lim inf
k→∞

N

t̃k

∫
RN

(
1−

√
1− t̃

2N
α +2

k |∇u|2
)

= N

∫
RN

(
1−

√
1− |∇u|2

)
.

This implies that (28) holds.

To conclude, we define the function g : [0, 1[→ R by g(s) := (1 + N
α − N)s −

N
√

1− s+N and we compute g(0) = 0, g′(0) = 1 + N
α −

N
2 and g′′(s) = N

4(1−s)3/2 .

Therefore we have g(s) > 0 for s ∈ ]0, 1[ if and only if 1 + N
α −

N
2 ≥ 0, which is true

if and only if α ≤ 2?. Hence, we infer that

0 <

∫ ∞
0

rN−1 g(u′2)√
1− |u′|2

=

∫ ∞
0

rN−1

[(
1 +

N

α

)
u′2√

1− |u′|2
−N(1−

√
1− |u′|2)

]
,

which contradicts (28). �

5. A multiplicity result

In this section, we use again the auxiliary functional Iθ defined in Section 2.
Since the manifold M is symmetric and Iθ is an even functional, Lusternik-

Schnirelmann category theory provides a sequence of critical values for Iθ con-
strained to M. More precisely, let A denote the set of closed and symmetric (with

respect to the origin) subsets of D1;(2,q)
rad (RN ). We define the usual min-max values

ckθ := inf
A∈Γk

max
u∈A

Iθ(u),

where
Γk := {A ⊂M : A ∈ A, A is compact and γ(A) ≥ k},

and γ(A) is the genus of the set A. We refer e.g. to [1] for the definition of the
genus and for more details on Lusternik-Schnirelmann theory.
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We first show that these levels are indeed critical levels of Iθ. It is clear that
M⊂ A and γ(M) = +∞. Next we show that Iθ satisfies the Palais-Smale condition
on M by which we mean that every sequence (un)n ⊂ M such that Iθ(un) is
bounded and

I ′θ|M(un)→ 0

admits a converging subsequence. Here I ′θ|M denotes the derivative of Iθ con-

strained to M. Denoting by

TuM := {v ∈ D1;(2,q)
rad (RN ) :

∫
RN
|u|α−2uv = 0}

the tangent space to M at u, the projection Pu : D1;(2,q)
rad (RN )→ TuM is given by

Pu(w) = w − u
∫
RN
|u|α−2uw.

Then, for any w ∈ D1;(2,q)
rad (RN ) we have v = Pu(w) ∈ TuM and

I ′θ|M(u)(v) = I ′θ|M(u)(Pu(w)) = I ′θ(u)(w)− λI ′θ(u)(u),

where λ =
∫
RN |u|

α−2uw.

To prove the Palais-Smale condition, we will use the following convexity inequal-
ities.

Lemma 5.1. There exist γ2, γq > 0 such that for every u, v ∈ D1;(2,q)
rad (RN ),

(31) Iθ(
u+ v

2
) ≤ 1

2
Iθ(u) +

1

2
Iθ(v)− γ2

∫
RN
|∇u−∇v|2

and

(32) Iθ(
u+ v

2
) ≤ 1

2
Iθ(u) +

1

2
Iθ(v)− γq

∫
RN
|∇u−∇v|q.

Proof. Since Iθ has a uniformly positive definite second derivative, we can apply
[16, Lemma 2.3] to deduce (31). In order to prove (32), we first observe that [16,
Lemma 2.1] allows to show that s → Aθ(s

2) is strongly q-monotone. This yields,
for some γq > 0, the inequality

Aθ

([
u′(r) + v′(r)

2

]2
)
≤ 1

2
Aθ(u

′(r)2) +
1

2
Aθ(v

′(r)2)− 2γq|u′(r)− v′(r)|q

where u, v are given functions in D1;(2,q)
rad (RN ) and r > 0. Mutliplying by rN−1 and

integrating from 0 to +∞, we deduce (32). �

We now turn to the verification of the Palais-Smale condition.

Lemma 5.2. For α > 2?, the functional Iθ satisfies the Palais-Smale condition on
M.

Proof. Let (un)n ⊂M be a Palais-Smale sequence, i.e. Iθ(un) is bounded and

I ′θ|M(un)→ 0.

Since Iθ is coercive, it is clear that (un)n is bounded inD1;(2,q)
rad (RN ) and therefore,

by Lemma 2.4, up to a subsequence, there exists u ∈ M such that un converges
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weakly to u in D1;(2,q)
rad (RN ) and strongly in Lα(RN ) as n → ∞. Since (un)n is a

Palais-Smale sequence, we have, as n→∞,

I ′θ(un)(Pun(un − u)) = I ′θ(un)(un − u)− λnI ′θ(un)(un)→ 0,

where we have written λn =
∫
RN |un|

α−2un(un−u). Now, using the fact that (un)n

is bounded in D1;(2,q)
rad (RN ) and un → u in Lα(RN ), we infer λn → 0 and I ′θ(un)(un)

is bounded. Hence, we deduce that

(33) lim sup
n→∞

I ′θ(un)(un − u) ≤ 0.

To complete the proof, it remains to show that (un)n converges strongly to u, which
amounts to prove that

‖un − u‖ =

(∫
RN
|∇un −∇u|2

) 1
2

+

(∫
RN
|∇un −∇u|q

) 1
q

→ 0,

as n→∞. Since Iθ is locally bounded, we may assume that Iθ(un) converges. By
weak lower semi-continuity, we infer

Iθ(u) ≤ lim inf
n→∞

Iθ(un),

whereas the convexity of Iθ and (33) implies

lim sup
n→∞

Iθ(un) ≤ Iθ(u) + lim sup
n→∞

I ′θ(un)(un − u) ≤ Iθ(u).

Hence Iθ(un) converges to Iθ(u). Using again the lower semi-continuity of Iθ, (31)
and (32), we conclude that

Iθ(u) ≤ lim inf
n→∞

Iθ(
un + u

2
) ≤ Iθ(u)− γ2 lim sup

n→∞

∫
RN
|∇un −∇u|2

and

Iθ(u) ≤ lim inf
n→∞

Iθ(
un + u

2
) ≤ Iθ(u)− γq lim sup

n→∞

∫
RN
|∇un −∇u|q.

This concludes the proof. �

Classical arguments now show that the level ckθ are critical values. We keep the
notation θ1 = 1/(2p+ 1).

Proposition 5.3. Assume α > 2? and N − N
α < q < N . For every k ≥ 1, there

exists µkθ ∈ R+ and ukθ ∈ D
1;(2,q)
rad (RN ) such that ukθ is a weak solution of

(34) −div
(
aθ(|∇ukθ |2)∇ukθ

)
= µkθα|ukθ |α−2ukθ in RN ,

and Iθ(u
k
θ) = ckθ → +∞ as k →∞. Moreover, ukθ is bounded in C1(RN ) and there

exists Ck > 0, Mk > 0 such that, for all θ ∈ ]0, θ1],

max{‖ukθ‖D1;(2,q) , ‖ukθ‖Lq?} ≤ Ck and ckθ ≤Mk.

Proof. The proof follows easily from [1, Theorem 10.9 and Theorem 10.10] observing
also that one can bound the min-max levels taking smooth functions such that
|∇u(x)| < 1− θ1 as competitors in the definition of ckθ . Then it is enough to follow
the lines of the proof of Proposition 3.1 and Lemma 3.2. �
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The next step towards the proof of Theorem 1.3 consists in finding a priori bounds
for the Lagrange multiplier µkθ with respect to θ. The argument in Lemma 3.3
cannot be used here (except for u1

θ which is a global minimizer). We then go back
to the equation to derive the identity (19) for the solutions ukθ . In fact, we just
need an inequality.

Lemma 5.4. For all θ ∈ ]0, θ1], 0 < µkθ ≤ N
N+αc

k
θ .

Proof. Multiplying (34) by ukθ and integrating, remembering also that ukθ ∈M, we
obtain ∫

RN
aθ(|∇ukθ |2)|∇ukθ |2 = µkθα

∫
RN
|ukθ |α = µkθα.

This shows µkθ > 0.

Let us prove that

(35)

∫
RN

aθ(|∇ukθ |2)|∇ukθ |2 ≤
Nα

2N + 2α

∫
RN

Aθ(|∇ukθ |2).

This implies that

µkθ ≤
N

2N + 2α

∫
RN

Aθ(|∇ukθ |2) =
N

N + α
ckθ .

We know that ukθ is a solution of

−
(
rN−1aθ(v

′2)v′
)′

= µkθαr
N−1|v|α−2v,

bounded in C1(RN ) and satisfying
∫
RN |∇u

k
θ(x)|2 <∞. Let us define the function

F (r) = rNaθ(|v′|2)|v′|2 − 1

2
rNAθ(|v′|2) + µrN |v|α +

N

α
rN−1v′va(|v′|2)

= r
(
rN−1v′aθ(|v′|2)

)
v′ − 1

2
rNAθ(|v′|2) + µrN |v|α

+
N

α
v
(
rN−1aθ(|v′|2)v′

)
,

where for short we have written µ = µkθ and v = ukθ . Then, using the equation, we
compute

F ′(r) = rN−1aθ(|v′|2)|v′|2 + r[
(
rN−1aθ(|v′|2)v′

)′
v′ + rN−1aθ(|v′|2)v′v′′]

− rNv′v′′aθ(|v′|2)− N

2
rN−1Aθ(|v′|2) + µNrN−1|v|α

+µαrN |v|α−2vv′ +
N

α
v(rN−1aθ(|v′|2)v′)′ +

N

α
rN−1aθ(|v′|2)|v′|2

= rN−1

[
(1 +

N

α
)aθ(|v′|2)|v′|2 − N

2
Aθ(|v′|2)

]
.

As v′ and v are bounded, we have F (0) = 0. To estimate F at +∞, we integrate
the equation and we obtain

rN−1aθ(|v′|2)v′ = −µα
∫ r

0

(sN−1|v|α−2(s)v(s)) ds.
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Using the decay estimate of Lemma 2.3, the a priori bound of Proposition 5.3 and
the arguments of Lemma 3.2, we deduce that

rN−1aθ(|v′|2)|v′| ≤ µα

∫ r

0

(sN−1|v|α−1(s)) ds.

≤ µα

∫ 1

0

(sN−1|v|α−1(s)) ds+ C

∫ r

1

(sN−1s−
N−2

2 (α−1)) ds

≤ C(1 +

∫ r

1

(s
3N−4

2 −N−2
2 α) ds)

≤ C(1 + r
3N−2

2 −N−2
2 α).

Hence, we deduce that

aθ(|v′|2)|v′| ≤ C(r1−N + r
N
2 −

N−2
2 α),

and since aθ(|v′|2) ≥ 1, the same estimate holds for |v′|. This implies, again by
Lemma 2.3 and Proposition 5.3, that

F (r) ≤ rNaθ(|v′|2)|v′|2 + µrN |v|α +
N

α
rN−1v′vaθ(|v′|2)

≤ C(r2−N + r
2+N−(N−2)α

2 + r2N−(N−2)α + rN−
N−2

2 α + r−
N−2

2 ).

Since α > 2?, we infer that

lim sup
r→∞

F (r) ≤ 0

and therefore

(36)

∫ ∞
0

F ′(r) ≤ lim sup
r→∞

F (r)− lim
r→0

F (r) = 0.

This completes the proof of (35). �

We are now able to complete the proof of Theorem 1.3.

Proposition 5.5. For α > 2? and θ small enough, the function tku
k
θ(r/tk) where

ukθ is given by Proposition 5.3, and

tk =

∫
RN

|∇ukθ |2√
1− |∇ukθ |2

1/α

,

is a solution of (2).

Proof. Fix k ≥ 1. The proof follows from arguments that were used in Section
3. Indeed, since we have an estimate of the Lagrange multiplier µkθ and on ukθ in

D1;(2,q)
rad (RN ) as well as in Lq

?

(RN ) which are independent of θ, we infer, as in the
proof of Proposition 3.4, that

|∇ukθ | ≤
E√

1 + E2
,

for some E > 0. The result then follows for θ < min{θ1, 1/(1+E2)} as in the proof
of Theorem 1.1. �
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