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UMR 5219
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Foreword

These notes summarize a series of lectures given by Claudia Negulescu at the Institut
supérieur de l’aéronautique et de l’espace (ISAE-SUPAERO) during the years 2019-2022.
They are devoted to an elementary and self-consistent approach of the mathematical
theory emerging in the modelling of the collective behaviour of certain natural phenom-
ena. The notion of entropy plays here a crucial role, in particular entropy dissipative
techniques are the basis for the investigation of the qualitiative behaviour of nonlinear
PDEs.

The lectures are based on published works, which were specifically chosen to illus-
trate different techniques in the field of collective behaviour. The writing was facilitated
by a very careful and critical reading of the mansucript by the two PhD students of
Claudia Negulescu, namely Axel Maupoux and Etienne Lehman. Furthermore the nu-
merical plots were also furnished by these PhD students, such that their contribution
was very useful for rendering this work comprehensible and beneficial. The PhD of
Axel Maupoux is financed by the french Defence Innovation Agency, whereas Etienne
Lehman is financed by the Ecole Normale Supérieure de Lyon.
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Introduction

The central theme of this course is the introduction of a mathematical model for the
description of an autonomous drone swarm, constituted of a large number of drones
which shall self-organize and cooperate in order to perform collective tasks in real-world
situations, such as assistance in emergency situations (forest fire, avalanche, shipwreck,
earthquake, etc), oil and gas pipelines surveys, geo-magnetic surveys, protection of vul-
nerable sites etc. The model will be based on simple mathematical rules describing the
inter-drone interaction forces, like repulsion and attraction for example and resulting
in a global behaviour of the whole swarm. A detailed mathematical analysis of the
designed model as well as numerical simulations shall be performed with the aim to
remain as close as possible to reality.

Understanding the essential characteristics of the emergent collective behaviour of
a drone swarm, requires a deep understanding of the repercussion of each (inter-drone)
force on the overall collective behaviour, as well as of the influence of several factors,
such as the environment, time-delays in the reaction times and inertial effects of the
drones as well as inaccuracies of the on-board sensors. Thus a lot of aspects enter into
the modelling, rendering the design of such autonomous drone swarms very challenging
and interesting from a mathematical point of view.

The present work is thus concerned with the mathematical modelling and analysis
of the autonomous dynamics of a drone swarm. Numerical simulations will be also per-
formed. The manuscript is composed of the following chapters:

• The introduction tries to give a general overview of the existing theory in this
domain;

• Chapter 1 explains briefly how to obtain the Fokker-Planck equation from the
underlying Langevin’s system, which corresponds to Newton’s laws with an addi-
tional stochastic force field (noise term);

• Chapter 2 introduces the entropy methods as a “standard” mathematical tool for
the investigation of the long-time behaviour of solutions to ODE systems;

• Chapter 3 deals with the particular case of drone swarm modelling and the math-
ematical as well as numerical analysis of the introduced model;

• Chapter 4 regroupes some fundamental lemmas and inequalities necessary in the
whole manuscript.
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4 Introduction

0.1 Collective behaviour in nature

Collective motion or self-organization is an astonishing phenomenon, that can be ob-
served in various natural processes, such as fish schools, bird flocks, herds of bulls or
sheeps, insect swarms, cellular dynamics, pedestrian behaviours etc (see Fig. 3.1). Pat-
terns appear due to the organized (cooperative) motion of a large number of small
constituents. Such natural systems composed of inter-connected particles tend to self-
organize into macroscopic structures with the aim to form more intelligent or more
adaptive large-scale dynamics. Self-organization does not happen by chance, but rather
due to the numerous, specific interactions among the lower-level components of the sys-
tem. The rules specifying these interactions among the components are local, without
reference to the global behaviour of the swarm, and decisions are made by the compo-
nents/particle themselves.

Figure 1: Examples of collective behaviours arising in nature [24–26].

The underlying forces leading to self-organization can be of various type, as for example:

• physical mechanisms (gravity, electromagnetic forces, nuclear forces, ...);

• chemical mechanisms (pheromones, Van-der-Waals forces, ...);

• instinctive survival mechanisms (fear, feeding, ...).

Self-organized systems obey evolution equations which are generally highly non-linear.
Such models take the form of ODE systems or transport-type PDEs, where the individ-
uals are submitted to forces generated by their neighbours. Depending on the nature
of the inter-particle interactions, the collective behaviour of the swarm may differ, for
instance individuals can aggregate, align their velocities or disperse.

The systematic mathematical study of ”flocking”-models began with Viscek and his
collaborators [23], with the introduction of a stochastic, time-discrete model. Later
Cucker-Smale [8, 9] proposed a deterministic, time-continuous model. Other models
have been then proposed for the description of the collective behaviour of fishes [10,20]
and bacteria [4]. Among the numerous existing models one is particularly appreciated,
namely the three-zone model, based on Reynold’s empirical rules, namely

• Flocking: the desire of individuals to stay together, for safety or social reasons;

• Collision avoidance: individuals tend to repel, when coming too close together;

• Velocity matching: attempt to keep similar velocities and flying directions as
its neighbours.
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0.2 Drones

To model mathematically the dynamics of a swarm of autonomous flying robots like
drones, the observation of natural emergent systems can offer lot of inspiration. By
autonomous we mean that every agent uses on-board sensors to measure its state as
well as the states of its neighbours and performs all controlling computations with an
on-board computer, i.e. the control system is decentralized (see Fig. 2 for some ex.).
Important to underline is that the paths of the agents are not predefined, but emergent
from the underlying inter-particle relations as well as from exteriour force-fields.

One essential question to be asked is: ”Which is the interaction between the individ-
uals at the microscopic level, which gives rise to the desired macroscopic bahaviour?”
There is no need to assume sophisticated local inter-particle connections to provoke a
complex macrosopic pattern. Models describing clouds or swarms of particles are essen-
tially based on a delicate balance between long-range attraction (to form a cloud) and
short-range repulsion (to avoid collisions). Only when the desired macroscopic dynamics
is not obtained that more complex rules have to be considered. Contrary to existing
models for biological swarm behaviours, in a drone model one should additionally take
into account for some system-specific features, such as:

• Inertia: The drones are unable to change immediately their position and velocity,
due to their inherent inertia;

• Time delays: Each drone needs time to receive and process the information got
from its neighbours;

• Noise: Inaccuracy of the sensors measuring the position and velocity of the drone
itself as well as of its neighbours is a so-called “inner noise” to be taken into
account, whereas “outer noise” are unpredictable environmental effects, such as
the wind for example;

• Autonomy: Small batteries due to weight restrictions lead to short life-times for
drones.

Other aspects which have to be taken into account, are for example the fact that losing
one or more drones has to have little impact on the overall swarm dynamics. Without
going too much into details, it is clear that an engineer has also other criteria to consider,
as flexibility and robustness of the drone swarm, efficiency and cost constraints.

Figure 2: Examples of application of some drone swarms [27–29].
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0.3 Mathematical problematic

Modelling is the art of taking a real-world situation and of trying to find an accurate
mathematical description for it. It is more than a science, because it involves choices
that can not really/rationally be justified. Intuition and personal preferences for example
play a major role (for ex. when deciding whether a deterministic or a stochastic approach
is better adapted for a specific situation). To imagine how difficult such mathematical
modelling can be in our particular situation, think of some questions which might be
asked, like “Why do we choose this type of a repulsion/attraction force between drones?”
or “Why does one models the environment in such a manner?” Furthermore, a math-
ematical model should not only reproduce a specific natural phenomenon, but it has
also to be consistent with this phenomenon, meaning that the chosen parameters, as for
ex. the maximal velocity of the agents, have to be conceivable from a physical/natural
point of view.

At the microscopic level, the dynamics of a cloud composed of N particles is based
on Newton’s classical laws of mechanics, describing the time-evolution of the position
of each individual xi(t) as well as of its velocity vi(t) via the equation
{

x′i(t) = vi(t) ,

v′i(t) = F ext(t, xi, vi) + F int
i (x1, · · · , xN , v1, · · · , vN) ,

∀i = 1, . . . , N , (1)

where F ext represents an exteriour force term, for example describing the wind, obstacles
or the target of the drones, and F int

i is the inter-particle force term exerted on particle
i by the other surrounding particles. We are thus concerned with a coupled, non-linear
ODE system, which cannot be solved explicitly, however some qualitative study of the
stability of particular solutions, such as equilibrium patterns, can be performed as well
as the study of long-time asymptotic.

The delicate modelling part is now to choose adequate force terms, which permit
a realistic description of the collective behaviour one is observing or is interested to
generate. Depending on the specific choice of these force terms the model can have
rather different properties. The inter-drone interaction force is directly responsible for
the emergence of specific patterns, like milling, flocking, clustering, etc.

0.3.1 ODE, Lyapunov functional, equilibrium

As we just saw, the mathematical modelling of collective behaviours in nature leads to
ODE systems of the following form

{

u′(t) = f(t, u(t)) , ∀t > 0 ,

u(0) = u0 ∈ Ω ,
(2)

where the (non-linear) function f : I × Ω → R
d, with Ω ⊂ R

d, is assumed to satisfy
the standard conditions for the existence and uniqueness of a global solution u : I →
Ω (Cauchy-Lipschitz theorem). Let us recall now rapidly the mathematical tools of
Lyapunov stability theory, permitting to analyse in more details the long-time behaviour
of such ODEs.
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Definition 0.3.1 (Equilibrium point)
A solution u⋆ is called equilibrium corresponding to (2) if f(t, u⋆) ≡ 0 for all t ≥ 0.

Remark that by translation one assumes often that the investigated equilibrium point
is u⋆ ≡ 0. Moreover, if several equilibria exist, one usually investigates the stability of
each one separately.

Definition 0.3.2 (Stability in the sense of Lyapunov)
The equilibrium point u⋆ is stable in the sense of Lyapunov if for each ε > 0 there exists
a constant δ > 0 such that one has the implication

||u(0)− u⋆|| < δ ⇒ ||u(t)− u⋆|| < ε ∀t > 0 .

An equilibrium point is said to be ”unstable”, if it is not stable.

Lyapunov stability is a very mild requirement for equilibrium points, as it does not
require that trajectories starting near an equilibrium, tend towards this equilibrium
asymptotically in time, i.e. for t→ ∞.

Definition 0.3.3 (Asymptotic stability)
The equilibrium u⋆ of (2) is asymptotically stable, if

• u⋆ is stable (in the sense of Lyapunov);

• u⋆ is locally attractive, meaning there exists δ > 0 such that

||u(0)− u⋆|| < δ ⇒ lim
t→∞

u(t) = u⋆ .

It is important to note that the definition of asymptotic stability does not quantify the
rate of convergence towards this equilibrium.

Definition 0.3.4 (Exponential stability)
The equilibrium u⋆ of (2) is exponentially stable if there exist some constants C, κ > 0
and δ > 0 such that

||u(0)− u⋆|| < δ ⇒ ||u(t)− u⋆|| ≤ C e−κ t ||u0 − u⋆|| , ∀t > 0 .

The largest constant κ > 0 which may be used is called ”rate of convergence”.

Exponential stability is a strong form of stability, which is very useful in applications.
Indeed, exponentially stable equilibria are very robust with respect to perturbations and
are hence preferred configurations.

Very often it is possible to determine whether an equilibrium of a nonlinear system
is locally stable, by simply investigating the stability of the corresponding linearized
system, linearized around the equilibrium point. This approach is the so-called Lya-
punov’s linearized method, and is based on the following theorem.

Let us consider the following linearized system, with A ∈ R
d×d a constant matrix and

u0 ∈ R
d

{

u′(t) = Au(t) , ∀t > 0 ,

u(0) = u0 .
(3)
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Lemma 0.3.5 (Stability of linear systems)
Let us assume that A is regular, such that u⋆ ≡ 0 is the only equilibrium of (3). If

• A has at least one eigenvalue with strictly positive real part, then the equilibrium
u⋆ is unstable;

• A has all eigenvalues with non-positive real parts, and those eigenvalues having
zero real-part are non-defective (algebraic multiplicity is equal to geometric one),
then the equilibrium u⋆ is stable;

• A has all eigenvalues with negative real parts, then the equilibrium u⋆ is asymp-
totically stable.

Lyapunov’s direct method is different and allows to determine the stability of
a system without linearization and without explicitly integrating the differential equa-
tion. The method is based on some physical arguments, in particular on the existence
of some “energy” or “entropy” E in the system and on the study of the rate of change
of this energy during the time evolution of the system. Briefly, if E is positive definite
and its derivative along the trajectories u(t) of the system is non-positive, then one
can show that the equilibrium point is stable. By imposing additional conditions on E
and d

dt
E(u(t)) one can even show asymptotical or exponential stability, both locally and

globally.

To be more precise, let us consider the autonomous system
{

u′(t) = f(u(t)) , ∀t > 0 ,

u(0) = u0 ∈ Ω ,
(4)

with f : Ω ⊂ R
d → R

d being of class C1 (could be rendered weaker), assuming that a
global solution u : R → Ω exists, and let u⋆ ∈ Ω be the unique equilibrium solution.

Definition 0.3.6 (Positive definite function)
A continuous function E : Ω ⊂ R

d → R, satisfying

E(u) > 0 , ∀u ∈ Ω\{u⋆} , as well as E(u⋆) = 0 ,

is called positive definite (around u⋆). If these requirements are valid only locally, mean-
ing for all u ∈ Ω with ||u|| ≤ R, then one says that E is locally positive definite.

Theorem 0.3.7 (Stability/asymptotic stability)
Let us consider the autonomous ODE (4), with solution u : R → Ω and equilibrium
point u⋆ ∈ Ω. If there exists a continuously differentiable functional E : Ω ⊂ R

d → R,
such that
(i) E is positive definite around u⋆ and
(ii) d

dt
E(u(t)) ≤ 0 along the trajectories u(t) of (4) ,

then the equilibrium u⋆ is stable.
If in addition

(iii) − d
dt
E(u(t)) is positive definite around u⋆ ,

then u⋆ is asymptotically stable.
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Exponential stability is a special case of asymptotic stability, with a particular conver-
gence rate.

Theorem 0.3.8 (Exponential stability)
Let us consider the autonomous ODE (4), with solution u : R → Ω and equilibrium
point u⋆ ∈ Ω. If there exists a continuously differentiable functional E : Ω ⊂ R

d → R,
such that
(i) E is positive definite around u⋆ and
(ii) d

dt
E(u(t)) ≤ −κ E(u(t)) along the trajectories of (4), with some constant κ > 0 ,

then u⋆ is exponentially stable.

In Chapter 2 we shall give some details about how to find such Lyapunov functionals for
specific ODE-systems and how to prove the asymptotic stability of equilibrium solutions.

0.4 Some examples of flocking models

Let us consider in the following a particle system consisting of N identical agents with
positions and velocities denoted by (xi(t), vi(t)) ∈ R

d × R
d, and masses mi = 1 for

i = 1, . . . , N , where d = 2 or d = 3. The particles are interacting with each other via
simple local rules, to be defined in the following. The aim is to investigate, starting
from a given initial configuration (x0i , v

0
i )
N
i=1 ∈ (Rd × R

d)N , the long time behaviour of
the whole particle system. For this, let us define what we mean with flocking.

Definition 0.4.1 A multi-particle system {(xi, vi)}Ni=1 is said to have an asymptotic
flocking pattern, if the following two conditions are satisfied:
(i) (Aggregation) The spatial diameter D(t) of the particle cloud is uniformly bounded
in time, meaning

sup
t≥0

D(t) <∞ , D(t) := max
i,j

||xi(t)− xj(t)|| .

(ii) (Velocity alignment) The velocity diameter A(t) of the particle cloud tends to-
wards zero as t→ ∞, namely

lim
t→∞

A(t) = 0 , A(t) := max
i,j

||vi(t)− vj(t)|| .

Flocking requires thus the emergence of alignment, hence consensus in velocity. Often
the word swarming appears also in literature, usually in relation with insect swarms. It
is a less restrictive notion than flocking, requiring only cohesion, namely

sup
t≥0

max
i

||xi(t)− xc(t)|| <∞ , sup
t≥0

max
i

||vi(t)− vc(t)|| <∞ ,

where

xc(t) :=
1

N

N
∑

i=1

xi(t) , vc(t) :=
1

N

N
∑

i=1

vi(t) , ∀t ∈ R
+ ,

are the average position and velocity of the particle cloud. Let us present now two
well-known mathematical models for the description of a particle flock dynamics and
recall the results permitting to show flocking under certain conditions.
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0.4.1 Cucker-Smale model

The Cucker-Smale model is a very basic model describing the dynamics of a cloud
consisting of N particles submitted only to a velocity-alignment force, permitting to
obtain a certain self-organization (flocking), if the communication function is sufficiently
large as shall be seen in the following. The evolution of each particle, with position and
velocity (xi, vi) ∈ R

d × R
d is governed for all t ≥ 0 by Newton’s laws















x′i(t) = vi(t) ,

v′i(t) =
1

N

N
∑

j=1

ψ(|xi − xj |) (vj − vi) ,
∀i = 1, . . . , N , (5)

where ψij := ψ(|xi−xj |) represents the strength of the velocity-alignment (communica-
tion strength) between individual i and j and depends on the relative distance between
the particles. One often assumes that ψ is a positive, decreasing function, i.e. satisfying

ψ ∈ C1(R+
∗ ) , ψ(r) > 0 and ψ′(r) ≤ 0 ∀r > 0 . (6)

Two simple communication strengths can be found in literature, a bounded respectively
a singular one, namely

ψb(r) :=
α

(1 + r2)β/2
, ψs(r) :=

α

rβ
, α > 0 , β ≥ 0 , r ∈ R

+ . (7)

The strength of the communication weight can be expressed in terms of integrability
conditions at short or long range, namely for some r0 > 0

∫ ∞

r0

ψ(r) dr = ∞ (long range condition, heavy tail) ,
∫ r0

0

ψ(r) dr = ∞ (short range condition) .

These two conditions shall permit to investigate at one hand the flocking property
(linked to the long-range condition) and the collision avoidance (linked to the short-
range condition). Let us observe furthermore that the symmetry of the communication
weight (ψij = ψji) implies immediately the conservation of the total momentum. Indeed,
introducing the center of mass couple (xc(t), vc(t)) via

xc(t) :=
1

N

N
∑

i=1

xi(t) , vc(t) :=
1

N

N
∑

i=1

vi(t) , ∀t ∈ R
+ ,

one can show that vc(t) = vc(0) and xc(t) = xc(0)+ tvc(0), such that by translation, one
can assume in the following that

xc(t) ≡ 0 , vc(t) ≡ 0 , ∀t ∈ R
+ .

Let us introduce furthermore the notation

X(t) := (xi(t))
N
i=1 , ||X||22 :=

N
∑

i=1

||xi||2 , ||X||∞ := max
1≤i≤N

||xi|| .

Then one has the following flocking theorem in the regular case:
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Theorem 0.4.2 [17] (Flocking in the bounded case)
Let (xi, vi)

N
i=1 be the unique global solution to (5) with regular communication weight ψb

and initial conditions which are non-collisional, namely x0i 6= x0j for all 1 ≤ i 6= j ≤ N .
Then :
(i) if β ∈ [0, 1] (long-range cond.), one has an unconditional flocking , meaning there
exist two constants dm, dM such that

0 ≤ dm ≤ ||X(t)||2 ≤ dM , ||V (t)||2 ≤ ||V 0||2 e−ψb(dM )t , ∀t ∈ R
+ .

(ii) if β ∈ (1,∞), we are in the conditional flocking case, namely for initial conditions
satisfying ||V 0||2 <

∫∞

||X0||2
ψb(r) dr, there exist two constants dm, dM such that

0 ≤ dm ≤ ||X(t)||2 ≤ dM , ||V (t)||2 ≤ ||V 0||2 e−ψb(dM )t , ∀t ∈ R
+ .

(iii) for any β ≥ 0 if one has additionally ||V 0||2 <
∫ ||X0||2
0

ψb(r) dr, then dm > 0.

This last theorem does not say something about the collisionality of the particles, it only
tells us that no finite-time collapse to a one-point configuration can occur if dm > 0.

In the strong singular case, one can show even more, namely the non-collisonality of
the agents, regardless the initial data. Let us denote the distance between the particles
as rij(t) := ||xi(t)− xj(t)||, then we have the following result.

Theorem 0.4.3 [6] (Flocking in the singular case)
Let us consider (5) with singular communication weight ψs satisfying (6) as well as the
strong singularity condition in r = 0 (short-range cond.), i.e.

∫ r0

0

ψs(r) dr = ∞ for each r0 > 0 ,

which is for ex. satisfied for ψs(r) = α
rβ

with α > 0 and β ≥ 1 and assume initial
conditions which are non-collisional, namely x0i 6= x0j for all 1 ≤ i 6= j ≤ N . Then
(i) system (5) admits a unique global and smooth solution in time, with non-collisional
trajectories, namely

xi(t) 6= xj(t) for all 1 ≤ i 6= j ≤ N and ∀t ≥ 0 ;

(ii) if furthermore the initial conditions satisfy the condition

||V 0||∞ <
1

2

∫ ∞

2 ||X0||∞

ψs(r) dr ,

there exists positive functions resp. constants 0 < rm(t) < rM such that

0 < rm(t) ≤ rij(t) ≤ rM , ||V (t)||∞ ≤ ||V 0||∞ e−ψs(2 rM )t , ∀t ∈ R
+ .

Note that rm(t) might go to zero as t → ∞, such that collisions are possible in the
asymptotics of long time.

In the weak singularity case (β ∈ (0, 1)) the particles can collide and stick together, the
existence of a unique (local) solution is however obtained thanks to the weak singularity
of ψs, in particular to the integrability of ψs at the origin [21, 22].
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0.4.2 Three-zone model

The three-zone model describes the dynamics of the cloud of N particles via three
simple interaction rules, namely repulsion at short-range, alignment and attraction at
long-range. The evolution of each particle, with position and velocity (xi, vi) ∈ R

d×R
d,

is governed by the following Newton’s laws















x′i(t) = vi(t) ,

v′i(t) =
1

N

N
∑

j=1

ψ(|xi − xj |) (vj − vi)−
1

N

N
∑

j=1,j 6=i

∇xi [ϕ(|xi − xj |)] ,
∀i = 1, . . . , N ,

(8)
where the function ψij := ψ(|xi−xj |) is the communication weight between the particles,
satisfying the assumptions of the Cucker-Smale model for example. Concerning the
potential ϕ it contains the repulsion and attraction part, and we shall assume that

ϕ ∈ C1(R+
∗ ) , ϕ(r) > 0 ∀r > 0 , lim

r→0,∞
ϕ(r) = ∞ . (9)

Remark that

∇xiϕ(rij) = −ϕ′(rij)
xj − xi
rij

,

such that we have attraction for ϕ′(r) > 0 and repulsion in the contrary case (see Fig.
3).

Figure 3: Illustration of the three zone model interaction potentials.

Theorem 0.4.4 [5] (Flocking for the 3zone model)
Let us suppose the communication weight ψb bounded, and ψb resp. ϕ satisfying (6)
resp. (9). Then for any non-collisional initial condition (x0i , v

0
i )
N
i=1 the three zone model

(8) admits a unique global solution (xi, vi)
N
i=1, which converges asymptotically in time
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towards a flock, meaning there exists two constants rm, rM > 0 (dependent on N but not
on t), such that for all i, j = 1, · · · , N

0 < rm ≤ rij(t) ≤ rM ∀t ≥ 0 , A(t) →t→∞ 0 .

In particular no collisions occur during the dynamics of the system.

0.5 Different levels of mathematical description

Let us finish this introductory chapter by remarking that many choices have to be made
in order to work out a mathematical model for the description of a specific phenomenon.
For example one has to single out if a deterministic or a stochastic model is better
suited for the description, or to decide wether a discrete or a continuous approach
is more adequate. Furthermore in the context of the dynamics of large systems of
interacting particles, the level of description has also its importance, in particular one
can distinguish between:

• the particle description, based on the laws of motion of classical mechanics
(Newton’s laws) for the description of each individual particle trajectory (xi(t), vi(t))

N
i=1

(individual-based models);
→ the particle dynamic model is the most intuitive and physically most accurate
one, but also the most inadequate/heavy from a numerical point of view (6N
degrees of freedom, where N is the number of particles).

• the kinetic description, based on a collective swarm description via the particle
distribution function f(t, x, v), solution of the Vlasov equation. Here f(t, x, v) dv dx
represents the number of particles to be found at time t in the infinitesimal phase-
space volume dv dx around (x, v);
→ although the precise locations of the individual particles are lost in the kinetic
theory, sufficient knowledge of the particle motion is still incorporated and the
numerical costs are still rather high, the system being 6 dimensional.

• the fluid description, describing the particle swarm in terms of averaged macro-
scopic quantities, depending only on t and x, as for example the particle density
n(t, x), the velocity u(t, x), the pressure p(t, x), solutions of the well-known con-
servation laws of fluid mechanics;
→ fluid models are numerically very attractive, but poor from a physical point of
view, based on some empirical assumptions for the closure.

These successive models differ in complexity and precision. They are increasingly simpli-
fied, in the sense that they can be obtained from one another by decreasing the number
of degrees of freedom, hereby becoming less accurate. Depending on the physical phe-
nomenon one wants to investigate, one has to choose within all these models the one
which is the most accurate with respect to the particular physical situation, paying at-
tention at the same time to the numerical costs.

Finally, let us also mention that when designing a collective dynamics model, the
mathematical description of the inter-particle interactions is not a simple task. It
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strongly depends on the specific nature of the examined population, for example if one
considers animals, humans or robots. The different internal (microscopic) behaviours
of these three populations can then be observed on the emergent (macroscopic) overall
behaviour. For example humans are much more individualists than animals, thus it is
more difficult for humans to be part of a group and this originality has to be taken
into account in the inter-particle description. For animals hierarchy and rules are very
important. A real population is a complexe system, it involves plenty of physical, social,
biological and cognitive variables. Contrary to animals and humans, robots (drones for
ex.) are designed, such that the inter-particle rules are often immagined by the designer
and not given by a natural law. However these rules have to be realistic from a practical
point of view.



Chapter 1

The Fokker-Planck equation

In this chapter we shall explain how one obtains the Fokker-Planck equation start-
ing from Newton’s laws of classical mechanics, where some stochastic noise has been
introduced, to describe the interaction with an environment. The concept of “stochastic
process” is needed for this.

This chapter could seem somehow apart in this manuscript, however it shows how
one makes the link between the microscopic models (for ex. the individual-based models)
and the mesoscopic models, namely the kinetic approach.

1.1 The Langevin system

The botanist Robert Brown (1773-1858) investigated the chaotic mouvement of pollen-
particles in suspension in water. At that time the scientific world was influenced by
Newton’s mechanics and its determinism, such that the erratic dynamics of the pollen-
particles generated rather hard interpretation problems.

Figure 1.1: Example of the erratic dynamics of a particle.

15
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The main idea of Paul Langevin (1872-1946) was that Newton’s equations of classical
mechanics remain valid in average for the Brownian, erratic particle motion. Thus, for
a particle evolving in a viscous environment with friction coefficient γ > 0, the average
dynamics is given by Newton’s laws

m
d

dt
〈v(t)〉 = −mγ 〈v(t)〉 , where 〈v(t)〉 = d

dt
〈x(t)〉 , ∀t ∈ R .

The average 〈·〉 is taken over all possible trajectories of the particles submitted to a
random force field η(t). The equation however which governs in detail the dynamics
of one particle submitted to this force field η(t) (noise term) is the so-called Langevin
equation given by

d

dt
v(t) = −γ v(t) + η(t) , ∀t ∈ R . (1.1)

It is a stochastic differential equation, which incorporates two force terms, the viscous
force −γ v(t) and a fluctuating force η(t), which represents the incessant impacts of the
environmental molecules on our Brownian particle. The choice of this last force field η(t)
is done in such a manner to model in the most realistic way the effects of the microscopic
collisions on the particles. It is an unknown force field, rather complicated, and which
has to be treated stochastically. We shall suppose that η(t) has a Gaussian distribution
(Gaussian white noise), meaning that we assume zero average and zero correlation time,
i.e.

〈η(t)〉 = 0 , 〈η(t) η(t′)〉 = Γ δ0(t− t′) , Γ > 0 , ∀t, t′ > 0 . (1.2)

The constant Γ > 0 measures somehow the strength of the fluctuating force-field. Each
solution of the Langevin equation (1.1) represents a different trajectory of the particle,
depending on the initial condition v0 as well as on the random force field η(t), and is
given by Duhamel’s formula

v(t) = v0 e
−γ t +

∫ t

0

e−γ (t−s) η(s) ds , ∀t > 0 . (1.3)

As η(t) is a Gaussian stochastic process and as the sum or the integral of Gaussian vari-
ables are again Gaussian variables, we can deduce that v(t) is also a Gaussian stochastic
process. Hence for its characterization it is enough to compute the average µ(t) = 〈v(t)〉
and the variance σ(t), averaging over all possible outputs, and to define the correspond-
ing velocity probability distribution function via

f(t, v) :=
1

√

2πσ2(t)
e
− |v−µ(t)|2

2σ2(t) . (1.4)

In view of properties (1.2), we get by averaging (1.3) on one hand

〈v(t)〉 = v0 e
−γ t →t→∞ 0 ,

and on the other hand

v2(t) = v20 e
−2 γ t + 2v0 e

−γ t

∫ t

0

e−γ (t−s) η(s) ds+

∫ t

0

∫ t

0

e−γ (t−s) e−γ (t−s
′) η(s) η(s′) ds′ds ,
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such that

〈v2(t)〉 = v20 e
−2 γ t +

∫ t

0

∫ t

0

e−γ (t−s) e−γ (t−s
′) Γ δ0(s− s′) ds′ds

= v20 e
−2 γ t +

Γ

2 γ

(

1− e−2 γ t
)

→t→∞
Γ

2 γ
.

What can be observed about these two computations is that the initial conditions are
lost after some time, the mean velocity tends towards zero in the long-time asymptotics,
however the mean squared velocity has a non-zero, finite limit. In the long-time limit
t→ ∞ the Brownian particle gets in equilibrium with the surrounding medium. If this
one is in thermodynamic equilibrium, characterized by a temperature T (thermal bath),
the equirepartition theorem of thermodynamics relates the temperature of the medium
to the average kinetic energy of the particle via

m

2
〈v2∞〉 = 1

2
kB T ⇒ Γ = 2

kB T

m
γ , (1.5)

where kB is the so-called Boltzmann constant. In other words, in the long-time limit

〈v2(t)〉 approaches the squared of the thermal velocity given by vth :=
√

kB T
m

. The

identity (1.5) relates a quantity associated with the fluctuations, i.e. Γ, to the coeffi-
cient describing the dissipation, i.e. γ (fluctuation-dissipation relation). It expresses
the balance between friction, which tends to drive the system towards an inactive state
, and noise which tends to keep the system in mouvement.

We are now able to characterize the solution to the Langevin equation (1.1) as a
Gaussian process with mean

µ(t) := 〈v(t)〉 = v0 e
−γ t , ∀t > 0 , (1.6)

and variance function

σ2(t) := 〈[v(t)− 〈v(t)〉]2〉 = kB T

m

(

1− e−2 γ t
)

, ∀t > 0 . (1.7)

In the long-time asymptotics we obtain the following equilibrium probability distribution
function for the velocities of our Brownian motion

f∞(v) :=
1

√

2πσ2
∞

e
− v2

2σ2
∞ with σ2

∞ :=
kB T

m
= v2th , µ∞ = 0 , (1.8)

which is the so-called Maxwell-Boltzmann distribution function.

1.2 The Fokker-Planck equation

The question is now how to obtain the probability distribution function of the velocities
for each time instant t. In other words instead of focusing, as in the previous subsec-
tion, on the solution v(t) to the Langevin equation (1.1), we shall be rather interested
in finding an equation governing the dynamics of the velocity probability distribution
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function f(t, v), where f(t, v) dv represents the probability to find at instant t the Brow-
nian particle with velocity in the volume dv around v. This equation will be found by
making a sort of balance between the gain and the loss terms in the velocity variable v,
namely the time-fluctuations of the quantity f(t, v) are given by

∂tf(t, v) =

∫ ∞

−∞

[

b̃(v, v′) f(t, v′)− b̃(v′, v) f(t, v)
]

dv′ , ∀(t, v) ∈ R
+ × R , (1.9)

where b̃(v, v′) is the so-called cross-section and gives the probability per unit time of
a velocity transition from v′ towards v. We suppose here that this cross-section is in-
dependent on time, so that memory-effects are neglected, and that only small velocity
changements can occur.

In order to remodel a little bit more the balance equation (1.9), we shall introduce
the new velocity variable y := v− v′ which shall be considered as small when compared
with v, and we shall define the new cross-section

b(u− w,w) := b̃(u, w) , ∀u, w ∈ R .

Assuming the necessary regularity, we have thus

∂tf(t, v) =

∫ ∞

−∞

[b(v − v′, v′) f(t, v′)− b(v′ − v, v) f(t, v)] dv′

=

∫ ∞

−∞

[b(y, v − y) f(t, v − y)− b(−y, v) f(t, v)] dy

=

∫ ∞

−∞

[b(y, v − y) f(t, v − y)− b(y, v) f(t, v)] dy ,

where in the second term of the last line, we made the change of variable y → −y. A
Taylor expansion around v with |y| ≪ |v| yields

b(y, v − y) f(t, v − y) = b(y, v) f(t, v)− y ∂v [b(y, v) f(t, v)] +
y2

2
∂2vv [b(y, v) f(t, v)] + · · ·

Recalling that b is concentrated around y ≈ 0, we have thus altogether

∂tf(t, v) ≈
∫ ∞

−∞

{

−y ∂v [b(y, v) f(t, v)] +
y2

2
∂2vv [b(y, v) f(t, v)]

}

dy

= −∂v
{(
∫ ∞

−∞

yb(y, v) dy

)

f(t, v)

}

+
1

2
∂2vv

{(
∫ ∞

−∞

y2b(y, v) dy

)

f(t, v)

}

.

This can be rewritten as

∂tf(t, v) = −∂v [A(v) f(t, v)] +
1

2
∂2vv [B(v) f(t, v)] ,

where

A(v) :=

∫ ∞

−∞

y b(y, v) dy , B(v) :=

∫ ∞

−∞

y2 b(y, v) dy . (1.10)
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One can use now the expression of the solution to the Langevin equation (1.1) in order
to compute A(v) respectively B(v) and to obtain

A(v) = −γv , B(v) = 2γ
kB T

m
.

Indeed, replacing y = v′ − v in (1.10), thus dy = dv′, reminding that b̃(v′, v) is the
probability per unit time of a velocity transition from v towards v′, and denoting by
v′ := v(∆t) the solution of the Langevin equation (1.1) with initial condition v, then
one has

A(v) = lim
∆t→0

〈v(∆t)− v〉 1

∆t
= lim

∆t→0
v
e−γ∆t − 1

∆t
= −γ v ,

where the mean 〈·〉 is taken over all realizations of the random force field η(t). Similar
computations give rise to the B(v) expression. This leads finally to the Fokker-Planck
equation

∂tf(t, v) = γ∂v

[

v f(t, v) +
kB T

m
∂vf

]

. (1.11)

This is a deterministic partial differential equation on the probability distribution func-
tion f , which has the form of a drift-diffusion equation in the velocity variable. Let us
underline here the interpretation of kB T

m
as a diffusion coefficient in v. The right hand

side of (2.9) can be rewritten in the form γ∂v
[

kB T
m

M ∂v
(

f
M

)]

, where M is defined
in (1.12). These reformulation permits to obtain in a simple manner the stationary
solutions to the Fokker-Planck equation.

It is sometimes interesting to write the Fokker-Planck equation as a continuity equa-
tion

∂tf(t, v) + ∂vJ (t, v) = 0 ,

with the probability current given by

J (t, v) := −γv f(t, v)− γ
kB T

m
∂vf(t, v) .

Integrating the continuity equation over the velocity-interval [v−, v+] yields

∂t

∫ v+

v−

f(t, v) dv = J (t, v−)− J (t, v+) ,

which means that a change in the probability density distribution in the interval [v−, v+]
comes from changes in the current-fluxes through the boundaries.

1.3 Properties and remarks

The Fokker-Planck equation is a basic equation in many areas of physics and biology. It
models a set of particles experiencing both, diffusion and drift. The interplay between
these two effects is at the basis of most of its properties.

Stationary solutions
If the environment of our Brownian particle is in thermal equilibrium at temperature
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T , then the Brownian particle is thermalized, and the stationary solutions of (2.9) are
given by the Maxwell-Boltzmann distribution function

f eq(v) :=

√

m

2πkB T
e
− mv2

2 kB T , ∀v ∈ R . (1.12)

We recognize the equilibrium probability function f∞ found in (1.8).

Fundamental solutions
Another important question is to find the fundamental solutions of (2.9) if possible, the
so-called Green’s functions. In other words, we are searching for the solutions of the
Fokker-Planck equation with initial condition given by g(0, v; v0) := δ0(v − v0) for an
arbitrary v0 ∈ R. These are given by

g(t, v; v0) :=

√

1

2π σ2(t)
e
− (v−µ(t))2

2σ2(t) ∀t > 0 ,

which is nothing but a Gaussian distribution with mean velocity µ(t) and spread/deviation
σ(t) given in (1.6)-(1.7). The fundamental solutions enable now to obtain the solutions
of the Fokker-Planck equation (2.9) for any initial condition f0, namely via

f(t, v) =

∫

R

g(t, v; v0) f(v0) dv0 .

Physical properties
Let us now consider the following linear Fokker-Planck equation

∂tf(t, v) = ∇v · [v f(t, v) +∇vf ] , ∀(t, v) ∈ R
+ × R

d ,

and observe that it has the following characteristics:

• One conservation law

∂tρ = 0 , ρ(t) :=

∫

Rd

f(t, v) dv .

• A natural Lyapunov functional, the free-energy, composed of the sum of the en-
tropy and the kinetic energy, namely

E(f) :=
∫

Rd

f log(f) dv +

∫

Rd

|v|2
2
f dv .

• The dissipation-term

D(f)(t) := − d

dt
E(f(t)) =

∫

Rd

1

f
|∇vf + v f |2 dv ≥ 0 , ∀t ∈ R

+ ,

which can be rewritten as the so-called Fisher information of f with respect to

the equilibrium distribution feq := M(v) = 1
(2π)d/2

e−
|v|2

2 , namely D(f) = I(f |M),

where

I(f |g) :=
∫

Rd

f

∣

∣

∣

∣

∇v log

(

f

g

)
∣

∣

∣

∣

2

dv .
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Force field from a potential
Finally let us remark that if the particle is immersed in an exteriour potential-field φ(x),
yielding an additional force Fext(t, x) := −∂xφ(t, x), then the Fokker-Planck equations
becomes space-dependent and writes

∂tf(t, x, v) + v ∂xf − ∂xφ(t, x) ∂vf = γ∂v

[

v f(t, x, v) +
kB T

m
∂vf

]

. (1.13)

It is now possible to make use of the Sobolev inequalities, to get an estimate on the
speed of return of the distribution function f towards the equilibrium feq.

Boundary conditions
When one is considering the Fokker-Planck equation in a bounded domain Ω ⊂ R

d,
then boundary conditions have to be specified. Different boundary conditions can be
imagined, as for example reflecting boundary conditions (impenetrable wall)

f(t, x, Rx v) = f(t, x, v) , ∀x ∈ ∂Ω , Rxv := v − 2(v · n(x))n(x) ,

or absorbing boundary conditions (absorbing wall), meaning f(t, x, v) = 0 for all outgoing
velocities v and x ∈ ∂Ω.
In contrast with this, if Ω = R

d natural boundary conditions are imposed, which require
that the distribution function is vanishing as |x| → ∞.

1.4 Variational framework for the Fokker-Planck equa-

tion

The linear Fokker-Planck equation
{

∂tf(t, v)−∇v · [v f +∇vf ] = 0 , ∀(t, v) ∈ R
+ × R

d ,

f(0, ·) = fin ,
(1.14)

is of parabolic type and has a very nice variational framework. Introducing the weighted
Hilbert-spaces

L2
µ :=

{

f ∈ L2(Rd) /

∫

Rd

|f |2 dµ <∞
}

, (f, g)µ :=

∫

Rd

f g dµ , (1.15)

H1
µ :=

{

f ∈ L2
µ / ∇vf ∈ (L2

µ)
d
}

, (f, g)H1
µ
:= (f, g)µ + (∇vf,∇vg)µ , (1.16)

with measure dµ := M−1 dv and M(v) := 1
(2π)d/2

e−|v|2/2, one can show that Q(f) :=

∇v · [v f +∇vf ] is a linear, bounded operator defined as

Q : H1
µ → H−1

µ , 〈Q(f), g〉H−1
µ ,H1

µ
:= −(vf +∇vf, vg +∇vg)µ ,

where H−1
µ denotes the dual space of H1

µ. It is also important to remark that for f ∈ H1
µ

one has vf ∈ L2
µ. This can be shown in 1D via a Hermite decomposition. Indeed,

defining the Hermite functions {ψk}k∈N recursively as
√
k + 1ψk+1(v) = v ψk(v)−

√
k ψk−1 , ψ−1 ≡ 0 , ψ0 ≡ M , ψ1 ≡ vM ,
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these one form a complete, orthogonal basis of L2
µ and satisfy moreover

ψ′
k(v) = −

√
k + 1ψk+1(v) ,

∫ ∞

−∞

ψk(v)ψl(v)M−1 dv = δkl .

The solution to (1.14) can thus be uniquely decomposed as

f(t, v) :=
∞
∑

k=0

αk(t)ψk(v) , (1.17)

decomposition which permits to show the desired property.

A more common mathematical framework is obtained if one rescales the distribution
function f via the equilibrium distribution M(v) := 1

(2π)d/2
e−|v|2/2, in particular by

introducing g := f/M, which satisfies the equation

{

∂tg −∆vg + v · ∇vg = 0 , ∀(t, v) ∈ R
+ × R

d ,

g(0, ·) = gin .
(1.18)

Denoting the new collision operator by L(g) := ∆vg − v · ∇vg and introducing the
corresponding Hilbert-spaces with measure dγ := M dv

H := L2
γ , V := H1

γ , (1.19)

one can show that L : V → V⋆ is a linear, bounded operator defined as 〈L(f), g〉H−1
γ ,H1

γ
:=

−(∇vf,∇vg)γ for all f, g ∈ H1
γ . Introducing the adjoint operator ∇⋆

v of the gradient via

∇⋆
v : L

2
γ → H−1

γ , ∇⋆
v ξ := v ξ −∇v ξ .

one can rewrite the collision operator in a more simpler form as L = −∇⋆
v · ∇v.

Proposition 1.4.1 Reducing the collision operator L to an L2-operator, namely to
L : D(L) ⊂ L2

γ → L2
γ, this one satisfies the following properties :

(i) The linear operator L : D(L) ⊂ H → H is symmetric and non-positive.
(ii) The kernel of L is given by

Ker(L) := {ρ ∈ R} .

(iii) The L2
γ-orthogonal to the kernel of L is

(Ker(L))⊥ :=

{

f ∈ H /

∫

Rd

f(v)M dv = 0

}

,

and we have L2
γ = Ker(L)⊕(Ker(L))⊥, where f = Πf+(Id−Π) f with Π the orthogonal

projection on the kernel of L, given by

Π : L2
γ → Ker(L) f 7→

∫

Rd

f(v)M dv .
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(iv) −L is coercive on D(L) ∩ (Ker(L))⊥, i.e.

−(L(f), f)γ = −〈L(f), f〉H−1
γ ,H1

γ
≥ C||f ||2H , ∀f ∈ D(L) ∩ (Ker(L))⊥ .

(v) The range Im(L) of L is closed in L2
γ and coincides with (Ker(L))⊥. We have

moreover the one-to-one mapping

L : D(L) ∩ (Ker(L))⊥ → (Ker(L))⊥ .

Introducing the bilinear form associated to L : V → V⋆, namely

l : V × V → R , l(f, g) := (∇vf,∇vg)γ ,

one enters into the mathematical framework of the Lax-Milgram or Lions theorem, such
that the well-posedness of a solution to (1.18) is a natural consequence. In more details
for each T > 0 there exists a unique weak solution g of (1.18) satisfying

g ∈ W 1
2 (0, T ;V,H) ⊂ C([0, T ];H) .

For this theory one has to consider the evolution triplet V ⊂ H = H⋆ ⊂ V⋆.





Chapter 2

Entropy methods

In this chapter we shall consider the following autonomous evolution equation
{

∂tu(t) = F (u(t)) , ∀t > 0 ,

u(0) = u0 ,
(2.1)

that describes for example the dynamics of some particle swarm. Here F : D(F ) ⊂ X →
X is some possible nonlinear operator on the functional Banach-space X . The questions
we are asking concern, apart the obvious existence and uniqueness interrogations, the
asymptotic long-time behaviour of the solution to this problem towards an equilibrium
state u∞ ∈ kerF , to be identified. Entropy dissipation methods have been developed to
investigate this qualitative long-time behaviour of the solutions, and are based as much
as possible on physical arguments, such as dissipation processes, giving the direction of
the time flow.

The notion of Lyapunov functional and entropy play a fundamental role in ODE
resp. PDE theory. For example, in hyperbolic theory the entropy allows to pick up a
unique (physical) weak solution within all the existent weak solutions of the considered
nonlinear hyperbolic equations. In kinetic theory, the entropy is a useful tool to derive
hydrodynamic equations from the underlying kinetic equations (as for ex. Boltzmann,
Fokker-Planck or Landau equations) and this via the so-called H-theorem. The entropy
plays also a fundamental role in the global-in-time existence proof as well as regularity
proof for cross-diffusion systems, which are strongly coupled “parabolic-type” equations,
with a diffusion matrix which is neither symmetric nor positive-definite, such that stan-
dard elliptic/parabolic theories does not apply any more.

Definition 2.0.1 (Lyapunov functional) Let E : D(F ) ⊂ X → R be a functional
decreasing along the trajectories u(t) of (2.1), namely satisfying

d

dt
E(u(t)) ≤ 0 , ∀t > 0 .

Such an operator E is then called a Lyapunov functional for (2.1).

An entropy is a specific Lyapunov functional, as stated in the next definition.

25
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Definition 2.0.2 (Entropy) We call E : D(F ) ⊂ X → R an entropy corresponding to
(2.1), if the following properties are satisfied

• E is a Lyapunov functional;

• E is convex.

The entropy is a physical quantity which has several interpretations, depending on the
problem one is investigating. The entropy measures the disorder in a system (entropy of
mixing), it can be identified with a measure of the ignorance about a system (information
theory) or finally it can measure the irreversible changes in a system (thermodynamics).

Definition 2.0.3 (Entropy dissipation) Let E be an entropy corresponding to (2.1).
Then the entropy dissipation or entropy production is an operator D : D(F ) ⊂ X → R

satisfying

D(u(t)) = − d

dt
E(u(t)) , ∀t > 0 ,

along the trajectories u(t) of (2.1).

In order to be able to use entropies to prove asymptotic convergence results of a solution
towards an equilibrium, we need a further concept, namely the relative entropy.

Definition 2.0.4 (Relative entropy) For a given entropy E and a given function u∞,
we define the relative entropy (Bregman divergence) as follows

E(u|u∞) := E(u)− E(u∞)− 〈∇E (u∞), u− u∞〉 ≥ 0 ,

which is nothing but the first Taylor expansion of E around u∞ evaluated in u. The last
term represents the directional derivative of E .
The Bregman relative entropy measures somehow the distance between two probability
distributions, even if it is not a metric, as it is not symmetric, nor does it satisfy the
triangular inequality. Remark that E(u∞|u∞) = 0 as well as the fact that for gradient
flows (F = −∇E) one has simply E(u|u∞) = E(u)− E(u∞), if u∞ is a minimizer of E ,
meaning ∇E (u∞) ≡ 0, or equivalently if u∞ is an equilibrium of F , meaning F (u∞) = 0.

Very often, in kinetic theory, one defines a special kind of entropy, the phi-entropy,
given by

Eφ(u) :=
∫

Rd

φ(u(·)) dx , (2.2)

where the entropy generating function φ : R+ → R
+ is a continuous, convex function,

satisfying φ(1) = 0. In this case, the relative entropy is often defined as

Eφ(u|u∞) :=

∫

Rd

φ

(

u

u∞

)

u∞ dx . (2.3)

To give an example, the generalized Kullback-Leibler entropy is based on the func-
tion φ(x) := x log(x)− x+ 1, yielding the Kullback-Leibler divergence

Eφ(u|u∞) :=

∫

Rd

[

u(x) log

(

u

u∞

)

− u(x) + u∞(x)

]

dx .
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This relative entropy can be also understood via the Bregman divergence, corresponding
to the entropy (2.2) with entropy-generating function E(u) = u log(u).
As a second example, we mention a Bregman-divergence which cannot be written under
the form (2.2), namely taking E(u) := ||u||2L2 yielding E(u|u∞) := ||u− u∞||2L2, which is
a standard distance.
What can be mentioned here is that there are many situations in which it is meaning-
ful to measure the distance between two probability distributions, but the appropriate
metric may depend on the field of application and has to be identified.

The problem we shall be concerned with now is not the existence/uniqueness theory
of the Cauchy-problem (2.1), but rather the asymptotic behaviour of its solutions as
t→ ∞. One may ask,

• if there is a unique equilibrium u∞ of (2.1) (minimizer of entropy E , zero of F );

• if u(t) converges towards u∞ as t→ ∞;

• what is the rate of convergence of u(t) towards u∞.

Naturally, these questions require the definition of a measure, permitting to quantify the
distance between u(t) and u∞. For example this can be done in the entropy sense, by
evaluating the relative entropy E(u|u∞), or in the L1-sense by evaluating ||u(t)−u∞||L1.

The main strategy behind entropy methods is now the following:

• Identify the equilibrium state u∞ and an entropy functional E , associated with the
problem to be treated (2.1). Define a relative entropy E(u|u∞);

• Given the entropy functional, which attains its minimum at the equilibrium state,
the discrepancy between the solution u(t) and the equilibrium u∞ can be measured
by the relative entropy, namely E(u|u∞). To do this, one investigates generally the
entropy dissipation or production functional D(u(t)) = − d

dt
E(u(t)). Indeed, the

main idea is that the entropy production controls the relative entropy, via some
entropy-entropy production inequality of the type

D(u(t)) = − d

dt
E(u(t)) ≥ Φ(E(u|u∞)) ,

where Φ is a positive, continuous, strictly increasing function, satisfying Φ(0) = 0.
Gronwall’s inequality implies then the convergence towards the equilibrium in the
entropy sense, with explicit convergence rate if Φ has a simple form (exponential
convergence rate for linear Φ);

• Finally, a Csiszár-Kullback inequality of the type

||u(t)− u∞||L1 ≤ χ(E(u|u∞)) ,

with χ a positive, continuous, strictly increasing function, satisfying χ(0) = 0,
permits then to show that the discrepancy between the solution u(t) and the equi-
librium u∞ is controlled by the relative entropy E(u|u∞), implying the convergence
in the L1 sense (with explicit convergence rate, if Φ and χ are simple functions).
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2.1 Coercivity versus Hypo-coercivity

Let us start by introducing the concepts of coercivity and hypocoercivity of the operator
L : D(L) ⊂ H → H, where H is a Hilbert-space endowed with the scalar product (·, ·)H.
We shall assume in this subsection that L is a linear, unbounded operator with closed
range, and let us consider the following problem

{

∂tu = −Lu , ∀t > 0 ,

u(0) = u0 .
(2.4)

Definition 2.1.1 (Coercivity) The operator L is said to be λ-coercive (on (kerL)⊥)
for some λ > 0, if

(Lh, h)H ≥ λ ||h||2H , ∀h ∈ D(L) ∩ (kerL)⊥ . (2.5)

If we denote by Π : D(L) ⊂ H → kerL the orthogonal projection on the kernel of L,
inequality (2.5) can be rewritten as

(Lh, h)H ≥ λ ||(Id−Π) h||2H , ∀h ∈ D(L) .

By Gronwall’s lemma, λ-coercivity implies exponential convergence of the solution u of
(2.1) towards the equilibrium u∞ = Π(u0) ∈ kerL. Indeed, defining the entropy

E(u) := 1

2
||u||2H ,

one gets immediately for a solution u of (2.4) with u0 ∈ D(L) ∩ (kerL)⊥ that

d

dt
E(u(t)) = −(Lu, u)H ≤ −λ||u||2H ,

leading hence to exponential convergence towards zero, namely

||u(t)||H ≤ e−λ t||u0||H , ∀u0 ∈ D(L) ∩ (kerL)⊥ .

Let us mention one simple example of a coercive operator, namely the spatially homo-
geneous Fokker-Planck equation

∂tf = −L1f, L1f := −∂vvf + v ∂vf ,

where the evolution equation lives in (t, v) ∈ R
+×R, the operator L1 is acting only on the

velocity variable v ∈ R and the corresponding Hilbert-space is given by H := L2(dµ∞)
with dµ∞ := M dv and M := 1/

√
2π e−v

2/2. Considering t ∈ R
+ as a parameter, one

has in this case

(L1f, f)H = ||∂vf ||2H ≥ CP ||f ||2H , ∀f ∈ D(L1) ∩ (kerL1)
⊥ ,

where we used the weighted Poincaré’s inequality as well as

kerL1 := {c ∈ R} , (kerL1)
⊥ :=

{

f ∈ H /

∫

R

fM dv = 0

}

.

However in many cases, despite the fact that coercivity does not hold, the exponential
decay still happens to exist. The notion of hypocoercivity is introduced for describing
such exponential decay of a solution in the absence of coercivity.
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Definition 2.1.2 (Hypocoercivity) The operator L is said to be λ-hypocoercive (on
(kerL)⊥) for some λ > 0, if

||u(t)||H ≤ C e−λ t||u0||H, , ∀u0 ∈ D(L) ∩ (kerL)⊥ .

The non-homogeneous Fokker-Planck equation is a typical example of a hypocoercive
operator, namely

∂tf = −L2f , L2 f := v ∂xf + (−∂vvf + v∂vf) , (2.6)

the evolution equation living in (t, x, v) ∈ R
+ × T × R, with T the periodic torus and

H := L2(dν∞) the Hilbert-space with dν∞ := Mdxdv and M := 1/
√
2π e−v

2/2. Let us
observe also that we have

kerL2 := {c ∈ R} , (kerL2)
⊥ :=

{

f ∈ H /

∫

R

∫

T

fM dxdv = 0

}

.

In this case we have to modify the entropy, in order to get an estimate of the rate of
convergence. Indeed, with the standard entropy E(f) := 1

2
||f ||2H one can only get

d

dt

(

1

2
||f ||2H

)

= −||∂vf ||2H ≤ −CP ||f − 〈f〉||2H , 〈f〉(t, x) :=
∫

R

f(t, x, v)M dv ,

and we do not recover the whole entropy on the right, which would permit to get the
desired exponential decay. A better choice would be to consider the modified entropy

G(f) := α ||f ||2H + β ||∂vf ||2H + ||∂xf ||2H + δ (∂vf, ∂xf)H ,

with α, β, δ positive constants to be chosen such that G is decreasing along the tra-
jectories f of (2.6). The introduction of the additional term (∂vf, ∂xf)H proves to be
helpful to get coercivity, as it introduces some mixing between the two space and ve-
locity variables x and v. It is important to understand here that it is the combination
of both, on one hand the transport term v ∂xf , which mixes the space and the velocity
variable, and on the other hand the Fokker-Planck term −∂vvf +v∂vf which regularizes
and dissipates in the velocity variable, which leads finally to the decay and regularity
in both variables, and these two effects are now somehow taken into account with the
additional “mixing term”.

Let us first prove that G is equivalent to the H1(dν∞) norm, defined by ||f ||2H1 :=
||f ||2H + ||∂xf ||2H + ||∂vf ||2H, for some well-chosen constants α, β, δ > 0.

Lemma 2.1.3 If δ2 < β then there exist two constants c1, c2 > 0 such that

c1 ||f ||2H1 ≤ G(f) ≤ c2 ||f ||2H1 .

Proof: The Cauchy-Schwarz inequality permits to show that

|δ (∂vf, ∂xf)H| ≤
δ2

2
||∂vf ||2H +

1

2
||∂xf ||2H ,
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thus

α ||f ||2H+(β− δ2

2
) ||∂vf ||2H+

1

2
||∂xf ||2H ≤ G(f) ≤ α ||f ||2H+(β+

δ2

2
) ||∂vf ||2H+

3

2
||∂xf ||2H .

Let us now prove the exponential decay in the modified entropy sense.

Theorem 2.1.4 [18] There exist positive constants α, β, δ as well as κ > 0 such that
the entropy G decreases along the trajectories of the Fokker-Planck equation, for all
f0 ∈ H1 satisfying

∫

T

∫

R
f0M dvdx = 0, namely one has

G(f(t)) ≤ e−κ tG(f0) , ∀t > 0 .

As a consequence, there exists a constant ν > 0 such that the solution to (2.6) satisfies

||f(t)||H1 ≤ ν e−
κ
2
t , ∀t > 0 .

Proof: The proof is based on the evaluation of d
dt
G(f(t)), in particular one can show

that
d

dt
G(f(t)) ≤ −δ

2

(

||∂vf ||2H + ||∂xf ||2H
)

≤ −κG(f(t)) ,

assuming that 1 < δ < β < α, δ2 < β and 1
2
(2β + δ)2 < α as well as using the

inhomogeneous Poincaré’s inequality (4.1). Gronwall’s lemma and the equivalence of
the norms permit to conclude the proof.

Remark 2.1.5 Let us underline here the L2-framework of the first, coercive example,
and the H1-framework of the second, hypocoercive example. It is also possible (but more
complicated) to remain in the L2-framework even for the hypocoercive L2-operator, by
considering the different modified entropy G(f(t)) := 1

2
||f ||2H+(Af, f)H, with an operator

A : H → H which has been defined in [1].

2.2 Two simple, linear algebraic examples

Let us illustrate with two simple toy models the essential features of the coercive resp.
hypocoercive entropy-method. We consider the system

U ′(t) = −AU(t) , U(t) := (x(t), y(t))t , t ∈ R ,

with the initial condition U(0) = U0 and the coercive resp. hypocoercive matrices (on
(kerA)⊥)

Ac =

(

1 −1
−1 1

)

, Ahc = Q− T =

(

0 0
0 1

)

−
(

0 k
−k 0

)

,

where Q corresponds to a type of collision operator (degenerate diffusion operator),
whereas T corresponds to a skew-adjoint transport operator.
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Coercive case: The matrix Ac admits two eigenvalues λ1 = 0 and λ2 = 2 with
corresponding eigenvectors v1 = (1, 1)t and v2 = (1,−1)t. Furthermore one has

kerAc := span(v1) , (kerAc)
⊥ = span(v2) .

Taking as entropy the functional E(U) := 1
2
||U ||2 we get immediately

d

dt
E(U(t)) = −2||U(t)||2 = −4E(U(t)) , ∀U0 ∈ (kerAc)

⊥ ,

thus, we are in a typical coercive case, which yields immediately

E(U(t)) = e−4t E(U0) , ||U(t)|| = e−2t ||U0|| , ∀U0 ∈ (kerAc)
⊥ ,

which is finally in in accordance with the exact solution, which is

U(t) = αv1 + βe−2tv2 , where αv1 + βv2 = U0 .

Hypocoercive case: Let us assume that |k| > 1. Then, the matrix Ahc admits the
two conjugate-complexe eigenvalues and corresponding eigenvectors given by

λ1/2 =
1

2
± i

√
4k2 − 1

2
, v1/2 = (k,−λ1/2)t .

Furthermore one has kerAhc = {0} and (kerAhc)
⊥ = R

2. Choosing as entropy functional
E(U) := 1

2
||U ||2 would be not enough, as

d

dt
E(U(t)) = −y2(t) , U(t) = (x(t), y(t))t ,

and we have no coercivity on R
2 = (kerAhc)

⊥. However, if one takes a look at the exact
solution in this case, which reads

U(t) = αe−at [sin(bt+ β) u+ cos(bt + β) v] , U0 = α [sin(β) u+ cos(β) v] ,

with λ1,2 = a ± ib and v1,2 = u ± iv, we observe an exponential decay. Thus, let us
modify the entropy, adding a corrector term as

G(U) := 1

2
||U ||2 + ε

k

1 + k2
x(t)y(t) ,

with the parameter ε ∈ (0, 1) to be adequately chosen, and try to show the exponential
decay in this new modified entropy sense.

Firstly, one can show that G(U) is equivalent to the standard || · || norm, in particular
one has

1− ε

2
||U ||2 ≤ G(U) ≤ 1 + ε

2
||U ||2 .

Indeed, for k ≥ 1 one can show that

1

2

(

1− ε
k

1 + k2

)

||U(t)||2 ≤ 1

2

(

1− ε
k

1 + k2

)

||U(t)||2+ k

1 + k2
ε

2
|x(t)+y(t)|2 = G(U) ,
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and

G(U) = 1

2

(

1 + ε
k

1 + k2

)

||U(t)||2− k

1 + k2
ε

2
|x(t)−y(t)|2 ≤ 1

2

(

1 + ε
k

1 + k2

)

||U(t)||2 ,

where one observes that supk≥1
k

1+k2
= 1

2
≤ 1. Similar arguments for k ≤ −1 yield the

desired result.

Secondly, one can show the existence of some κ > 0, such that one has

d

dt
G(U(t)) ≤ −κG(U(t)) ⇒ G(U(t)) ≤ e−κt G(U0) ,

using Gronwall’s lemma. To see this, remark that 1
2
≤ k2

1+k2
≤ 1 and

d

dt
G(U) = −ε k2

1 + k2
x2 −

(

1− ε
k2

1 + k2

)

y2 − ε
k

1 + k2
xy

≤ −ε
2
x2 − (1− ε) y2 +

ε

2
|x| |y| ≤ −ε

2
(1− λ2)x2 − (1− ε− ε

8 λ2
) y2 ,

for any λ ∈ (0, 1). For sufficiently small ε ∈ (0, 1) one finds the desired constant κ > 0.

Altogether, one has the exponential decay of ||U(t)|| by equivalence of the norms.

2.3 The heat equation (coercive case)

Let us give here an example of the use of the entropy method for investigating the
long-time asymptotics of the heat equation

{

∂tu(t, x) = ∆u , ∀ (t, x) ∈ R
+ × T

d ,

u(0, ·) = u0 ,
(2.7)

where Td is the d-dimensional torus with d ∈ {1, 2, 3}. Let us suppose that u0 ∈ L2(Td) is
non-negative and define ū :=

∫

Td u0(x) dx. Then problem (2.7) admits a unique smooth,
global, non-negative solution, conserving the mass, namely satisfying

∫

Td u(t, x) dx =
∫

Td u0(x) dx = u for all t > 0. Furthermore we observe that u∞ := ū/meas(Td) is the
unique stationary solution of (2.7). The questions one asks now are:

• Does u →t→∞ u∞? In which norm?

• What is the convergence rate towards the equilibrium?

To answer these questions, we introduce now the two functionals

H1[u] :=

∫

Td

u log

(

u

u∞

)

dx , H2[u] :=
1

2

∫

Td

(u− u∞)2 dx . (2.8)

Firstly one observes that both are non-negative functionals. Indeed, the fact that for
all z ≥ 0 one has z log(z) + 1− z ≥ 0 implies that

0 ≤
∫

Td

(

u log

(

u

u∞

)

+ u∞ − u

)

dx =

∫

Td

u log

(

u

u∞

)

dx+

∫

Td

u∞ dx−
∫

Td

u dx = H1[u] .
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Secondly both functionals are Lyapunov functionals along the solutions of the heat
equation (2.7). Indeed, let us start with H2[u]. One has

dH2

dt
[u(t)] =

∫

Td

(u− u∞) ∂tu dx =

∫

Td

(u− u∞)∆u dx = −
∫

Td

|∇u|2 dx ≤ 0 ,

showing that H2[u] is indeed decreasing along the trajectories of (2.7). The next step
is to study if and how the solution to (2.7) converges in the long-time towards an
equilibrium solution, which is u∞. For this asymptotic study we shall make use of the
Poincaré inequality

||u− 1

|Ω|

∫

Ω

u dx||2L2(Ω) ≤ CP ||∇u||2L2(Ω) ∀u ∈ H1(Ω) ,

with Ω ⊂ R
d a bounded smooth domain. This Poincaré inequality shall indeed permit to

relate the entropy H2[u] with the entropy-dissipation D2[u(t)] := −dH2

dt
[u(t)], as follows

dH2

dt
[u(t)] = −||∇u||2L2(Td) ≤ −C−1

P ||u− u∞||2L2(Td) = −2C−1
P H2[u(t)] .

The Gronwall inequality yields then

1

2
||u− u∞||2L2(Td) = H2[u(t)] ≤ e−2t/CP H2[u0] ∀t > 0 ,

which means that we have indeed the exponential decay of u(t) towards the equilibrium
u∞ := ū/meas(Td) in the L2-sense, with rate 1/CP .

Let us remark here that in this L2-periodic framework we know the exact solution
of (2.7), which reads

u(t, ·) =
∞
∑

k=1

e−λk t(u0, vk)L2 vk , ∀t ≥ 0 ,

where {λk, vk}k∈N are the eigenvalues resp. associated eigenvectors of the operator
−∆, associated with periodic boundary conditions. The eigenvalues form a positive,
increasing sequence of real numbers, satisfying λk →k→∞ ∞ whereas {vk}k∈N form an
orthonormal basis of L2(Td).
Remarking that λ1 ≡ 0, v1 ≡ cst. and v̄k =

∫

Ω
vk dx = 0 for k 6= 1, we have u∞ =

(u0, v1)L2 v1, such that

||u− u∞||2L2(Ω) =
∞
∑

k=2

e−2λk t(u0, vk)
2
L2 ≤ e−2λ2 t ||u0||2L2(Ω) ,

which gives also the desired exponential decay, with rate λ2. To compare the two con-
vergence rates, observe that in the 1D case CP = µ−1

2 , with µ2 = π2/|T|2 the smallest
possible positive eigenvalue of the Laplacian with Neumann boundary conditions, and
λ2 = π2/|T|2.
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Let us now change the functional and try to show the same, however considering
H1[u]. Firstly we have

dH1

dt
[u(t)] =

∫

Td

(

log

(

u

u∞

)

+ 1

)

∂tu dx = −
∫

Td

∇
[

log

(

u

u∞

)]

∇u dx = −4

∫

Td

|∇√
u|2 dx ,

showing that H1[u] is decreasing along the trajectories of (2.7). To relate now the
entropy with the entropy-dissipation, we shall need no more the Poincaré inequality,
but this time the logarithmic Sobolev inequality

∫

Ω

u log

(

u

u∞

)

dx ≤ CL

∫

Ω

|∇√
u|2 dx ∀√u ∈ H1(Ω) , u ≥ 0 ,

with Ω ⊂ R
d a bounded domain. This inequality permits indeed to get the following

estimates

dH1

dt
[u(t)] = −4||∇√

u||2L2(Td) ≤ −4C−1
L H1[u(t)] ⇒ H1[u(t)] ≤ e−4t/CL H1[u0] ∀t > 0 ,

which shows that in the limit of large times H1[u(t)] →t→∞ H1[u∞] = 0. To show
the exponential decay of u(t) in the Lebesgue measure sense, we shall need now the
Csiszár-Kullback inequality

||u− u∞||2L1(Ω) ≤ C (H1[u(t)]−H1[u∞]) ,

which yields an exponential decay in the L1-sense.

Remark 2.3.1 Let us underline here the two strategies used for the heat equation and
leading both to an exponential decay of the solution towards the equilibrium solution,
however in different norms. The ”energy-strategy” based on the H2[u] Lyapunov func-
tional, leads via Poincaré’s and Gronwall’s inequalities to an L2-exponential decay, and
the ”entropy-method” based on the H1[u] Lyapunov functional, which needs the Csiszár-
Kullback inequality to get an L1-exponential decay.

2.4 Fokker-Planck equation

In this section we shall come back towards the examples proposed in section 2.1 and
shall treat them via an ”entropy-strategy” rather then the ”energy-strategies” proposed
there.

2.4.1 The homogeneous Fokker-Planck equation (coercive case)

As a second example, let us consider the following linear Fokker-Planck equation

{

∂tf = ∇v · (v f +∇vf) , ∀(t, v) ∈ R
+ × R ,

f(0, ·) = f0 .
(2.9)
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The unique stationary state of this equation is given by the Maxwellian

f∞(v) := c⋆M(v) =
c⋆

(2π)d/2
e−|v|2/2 ∀v ∈ R

d , c⋆ :=

∫

R

f0 dv .

Defining the entropy

H1[f ] :=

∫

Rd

f log

(

f

M

)

dv ,

we have the following theorem

Theorem 2.4.1 [19] (Exponential decay of the Fokker-Planck equation)
Let f0 ∈ L1(Rd) be a non-negative function satisfying the condition

∫

Rd f0 dv = 1, and
let us denote by f the corresponding unique solution to (2.9). Then the functional H1[f ]
is an entropy for the Fokker-Planck equation and we have

0 ≤ H1[f(t)] ≤ e−2tH1[f0] , ∀t > 0 .

Furthermore f(t, ·) converges in the L1-sense exponentially fast in the long-time limit
towards the equilibrium M, as

||f(t, ·)−M||L1(Rd) ≤ e−t
√

8H1[f0] , ∀t > 0 .

Proof: Let us firstly show that H1[f ] is a Lyapunov functional along the trajectories
of (2.9). For this, we observe that

dH1

dt
[f(t, ·)] =

∫

Rd

∂tf

[

log

(

f

M

)

+ 1

]

dv =

∫

Rd

∂tf log

(

f

M

)

dv

=

∫

Rd

∇v ·
[

M∇v

(

f

M

)]

log

(

f

M

)

dv

= −
∫

Rd

M2

f

∣

∣

∣

∣

∇v

(

f

M

)
∣

∣

∣

∣

2

dv = −
∫

Rd

f

∣

∣

∣

∣

∇v log

(

f

M

)
∣

∣

∣

∣

2

dv ≤ 0 .

We used for this the fact that the collision operator can be rewritten as∇v ·(v f+∇vf) =
∇v ·

[

M∇v

(

f
M

)]

. Finally, the following logarithmic Sobolev inequality (see Section 4.3)

∫

Rd

f

∣

∣

∣

∣

∇v log

(

f

M

)
∣

∣

∣

∣

2

dv ≥ 2

∫

Rd

f log

(

f

M

)

dv ,

permits to relate the entropyH1[f(t)] with the entropy dissipationD1[f(t, ·)] := −dH1

dt
[f(t, ·)].

Indeed, we obtain thus
dH1

dt
[f(t, ·)] ≤ −2H1[f(t, ·)] .

Gronwall’s inequality yields then the exponential decay of the solution to (2.9) in the en-
tropy sense. Finally the Csiszár-Kullback inequality permits to show the corresponding
exponential decay in the L1-sense, and we conclude the proof.
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2.4.2 The inhomogeneous Fokker-Planck equation (hypocoer-
cive case)

To compare, let us consider now the inhomogeneous Fokker-Planck equation

{

∂tf + v · ∇xf −∇xϑ(x) · ∇vf = ∇v · (v f +∇vf) , ∀(t, x, v) ∈ R
+ × R

d × R
d ,

f(0, x, v) = f0(x, v) ,
(2.10)

where ϑ is supposed to be a known smooth potential, which is strictly convexe at infinity,
for ex. let us assume here that ϑ has the form

ϑ(x) := ω2
0

|x|2
2

+ Φ(x) + ϑ0 , with ϑ0 ∈ R , Φ(x) →x→∞ 0 smooth .

The unique steady-state of this equation is given now by

f∞(x, v) := e−ϑ(x)M(v) =
e−ϑ(x)

(2π)d/2
e−|v|2/2 , ∀(x, v) ∈ R

d × R
d .

The asymptotic long-time behaviour of the unique solution to (2.10) towards this equi-
librium is given by the next theorem. The fact that the Fokker-Planck collision operator
(right hand side of (2.10)) acts only on the velocity variable leads to a degeneracy in
the x-variable, making it very hard to estimate the speed of spatial homogenization.
There will be a huge family of local Maxwellians, making the entropy vanish, such that
the usual H-theorem will no more give the necessary information about the long-time
asymptotics, in particular it gives no indication about how to pass from a local towards
the global equilibrium. Both effects, collisions and transport have to be considered in a
combined manner.

Theorem 2.4.2 [14] Let the initial distribution function f0 be such that there exist
some constants γ,Γ > 0 so that we have

γ f∞(x, v) ≤ f0(x, v) ≤ Γ f∞(x, v) , ∀(x, v) ∈ R
d × R

d ,

and let f be the unique solution to (2.10). Then for every ε > 0 there exists a constant
Cε(f0) depending on ε, f0 and ϑ such that

||f(t)− f∞||L1(Rd
x×Rd

v)
≤ Cε(f0) t

−1/ε , ∀t ≥ 0 .

Proof: The starting point of our proof will be the H-theorem. For this, let us define
the relative entropy

H [f |f∞] :=

∫

Rd
x×Rd

v

f log

(

f

f∞

)

dxdv ,

and show that it is indeed a Lyapunov functional along the trajectories of (2.10). Indeed,
we remark that

dH

dt
[f |f∞] = −

∫

Rd
x×Rd

v

f

∣

∣

∣

∣

∇v log

(

f

f∞

)
∣

∣

∣

∣

2

dxdv = −
∫

Rd
x×Rd

v

f

∣

∣

∣

∣

∇v log

(

f

M

)
∣

∣

∣

∣

2

dxdv ≤ 0 .
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The entropy-dissipation vanishes only for functions of the form f = ρ(t, x)M, with
ρ(t, x) arbitrary, satisfying only

ρ(t, x) =

∫

Rd
v

f(t, x, v) dv , ∀x ∈ R
d .

In other words, ρ(t, x) is the macroscopic density associated to the distribution function
f . The functions ρ(t, x)M are the so-called local equilibria of (2.10), which make the
right-hand side (the collision operator) of the Fokker-Planck equation vanish.

The logarithmic/convex Sobolev inequality (4.2) permits now to relate the entropy
dissipation D(t) := −dH

dt
to the entropy H . Indeed, one has for the so-called Fisher

information Iv[f |ρM]

Iv[f |ρM] :=

∫

Rd
x×Rd

v

f

∣

∣

∣

∣

∇v log

(

f

ρM

)
∣

∣

∣

∣

2

dxdv

=

∫

Rd
x

ρ(x)

(

∫

Rd
v

f

ρ(x)

∣

∣

∣

∣

∇v log

(

f

ρM

)
∣

∣

∣

∣

2

dv

)

dx

≥ 2

∫

Rd
x

ρ(x)

(
∫

Rd
v

f

ρ(x)
log

(

f

ρM

)

dv

)

dx = 2H [f |ρM] .

Thus, we have

−dH
dt

[f |f∞] ≥ 2H [f |ρM] , ∀t ≥ 0 .

The crucial point is that we have on the right hand side H [f |ρM] and not H [f |f∞]
as in the coercive case, which would conclude the proof via Gronwall’s inequality. In
the present case, the last inequality permits only to show that in the long-time limit
t → ∞ the distribution function f will look more and more like a local Maxwellian
ρ∞M, however nothing is known on the shape of ρ∞(x). The difference between the
two relative entropies, corresponding to the global as well as the local equilibria is given
by

H [f |f∞]−H [f |ρM] = Hx[ρ|e−ϑ] , Hx[ρ|e−ϑ] :=
∫

Rd
x

ρ log
( ρ

e−ϑ

)

dx ,

which is nothing but the relative entropy of ρ with respect to e−ϑ.

To prove the convergence of f towards the global equilibrium f∞ one has to use more
information coming from f , namely that f is the unique solution to the Fokker-Planck
equation (2.10), and that f does not get stuck too close to a local Maxwellian. Let
us remark here that among all local equilibria ρM, only one satisfies equation (2.10).
Indeed, a solution ρ(t, x)M(v) must verify

∂tρ+ v · [∇xρ+ ρ∇xϑ] = 0 ,

so that separately ∂tρ = 0 and ∇xρ = −ρ∇xϑ, which finally yields f = f∞ in the
long-time limit. The trend towards the global equilibrium is a struggle between the col-
lision operator (dissipation) and the anti-symmetric transport operator. The collisions
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push the system towards a local equilibrium ρ(t, x)M(v), the transport part will drive
it out of this local equilibrium, if it is not the “right” one, namely the global Maxwellian.

To finish the proof, let us define now the quantities

x(t) := H [f(t)|f∞] , y(t) := H [f(t)|ρ(t)M] , ∀t ≥ 0 .

One can show (rather lengthy and tricky computations) that for some ε ∈ (0, 1) these
positive quantities are solutions of the following system of differential equations, with
some constants A1, A2, A3 > 0 dependent only on ε, f0 and ϑ

{ −x′(t) ≥ A1 y(t)

y
′′

(t) + A2 y
1−ε(t) ≥ A3 x(t)

, ∀t ≥ 0 .

Then, it can be shown that there exists a constant Cε(f0) such that

x(t) = H [f(t)|f∞] ≤ Cε(f0) t
−1/ε , ∀t ≥ 0 .

The Csiszár-Kullback inequality permits finally the conclude the proof.

Remark 2.4.3 This entropy method seems to fail to give the optimal rate of conver-
gence, in particular to give exponential rate of convergence towards the equilibrium. Its
advantage however, as compared to the energy-methods, is that it is rather robust and
the best approach to treat non-linear problems.

2.5 The three-zone model (hypocoercive case)

In this last part of the chapter, we shall prove Theorem 0.4.4 which gives the asymptotic
flocking result for the three-zone model















x′i(t) = vi(t) ,

v′i(t) =
1

N

N
∑

j=1

ψ(|xi − xj |) (vj − vi)−
1

N

N
∑

j=1,j 6=i

∇xi [ϕ(|xi − xj |)] ,
∀i = 1, . . . , N ,

(2.11)
Recall that we consider a bounded alignment potential ψb of type (7), an unbounded
attraction/repulsion potential ϕ satisfying (9) and that we translated the system, such
that

xc(t) ≡ 0 , vc(t) ≡ 0 , ∀t ∈ R
+ .

The existence and uniqueness of a maximal solution of (2.11) is a simple consequence
of the local Cauchy-Lipschitz theorem. To obtain a global solution, we need to show
that the solution is not “exploding” in finite time.
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The main quantity permitting to investigate the long-time behaviour of the particle
cloud is the total energy of the system, given by

E(t) := 1

2

N
∑

i=1

|vi(t)|2 +
1

2N

N
∑

i=1

N
∑

j=1,j 6=i

ϕ(rij) = K(t) + P(t) , (2.12)

where K(t) represents the kinetic energy and P(t) the potential energy of the whole
particle system. Simple computations permit to show that E(t) is a Lyapunov functional
along the trajectories of (2.11). Indeed, one gets

dE
dt

(t) = − 1

2N

N
∑

i=1

N
∑

j=1,j 6=i

ψb(rij) |vj(t)− vi(t)|2 ≤ 0 , (2.13)

thus E is decaying along the solutions of (2.11). The attraction-repulsion term describes
a Hamiltonian dynamics and therefore preserves the total energy. The alignment term
causes the decay of the total energy with respect to time. It plays the role of friction,
making the system dissipative.

Hence, the total energy is bounded by the initial energy of the system 0 ≤ E(t) ≤ E0
for all t ≥ 0. This fact together with the property that limr→0,∞ ϕ(r) = ∞ implies via
(2.12) the existence of two constants rm > 0 and rM > 0, dependent on N , such that

0 < rm ≤ |xi(t)− xj(t)| ≤ rM , ∀i, j ∈ {1, . . . , N}, ∀t ≥ 0 , (2.14)

which means we have aggregation and non-collisionality. The globality of the solution
follows thus.
Finally, let us show that the kinetic energy satisfies K(t) →t→∞ 0, hence leading to
vi(t) →t→∞ 0 for each i = 1, · · · , N and thus limt→∞ A(t) = 0, concluding the proof.
The fact that ψb(r) > 0 and ψ′

b(r) < 0 for all r > 0 leads to

dE
dt

(t) ≤ −ψb(rM)

2N

N
∑

i=1

N
∑

j=1,j 6=i

|vj(t)− vi(t)|2 = −ψb(rM)
N
∑

i=1

|vi(t)|2 = −c⋆K(t) ,

with c⋆ := 2ψb(rM), thus

c⋆

∫ ∞

0

K(s) ds ≤ E0 . (2.15)

This means the kinetic energy K(t) is integrable. To show that it converges towards
zero at infinity, one can try to show that it is uniformly continuous. For this we remark
that

dK
dt

(t) = − 1

2N

N
∑

i=1

N
∑

j=1,j 6=i

ψb(rij) |vj(t)−vi(t)|2−
1

2N

N
∑

i=1

N
∑

j=1,j 6=i

ϕ′
s(rij)

rij
(xi(t)−xj(t), vi(t)−vj(t)) ,

the first term on the right hand side being integrable (see (2.13)) and the last term
bounded in time (see (2.14) and (2.12)), permitting thus, via integration, to show that
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K(t) is uniformly continuous.

To show the exponential decay rate of the velocities towards zero, we need to in-
troduce some notation, as the equilibrium solutions (xeqi , v

eq
i )Ni=1 satisfying veqi = 0 and

∑N
j=1,j 6=i∇xi

[

ϕ(|xeqi − xeqj |)
]

= 0 for all i = 1, . . . , N , the equilibrium distances between
the particles reqij := |xeqi − xeqj |, the equilibrium energy Eeq given by

Eeq :=
1

2N

N
∑

i=1

N
∑

j=1,j 6=i

ϕ(reqij ) , 0 ≤ Eeq ≤ E0 ,

and finally the discrepancy Ẽ := E−Eeq, which shall decrease towards zero. Furthermore,
one has to introduce a more adequate Lyapunov functional, as using the standard energy
one only has

dẼ
dt

(t) =
dE
dt

(t) ≤ −ψb(rM)

2N

N
∑

i=1

N
∑

j=1,j 6=i

|vj(t)− vi(t)|2 = −ψb(rM)

N
∑

i=1

|vi(t)|2 = −c⋆K(t) .

This inequality shows that the total energy stops decreasing for K(t) = 0, however it
does not show that the total energy tends towards zero. Ideally, in order to conclude
via Gronwall’s inequality, we would need an inequality of the type dẼ

dt
(t) ≤ −c Ẽ(t),

with some c > 0, however in our case the potential energy is missing on the right hand
side. We shall thus proceed with hypocoercivity arguments to restore the full Lyapunov
functional on the right hand side. For this we shall consider the following new functional
G with corrector term χ

G(t) := E(t) + αχ(t) , χ(t) :=
1

N

N
∑

i=1

N
∑

j 6=i

ϕ′(rij)

rij
(xi(t)− xj(t), vi(t)− vj(t)) ,

with a constant α > 0 to be chosen such that G is indeed a Lyapunov functional corre-
sponding to the system (2.11). The procedure is now the following: show first that G̃(t)
is equivalent to Ẽ(t), and then show that dG̃

dt
(t) ≤ −c G̃(t). This shall finish the proof of

the exponential decay rate in the G-entropy sense, is however for the moment still un
unsolved problem.

In order to simplify the computations, let us consider the case of only 2 drones
(N = 2), with position and velocity (xi(t), vi(t))

2
i=1 ∈ R

d × R
d, and show in this case

the asymptotic (t → ∞) exponential decay of the velocities towards vc ≡ 0. Denoting
the differences by x(t) := x1(t)−x2(t) and v(t) := v1(t)− v2(t), the starting point is the
following system of ODEs

{

x′(t) = v(t) , ∀t ∈ R
+

v′(t) = −ψ v(t)− θ(|x(t)|) x(t) ,
(2.16)

where to simplify even more we assume that the alignment strength ψ > 0 is a constant
and the attraction/repulsion potential ϕ is given by

ϕ(r) :=
r2

2
+

1

r
− 3

2
, θ(r) :=

ϕ′(r)

r
, ∀r > 0 .
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More generally, we shall suppose that ϕ is chosen such that it satisfies for some c1, c2 > 0

0 ≤ c1 ϕ(r) ≤ [ϕ′(r)]2 ≤ c2 ϕ(r) , ∀r ≥ rm > 0 , (2.17)

where rm > 0 is the minimal distance between the particles during the dynamics (see
Thm. 0.4.4). The total energy of the system as well as the modified Lyapunov functional
are given by

E(t) := 1

2
|v(t)|2 + ϕ(|x(t)|) , G(t) := E(t) + αϕ′(r(t))

x(t) · v(t)
r(t)

, r(t) := |x(t)| ,

with the constant α > 0 to be adequately fixed. The equilibrium solutions to (2.16) are
given by (xeq, veq) such that veq ≡ 0 and θ(req) ≡ 0, with req := |xeq|, hence Eeq ≡ 0 in
this case (ϕ′(req) = ϕ(req) = 0).

First we observe that
dE
dt

(t) = −ψ |v(t)|2 ≤ 0 , (2.18)

but this is not enough to get the exponential decay of E(t). However for the modified
functional G we have

dG
dt

(t) = −ψ |v(t)|2+α θ
′(r)

r(t)
(x(t)·v(t))2+α θ(r(t))|v(t)|2−αθ2(r) |x(t)|2−αψ θ x(t)·v(t) .

Now the procedure is the following: show first that G(t) is equivalent to E(t), and then
show that dG

dt
(t) ≤ −c⋆G(t). This shall finish the proof.

The equivalence between G(t) and E(t) is a simple consequence of the assumption
(2.17) and the fact that we have flocking. The second inequality to be shown is a con-
sequence of the flocking, meaning the swarm evolves in a bounded region, as well as the
fact that the velocities tend towards vc in the long-time limit. However, to get this last
inequality of strictly decreasing entropy, it can be that the constant c⋆ > 0 has to be
chosen very small, which yields a slow (pessimistic) exponential decay rate.

On Figure 2.1 we plotted as an example the corresponding evolutions of E(t) as
well as of G(t). One observes firstly that the energy E(t) is slightly oscillating, with
E ′(t) = 0 there where the velocity v(t) is vanishing (see (2.18)), and E(t) seems to have
in “average” an exponential decay. To compare, we plotted in addition to this curve the
modified Lyapunov functional G(t), which shows a nicer exponential decay, however still
not a perfect one. Indeed, the oscillations are somehow damped a little bit, and more
importantly one can observe that G(t) is now strictly decreasing, its slope remaining far
from zero. This is due to the additional correction term, which continues to dissipate
(the entropy) even if v(t) = 0.
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Figure 2.1: Time evolution of E(t) as well as of G(t) corresponding to system (2.16).



Chapter 3

Drone swarm modelling and
simulation

Let us fix now our three-zone model for the description of the dynamics of a swarm of
N drones. The evolution of each agent, with position and velocity (xi, vi) ∈ R

d ×R
d, is

governed as usual by Newton’s laws of classical mechanics, which read for all t ≥ 0















x′i(t) = vi(t) ,

v′i(t) = γ

N
∑

j=1

ψ(|xi − xj |) (vj − vi)− γ

N
∑

j=1,j 6=i

∇xi [ϕ(|xi − xj |)] ,
∀i = 1, . . . , N ,

(3.1)
where γ := 1 or γ := 1/N . The scaling γ = 1/N of the force is only needed for the
large-swarm-limit N → ∞, for getting a mesoscopic (kinetic) description. Otherwise
one can take γ = 1. The communication weight ψij := ψ(|xi − xj |) shall satisfy the
following assumptions

ψ ∈ C1(R+
∗ ) , ψ(r) > 0 and ψ′(r) ≤ 0 ∀r > 0 .

In particular we shall choose a singular communication weight in zero, namely

ψ(r) :=
α

rβ
, α > 0 , β ≥ 0 , ∀r ∈ R

+ .

Concerning the potential ϕ, it contains the repulsion and attraction part, and we shall
assume that

ϕ ∈ C1(R+
∗ ) , ϕ(r) > 0 ∀r > 0 , lim

r→∞
ϕ(r) = ∞ , ϕ(0) <∞ . (3.2)

In particular, let us take a quadratic potential

ϕ(r) :=
1

2
(r − η)2 , η > 0 , ∀r ∈ R

+ ,

or more generally

ϕ(r) :=
1

q
rq − 1

p
rp , ∀r > 0 and − d < p < q ,

43
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for example

ϕ(r) :=
r2

2
+

1

r
− 3

2
, ∀r ∈ R

+ .

Under these conditions, we have existence of a flocking behaviour, as seen in Section 2.5.

Figure 3.1: Example of attraction, alignment and repulsion potentials (bounded in
r = 0) for the 3zone model.

One of the aims is to vary the shapes of the attraction/repulsion potentials to explore
the different stationary configurations one can obtain in the long-time limit, for large
drone populations N ≫ 1. In particular, we shall be able to select at the end the right
interaction-kernels in order to get a stable configuration, realistic from a practical point
of view, when thinking about the drone spacings and drone velocities. Later on we shall
also introduce some other specific physical effects, as obstacles, a target, time-delays
and self-propulsion

3.1 Some equilibrium configurations

The main objective is now to understand which choice of the attraction/repulsion and
alignment kernels give rise to the desired drone configuration (for large N ≫ 1) in terms
of inter-drone spacings, realistic drone velocities and stable steady states. Let us remark,
that once the drones move with constant velocities, the shape of the pattern is given by
the balance of the repulsive resp. attractive forces acting on each drone, namely by the
formula

N
∑

j=1,j 6=i

∇xi [ϕ(|xi − xj |)] = 0 , ∀i = 1, . . . , N .

Note that these particular solutions are not equilibria in the classical sense, meaning
x′i(t) = v′i(t) ≡ 0 for all i, but are rather solutions with particular properties. Flocking
solutions describe configurations with particles moving with uniform speed vi(t) ≡ vc
and position xi(t) = x0i + vc t. Many types of pattern emerge in the long-time limit
t → ∞, regulated by the relative strength of the repulsion/attraction potentials. To
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give only some examples, we plotted in Figures 3.2-3.4 annular formations, uniform discs
or ring-formations, and their corresponding potentials ϕann(r) := (r − 5)2 and

ϕcris(r) :=















10 (r − 5)2 , 0 ≤ r ≤ 5

1
3
(r − 5)2 , 5 ≤ r ≤ 6

1− 2
3 (r−5)

, r ≥ 6

, ϕring(r) :=















1
10
(r − 5)2 , 0 ≤ r ≤ 5

1
3
(r − 5)2 , 5 ≤ r ≤ 6

1− 2
3 (r−5)

, r ≥ 6

.

Properties like radius of the cloud, particle density and accumulation to the border

Figure 3.2: Annular formation for a potential ϕann(r) := (r − 5)2.

Figure 3.3: Uniform disc formation for the potential ϕcris(r).

change with increasing N . What can be observed is that if one chooses stronger and
stronger repulsive potentials at the origin, the cloud of the particles gets larger and
larger with increasing N , whereas milder repulsive potentials lead to clustering when
increasing the number of drones N . The effect of strong attraction potentials is the
formation of a bounded cloud, leading to a ring with increasing number of particles.
To study these different pattern formations, some characteristic properties to look for
are the time-evolution of the minimal resp. maximal inter-drones distances, and their
dependence on N , i.e.

dmin(t) := min
i 6=j

||xi(t)− xj(t)|| , dmax(t) := max
i 6=j

||xi(t)− xj(t)|| .
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Figure 3.4: Ring formation for a potential ϕring(r).

In principle there are much more steady-state configurations, some of them stable,
others unstable, and not all of them are of interest in our case.

3.2 Specificities of drone swarms and other physical

effects

When dealing with the modelling of drone swarms, one has to face particular problems,
as for example:

• Force/power constraints: Drones are powered by motors, which have their
own, particular characteristics, yielding a maximal force strength and a maximal
power, which cannot be surpassed;

• Reactivity constraints: Drones need time to receive and process the informa-
tions (like positions and velocities) from other drones, and to transmit its own
informations. This necessary leads to time delays in the reactivity of the drones;

• Energy constraints: Energy is a substantial and rare resource and thus its wise
employment is of paramount importance for the drone swarm lifetime and the
desired mission success;

• Connectivity: Maintaining stable connectivity within the drones while achieving
at the same time the best area-coverage is an essential request.

Furthermore, the main goal of our work is to provide a model of autonomous evolving
drones in a realistic setting. Thus, our model should contain as many as possible system-
specific features as can be taken into account, for example in addition to the above
mentioned constraints, we shall consider:

• Obstacle avoidance can be modelled via repulsive artificial forces, which push
the drone back and prevent it from colliding with the occurring obstacles, i.e.

F obs
i = −∇xi [ϕobs(|xi − xobs(t)|] , ϕobs(r) :=

1

rα
, α > 0 ;
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• Destination point (target) can be modelled by an attraction force, which helps
the drone to reach the goal. Moving targets or leaders can be also modelled via
attraction fields, i.e.

F tar
i = −∇xi [ϕtar(|xi − xtar(t)|] , ϕtar(r) := rα , α > 0 ;

• Environmental disturbances, like for example unpredictable fluctuations in the
wind, can be modelled by introducing some random force field in the model F fluc

i ,
meaning noise terms representing the incessant impact of the environment on the
drones;

• Inner noise, meaning the inaccuracy of the sensors that measure the positions and
velocities of the drones, can also be characterized by the introduction of stochastic
force fields.

So far we have treated the drones as responding to the environment they perceive, via
some simple mathematical rules, yielding thus an alternating sequence of perception and
action. However one can go one step further and treat the drone additionally as ”learning
agents”, meaning between the perception of its surroundings and the action step, the
drone can study in detail the situation (deliberation step) and adapt its response by
considering the personal history of interactions and the feedback he got.

3.3 The numerical scheme

We hereafter shall perform some numerical simulations, to reproduce the evolution of a
swarm of N drones, when the dynamics is governed by the three-zone model introduced
at the beginning of this Chapter.

The simulations are based on the Störmer-Verlet scheme, which permits to solve the
following coupled ODE system

{

X ′(t) = V (t) , ∀t ∈ [0, T ]

V ′(t) = F (X(t), V (t)) ,

with X(t) := (x1(t), · · · , xN(t)), V (t) := (v1(t), · · · , vN(t)) and F : Rd × R
d → R

d is
given by (3.1). Starting from a given initial configuration (X0, V 0) ∈ R

d × R
d and

defining the discrete time-steps as tn := n∆t for n = 0, · · · , Nt with ∆t := T/Nt, the
Verlet scheme writes as



























V n+1/2 = V n +
∆t

2
F (Xn, V n+1/2)

Xn+1 = Xn +∆t V n+1/2

V n+1 = V n+1/2 +
∆t

2
F (Xn+1, V n+1/2) .

(3.3)

It is an implicit, second order accurate method, stable under the condition ..., reversible
and symmetric. Furthermore, it is symplectic for Hamiltonian systems (for ψ ≡ 0) and
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hence volume preserving. It “quasi” conserves the energy in the case ψ ≡ 0, even in the
long-time asymptotic. All these properties are very nice, as it is essential for a numerical
scheme to preserve the properties of the original physical problem as much as possible.
The only disadvantage of the Verlet-scheme is that it is implicit, however in the here
considered case (3.1), the implicitness does not render the computations more difficult.

3.4 Numerical difficulties and some simulations

One of the main difficulties in the above modelling of our drone swarm is the delicate
choice of the multiple parameters occurring in the model, as observed from the vari-
ous existing equilibrium configurations in section 3.1. A general attraction/repulsion
potential can be written as

ϕ(r) :=
FA
q

(r − ηA)
q
− +

FR
p

(r − ηR)
p
+ ,

with p, q, FA, FR, ηA, ηR to be chosen such that in the long-time limit t → ∞ as well as
in the large crowd limit N ≫ 1 one gets the desired drone swarm configuration.

Several numerical difficulties arise furthermore when trying to solve (3.3). The first
one is linked to the large number of drones N ≫ 1 one is simulating, leading to very
large coupled systems. Sometimes to get a rapid first impression of how a drone swarm
evolves in time, given an initial drone distribution, one can ask for macroscopic models,
which are numerically more attractive but poorer from a physical point of view. Indeed,
these macroscopic models do not follow the precise trajectories of each agent, but deal
with averaged distribution quantities, like drone densities n(t, x), drone mean velocities
u(t, x), total energy E(t, x) etc. To recover these macroscopic models from the under-
lying particle models, asymptotic limits have to be considered, letting the number of
drones N tend towards infinity.

On the way towards a macroscopic drone model, let us start with a mesoscopic
description of a drone swarm, including, apart the usual alignment, repulsion and at-
traction terms also other specific features in the model, such as a target for the swarm
(destination point), friction as well as noise. Thus starting from the more realistic
particle model














x′i(t) = vi(t) ,

v′i(t) = −γ vi(t)− (∇xV )(xi(t)) +
1

N

N
∑

j=1

ψij (vj − vi)−
1

N

N
∑

j=1,j 6=i

(∇xϕ)(xi − xj) + η(t) ,

(3.4)
the corresponding kinetic model is given by

∂tf + v · ∇xf −∇v · [(γ v +∇xV +∇xϕ ⋆ n)f ] +∇v · [Fa(f) f ] = σ∆vf , (3.5)

where f(t, x, v) is the particle distribution function in the phase space R
d × R

d and

n(t, x) :=

∫

Rd

f(t, x, v) dv , Fa(f)(t, x, v) :=

∫

Rd

∫

Rd

ψ(x−y) (w−v) f(t, y, w) dy dw .
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Here η(t) is a Gaussian white noise with σ > 0 the noise strength, γ > 0 is the friction
coefficient and the potential V is modelling an exteriour attraction force towards a given
target. Let us observe that the collision operator of the RHS conserves the mass, but
neither the momentum nor the energy.

The numerical simulation of a kinetic equation of the type (3.5) is very costly (6D
in the phase-space (x, v)), such that it could be interesting to derive the corresponding
fluid flocking model in order to reduce complexity. Introducing now the macroscopic
(mean) velocity by

(nu)(t, x) :=

∫

Rd

v f(t, x, v) dv ,

as well as the energy and the temperature via

w(t, x) :=
1

2

∫

Rd

|v|2 f(t, x, v) dv = 1

2
n |u|2 + d

2
nT ,

d

2
nT :=

1

2

∫

Rd

|v − u|2 f dv ,

the fluid model writes


































































∂tn +∇x · (nu) = 0 ,

∂t(nu) +∇x · (nu⊗ u) + n [∇xV + (∇xϕ) ⋆ n] +∇x · P

= −γ n u−
∫

Rd

ψ(x− y)n(t, y)n(t, x) [u(t, x)− u(t, y)] dy

∂tw +∇x · (w u+ P u+ q) + nu [∇xV + (∇xϕ) ⋆ n]

= −2γ w + σ n− d nT (ψ ⋆ n)− n [ψ ⋆ (nu)]

−
∫

Rd

ψ(x− y)n(t, y)n(t, x)[u(t, x)− u(t, y)]2 dy ,

(3.6)

where we denoted by P and q the pressure tensor and the heat flux, given by

P(t, x) :=

∫

Rd

(v − u)⊗ (v − u) f(t, x, v) dv , q(t, x) :=
1

2

∫

Rd

(v − u) |v − u|2f dv .

This fluid model is not closed. To get a self-consistent model one needs to express
the pressure tensor P and the heat flux q by means of the unknowns (n, u, w), fact which
can be done either via empirical laws or by performing a physical scaling of (3.5) and
a subsequent asymptotic (hydrodynamic) study in order to obtain the corresponding
(closed) fluid model in the limit of some small parameter ε, which serves as connection
between the kinetic and the fluid world.

To complete the study it could be interesting to investigate the long-time asymptotic
flocking behaviour of the kinetic model (3.5) or of the corresponding fluid model. For
this, let us study the following slightly changed kinetic equation

{

∂tf + v · ∇xf − [∇xV + (∇xU) ⋆ n] · ∇vf = ∇v · [γ vf −Ga(f) f + σ∇vf ] ,

f(0, x, v) = fin(x, v) .
(3.7)
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with the normalized alignment term given by

Ga(f)(t, x, v) :=

∫

Rd

∫

Rd ψ(x− y) (w − v) f(t, y, w) dy dw
∫

Rd

∫

Rd ψ(x− y) f(t, y, w) dy dw
=
ψ ⋆ (nu)

ψ ⋆ n
− v =: ũ− v .

Choosing ψ ≡ δ0 in this last formula leads to the local alignment force Ga(f)(t, x, v) :=
u(t, x)− v, where u is this time the mean velocity. Rescaling now the two quantities ũ
and σ as

û :=
ũ

γ + 1
, σ̂ :=

σ

γ + 1
,

the Fokker-Planck collision operator on the RHS of (3.7) rewrites

Q(f) := (γ + 1)∇v · [(v − û) f + σ̂∇vf ] = (γ + 1)∇v ·
[

σ̂M̂û∇v

(

f

M̂û

)]

,

where we shall denote

M̂0(v) :=
1

(2πσ̂)d/2
e−

|v|2

2 σ̂ , M̂û(t, x, v) :=
1

(2πσ̂)d/2
e

−|v−û(t,x)|2

2 σ̂ .

Let us define furthermore some physical quantities, like the associated free energy

G(f)(t) := σ

γ + 1

∫

Rd

∫

Rd

f ln(f) dxdv+
1

2

∫

Rd

∫

Rd

f |v|2 dxdv+
∫

Rd

[

V (x) +
1

2
(U ⋆ n)

]

n dx ,

(3.8)
which is the sum of the entropy S(t) (first term) and the total energy E(t) (last two
terms). Furthermore, the dissipation term corresponding to the new Fokker-Planck type
collision operator will be of interest and is given by

D(f)(t) := (γ+1)

∫

Rd

∫

Rd

1

f
[(v − û)f + σ̂∇vf ]

2 dxdv =
σ2

γ + 1

∫

Rd

∫

Rd

M̂2
û

f

[

∇v

(

f

M̂û

)]2

dxdv .

Multiplying now the kinetic equation (3.7) by ln
(

f

M̂0

)

and integrating in the phase-

space dxdv, one obtains the following evolution equation for the free energy

d

dt
G(t) +D(f)(t) = −

∫

Rd

n(t, x) u(t, x) ũ(t, x)dx+
1

γ + 1

∫

Rd

n(t, x) |ũ(t, x)|2 dx ,

which rewrites

d

dt
G(t) +D(f)(t) +

γ

γ + 1

∫

Rd

n(t, x) |ũ(t, x)|2 dx = −
∫

Rd

n(t, x) ũ(u− ũ) dx . (3.9)

Let us make here two observations. Firstly, in the case one has u = ũ, which arises for
example if ψ = δ0, thus for very concentrated alignment functions, the right hand side of
(3.9) vanishes. This implies then that in the long-time limit the distribution function f
tends towards some function of the form f∞ = n∞(x)M̂0(v), with zero average velocity.
The zero average velocity is obtained for γ > 0. The limiting density function n∞ is
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solution of the following nonlinear elliptic problem, called sometimes Poisson-Boltzmann
equation

σ

γ + 1
∇xn

∞ = − [∇xV + (∇xU) ⋆ n] n
∞ , ∀x ∈ T .

The second observation concerns the case with no friction, namely for γ ≡ 0. Even in
this case one gets the same limit distributional function f∞ = n∞(x)M̂0(v), with zero
average velocity. Indeed this comes from the interplay between the transport and the
collision operator.
All this analysis is done in the case one has u = ũ. In more general cases, with a
communication weight which is concentrated around r ∼ 0, one has to try to show the
smallness of the term u − ũ and to include the RHS into the LHS. To finish, apply-
ing some Sobolev inequalities on (3.9) shall permit then to obtain the exponential decay
(in the entropy sense) towards the equilibrum. This problem is for the moment in study.

Returning again to the modelling considerations, let us mention that in reality it
is the nature of the environment, where the particles (or drones) evolve, that deter-
mines the friction force to be chosen. In the above model we took a linear drag force
Ff(v) = −µ(v) v with a constant friction coefficient µ(v) := γ > 0. A different choice,
frequently encountered in literature is µ(v) := β |v|2 − α, which corresponds to a con-
stant acceleration of the particles (self-propelled drones) and a nonlinear friction force
−β |v|2 v, called Rayleigh-Helmholtz friction. The competition between these two ac-
celeration and friction forces leads to an asymptotic velocity of

√

α/β in the long-time
limit. The nonlinearity leads also to very nice mathematical questions, as for example
the occurrence of phase-transitions if noise is added to the system. In some words,
phase-transition is a process during which a system, constituted of a large number of
particles, undergoes a transition between two different “phases” of the system, for ex-
ample from an ordered towards a disordered phase, defined by a specific parameter, as
for ex. an order parameter. Such phase-transitions are frequently observed for example
in bird-swarm dynamics, see Fig. 3.5.

Figure 3.5: Examples of phase-transition in a bird swarm [30].
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Finally let us mention that one can couple the particle-model with a fluid model
which describes the environment in which the agents evolve. The coupling is done by
means of the so-called Stokes drag force Fd(t, x, v) = ξ(t, x) − v. To be more precise,
the drone evolution can be described via the following kinetic equation

∂tf + v · ∇xf − [∇xV + (∇xϕ) ⋆ n] · ∇vf = ∇v · [(v − ξ) f − Fa(f) f + σ∇vf ] , (3.10)

coupled to a viscous, compressible Navier-Stokes fluid model for the description of the
environment variables (ρ, ξ)











∂tρ+∇x · (ρ ξ) = 0 ,

∂t(ρ ξ) +∇x · (ρ ξ ⊗ ξ) +∇xp(ρ) + L ξ =

∫

Rd

(v − ξ) fdv ,
(3.11)

with the pressure and the Lamé operator given by

p(ρ) := ργ , γ > 1 ; L ξ := −µ∆xξ − µ
′ ∇x[∇x · ξ] , µ > 0 , µ+ µ

′

> 0 .

In some situations (for example when the fluid is a gas), one can consider the back-
ground density as constant, leading thus to the incompressible Navier-Stokes model.
Furthermore, one can assume that the fluid (ρ, ξ) interacts only with itself, and is hence
not affected by the kinetic part, as a consequence of a sparseness assumption on the
kinetic species.

Let us finish this chapter by presenting some simulations in Figure 3.6 corresponding
to a swarm of N = 50 drones, whose dynamics is governed by a three-zone model with
additional terms representing noise, friction, some obstacles and a target, as (3.4). The
parameters and functions chosen for this simulations are

ϕ(r) :=
(r − 1)2

2
, ψ(r) :=

1

r
, γ = 1 .

The numerical simulations have been performed with a forth-order Runge-Kutta scheme
(RK4).



Figure 3.6: Time evolution of a swarm of N = 50 drones starting on the left of the
simulation domain and converging towards a target (red point), by avoiding obstacles

on their way.
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Chapter 4

Some fundamental inequalities

In this chapter we shall regroup some classical theorems and inequalities often used
in entropy methods.

4.1 Gronwall lemma

Lemma 4.1.1 (Bellman-Gronwall lemma, integral version)
Let u, ϕ, ψ : [a, b) → R be three continuous functions on [a, b) ⊂ R. Let us furthermore
suppose that ϕ is positive on [a, b) and that u satisfies the following inequality

u(t) ≤ ψ(s) +

∫ t

a

ϕ(s) u(s) ds , ∀t ∈ [a, b) .

Then one has the estimate

u(t) ≤ ψ(t) +

∫ t

a

ψ(s)ϕ(s) e
∫ t
s ϕ(τ) dτ ds , ∀t ∈ [a, b) .

Lemma 4.1.2 (Gronwall lemma, integral version)
Let u, ϕ : [a, b) → R be two continuous functions on [a, b) ⊂ R. Let us furthermore
suppose that ϕ ≥ 0 on [a, b) and that u satisfies the following inequality, with some
constant u0 ∈ R

u(t) ≤ u0 +

∫ t

a

ϕ(s) u(s) ds , ∀t ∈ [a, b) .

Then one has the estimate

u(t) ≤ u0 e
∫ t
a ϕ(s) ds , ∀t ∈ [a, b) .

Lemma 4.1.3 (Gronwall lemma, classical version)
Let ϕ, ψ : [a, b) → R be two continuous functions on [a, b) ⊂ R and u ∈ C1([a, b)). Let
u satisfy moreover the following inequality

u′(t) ≤ ψ(t) + ϕ(t) u(t) , ∀t ∈ [a, b) .

55
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Then one has the estimate

u(t) ≤ u(0) e
∫ t
a ϕ(s) ds +

∫ t

a

ψ(s)e
∫ t
s ϕ(τ) dτ ds .

4.2 Poincaré inequality

Lemma 4.2.1 (Generalized Poincaré inequality) [13]
Let Ω ⊂ R

d be an open, bounded domain with Lipschitz boundary. Furthermore, let us
consider a continuous semi-norm

N : W 1,p(Ω) → R , p ∈ [1,∞).

Then, there exists a constant C > 0, depending only on Ω, n, p such that

||u||W 1,p(Ω) ≤ C
[

||∇u||Lp(Ω) +N (u)
]

.

Remark 4.2.2 Some examples of continuous semi-norms are:

• N (u) :=
∫

Γ
|u(x)| dσ with Ω of classe C1 and Γ ⊂ ∂Ω with |Γ| > 0;

• N (u) := 〈u〉 with 〈u〉 := 1
|Ω|

∫

Ω
u dx.

Lemma 4.2.3 (Poincaré-Wirtinger inequality) [3, 16]
Let Ω ⊂ R

d be a connected open and bounded set of Lipschitz regularity and let p ∈ [1,∞].
Then there exists a constant C > 0 depending only on Ω, n, p such that

||u− 〈u〉||Lp(Ω) ≤ C ||∇u||Lp(Ω) , ∀u ∈ W 1,p(Ω) .

Lemma 4.2.4 (Inflow-Poincaré inequality) [3, 16]
Let Ω ⊂ R

d be an open bounded set and let p ∈ [1,∞). Then there exists a constant
C > 0 depending only on Ω, n, p such that

||u||Lp(Ω) ≤ C ||∇u||Lp(Ω) , ∀u ∈ W 1,p
0 (Ω) .

Remark 4.2.5 This last Poincaré inequality remains valid for domains which are bounded
only in one direction (strip-like domains) or for functions which vanish only on part of
the boundary Γ ⊂ ∂Ω with non-zero measure.

Lemma 4.2.6 (Weighted Poincaré inequality) [1]
Let us fix a sufficiently regular potential V satisfying

V ∈ L∞
loc(R

d) ∩W 2,1
loc (R

d) , liminf|x|→∞V (x) = ∞ .

Then there exists some constant C > 0 such that
∫

Rd

|u|2 e−V dx ≤ C

∫

Rd

|∇u|2 e−V dx , ∀u ∈ H1(Rd) such that

∫

Rd

u e−V dx = 0 .

Lemma 4.2.7 (Inhomogeneous Poincaré inequality) [15]
Let Ω := T×R with T the periodic torus in x, and let us consider the weighted measure
dµ∞ := Mdxdv where M := 1/

√
2π e−v

2/2. Then, there exists some constant C > 0
depending only on Ω, such that for each u ∈ H1(dµ∞) satisfying

∫

Ω
u dµ∞ = 0 one has

∫

Ω

|u|2 dµ∞ ≤ C

∫

Ω

|∇u|2 dµ∞ . (4.1)
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4.3 Logarithmic Sobolev inequalities

Lemma 4.3.1 (Gaussian and Euclidean logarithmic Sobolev inequalities)
Let dµ := M dx be the normalized Gaussian measure on R

d with d ≥ 1 and M(x) :=
(2 π)−d/2 e−|x|2/2. The Gaussian logarithmic inequality reads then

∫

Rd

|∇u|2 dµ ≥ 1

2

∫

Rd

|u|2 log(|u|2) dµ ,

for all u ∈ H1(Rd, dµ) satisfying
∫

Rd |u|2 dµ = 1.

For w := uM1/2 we get
∫

Rd |w|2 dx = 1,
∫

Rd |x|2 |w|2 dx = d and via an integration by
part we obtain the equivalent Euclidean logarithmic Sobolev inequality
∫

Rd

|∇w|2 dx ≥ 1

2

∫

Rd

|w|2 log(|w|2) dx+d
4
log(2π e2) , ∀w ∈ H1(Rd), w ≥ 0, ||w||L2 = 1 .

Lemma 4.3.2 [19] (Convex Sobolev inequalities)
Let φ : (0,∞) → [0,∞) be a smooth function, such that

φ(1) = 0 , φ
′′

(1) = 1 , φ
′′

> 0 , (1/φ
′′

)
′′ ≤ 0 on (0,∞) .

The convex Sobolev inequality relates a non-negative convex entropy function

Eφ(u|u∞) :=

∫

Rd

φ

(

u

u∞

)

u∞ dx ,

to an entropy-production function

Iφ(u|u∞) := −
∫

Rd

φ
′′

(

u

u∞

)
∣

∣

∣

∣

∇
(

u

u∞

)
∣

∣

∣

∣

2

u∞ dx ,

in particular one has

Eφ(u|u∞) ≤ 1

2
|Iφ(u|u∞)| ,

for all u : Rd → R
+ such that u ∈ H1(Rd, dµ) satisfying

∫

Rd |u|2 dµ = 1 with dµ := u∞ dx

and u∞ := (2 π)−d/2 e−|x|2/2, as well as
∫

Rd u dx = 1.

By choosing φ in a suitable way, we can obtain specific inequalities. For example,
choosing the typical generating function φ(s) := s log(s)− s+ 1 one gets
∫

Rd

u log

(

u

u∞

)

dx ≤ 2

∫

Rd

∣

∣

∣

∣

∇
√

u

u∞

∣

∣

∣

∣

2

u∞ dx =
1

2

∫

Rd

u

∣

∣

∣

∣

∇ log

(

u

u∞

)
∣

∣

∣

∣

2

dx . (4.2)

As one has u∞ := (2 π)−d/2 e−|x|2/2, the convex Sobolev inequality can be rewritten in
the different form

∫

Rd

u log(u) dx+
d

2
log(2 π) + d ≤ 2

∫

Rd

∣

∣∇√
u
∣

∣

2
dx ,

which is nothing else than the Euclidean logarithmic Sobolev inequality.

Remark 4.3.3 In bounded domains Ω ⊂ R
d one has for some C > 0 (depending only on

Ω and d) the following estimate, obtained from Sobolev injection and Poincaré-Wirtinger
theorems

∫

Ω

u2 log

(

u2

||u||2L2(Ω)

)

dx ≤ C ||∇u||2L2(Ω) ∀u ∈ H1(Ω) .
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4.4 Csiszár-Kullback inequality

The following inequality shows that the L1-distance of two functions f and g is controlled
by the relative entropy

Eφ(f |g) :=
∫

Ω

φ(f/g) g dx .

Lemma 4.4.1 [19] (Classical Csiszár-Kullback inequality)
Let Ω ⊂ R

d be a domain and let f, g ∈ L1(Ω) satisfy f ≥ 0, g > 0 and
∫

Ω
fdx =

∫

Ω
gdx = 1. Let furthermore φ(s) := s log(s) − s + 1 for s > 0. The, one has with

optimal constant
||f − g||2L1 ≤ 2 Eφ(f |g) .

Lemma 4.4.2 (General Csiszár-Kullback inequality)
Let Ω ⊂ R

d be a domain and let f, g ∈ L1(Ω) satisfy f ≥ 0, g > 0 and
∫

Ω
fdx =

∫

Ω
gdx = 1. Let furthermore φ ∈ C0([0,∞))∩C4(0,∞) be such that φ(1) = 0, φ

′′
(1) > 0,

φ
′′′
(1) > 0, φ is convex and 1/φ

′′
is concave in (0,∞). The, one has

||f − g||2L1 ≤ 2

φ′′(1)
Eφ(f |g) .



Summary

The mathematical modelling and analysis of the collective behaviour of a cloud of N
interacting particles or agents has attracted a lot of interest in the last years in several
communities, such as biologists, physicists, mathematicians, computer scientists etc.
This is motivated not only by fundamental reasons, such as the understanding of the
natural phenomena occurring around us, but also by the wide applications of this field
in several domains, such as collective robotics, unmanned areal vehicles, ...

Several mathematical models appeared in literature in the last years, such as for ex.
the Viscek model, the Kuramoto model, the Cucker-Smale model etc, each one being
specifically adapted for a particular situation, and several mathematical and numerical
studies have been performed, the literature being constantly growing. The basic models
have been fully understood today, what is still open in our opinion is the design of more
realistic models, permitting to get closer to reality, and the corresponding mathematical
and numerical analysis. In fact, a truly good model must on one hand recreate the
real-life behaviour one is investigating, and on the other hand it must be simple enough
to enable a detailed mathematical and numerical study. So in our particular case of a
drone swarm, all the specificities mentionned in Section 3.2 shall be step by step included
in a realistic drone model and efficient, multi-scale numerical schemes designed to be
proposed to the industrials.
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