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Nodal properties of eigenfunctions of a generalized buckling problem on balls

Introduction

This paper is motivated by the study of clamped thin elastic membranes supported on a fluid substrate which can model geological structures [START_REF] Peletier | Sequential buckling: a variational analysis[END_REF], biological organs (such as lungs, see [START_REF] Zasadzinski | The physics and physiology of lung surfactants[END_REF]), and water repellent surfaces. A one-dimensional model of these C. Troestler was partially supported by the program "Qualitative study of solutions of variational elliptic partial differerential equations. Symmetries, bifurcations, singularities, multiplicity and numerics" (2.4.550.10.F) and the project "Existence and asymptotic behavior of solutions to systems of semilinear elliptic partial differential equations" (T.1110.14) of the Fonds de la Recherche Fondamentale Collective, Belgium.

Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France E-mail: {Colette.DeCoster, Serge.Nicaise}@univ-valenciennes.fr • Département de Mathématique, Université de Mons, place du parc 20, B-7000 Mons, Belgium E-mail: Christophe.Troestler@umons.ac.be films was given by Pocivavsek et al. [START_REF] Pocivavsek | Stress and fold localization in thin elastic membranes[END_REF] based on the principle that the shape that the film takes must minimize the sum of the elastic bending energy, measured by the curvature, and the potential energy due to the vertical displacement of the fluid column. A detailed mathematical analysis of this problem was performed in [START_REF] Desmons | Wrinkling of thin films laying on liquid substrates under small onedimensional compression[END_REF].

Based on these ideas, a natural extension was proposed to higher dimensions [START_REF] Desmons | Wrinkling of thin films laying on liquid substrates under small compression[END_REF]. More precisely let Ω be a reference domain giving the shape of the film in the absence of external forces and let Ω ε be a small compression of it with Ω ε → Ω in some sense as ε → 0. The shape of the film after the small compression is given by the function u ε : Ω ε → R, giving the vertical displacement of the film, which minimizes

E ε : H 2 0 (Ω ε ) → R : v → Ω ε |∆ v| 2 + κ 2 Ω ε v 2
under the constraint that the membrane can bend but not stretch, thus that its total area does not change:

Ω ε 1 + |∇v| 2 = |Ω |.
The first term of E ε is the bending energy of the film, the second accounts for the potential energy coming from the vertical fluid displacement, and κ is a constant expressing the relative strength of these two energies. It has been shown [START_REF] Desmons | Wrinkling of thin films laying on liquid substrates under small compression[END_REF] that, as ε → 0, minimizers u ε of E ε behave like u 0 where u 0 ∈ H 2 (Ω ) \ {0} satisfies

∆ 2 u + κ 2 u = -λ 1 ∆ u in Ω , u = ∂ u ∂ ν = 0 on ∂ Ω . (1.1) 
Here ∆ 2 u := ∆ (∆ u) and λ 1 is the first buckling eigenvalue of ∆ 2 + κ 2 , namely

λ 1 := min u∈H 2 0 (Ω ), ∇u L 2 (Ω ) =1 Ω |∆ u| 2 + κ 2 Ω u 2 .
As usual, we write H 2 0 (Ω ) for the set of functions u ∈ H 2 (Ω ) that satisfy the clamped boundary conditions u = ∂ u ∂ ν = 0 on ∂ Ω . This first eigenvalue represents the minimal compression at which the plate exhibits buckling (see [START_REF] Kawohl | Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions[END_REF]). The corresponding eigenfunction gives the shape of the membrane when the compression is small.

In this work, we study the evolution of the spectrum with respect to κ 0 when Ω = B 1 is the unit ball of R N . More precisely, we determine values of λ and the shape of u = 0 satisfying the problem:

∆ 2 u + κ 2 u = -λ ∆ u in B 1 , u = ∂ r u = 0 on ∂ B 1 . (1.2) 
A special attention is devoted to the shape and nodal properties of the first eigenfunction.

There is a large literature on the study of the positivity and of the change of sign of the first eigenfunction for the eigenvalue problem

∆ 2 u = λ u in Ω , u = ∂ u
∂ ν = 0 on ∂ Ω , or for the buckling eigenvalue problem

∆ 2 u = -λ ∆ u in Ω , u = ∂ u ∂ ν = 0 on ∂ Ω ,
for different shapes of the domain Ω (see for example [START_REF] Brown | A numerical investigation of the solution of a class of fourth-order eigenvalue problems[END_REF][START_REF] Coffman | On the structure of solutions ∆ 2 u = λ u which satisfy the clamped plate conditions on a right angle[END_REF][START_REF] Coffman | On the fundamental eigenfunctions of a clamped punctured disk[END_REF][START_REF] Coffman | The fundamental mode of vibration of a clamped annular plate is not of one sign[END_REF][START_REF] Duffin | Nodal lines of a vibrating plate[END_REF][START_REF] Gazzola | Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF][START_REF] Grunau | Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions[END_REF][START_REF] Grunau | The maximum principle and positive principal eigenfunctions for polyharmonic equations[END_REF][START_REF] Kozlov | On sign variability and the absence of "strong" zeros of solutions of elliptic equations[END_REF][START_REF] Sweers | When is the first eigenfunction for the clamped plate equation of fixed sign? In Proceedings of the USA-Chile Workshop on Nonlinear Analysis[END_REF][START_REF] Wieners | A numerical existence proof of nodal lines for the first eigenfunction of the plate equation[END_REF]).

Roughly, these papers say that, except for Ω close to a disk in a suitable sense, the first eigenfunction changes sign. The only reference that we know where the authors consider the "mixed" problem (1.1) are [START_REF] Kawohl | Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions[END_REF], where the authors obtain asymptotic estimate on the first eigenvalue of (1.1), and [START_REF] Chasman | An isoperimetric inequality for fundamental tones of free plates[END_REF][START_REF] Chasman | Vibrational modes of circular free plates under tension[END_REF] where the author considers the equation ∆ 2 u -τ∆ u = ωu on a ball with "free" boundary conditions, where τ > 0 is fixed and the eigenvalues ω > 0 are sought. In these latter works, L. Chasman gives the structure of eigenfunctions but does not give sign information on them as she is meanly interested in an isoperimetric inequality. Note also that τ and ω give coefficients of ∆ u and u of opposite sign compared to our case. Note that in [START_REF] Laurenc | Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry[END_REF], it is shown that the problem ∆ 2 u -τ∆ u = ωu with clamped boundary conditions on the unit ball and τ > 0, has a positive eigenvalue with a radially symmetric and positive eigenfunction. Let us further mention that the related one-dimensional buckling eigenvalue problem u + au = -λ u with clamped boundary conditions is considered in [START_REF] Grunau | Positivity, change of sign and buckling eigenvalues in a one-dimensional fourth order model problem[END_REF].

The paper is organized as follows. In Section 2, we explain how we will find solutions to (1.2) despite the fact that the method of separation of variables is not directly applicable because of the presence of "cross terms" when we apply ∆ 2 to a function of the type R(r)S(θ ). Section 3 will deal with the easy case κ = 0 for which the eigenvalues are explicitly given in terms of positive roots ( j ν, ) ∞ =1 of J ν for some ν. Recall that J ν denotes the Bessel function of the First Kind of order ν.

In Section 4 and 5, we deal with κ > 0. First we show (see Theorem 4.3) that, for all k ∈ N, there exists an increasing sequence

α k, = α k, (κ) > √ κ, 1, such that λ k, := α 2 k, + κ 2 /α 2 k, is an eigenvalue of (1.2) with corresponding eigenfunctions of the form R k, (r) e ±ikθ where R k, (r) := cJ k (α k, r) + dJ k κ α k, r
for some (c, d) = (0, 0) suitably chosen (depending on κ, k, and ). The spectrum of (1.2) is exactly

{λ k, | k ∈ N, 1}. Its minimal value λ 1 = λ 1 (κ) correspond the the minimum of {α k, | k ∈ N,
1}. Contrarily to the standard case of second order elliptic operators, the minimum is not always given by the same α k, but, depending on κ, is α 0,1 or α 1,1 (see Figure 4.1). The main results of Section 4 (see Theorems 4.17 and 4.18) precisely describe this behavior depending on the value of κ and explicitly give the corresponding eigenspace which may be of dimension greater than 1.

In Section 5 we show that, even when λ 1 is simple, the first eigenfunction may change sign and can even possess an arbitrarily large number of nodal domains. More precisely, we prove the following theorem (see Figure 1.1 for a graphical illustration). If κ ∈ [0, j 0,1 j 0,2 [, the first eigenvalue is simple and is given by λ 1 (κ) = α 2 0,1 (κ) + κ 2 /α 2 0,1 (κ) and the eigenfunctions ϕ 1 are radial, one-signed and |ϕ 1 | is decreasing with respect to r. If κ ∈ ] j 1,n j 1,n+1 , j 0,n+1 j 0,n+2 [, for some n 1, the first eigenvalue is simple and given by λ 1 (κ) = α 2 0,1 (κ) + κ 2 /α 2 0,1 (κ) and the eigenfunctions are radial and have n + 1 nodal regions. If κ ∈ ] j 0,n+1 j 0,n+2 , j 1,n+1 j 1,n+2 [, for some n 0, the first eigenvalue is given by λ

1 (κ) = α 2 1,1 (κ) + κ 2 /α 2 1,1 (κ) and the eigenfunctions ϕ 1 have the form R 1,1 (r)(c 1 cos θ + c 2 sin θ ), c 1 , c 2 ∈ R.
Moreover the function R 1,1 has n simple zeros in ]0, 1[, i.e., ϕ 1 has 2(n + 1) nodal regions.

Information on the eigenspaces at the countably many κ > 0 not considered in the previous theorem is also provided. For these κ, α 0,1 (κ) = α 1,1 (κ) and the eigenspaces have even larger dimensions (see Theorem 4.18).

For simplicity this paper is written for a two dimensional ball but, in Section 6, we show how our results naturally extend to any dimension. In this paper, we use the following notations. The set of natural numbers is denoted N = {0, 1, 2, . . .}, the set of positive integers is N * = {1, 2, . . .}, and j ν, , ∈ N * denotes the -th positive root of J ν , the Bessel function of the First Kind of order ν.

Preliminaries

Given two complex numbers α, β , we look for special solutions u to the equation

(∆ + α 2 )(∆ + β 2 )u = 0. (2.1)
Such an equation is equivalent to

∆ 2 u + (α 2 + β 2 )∆ u + α 2 β 2 u = 0. (2.2)
Hence if we look for a solution to

∆ 2 u + κ 2 u = -λ ∆ u (2.3)
with κ 0 fixed, it suffices to take αβ = κ and α 2 + β 2 = λ . Given that we work in two dimensions, we use the ansatz u(r, θ ) = R(r) e ikθ with k ∈ Z, where (r, θ ) are the polar coordinates, and notice that (2.1) is equivalent to the fourth order differential equation (in ∂ r )

L(∂ r , r, α, β , |k|)R = 0. ( 2.4) 
We write L(∂ r , r, α, β , |k|) to emphasize that the coefficients of the differential operator depend continuously on r, α, β and that the sign of k does not matter. Hence by the theory of ordinary differential equations, L has four linearly independent solutions. To find them it suffices to notice that

(∆ + α 2 )u = 0 ⇒ (∆ + α 2 )(∆ + β 2 )u = 0. Thus if (∆ + α 2 ) R(r) e ikθ = 0 (2.5)
then R is a solution to (2.4). But a solution to (2.5) is simpler to find. Indeed then R satisfies the Bessel equation

(r∂ r ) 2 R + α 2 r 2 R = k 2 R.
Hence if α = 0, R is a linear combination of J |k| (αr) and of Y |k| (αr). On the contrary if α = 0 and k = 0, then R is a linear combination of r k and of r -k while R is a linear combination of 1 and log r when α = 0 and k = 0.

We have therefore proved the following result: Proof The first two points were already treated before, the linear independence coming easily from the asymptotic behavior of the Bessel functions and their derivatives at 0. For the third case, it suffices to notice that taking γ = α, we see that

Lemma 2.1 Let k ∈ Z.
J |k| (αr) -J |k| (γr) α -γ is a solution of L(∂ r , r, α, γ, |k|)R = 0.
Letting γ tend to α, we prove that R(r) = rJ |k| (αr) is a solution of

L(∂ r , r, α, α, |k|)R = 0.
The same argument holds for Y |k| (αr).

3 Eigenvalues in the case κ = 0

Here we want to characterize the full spectrum of the buckling problem with κ = 0 on the unit disk. In other words, we look for a non-trivial u and λ > 0 such that

∆ 2 u = -λ ∆ u in D 1 , u = ∂ r u = 0 on ∂ D 1 , (3.1) 
where 

D 1 = x ∈ R 2 |x| < 1 .
R(r) = d -J |k| (α)r |k| + J |k| (αr) ,
for some d = 0.

Lemma 3.1 For all k ∈ N, there exists an increasing sequence α k, > 0, with ∈ N * , of solutions to (3.2). This sequence is formed by the positive zeros of J k+1 .

Proof For k 0, we use the formula (A.3) to find that

αJ k (α) -kJ k (α) = -αJ k+1 (α).
Therefore α > 0 is a solution of (3.2) if and only if J k+1 (α) = 0.

We are ready to state the following result.

Theorem 3.2 The spectrum of the buckling problem with κ = 0 is given by λ k, := j 2 |k|+1, ∈ N * , k ∈ Z . A basis of the eigenfunctions is given by (r, θ ) → -J 0 ( j 1, ) + J 0 ( j 1, r)

giving rise to the eigenvalue λ 0, and

(r, θ ) → -J |k| ( j |k|+1, )r |k| + J |k| ( j |k|+1, r) e ikθ , k = 0,
giving rise to the eigenvalue λ k, .

Proof We have already showed that all j 2 |k|+1, are eigenvalues of the operator with the corresponding eigenfunctions. It then remains to prove that we have found all eigenvalues. The reason comes essentially from the fact that the functions (e ikθ ) k∈Z form an orthogonal basis of L 2 ]0, 2π[ . Indeed let (u, λ ) be a solution to (3.1). We write Indeed using the differential equation in (3.1), we see that

u = ∑ k∈Z u k (r) e ikθ ,
∀r > 0, 0 = 1 2π 2π 0 (∆ 2 + λ ∆ )u(r, θ ) • e -ikθ dθ .
Writing the operator ∆ and ∆ 2 in polar coordinates and integrating by parts in θ , we see that the previous identity is equivalent to (3.3). At this stage we use point 2 of Lemma 2.1 to deduce that u k is a linear combination of r |k| and of J |k| ( √ λ r) (due to the regularity of u k at r = 0).

We therefore deduce that λ has to be a root of (3.2) and hence λ = λ k, , for some k ∈ Z and ∈ N * , and u is a linear combination of the eigenfunctions given in the statement of this Theorem.

4 Eigenvalues in the case κ > 0

In this section we characterize the eigenfunctions of the buckling problem with κ > 0 on the unit disk D 1 . In other words, we look for a non-trivial u and λ > 0 solving (1.2).

First observe that λ 1 2κ. As D 1 (∆ u + κu) 2 0, we have

D 1 (|∆ u| 2 + κ 2 u 2 ) -2κ D 1 ∆ u u = 2κ D 1 |∇u| 2 .
This implies that

λ 1 = inf u∈H 2 0 (Ω )\{0} D 1 (|∆ u| 2 + κ 2 u 2 ) D 1 |∇u| 2 2κ.
As a consequence, we can write (1.2) in the form (2.1) with α and β positive real numbers satisfying αβ = κ and α 2 + β 2 = λ . Following the same strategy as before, we look for solutions u = R(r) e ikθ with k ∈ Z. Again due to the regularity of u at zero and eliminating β = κ/α, we deduce that, if α = κ/α, R is in the form

R(r) = cJ |k| (αr) + dJ |k| κ α r , (4.1) 
for some c, d ∈ R.

If instead α = κ/α (i.e., α = √ κ), R(r) = cJ |k| ( √ κr) + drJ |k| ( √ κr), (4.2) 
with c, d ∈ R.

Lemma 4.1 Let k ∈ N.
1. The function Hk : ]0, +∞[ → R defined by

Hk (z) := (z 2 -k 2 ) J k (z) 2 + z 2 J k (z) 2 (4.3)
is positive and increasing. 2. The function

H k : ]0, +∞[ \ j k, ∈ N * → R : z → zJ k (z) J k (z) has a negative derivative H k (z) = -Hk (z) zJ 2 k (z) (4.4)
and thus is decreasing between any two consecutive roots of J k . Moreover, for any 1, lim

z > -→ j k, H k (z) = +∞ and lim z < -→ j k, +1 H k (z) = -∞.
Proof Let Hk be defined by (4.3). Differentiating Hk and using Bessel's equation (A.5) gives H k (z) = 2zJ 2 k (z) which is positive for all z > 0 except at the (isolated) roots of J k . Since Hk (0) = 0, this proves the result concerning Hk .

Using again Bessel's equation (A.5), one easily gets (4.4). Since Hk > 0, the function H k decreases between two consecutive roots of J k . Hence the limits are easy to compute once one remarks that the numerator of H k (z) does not vanish at z = j k,m for any m because the positive roots of J k are simple. 

F k (α) := κ α J |k| (α)J |k| κ α -αJ |k| κ α J |k| (α) = 0. (4.5)
The corresponding eigenvalue is

λ = α 2 + κ 2 /α 2 .
Proof First observe that, in the case α = √ κ, there exists a non-trivial function of the form (4.2) satisfying the boundary conditions at r = 1 if and only if the system

c J |k| ( √ κ) + d J |k| ( √ κ) = 0 c √ κ J |k| ( √ κ) + d J |k| ( √ κ) + √ κ J |k| ( √ κ) = 0 has a non trivial solution (c, d). This holds if and only if α = √ κ is a solution of D k (α) := J |k| (α) J |k| (α) + α J |k| (α) -α J |k| (α) 2 = 0. (4.6) 
Note that, for all α > 0, using Bessel's equation (A.5), one has D k (α) = -1 α H|k| (α) < 0 where H|k| is defined by (4.3). Consequently (4.6) possesses no solution α > 0.

In the case (4.1), the boundary conditions at r = 1 lead to the system

c J |k| (α) + d J |k| κ α = 0, c αJ |k| (α) + d κ α J |k| κ α = 0. (4.7)
This 2 × 2 system has a non-trivial solution if and only if its determinant is equal to zero, namely if and only if (4.5) is satisfied. The same arguments than the ones used in Theorem 3.2 allow to conclude that no other eigenvalues exist.

Theorem 4.3 For all k ∈ N and κ > 0, the roots of F k (defined by (4.5)) can be ordered as an increasing sequence

α k, = α k, (κ) > 0, with ∈ Z, such that ∀ 0, α k,-= κ α k, , α k,0 = √ κ and ∀ > 0, α k, > √ κ > α k,-, α k, → +∞ as → +∞, α k, → 0 as → -∞.
Each = 0 gives rise to the eigenvalue

λ k, = α 2 k, + κ 2 α 2 k, = α 2 k, + α 2 k,-, (4.8) 
and a corresponding eigenfunction of the form R k, (r)

e ikθ with R k, (r) = cJ k (α k, r) + dJ k (α k,-r),
and c, d solutions to (4.7) with α = α k, .

Proof First notice that

∀α > 0, F k κ α = -F k (α),
where F k is defined in (4.5). As a consequence, F k ( √ κ) = 0 and we set α k,0 := √ κ. Moreover it suffices to find the roots of F k in ] √ κ, +∞[. The function F k being continuous on ]0, ∞[, it will possess infinitely many roots provided it changes sign infinitely many times when α → +∞.

Formula (A.3) implies that,

F k (α) = αJ k κ α J k+1 (α) - κ α J k (α)J k+1 κ α .
Hence, noting that κ/α = o(1), if α → ∞, formulas (A.6) and (A.7) imply that

F k (α) = 2α π 1 k! κ 2α k cos α -2k+3 4 π + o(1) as α → +∞.
Thus F k oscillates an infinite number of times as α → +∞. This yields the sequence of α k, > 0 with > 0.

Observe that the only possible accumulation points are 0 and +∞ as otherwise the corresponding eigenvalues λ k, = α 2 k, + κ 2 /α 2 k, would have a finite accumulation point which contradicts the variational theory of eigenvalues.

In order to better understand the behaviour of the eigenvalues and of the corresponding eigenfunctions, we will now study the functions α k, .

Lemma 4.4 For all k ∈ N and ∈ Z, the function

α k, : ]0, +∞[ → R : κ → α k, (κ) is of class C 1 and ∂ κ α k, > 0.
Proof Let us note F k (α, κ) the function F k (α) defined by (4.5) where we make explicit the dependence on κ. The assertion will result from the Implicit Function Theorem. Let us fix k ∈ N, κ * > 0 and α * = α k, (κ * ) > 0 and distinguish two cases.

If J k (α * ) = 0 (resp. J k ( κ * α * ) = 0) then J k (α * ) = 0 (resp. J k ( κ * α * ) = 0)
because the roots of the Bessel functions are simple. But then, the fact that F k (α * , κ * ) = 0 implies that J k ( κ * α * ) = 0 (resp. J k (α * ) = 0). A direct computation, using the fact that both J k (α * ) and J k ( κ * α * ) vanish, shows

∂ κ F k (α * , κ * ) = -J k (α * )J k κ * α * , ∂ α F k (α * , κ * ) = 2 κ * α * J k (α * )J k κ * α * = 0.
Therefore the Implicit Function Theorem implies that there exists C 1 curve β around κ * such that, in a neighbourhood of (α * , κ * ),

F k (α, κ) = 0 if and only if α = β (κ).
Moreover

∂ κ β (κ * ) = - ∂ κ F k (α * , κ * ) ∂ α F k (α * , κ * ) = α * 2κ * > 0.
Let us now suppose that J k (α * ) = 0 and

J k ( κ * α * ) = 0. Around such (α * , κ * ), one can write F k (α, κ) = J k (α)J k κ α Fk (α, κ) with Fk (α, κ) := H k κ α -H k (α),
where H k is defined in Lemma 4.1. Using Lemma 4.1, one deduces

∂ κ Fk (α, κ) = 1 α H k κ α < 0, ∂ α Fk (α, κ) = - κ α 2 H k κ α -H k (α) > 0.
Therefore the Implicit Function Theorem applies to Fk and there exists a C 1 curve β defined around κ * such that, in a neighbourhood of (α * , κ * ),

F k (α, κ) = 0 if and only if α = β (κ).
Moreover

∂ κ β (κ * ) = - ∂ κ Fk (α * , κ * ) ∂ α Fk (α * , κ * ) > 0.
This argument can be done for all . Thus, for all , we have a C 1 -curve emanating from α k, (κ * ) such that, in a neighbourhood U of (α k, (κ * ), κ * ),

F k (α, κ) = 0 if and only if α = β (κ).
Moreover, as

F k (α, κ * ) = 0 for α / ∈ {α k, (κ * ) | ∈ Z}, the continuity of F k implies the existence of a neighbourhood V of {(α, κ * ) | α k, -1 (κ * ) < α < α k, (κ * ), (α, κ * ) / ∈ U -1 ∪ U } such that F k (α, κ) = 0 for (α, κ) ∈ V . In this way, one shows that there is a neighbourhood V of [ √ κ * , α * ] and W of κ * such that, for all (α, κ) ∈ V ×W , F k (α, κ) = 0 if and only if α = β (κ) for some 0 .
Shrinking W if necessary, one can assume the curves β 0 , β 1 , . . . , β do not cross each other. For any given κ ∈ W , it then suffices to count the number of curves one meets to reach the one emanating from (α * , κ * ) starting with α = α k,0 (κ) = √ κ to establish that ∀κ ∈ V, β (κ) = α k, (κ), whence the desired result.

Lemma 4.5 Let k ∈ N and > 0. As κ → 0, α k, (κ) → j k+1, . Hence α k,-(κ) = κ/α k, (κ) → 0 if κ → 0.
Proof Without loss of generality, we can restrict κ to ]0, j 2 k,1 [ so that, as we will only consider α > √ κ, we have κ/α < √ κ < j k,1 and thus J k (κ/α) = 0. For such κ, one also has that J k (α k, ) = 0 (otherwise that would imply J k (κ/α k, ) = 0, see the proof of Lemma 4.4) and so α k, (κ) = j k,m for any m 1.

According to formulas (A.7) and (A.3), one has as z → 0,

J k (z) = 1 + o(1) k! ( 1 2 z) k , J k (z) = -J k+1 (z) + k z J k (z) = 1 + o(1) 2(k -1)! ( 1 2 z) k-1 if k = 0, J 0 (z) = -(1 + o(1)) z 2 .
This implies that

lim z→0 H k (z) = k (4.9)
where H k is defined in Lemma 4.1, and so, restricting further κ, one can assume

H k (κ/α) is bounded (as 0 < κ/α < √ κ). Let us start by showing that j k,1 < α k,1 (κ) < j k,2 .

As

√ κ < α k,1 (κ), in order to establish the left inequality, it suffices to show that for all α ∈ ] √ κ, j k,1 [, F k (α) = 0 (α k,1 = j k,1 was established above). But, for α below the first root of J k , F k (α) = 0 is equivalent to Fk (α, κ) = 0 where Fk , defined in the proof of Lemma 4.4, is a smooth function on ] √ κ, j k,1 [. The argument is complete if one recalls that ∂ α Fk (α, κ) > 0 and that Fk ( √ κ, κ) = 0. For the right inequality, we first notice that the boundedness of H k (κ/α) and Lemma 4.1 imply

lim α > -→ j k,1 Fk (α, κ) = -∞ and lim α < -→ j k,2
Fk (α, κ) = +∞.

By continuity and monotonicity, Fk (α, κ) must possess a unique zero α ∈ ] j k,1 , j k,2 [. Since we are between two consecutive roots of J k , that implies F k (α) = 0 and thus the desired inequality by definition of α k,1 .

The same reasoning applies to α → Fk (α, κ) on the interval ] j k, , j k, +1 [, 2, thereby proving the existence of a unique root of F k in that interval. Counting the number of roots below shows that this root is nothing but α k, therefore establishing that j k, < α k, (κ) < j k, +1 . Now let us pass to the limit κ → 0. Given that α k, is increasing and bounded from below by a positive constant, we have α * k, := lim

κ > -→0 α k, (κ) ∈ [ j k, , j k, +1 [. Notice that, as J k κ α k, = 0, the equation F k (α k, ) = 0 can be rewritten as J k (α k, )H k κ α k, -α k, J k (α k, ) = 0.
Passing to the limit κ → 0 in this equation yields, by (4.9),

J k (α * k, )k -α * k, J k (α * k, ) = 0 or equivalently, by formula (A.3), J k+1 (α * k, ) = 0. As j k, α * k, < j k, +1
, the interlacing property of the zeros of Bessel functions (see e.g. (A.8)) implies that α * k, = j k+1, .

Lemma 4.6 For all k ∈ N and all ∈ Z, we have lim

κ→∞ α k, (κ) = +∞.
Proof This is obvious for 0 because α k, (κ) √ κ. Assume on the contrary that there exists > 0 such that lim κ→∞ α k,-(κ) < +∞ (recall that α k,-is increasing). Hence, there exists κ * > 0 such that, for all κ > κ * , α k,-(κ) lies between two consecutive roots of J k and of J k , i.e., J k (α k,-(κ)) = 0 and J k (α k,-(κ)) = 0. Because the roots of J k are simple, (4.5) implies that, for all κ > κ * , J k (α k, (κ)) = 0 and J k+1 (α k, (κ)) = 0 (recall that α k, (κ) = κ/α k,-(κ)). This contradicts the fact that α k, crosses infinitely many roots of J k because α k, is continuous and α k, (κ) ---→ κ→∞ +∞.

As shown in Figure 4.1 and 4.2, the curves α k, and α k+1, cross each other. In Proposition 4.11 we will characterize their intersection points. This will be done in several steps given by the following lemmas. Proof First recall that, using the identity (A.3), we find that

κ α j 1,1 j 1,2 j 1,3 j 2,1 j 2,2 j 2,3 √ κ α0 ,-1 α 0,1 α 0,2 α 0,3 α1 ,-1 α 1,1 α 1,2 α 1,3 Fig. 4.1 Graphs of α k, κ α j k,1 j k,2 jk,1 jk, + 1 j k, +1 jk,2 jk, + 2 j k, +2 j k+1,1 jk+ 1 ,1 jk+ 1 , + 1 j k+1, +1 jk+ 1 ,2 jk+ 1 , + 2 j k+1, +2 j k+1, j k+2, √ κ α k, α k ,- α k+1, αk + 1 ,-
F k (α) = αJ k κ α J k+1 (α) - κ α J k (α)J k+1 κ α . (4.10) 
If instead one uses the identity (A.2), we have 

F k+1 (α) = κ α J k κ α J k+1 (α) -αJ k (α)J k+1 κ α . ( 4 
= F k+1 (α) = κ 2 -α 4 κα J k+1 (α)J k κ α .
Two cases can occur:

α is a root of J k+1 , i.e., α = j k+1,n for some n. Since the zeros of J k and J k+1 interlace (see (A.8)), J k (α) = 0. Then, using the fact that F k (α) = 0, one deduces that κ/α is also a root of J k+1 , say j k+1,m for some m. As α = √ κ, one has n = m. κ/α is a root of J k . A reasoning similar to the first case then shows that α is also a root of J k and the conclusion readily follows.

Lemma 4.8 For all k ∈ N, 1 and n 1, we have α k, ( j k,n j k, +n ) = j k, +n = α k+1, ( j k,n j k, +n ),

α k,-( j k,n j k, +n ) = j k,n = α k+1,-( j k,n j k, +n ),
α k, ( j k+1,n j k+1, +n ) = j k+1, +n = α k+1, ( j k+1,n j k+1, +n ), α k,-( j k+1,n j k+1, +n ) = j k+1,n = α k+1,-( j k+1,n j k+1, +n ).

Proof Let us first deal with α k,± (left equalities). As α k, is continuous, increasing and satisfies α k, (]0, +∞[) = ] j k+1, , +∞[, there exists an increasing sequence (κ n ) n 1 such that, for all n 1, α k, (κ 2n-1 ) = j k, +n and α k, (κ 2n ) = j k+1, +n .

In the same way, since α k,-is increasing and α k,-(]0, +∞[) = ]0, +∞[, there exists an increasing sequence ( κn ) n 1 such that, for all n 1,

α k,-( κ2n-1 ) = j k,n and α k,-( κ2n ) = j k+1,n .
By (4.10), for all roots α of F k , J k (α) = 0 if and only if J k (κ/α) = 0, and so

{κ 2n-1 | n 1} = { κ2n-1 | n 1}. Similarly, {κ 2n | n 1} = { κ2n | n 1}.
Since the sequences are increasing, we conclude that, for all n 1, κ n = κn . Moreover, we deduce from κ = α k,-(κ)α k, (κ) that, for all n 1, κ 2n-1 = j k,n j k, +n and κ 2n = j k+1,n j k+1, +n . This proves the left hand equalities.

To prove the equalities to the right, let us first show that j k+2, < j k, +1 . For this, it is enough to prove that J k+2 ( j k, ) and J k+2 ( j k, +1 ) have opposite signs for any = 1, . . . , . Using the relations (A.1) and (A.3), we obtain

J k+2 (z) = 2(k + 1) z J k+1 (z) -J k (z) = 2(k + 1) z k z J k (z) -J k (z) -J k (z) = 2(k + 1)k z 2 -1 J k (z) - 2(k + 1) z J k (z).
Therefore J k+2 ( j k, ) J k+2 ( j k, +1 ) = 4(k + 1) 2 J k ( j k, )J k ( j k, +1 ) j k, j k, +1 which is negative because j k, and j k, +1 are two consecutive simple roots of J k .

In a similar way to the first part, as α k+1, and α k+1,-are increasing and satisfy α k+1, (]0, +∞[) = ] j k+2, , +∞[ and α k+1,-(]0, +∞[) = ]0, +∞[ and as j k, +1 > j k+2, > j k+1, > j k, , there exist increasing sequences (κ n ) n 1 and ( κn ) n 1 such that, for all n 1, α k+1, (κ 2n-1 ) = j k, +n and α k+1, (κ 2n ) = j k+1, +n , α k+1,-( κ2n-1 ) = j k,n and α k+1,-( κ2n ) = j k+1,n . Now, using (4.11) and arguing as above, we obtain that

{κ 2n-1 | n 1} = { κ2n-1 | n 1} and {κ 2n | n 1} = { κ2n | n 1}.
As the sequences are increasing, one deduces that κ n = κn for all n. Finally, from κ = α k+1, (κ)α k+1,-(κ), one gets that, for all n 1, κ 2n-1 = j k,n j k, +n and κ 2n = j k+1,n j k+1, +n .

Remark 4.9 This proof establishes that the positive roots of J k and J k+2 interlace (see also [21, Theorem 1]), namely

∀ 1, j k, < j k+2, < j k, +1
(the first inequality comes from j k, < j k+1, < j k+2, ).

Remark 4.10 As a byproduct of the proof, one gets that, for 1 and n 1, j k,n j k, +n < j k+1,n j k+1, +n < j k,n+1 j k, +n+1 . (4.12)

Since the functions α k, are increasing, one immediately deduces that

α k, ]0, j k,1 j k, +1 [ = ] j k+1, , j k, +1 [, α k+1, ]0, j k,1 j k, +1 [ = ] j k+2, , j k, +1 [, α k, (I) = α k+1, (I) = ] j k, +n , j k+1, +n [
where I = ] j k,n j k, +n , j k+1,n j k+1, +n [, α k, (I) = α k+1, (I) = ] j k+1, +n , j k, +n+1 [ where I = ] j k+1,n j k+1, +n , j k,n+1 j k, +n+1 [.

Note further that these properties also yield (see figure 4.2)

α k, (I) = α k+1, (I) = ] j k, +n , j k, +n+1 [ (4.13) 
where I = ] j k,n j k, +n , j k,n+1 j k, +n+1 [ for all n 0, with the convention that j k,0 := 0. In the same way, we have 

α k,-]0, j k,1 j k, +1 [ = ]0, j k,1 [, α k+1,-]0, j k,1 j k, +1 [ = ]0, j k,1 [, α k,- ( 
α k,-(I) = α k+1,-(I) = ] j k,n , j k,n+1 [ (4.14) 
where I = ] j k,n j k, +n , j k,n+1 j k, +n+1 [.

Proposition 4.11 Let k ∈ N and 1. The set of κ such that α k, (κ) = α k+1, (κ) is { j k,n j k, +n | n 1} ∪ { j k+1,n j k+1, +n | n 1}.
Proof By Lemma 4.8, we know that the elements of the set { j k,n j k, +n | n 1} ∪ { j k+1,n j k+1, +n | n 1} are equality points of α k, and α k+1, .

Let us prove that there is no other point where α k, = α k+1, . Lemma 4.7 implies that, if κ is such a point, then α k, ( κ) = α k+1, ( κ) = j k,m or α k, ( κ) = α k+1, ( κ) = j k+1,m for some positive integer m. In either case, m > because, by Lemmas 4.4 and 4.5, α k+1, > j k+2, > j k+1, > j k, . Since α k, is increasing, hence injective, κ must then necessarily be one of the values given by Lemma 4.8.

We will need also the following result in the next section. Lemma 4.12 Let k ∈ N and ∈ N \ {0} be fixed. Then the function g k, : ]0, +∞[ →

R : κ → α 2 k, (κ) κ is decreasing. Proof Direct calculations show g k, (κ) = α k, (κ) κ 2 2κα k, (κ) -α k, (κ) . Set G(κ) := 2κα k, (κ) -α k, (κ).
Because g k, is continuous and the intervals ] j k,n j k, +n , j k,n+1 j k, +n+1 [ cover ]0, +∞[ except for isolated points, it is sufficient to show that, for all n 0, ∀κ ∈ ] j k,n j k, +n , j k,n+1 j k, +n+1 [, G(κ) < 0 with the convention that j k,0 := 0. For κ ∈ ] j k,n j k, +n , j k,n+1 j k, +n+1 [, in view of (4.13), α k, (κ) is not a root of J k and by the proof of Lemma 4.4, we deduce that

G(κ) = α κ α H k ( κ α ) -αH k (α) κ α H k ( κ α ) + αH k (α)
,

where for shortness we have written α instead of α k, (κ). Again the fact that α k, (κ) and κ α = α k,-(κ) are between two consecutive roots of J k allows to apply Lemma 4.1 and deduce that the above denominator is negative. Hence it remains to check that

N(κ) := κ α H k κ α -αH k (α) > 0,
for all κ ∈ ] j k,n j k, +n , j k,n+1 j k, +n+1 [. With the help of the identities (4.3) and (4.4), we may transform N into

N(κ) = 1 J 2 k (α)J 2 k ( κ α ) α 2 - κ 2 α 2 J 2 k (α)J 2 k κ α + α 2 J k (α) 2 J 2 k κ α - κ 2 α 2 J k κ α 2 J 2 k (α) .
As α is a root of (4.5), we arrive at

N(κ) = α 2 - κ 2 α 2 , which is positive since α k, (κ) > √ κ when > 0. κ α j k+1,1 j k+1,1 j k+1,2 j k+1,2 j k+1,2 j k+1,3 j k+1,3 α k+2,1 α k+2,2 α k+1,1 α k+1,2 α k,1 α k,2 Fig. 4.3 Illustration of α k,1 α k+2,1
Remark 4.13 Note that, if κ = j k,n j k, +n for some n > 0, the second case of Lemma 4.8 implies that α k, (κ) is a root of J k and so, using the proof of Lemma 4.4, we infer

α k, (κ) = α k, (κ) 2κ ,
which means that G(κ) = 0.

Until now we have proved that the -th curve corresponding to k and k + 1 cross each other, in particular the first ones, and we have characterized the crossing points. In Proposition 4.15 we will prove that the first eigenvalue λ 1 (κ) corresponds to min{α 0,1 (κ), α 1,1 (κ)} by the relation (4.8). To this aim, we first prove that the other curves are above these first two. Proposition 4.14 Let k ∈ N. For all κ > 0, α k,1 (κ) α k+2,1 (κ). Moreover, this inequality is an equality if and only if κ = j k+1,n j k+1,n+1 for some n 1, in which case α k,1 (κ) = α k+1,1 (κ) = α k+2,1 (κ) = j k+1,n+1 .

Proof Observe first that, by the proof of Lemma 4.4, ∂ α F k ( √ κ) > 0 (for the second case in this proof, one has that

∂ α F k ( √ κ) = J 2 k ( √ κ)∂ α Fk ( √ κ, κ) > 0) and hence, we know that, for α > √ κ close to √ κ, F k (α) > 0.
To establish that α k,1 (κ) α k+2,1 (κ), it suffices to show that F k (α k+2,1 ) 0. Indeed, this implies by the intermediate value theorem that

F k (•) = 0 has a solution in ] √ κ, α k+2,1 (κ)[, i.e., √ κ < α k,1 (κ) α k+2,1 (κ).
Using formula (4.11) for F k+2 in which one substitutes J k+2 according to the formula (A.1) and then using again (4.10), we find

F k+2 (α) = κ α J k+1 κ α J k+2 (α) -αJ k+1 (α)J k+2 κ α = 2(k + 1) κ 2 -α 4 α 2 κ J k+1 (α)J k+1 κ α + F k (α). (4.15)
Therefore, recalling that κ/α k+2,1 = α k+2,-1 and F k+2 (α k+2,1 ) = 0, we have

F k (α k+2,1 ) = 2(k + 1) α 4 k+2,1 -κ 2 α 2 k+2,1 κ J k+1 (α k+2,1 )J k+1 (α k+2,-1 ).
Observe that the fraction is positive since α k+2,1 > √ κ. Moreover, by (4.13) and (4.14), for all n ∈ N and all κ ∈ ] j k+1,n j k+1,n+1 , j k+1,n+1 j k+1,n+2 [, we have α k+2,1 ∈ ] j k+1,n+1 , j k+1,n+2 [ and α k+2,-1 ∈ ] j k+1,n , j k+1,n+1 [. This implies that J k+1 (α k+2,1 )J k+1 (α k+2,-1 ) < 0 and thus that F k (α k+2,1 ) 0 for all κ > 0 which proves the first part of the result.

For the second part of the statement, it is clear from Lemma 4.8 that, when κ = j k+1,n j k+1,n+1 , α k,1 (κ) = α k+1,1 (κ) = j k+1,n+1 = α k+2,1 (κ). Let us show this is the only possibility. Suppose κ > 0 is such that α := α k,1 (κ) = α k+2,1 (κ). In view of equation (4.15), α or κ/α is a root of J k+1 . In the latter case, using (4.10) and F k (α) = 0, one deduces that α must also be a root of J k+1 . Thus, in both cases, α k,1 (κ) = α k+2,1 (κ) = j k+1,m for some m 1. In fact m 2 because α k+2,1 > j k+3,1 > j k+1,1 . Then, the injectivity of α k,1 and Lemma 4.8 imply that κ has the desired form. Proposition 4.15 For all κ > 0, we have

ᾱ(κ) := min α k, (κ) k ∈ N, 1 = min α 0,1 (κ), α 1,1 (κ) . (4.16)
Moreover, the first eigenvalue λ 1 (κ) is given by λ

1 (κ) = ᾱ2 (κ) + κ 2 / ᾱ2 (κ).
Proof It is obvious that

min{α k, | k ∈ N, 1} = min{α k,1 | k ∈ N}.
Since Proposition 4.14 asserts that, for all k ∈ N, α k+2,1 α k,1 , (4.16) is established.

To conclude the proof it suffices to recall the relation (4.8) and to notice that α → α 2 + κ 2 /α 2 is increasing on ] √ κ, +∞[ (hence the smallest eigenvalue corresponds to the smallest α k, ).

In Theorem 4.17 we will prove that the first eigenvalue of (1.2) given by Proposition 4.15 comes alternatively from α 0,1 and α 1,1 . To this aim, it remains to prove that, as shown in Figure 4.1, the curves α 0,1 and α 1,1 cross each other non-tangentially. 

If κ = j k,n j k,n+1 , then ∂ κ α k,1 (κ) > ∂ κ α k+1,1 (κ). If κ = j k+1,n j k+1,n+1 , then ∂ κ α k,1 (κ) < ∂ κ α k+1,1 (κ).
Proof We will use the computations in the proof of Lemma 4.4 to evaluate the derivatives of α k,1 and α k+1,1 . Recall that, for n 1, we have α k,1 ( j k,n j k,n+1 ) = α k+1,1 ( j k,n j k,n+1 ) = j k,n+1 . On one hand, the first case in the proof of Lemma 4.4 implies ∂ κ α k,1 ( j k,n j k,n+1 ) = j k,n+1 /(2 j k,n j k,n+1 ) = (2 j k,n ) -1 . On the other hand, for the derivative of α k+1,1 at j k,n j k,n+1 , we are in the second case of the proof of Lemma 4.4 and

∂ κ α k+1,1 ( j k,n j k,n+1 ) = 1 j k,n+1 H k+1 ( j k,n ) j k,n j k,n+1 H k+1 ( j k,n ) + H k+1 ( j k,n+1 )
. By Lemma 4.1, we know that, for all n 1,

H k+1 ( j k, n) = -Hk+1 ( j k, n) j k, n J 2 k+1 ( j k, n) , and 
Hk+1 ( j k, n) = j 2 k, n -(k + 1) 2 J 2 k+1 ( j k, n) + j 2 k, n J k+1 ( j k, n) 2 .
As, by (A.2), J k+1

( j k, n) = J k ( j k, n) -k+1 j k, n J k+1 ( j k, n) = -k+1 j k, n J k+1 ( j k, n), we deduce that Hk+1 ( j k, n) = j 2 k, nJ 2 
k+1 ( j k, n)
and, finally,

H k+1 ( j k, n) = -j k, n.
This implies that

∂ κ α k+1,1 ( j k,n j k,n+1 ) = -j k,n j k,n+1 -j 2 k,n j k,n+1 -j k,n+1 = j k,n j 2 k,n + j 2 k,n+1
.

We can then conclude that

∂ κ α k+1,1 ( j k,n j k,n+1 ) = j k,n j 2 k,n + j 2 k,n+1 < j k,n 2 j 2 k,n = ∂ κ α k,1 ( j k,n j k,n+1 ).
The argument is similar if κ ∈ { j k+1,n j k+1,n+1 | n 1}.

Now we can give our first two main results which characterize the first eigenvalue and the first eigenspace with respect to the value of κ. In Theorem 4.17, we deal with the case α 0,1 = α 1,1 while the case α 0,1 = α 1,1 is considered in Theorem 4.18.

Theorem 4.17 Denote R k, the function defined by equation (4.1) with α = α k, given by Theorem 4. 3 and(c, d) being a non-zero element of the one dimensional space of solutions to (4.7).

For all κ ∈ [0, j 0,1 j 0,2 [ ∪ n 1 ] j 1,n j 1,n+1 , j 0,n+1 j 0,n+2 [, the first eigenvalue is given by λ 1 (κ) = α 2 0,1 (κ) + κ 2 /α 2 0,1 (κ) and the eigenfunctions are multiples of

x → R 0,1 (|x|) 
and are thus radial. Consequently, the first eigenspace has dimension 1. For all κ ∈ n 0 ] j 0,n+1 j 0,n+2 , j 1,n+1 j 1,n+2 [, the first eigenvalue is given by λ

1 (κ) = α 2 1,1 (κ) + κ 2 /α 2 1,1 ( 
κ) and the eigenfunctions have the form

R 1,1 (r)(c 1 cos θ + c 2 sin θ )
for any c 1 and c 2 . In this case, the first eigenspace has dimension 2.

Proof Note that, when α = α k, , the system (4.7) is degenerate. Moreover, J k (α) and J k (α) cannot vanish together. Thus the dimension of the space of solutions to the system (4.7) is exactly 1. By Proposition 4.15, λ 1 = α 2 + κ 2 /α 2 with α = min{α 0,1 (κ), α 1,1 (κ)}. In addition, as a consequence of Lemma 4.5, if κ > 0 is close enough to 0, α 0,1 (κ) < α 1,1 (κ). Thus Proposition 4.11 and Lemma 4.16 (with k = 0) imply the claims about λ 1 . Moreover by Proposition 4.14, we know that, for the values of κ considered in the statement, α 0,1 < α 2,1 . To conclude the proof, it remains to establish that, in the second case (i.e., when α = α 1,1 α 0,1 ), α 1,1 < α 3,1 . We will show that if α 1,1 = α 3,1 then α 0,1 < α 1,1 .

By Proposition 4.14, we know that α 1,1 (κ) = α 3,1 (κ) if and only if κ = j 2,n j 2,n+1 for some n ∈ N * , in which case

α 1,1 ( j 2,n j 2,n+1 ) = α 2,1 ( j 2,n j 2,n+1 ) = α 3,1 ( j 2,n j 2,n+1 ) = j 2,n+1 . (4.17) 
On the other hand, again by Proposition 4.14, we have α 0,1 (κ) α 2,1 (κ) and α 0,1 (κ) = α 2,1 (κ) if and only if κ = j 1,m j 1,m+1 for some m ∈ N * . Thanks to (4.12) and (4.17), this implies the conclusion that

α 0,1 ( j 2,n j 2,n+1 ) < α 2,1 ( j 2,n j 2,n+1 ) = α 1,1 ( j 2,n j 2,n+1
). Theorem 4.18 Denote R k, the function defined by equation (4.1) with α = α k, given by Theorem 4. 3 and(c, d) being a non-zero element of the one dimensional space of solutions to (4.7).

If κ = j 0,n j 0,n+1 for some n 1, then α 0,1 = α 1,1 < α k, for all (k, ) different from (0, 1) and (1, 1). The eigenfunctions have the form

c 1 R 0,1 (r) + R 1,1 (r)(c 2 cos θ + c 3 sin θ ), c 1 , c 2 , c 3 ∈ R. If κ = j 1,n j 1,n+1 for some n 1, then α 0,1 = α 1,1 = α 2,1 < α k, for all (k, ) / ∈ {(0, 1), (1, 1), (2, 1)}. The eigenfunctions have the form c 1 R 0,1 (r) + R 1,1 (r)(c 2 cos θ + c 3 sin θ ) + R 2,1 (r) c 4 cos(2θ ) + c 5 sin(2θ ) .
where c 1 , . . . , c 5 vary in R.

Proof First consider κ = j 0,n j 0,n+1 for some n 1. Using Lemma 4.8, one has α 0,1 ( j 0,n j 0,n+1 ) = α 1,1 ( j 0,n j 0,n+1 ) = j 0,n+1 . Proposition 4.14 implies that α 0,1 ( j 0,n j 0,n+1 ) < α 2,1 ( j 0,n j 0,n+1 ) as, if they were equal, then α 0,1 ( j 0,n j 0,n+1 ) = α 2,1 ( j 0,n j 0,n+1 ) = j 1,m which is impossible because the positive roots of J 0 and J 1 interlace.

A similar argument shows α 1,1 ( j 0,n j 0,n+1 ) < α 3,1 ( j 0,n j 0,n+1 ) because the roots of J 0 and J 2 interlace (see Remark 4.9). Using again Proposition 4.14, it is then easy to conclude that no other α k, is equal to α 0,1 = α 1,1 . The form of the eigenfunctions readily follows from Proposition 4.2. Now, let κ = j 1,n j 1,n+1 for some n 1. Proposition 4.14 says that

α 0,1 ( j 1,n j 1,n+1 ) = α 1,1 ( j 1,n j 1,n+1 ) = α 2,1 ( j 1,n j 1,n+1 ) = j 1,n+1 .
Moreover, arguing as above, one gets α 2,1 ( j 1,n j 1,n+1 ) < α 4,1 ( j 1,n j 1,n+1 ) as well as

α 1,1 ( j 1,n j 1,n+1 ) < α 3,1 ( j 1,n j 1,n+1
) and then conclude that no other α k, is equal to

α 0,1 = α 1,1 = α 2,1 .
Again, the form of the eigenfunctions follows easily.

Nodal properties of the first eigenfunction

In this section, we will give further nodal properties of the eigenfunctions with respect to the κ-intervals.

Lemma 5.1 Let 0 < κ j 0,1 j 0,2 and R 0,1 be defined as in Theorem 4.17 (or 4.18). Then r → |R 0,1 (r)| is positive in [0, 1[ and decreasing.

Proof Theorem 4.17 says that

R 0,1 (r) = c J 0 (α 0,1 r) + d J 0 κ α 0,1 r 
where (c, d) is a nontrivial solution to (4.7) with α = α 0,1 . Remark 4.10 implies that, for 0 < κ j 0,1 j 0,2 , we have 0 < α 0,-1 (κ) j 0,1 < j 1,1 < α 0,1 (κ) j 0,2 . Therefore J 0 (α 0,1 ) = -J 1 (α 0,1 ) > 0 and J 0 (κ/α 0,1 ) = -J 1 (κ/α 0,1 ) < 0 and hence the second equation of (4.7) is non-degenerate and a possibility is to choose w.l.o.g.

c := - κ α 0,1 J 0 κ α 0,1 > 0 and d := α 0,1 J 0 (α 0,1 ) > 0.
We want to show that v(r) := ∂ r R 0,1 (r) < 0 for all r ∈ ]0, 1[. As R 0,1 (1) = 0 we then obtain also R 0,1 > 0 on [0, 1[. Observe that v is given by

v(r) = -c α 0,1 J 1 (α 0,1 r) + d κ α 0,1 J 1 κ α 0,1 r . (5.1) Since κ α 0,1 r ∈ [0, j 1,1 [, we have J 1 κ α 0,1 r > 0 for all r ∈ [0, 1]. If J 1 (α 0,1 r) 0, which is the case when r ∈ [0, j 1,1 /α 0,1 ], then clearly v(r) < 0. For r ∈ ] j 1,1 /α 0,1 , 1[, α 0,1 r ∈ ] j 1,1 , α 0,1 [ ⊆ ] j 1,1 , j 1,2
[. Thus J 1 (α 0,1 r) < 0 and the negativity of v is not straightforward. Suppose on the contrary there exists a r * ∈ ] j 1,1 /α 0,1 , 1[ such that v(r * ) = 0. A simple computation using Bessel's equation (A.5) shows that v solves

-∂ 2 r v - 1 r ∂ r v + 1 r 2 - κ 2 α 2 0,1 v = -cα 0,1 α 2 0,1 - κ 2 α 2 0,1 J 1 (α 0,1 r), v(r * ) = 0, v(1) = 0.
(5.

2)

The right hand side is positive on ]r * , 1]. Moreover, the problem can be rewritten under the form

-∆ v + 1 r 2 - κ 2 α 2 0,1 v = -cα 0,1 α 2 0,1 - κ 2 α 2 0,1 J 1 (α 0,1 |x|), v = 0 on ∂ A * , (5.3) 
where

A * := {x ∈ R 2 | r * < |x| < 1}. Let us prove that v 0 on A * .
Recall that κ 2 /α 2 0,1 = α 2 0,-1 < j 2 1,1 where j 2 1,1 is the first eigenvalue of -∆ + 1 r 2 on the unit ball with zero Dirichlet boundary conditions (with eigenfunction J 1 ( j 1,1 r)). As the first eigenvalue of -∆ + 1 r 2 on the unit ball is less than the first eigenvalue of -∆ + 1 r 2 on the annulus A * , we deduce, by the maximum principle, that v 0 on A * (see [START_REF] Walter | A theorem on elliptic differential inequalities with an application to gradient bounds[END_REF] or [START_REF] Du | Order structure and topological methods in nonlinear partial differential equations[END_REF]Theorem 2.8]).

This implies that ∂ r v(1) 0, i.e., ∂ 2 r R 0,1 (1) 0. Moreover, ∂ r v(1) = 0 because, otherwise, (5.2) evaluated at r = 1 would give -∂ 2 r v(1) > 0 which would imply that v(r) < 0 for r close to 1. Thus v (1) = ∂ 2 r R 0,1 (1) < 0. Since R 0,1 satisfies

-∂ 2 r R 0,1 - 1 r ∂ r R 0,1 - κ α 0,1 2 R 0,1 = c α 2 0,1 - κ 2 α 2 0,1 J 0 (α 0,1 r),
the evaluation in r = 1 gives a contradiction, as R 0,1 (1) = 0, ∂ r R 0,1 (1) = 0 and J 0 (α 0,1 ) 0 (recall that α 0,1 ∈ ] j 1,1 , j 0,2 ]). κ ∈ ] j 0,1 j 0,2 , j 0,2 j 0,3 ] κ = j 0,1 j 0,2 1 Fig. 5.1 Graph of R 0,1 for various values of κ.

In conclusion v = ∂ r R 0,1 < 0 on ]0,
Lemma 5.3 Let k 1, 0 < κ j k,1 j k,2 and R k,1 be defined as in Theorem 4.17 (or 4.18). Then |R k,1 (r)| is positive for r ∈ ]0, 1[. Proof Recall that by equation (4.1), we know that

R k,1 (r) = cJ k (α k,1 r) + dJ k (α k,-1 r)
where the real numbers c and d solve the linear degenerate system (4.7) with α = α k,1 . Observe that, by Remark 4.10, we have 0 < α k,-1 j k,1 < j k+1,1 < α k,1 j k,2 < j k+1,2 , and hence J k+1 (α k,1 ) < 0 and J k+1 (α k,-1 ) > 0. Using (A.3), one deduces that (c, d) solves the degenerate system (4.7) if and only if

c α k,1 J k+1 (α k,1 ) + d κ α k,1 J k+1 κ α k,1 = 0.
Thus one can take for example for c and d:

c := κ α k,1 J k+1 κ α k,1 > 0 and d := -α k,1 J k+1 (α k,1 ) > 0.
We want to show that R k,1 > 0 on ]0, 1[. Since, for all r ∈ ]0, 1[, α k,-1 r ∈ ]0, j k,1 [, we have

J k α k,-1 r > 0. If r is such that J k (α k,1 r) 0, i.e., if r ∈ ]0, j k,1 /α k,1 ], then clearly R k,1 (r) > 0. For r ∈ ] j k,1 /α k,1 , 1[, we have α k,1 r ∈ ] j k,1 , α k,1 [ ⊆ ] j k,1 , j k,2
[. Thus J k (α k,1 r) < 0 and the positivity of R k,1 is not straightforward. Suppose on the contrary there exists a r * ∈ ] j k,1 /α k,1 , 1[ such that R k,1 (r * ) = 0. A simple computation using Bessel's equation (A.5) shows:

       -∆ R k,1 sin(kθ ) -α 2 k,-1 R k,1 sin(kθ ) = c α 2 k,1 -α 2 k,-1 J k (α k,1 r) sin(kθ ), in A + k , R k,1 (r) sin(kθ ) = 0, on ∂ A + k , (5.4) 
where

A + k := (r cos(θ ), r sin(θ )) r * < r < 1, θ ∈ ]0, π/k[ . The right hand side is negative for r ∈ ]r * , 1[ and θ ∈ ]0, π/k[. Since α 2 k,-1 j 2 k,1 , where j 2 k,1
is the first eigenvalue of -∆ on

D + := (r cos(kθ ), r sin(kθ )) 0 < r < 1, θ ∈ ]0, π/k[ ,
with zero Dirichlet boundary conditions (with positive first eigenfunction (r, θ ) → J k ( j k,1 r) sin(kθ )), which is less than the first eigenvalue of -∆ on A + k D + , the maximum principle applies (see [START_REF] Walter | A theorem on elliptic differential inequalities with an application to gradient bounds[END_REF] or [9, Theorem 2.8]) and we conclude that R k,1 (r) sin(kθ ) < 0 on A + k . Evaluating (5.4) for r = 1 and taking into account the clamped boundary

conditions R k,1 (1) = 0 = ∂ r R k,1 (1), one deduces ∂ 2 r R k,1 (1) = -c(α 2 k,1 -α 2 k,-1 )J k (α k,1 ) 0. If ∂ 2 r R k,1 (1) > 0, this contradicts R k,1 < 0. If ∂ 2 r R k,1 (1) 
= 0, i.e., α k,1 = j k,2 , differentiating (5.4) w.r.t. r and evaluating at r = 1 yields Remark 5.4 When k > 0, R k,1 is no longer decreasing (see Figure 5.2) because R k,1 (0) = 0 and R k,1 (1) = 0.

∂ 3 r R k,1 (1) = -c(α 2 k,1 -α 2 k,-1 )α k,1 J k ( j k,2 ) < 0 which again contradicts R k,1 (r) < 0. This proves that R k,1 > 0 on ]0, 1[. r 1 k = 1 κ < j k,1 j k,2 κ > j k,1 j k,2 κ = j k,1 j k,2 r 1 k = 2
Hence we have proved so far the following result. Theorem 5.5 If 0 κ < j 0,1 j 0,2 , the first eigenspace is of dimension 1, any first eigenfunction ϕ 1 is radial and |ϕ 1 | is positive in Ω and decreasing w.r.t. r = |x|.

If j 0,1 j 0,2 < κ < j 1,1 j 1,2 , the first eigenfunctions have the form R 1,1 (r)•(c 1 cos θ + c 2 sin θ ) with R 1,1 (r) > 0 for r ∈ ]0, 1[ and hence have two nodal domains that are half balls.

Proof The case κ = 0 can be deduced from Theorem 3.2. Consider then the case κ > 0. When κ ∈ ]0, j 0,1 j 0,2 [ ∪ ] j 0,1 j 0,2 , j 1,1 j 1,2 [, Theorem 4.17 says that the eigenfunctions are the desired form; Lemmas 5.1 and 5.3 complete the proof.

In order to study the evolution of R k,1 in the next intervals, we first prove that R k,1 changes sign in every interval of the form [

j k,i α k,1 , j k,i+1 α k,1
]. In a second step, we will prove that R k,1 will change sign only once on this interval. This will allow us to deduce the exact number of roots of ϕ 1 according to the value of κ. 

κ ∈ ] j k,n-1 j k,n , j k,n j k,n+1 [, R k,1 j k,i α k,1 R k,1 j k,i+1 α k,1 < 0.
where R k,1 is defined as in Theorem 4.17.

Proof First observe that

R k,1 j k,i α k,1 R k,1 j k,i+1 α k,1 = d 2 J k j k,i κ α 2 k,1 (κ) J k j k,i+1 κ α 2 k,1 (κ) 
.

Note that d = 0 because otherwise (4.7) would boil down to cJ k (α) = 0 = cJ k (α) and so c = 0, contradicting the fact that (c, d) must be non-trivial. We will prove that

J k j k,i κ α 2 k,1 (κ) J k j k,i+1 κ α 2 k,1 (κ) 
< 0.

Set h(κ) := κ/α 2 k,1 (κ). As i n -1, we clearly have j k,i-1 j k,i < j k,i j k,i+1 < κ, and, because h is increasing thanks to Lemma 4.12,

h( j k,i-1 j k,i ) < h( j k,i j k,i+1 ) < h(κ).
As, by Lemma 4.8, h( j k,i-1 j k,i ) =

j k,i-1 j k,i and h( j k,i j k,i+1 ) = j k,i j k,i+1
, we deduce that

h(κ) j k,i > j k,i-1 and h(κ) j k,i+1 > j k,i . Moreover, h(κ) < 1 because α k,1 (κ) > √ κ. We conclude that j k,i-1 < h(κ) j k,i < j k,i < h(κ) j k,i+1 < j k,i+1 .
This means that h(κ) j k,i and h(κ) j k,i+1 are in two consecutive intervals of zeros of J k and the conclusion follows.

Remark 5.7 The previous Lemma does not readily extend to α k, with > 1. The left graph on Figure 5.3 illustrates the result while the right one shows that even the number of sign changes of R k, , for > 1, does not correspond to the number of points

( j k,i /α k, ) n i=1 . r 1 R 0,1 j k,1 α k,1 j k,2 α k,1 j k,3 α k,1 j k,4 α k,1 r 1 R 0,2 j k,1 α k,2 j k,2 α k,2 j k,3 α k,2 j k,4 α k,2 Fig. 5.3 Graph of R k, for a κ ∈ ] j k,3 j k,4 , j k,4 j k,5 [ and k = 0. Lemma 5.8 Let k ∈ N, n ∈ N * , κ ∈ ] j k,n-1 j k,n , j k,n j k,n+1
[, and R k,1 be as in Theorem 4.17 with c > 0 and d > 0. Let i ∈ {0, . . . , n} and

j k,i α k,1 r 1 < r 2 j k,i+1 α k,1
(with the convention that j k,0 := 0).

If i is odd and R

k,1 (r 1 ) 0 and R k,1 (r 2 ) 0, then R k,1 (r) < 0 on ]r 1 , r 2 [. Moreover, if R k,1 (r 1 ) = 0 then R k,1 (r 1 ) < 0 and if R k,1 (r 2 ) = 0 then R k,1 (r 2 ) > 0. If i is even and R k,1 (r 1 ) 0 and R k,1 (r 2 ) 0, then R k,1 (r) > 0 on ]r 1 , r 2 [. More- over, if R k,1 (r 1 ) = 0 then R k,1 (r 1 ) > 0 and if R k,1 (r 2 ) = 0 then R k,1 (r 2 ) < 0.
Remark 5.9 Given the interval where κ lies, Remark 4.10 asserts that j k,n-1 < α k,-1 < j k,n < α k,1 < j k,n+1 . Therefore J k (α k,1 ) = 0 and one can use the first equation of the degenerate system (4.7) to find a nontrivial solution (c, d). Moreover, since J k (α k,1 ) and J k (α k,-1 ) have opposite signs, one can always choose c > 0 and d > 0.

Proof Observe that J k (α k,1 r) sin(kθ ) is a solution to

-∆ ϕ = α 2 k,1 ϕ, in A + i , ϕ = 0, on ∂ A + i .
where

A + i := (r cos(θ ), r sin(θ )) ∈ R 2 j k,i α k,1 < r < j k,i+1 α k,1
and 0 < θ < π k . Moreover, as J k (α k,1 r) sin(kθ ) does not change sign in A + i , it is the first eigenfunction of -∆ in A + i . As α 2 k,-1 < α 2 k,1 , the maximum principle is valid for (5.4) with A + k replaced by A + i (see [START_REF] Walter | A theorem on elliptic differential inequalities with an application to gradient bounds[END_REF] or [START_REF] Du | Order structure and topological methods in nonlinear partial differential equations[END_REF]Theorem 2.8]). The result then follows from the fact that, when i is odd (resp. even), the right hand side of (5.4) is negative (resp. positive) on ]r 1 , r 2 [. It remains to study the sign of R k,1 for r close to 1. Lemma 5.10 Let k, n, κ, and R k,1 be as in Lemma 5.8. When n is odd (resp. even) then, for all r ∈ j k,n α k,1 , 1 , R k,1 (r) > 0 (resp. R k,1 (r) < 0).

Proof Observe that R k, (1) = 0, ∂ r R k, (1) = 0 and using the easily checked identity

∂ 2 r R k,1 (r) = - 1 r ∂ r R k,1 (r) + k 2 r 2 -α 2 k,1 R k,1 (r) + d α 2 k,1 -α 2 k,-1 J k α k,-1 r , we get ∂ 2 r R k,1 (1) 
= d(α 2 k,1α 2 k,-1 ) J k (α k,-1 ).

By our choice of d > 0, we see that ∂ 2 r R k,1 (1) has the same sign as J k (α k,-1 ). Since α k,-1 belongs to ] j k,n-1 , j k,n [, we deduce that, for n -1 even (resp. n -1 odd), ∂ 2 r R k,1 (1) > 0 (resp. ∂ 2 r R k,1 (1) < 0). This implies the existence of ε > 0 such that R k,1 > 0 (resp. R k,1 < 0) on Hence by Lemmas 5.8 and 5.10 we deduce that R k,1 has exactly one root in the interval ]

j k,i α k,1 , j k,i+1 α k,1
[ for all i ∈ {1, . . . , n -1}. This proves the result.

From Theorem 4.17 and Proposition 5.11, it is easy to derive Theorem 1.1.

Extension to any dimension

The buckling problem (1.2) in the unit ball of R N , with N 3, can be treated as before. Indeed using spherical coordinates, we first look for a solution u to (∆ + α 2 )u = 0, with α 0, in the form u = R(r)S(θ ),

where S is a spherical harmonic function, that is the restriction to the unit sphere of an harmonic homogeneous polynomial of degree k ∈ N. Expressing ∆ is spherical coordinates (see [19, p. 38] or [START_REF] Grumiau | Oddness of least energy nodal solutions on radial domains[END_REF]), one finds that R must satisfy

∂ 2 r R + N -1 r ∂ r R + α 2 - k(k + N -2) r 2 R = 0.
Performing the change of unknown R(r) := r -N-2 2 B(r), one sees that B satisfies the Bessel-like equation rJ k (αr) by r 1-N-2 2 J ν k (αr), and similarly for the other functions (except for r ±k which stay unchanged).

For the case κ = 0, it is easily found that the eigenvalues are given by j 2 ν k +1, , k ∈ N, ∈ N * .

For κ > 0, the boundary conditions yield the system 

where (c, d) is a non-trivial solution to the degenerate system (6.1) with α = α k, . For Lemma 5.1, using (A.3) and ν k+1 = ν k + 1, one easily shows that ∂ r R 0,1 (r) = -r -N-2 2 c α 0,1 J ν 1 (α 0,1 r) + d κ α 0,1 J ν 1 κ α 0,1 r instead of (5.1). The rest of the proof adapts in an obvious fashion. The rest of the section does not use a special value for k nor depends on k being an integer. In conclusion, the following theorem holds in any dimensions. 

Theorem 1 . 1

 11 Denote R k, a function defined by equation (4.1) with (c, d) a nontrivial solution of (4.7) and α = α k, with α k, given by Theorem 4.3.

κκκκκκFig. 1 . 1

 11 Fig. 1.1 Graphs of ϕ 1 for various values of κ.

  θ ) e -ikθ dθ (this integral makes sense because u is smooth). Now we check that ∀k ∈ Z, L(∂ r , r, √ λ , 0, |k|)u k = 0. (3.3)

Proposition 4 . 2

 42 The eigenfunctions of the boundary value problem (1.2) are of the form u = R(r) e ikθ with k ∈ Z and R given by (4.1), where α = √ κ and α is a positive solution of

Fig. 4 . 2

 42 Fig. 4.2 Mapping of intervals by α k, .

  .11) (⇐) If α = j k,n and κ/α = j k,m , one easily see that F k (α) = 0 = F k+1 (α). A similar argument establishes this implication when α = j k+1,n and κ/α = j k+1,m . (⇒) Now let us prove that, if F k (α) = 0 = F k+1 (α) for some 0 < α = √ κ, then α and κ/α have the desired values. In view of (4.10)-(4.11), if F k (α) = 0, one can write 0

  I) = α k+1,-(I) = ] j k,n , j k+1,n [ where I = ] j k,n j k, +n , j k+1,n j k+1, +n [, α k,-(I) = α k+1,-(I) = ] j k+1,n , j k,n+1 [where I = ] j k+1,n j k+1, +n , j k,n+1 j k, +n+1 [. and, in particular, for all n 0,

Lemma 4 . 16

 416 Let k ∈ N and n 1.

1 [Remark 5 . 2

 152 and hence R 0,1 > 0 on [0, 1[. For κ > j 0,1 j 0,2 , the function R 0,1 changes sign as illustrated by Figure 5.1. r κ ∈ ]0, j 0,1 j 0,2 [

Fig. 5 . 2

 52 Fig. 5.2 Graph of R k,1 for various values of κ.

Lemma 5 . 6

 56 Let k ∈ N and n ∈ N \ {0, 1} be fixed. Then for all i ∈ {1, . . . , n -1} and all

1 , 1 [

 11 [1ε, 1[. If R k,1 has a root r 1 ∈ ] j k,nα k,, we have a contradiction with Lemma 5.8 applied with i = n and r 2 = 1.Proposition 5.11 Let k ∈ N, n ∈ N * fixed and κ ∈ ] j k,n-1 j k,n , j k,n j k,n+1 [ (i.e., α k,1 ∈ ] j k,n , j k,n+1 [) with n ∈ N, n 2, then R k,1 has exactly n -1 simple zeros in ]0, 1[. Proof Recall that R k,1 (r) = cJ k (α k,1 r) + dJ k (α k,-1 r), with c > 0 and d > 0 and hence R k,1 > 0 on ]0, j k,1 α k,1[. On the other hand by Lemma 5.10, we know that R k,1 (r) has no root on [j k,n α k,1, 1[. Moreover, by Lemma 5.6, we know that, for all i ∈ {1, . . . , n -1},

+ α 2 - ν 2 k r 2 B 2 2 2 = k + N- 2 2 2 .

 222222 = 0, where ν 2 k = k(k + N -2) + N-Hence, if α > 0, B is a linear combination of r → J ν k (αr) and r → Y ν k (αr), while if α = 0, B is a linear combination of r ν k and r -ν k . So the results of Lemma 2.1 remain valid in dimension N if one replaces r → J k (αr) by r → r -N-2 2 J ν k (αr), with ν k = k + N -2 2 ,

1 ) 2 2

 12 c J ν k (α) + d J ν k κ α = 0, c αJ ν k (α) + d κ α J ν kAs this is nothing but (4.7) with |k| replaced by ν k , for a nontrivial solution (c, d) to exist, α must be a root of F k defined as in (4.5) also with |k| replaced by ν k . Because ν k+1 = ν k + 1 and the proofs of the properties of roots α k, of F k do not use the fact that k is an integer, they remain valid in this context (with j k,n replaced by j ν k ,n ). The radial part R k, of the eigenfunctions is now given by R k, (r) = r -N-cJ ν k (α k, r) + dJ ν k κ α k, r ,

Theorem 6 . 1

 61 Denote R k, a function defined by equation (6.2) with (c, d) a nontrivial solution of (6.1) with α = α k, where α k, the -th positive root of F k (α) := κ α J ν k (α)J ν k κ α -αJ ν k κ α J ν k (α) greater than √ κ.

  If α = 0 and β = 0, then the four linearly independent solutions to (2.4) are J |k| (αr), Y |k| (αr), r k , r -k if k = 0 and J |k| (αr), Y |k| (αr), 1, log r if k = 0. 3. If α = β = 0, then the four linearly independent solutions to(2.4) are J |k| (αr), Y |k| (αr), rJ |k| (αr), rY |k| (αr).

	2.
	1. If α = β both non-zero, then the four linearly independent solutions to (2.4) are
	J |k| (αr), Y |k| (αr), J |k| (β r), Y |k| (β r).
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If κ ∈ [0, j ν 0 ,1 j ν 0 ,2 [, the first eigenvalue is simple and is given by λ 1 (κ) = α 2 ν 0 ,1 (κ) + κ 2 /α 2 ν 0 ,1 (κ) and the eigenfunctions ϕ 1 are radial, one-signed and |ϕ 1 | is decreasing with respect to r. If κ ∈ ] j ν 1 ,n j ν 1 ,n+1 , j ν 0 ,n+1 j ν 0 ,n+2 [, for some n 1, the first eigenvalue is simple and given by λ 1 (κ) = α 2 ν 0 ,1 (κ) + κ 2 /α 2 ν 0 ,1 (κ) and the eigenfunctions are radial and have n + 1 nodal regions. If κ ∈ ] j ν 0 ,n+1 j ν 0 ,n+2 , j ν 1 ,n+1 j ν 1 ,n+2 [, for some n 0, the first eigenvalue is given by λ

S is a spherical harmonic of degree 1.

Moreover the function R 1,1 has n simple zeros in ]0, 1[, i.e., ϕ 1 has 2(n + 1) nodal regions.

A Appendix: Bessel functions

As a convenience to the reader, we gather in this section various properties of Bessel functions (see for instance [START_REF]Standards and Technology. Digital library of mathematical functions[END_REF]) that are used in this paper.

A.1 Recurrence Relations and Derivatives

The Bessel functions J ν satisfies

J 0 (z) = -J 1 (z), (A.4)

A.2 Asymptotic behaviour

When ν is fixed and z → ∞ with |arg(z)| πδ , we have

For any given ν = -1, -2, -3, . . . ,

A.3 Zeros

When ν 0, the positive zeros of J ν are simple and interlace according to the inequalities j ν,1 < j ν+1,1 < j ν,2 < j ν+1,2 < j ν,3 < • • • (A.8)