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Abstract

We show the boundary controllability to stationary states of the Stefan problem with two phases and in
one dimension in the space variable. In the case of an initial condition that is a stationary state and for a
time of control large enough, we also obtain the controllability to stationary states with the sign constraints
associated with the problem. Our method is based on the flatness approach that consists in writing the
solution and the controls through two outputs and their derivatives. We construct these outputs as Gevrey
functions of order σ so that our solution and controls are also in a Gevrey class.
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1 Introduction and main results

In this article, we consider the controllability of the Stefan problem with two phases and in dimension 1 in space.
This system can model a solid-liquid phase transition, and is illsutrated on Figure 1. One of the main difficulties
in the study of this system is that it contains a free boundary, that is the interface between the two phases.
In dimension 1 in space, the system couples two heat equations and a differential equation for the motion of
the interface. There is an important literature devoted to the study of the Stefan problem. Concerning the
well-posedness, one can quote for instance in the one-dimensional case [1–3, 6, 7, 10, 14]. In [12], the author
obtains the analyticity of the interface between the two phases. Let us also mention [11] where the author shows
the existence and uniqueness of weak solutions for the Stefan problem in dimension n > 1 and analyzes their
properties. The regularity of the free boundary in that case is studied in [16].

Concerning the controllability of the Stefan problem, let us mention [4, 8, 9] where the authors tackle the
local null-controllability of Stefan problem in dimension 1 or in dimension 2 in star-shaped domains. The
method is based on a linearization of the system, a fixed point argument and Carleman estimates to handle
the controllability of the corresponding parabolic system. Note that in their results, the temperature is lead
to zero but there is no constraint on the interface position. Recently, in [15], the controllability to trajectories
of the Stefan problem with one phase and dimension 1 in space is shown. The method is based again on a
linearization of the system after a change of variables and the controllability of the linear system is obtained
by using Carleman estimates. In that case, the authors control both the temperature and the position of the
interface. Let us also mention [13], where the authors obtain the controllability of the linearized Stefan problem
with surface tension. Finally, in the case of feedback stabilization, we can quote for instance [17–19]. The
method used to stabilize the Stefan problem is based on the backstepping method.

In this article, our aim is to obtain the controllability to the steady states, and in order to do this, we are
going to use the flatness method that we recall in the next section. In this approach, the state and the controls
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are described by series. Such an approach was already applied for the heat equation [26], general parabolic
equations [28], the Schrödinger equation [30], the linear Korteweg–de Vries equation [25] and semilinear heat
equations [20]. Note in particular that the flatness approach was already applied to the Stefan problem for
motion planning questions in [5].

Solid phase

Interface position

Control u1Control u0

Liquid phase `b(t)0 x

xb(t) `

Temperature

0

0

θ−(t, ·)

θ+(t, ·)

Figure 1: Schematic representation of the problem.

Let us now describe precisely our system and our results. First we consider the Stefan problem:

∂tθ = c∂2xθ (t > 0, x ∈ (0, 1) \ {b(t)}), (1.1a)

θ(t, b(t)) = 0 (t > 0), (1.1b)

b′(t) = ∂xθ(t, b(t)
−)− ∂xθ(t, b(t)+) (t > 0), (1.1c)

with initial condition:
b(0) = b0, θ(0, ·) = θ0. (1.2)

At the boundaries, we impose two controls:

θ(t, 0) = u0(t), θ(t, 1) = u1(t) (t > 0). (1.3)

In the above system, θ denotes the temperature of the material, and we assume that this material is liquid for
x < b(t) and solid for x > b(t). If necessary, we write

θ−(t, x) := θ(t, x) (x < b(t)) and θ+(t, x) := θ(t, x) (x > b(t)).

Both temperatures are equal at the interface and by a change of variables we can assume that θ−(t, b(t)) =
θ+(t, b(t)) which permits to use the global variable θ as a function continuous at b(t). The motion of the interface
depends on the jump of the derivatives of θ at x = b(t). Here, we have assumed that the diffusion coefficient is
constant on each state of the material:

c :=

{
c− if x < b(t),
c+ if x > b(t),

(1.4)

where c−, c+ ∈ R∗+. Note that by some change of variables we can assume that all the other physical parameters
are equal to 1. A natural physical condition for the above system consists in imposing

θ(t, x) < 0 (x ∈ (0, b(t)) and θ(t, x) > 0 (x ∈ (b(t), 1) (t > 0). (1.5)
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Our aim is to use the controls u0 and u1 in order to reach a stationary state
(
b, θ
)

of (1.1) in a finite time

T > 0. Such a stationary state satisfies b ∈ (0, 1) and for some constant v ∈ R:

θ(x) = v(x− b). (1.6)

In our first result, we show that we can reach such a stationary state by using the flatness approach. Note that
in this result, we do not impose the condition (1.5).

Theorem 1.1. Assume

b0 ∈ (0, 1), θ0 ∈ C1([0, 1] \ {b0}) ∩ C0([0, 1]),

θ0 6 0 in [0, b0], θ0 > 0 in [b0, 1], θ0(0) < 0, θ0(1) > 0.
(1.7)

Then for any T > 0, σ ∈ (1, 2), b ∈ (0, 1) and v ∈ R, there exist two controls u0, u1 Gevrey of order σ in [0, T ]
such that the solution (b, θ) of (1.1)–(1.3) satisfies

b(T ) = b, θ(T, x) = v(x− b) (x ∈ [0, 1]). (1.8)

Moreover, for any ε > 0, b is Gevrey of order σ in [ε, T ] and there exist S− and S+ in [ε, T ] × R Gevrey of
order σ in time and 1 in space such that

θ−(t, x) = S−(t, x− b(t)) (t ∈ [ε, T ], x ∈ [0, b(t)]),

θ+(t, x) = S+(t, x− b(t)) (t ∈ [ε, T ], x ∈ [b(t), 1]).

In order to respect the sign condition (1.5), the stationary states, described by (1.6), need to satisfy v > 0.
The second result states that one can use the controls u0 and u1 to pass from such a stationary state to another,
and to keep the sign condition (1.5) during the evolution of the system. To obtain such a result, we need a time
of control large enough.

Theorem 1.2. Assume
b0 ∈ (0, 1), v0 > 0, θ0(x) = v0(x− b0) (1.9)

and suppose that v > 0. Then there exists T1 with the following property: if T > T1 one can choose the controls
u0 and u1 such that the same properties of Theorem 1.1 hold with ε = 0 (in particular (1.8)) and such that
(1.5) holds for all t ∈ [0, T ].

Remark 1.3. In the proof of Theorems 1.1 and 1.2, one can see that in fact our controls u0 and u1 are
constructed from two Gevrey functions of order σ: α−,0, α+,0 and their derivatives.

Remark 1.4. We recall that f is Gevrey of order σ in a domain I ⊂ R if it is C∞-smooth and if for any
compact K ⊂ I, there exist M,R > 0 such that∥∥∥f (n)∥∥∥

L∞(K)
6M

(n!)
σ

Rn
(n ∈ N).

If σ = 1, it is thus an analytic function. As explained for instance in [27], one of the interests of such a class
of functions here is that for σ > 1, there exist step functions that are Gevrey of order σ (see Section 3). The
notion of Gevrey function for several variables in similar: for instance for two variables as above, f is Gevrey
of order σ1 in time and σ2 in space if there exist M,R1, R2 > 0 such that

‖∂mt ∂nxf‖L∞(K) 6M
(m!)

σ1

Rm1

(n!)
σ2

Rn2
(m,n ∈ N).

Remark 1.5. An important feature in our two results is that we do not linearize the system, and consequently,
we do not have any smallness assumptions as this is the case for the results in [4,8,9]. With respect to previous
systems studied with the flatness approach (see [20,25,26,28,30]), we consider here a nonlinear problem coupling
PDEs and ODEs and with a free boundary.
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Remark 1.6. Let us mention some results for the controllability of parabolic equations with a sign constraint
on the control or on the state: [21–24], etc. It is proved in particular in [23, Theorem 3] that to control the heat
equation under non negativity constraints on the state, one need a minimal time. Let us also quote a similar
result [31, Theorem 1.1] in the case of the wave equation under a nonnegative control constraint.

Remark 1.7. Let us mention that in this paper, we have chosen Dirichlet boundary controls, but this is not
required for the flatness approach. For instance, similar results could have been obtained with Neumann or Robin
boundary controls.

The outline of the article is as follows. In Section 2, we describe the flatness approach in the case of the
Stefan problem. Then in Section 3, we present some results on the Gevrey functions. Several of these results are
well-known, but we point out that a key point in the proof of the main results is Proposition 3.4. In the proof
of Theorem 1.1, we need to show that the solutions of the Stefan is regular enough for any positive time. In
order to do this we use [12] where the time regularity is proved and standard methods to obtain the regularity
in space. Finally, in Section 5, we prove Theorems 1.1 and 1.2. The last section, Section 6, is devoted to some
numerical illustrations of our method.

2 The flatness approach

In this section, we present the flatness approach for the Stefan problem. We decompose the solution of (1.1) as
follows

θ(t, x) :=

∞∑
i=0

α−,i(t)
(x− b(t))2i+1

(2i+ 1)!
+

∞∑
i=0

β−,i(t)
(x− b(t))2i

(2i)!
(x < b(t)), (2.1a)

θ(t, x) :=

∞∑
i=0

α+,i(t)
(x− b(t))2i+1

(2i+ 1)!
+

∞∑
i=0

β+,i(t)
(x− b(t))2i

(2i)!
(x > b(t)). (2.1b)

Note that formally (1.1b) yields β±,0 = 0. The separation between odd and even powers is due to the case of
the heat equation, see [27,29] where only the odd or the even powers appear.

Formally, for both (2.1a) and (2.1b), we have

∂tθ − c∂2xθ =

∞∑
i=0

α′i(t)
(x− b(t))2i+1

(2i+ 1)!
−
∞∑
i=0

αi(t)b
′(t)

(x− b(t))2i

(2i)!

+

∞∑
i=0

β′i(t)
(x− b(t))2i

(2i)!
−
∞∑
i=0

βi+1(t)b′(t)
(x− b(t))2i+1

(2i+ 1)!

− c
∞∑
i=0

αi+1(t)
(x− b(t))2i+1

(2i+ 1)!
− c

∞∑
i=0

βi+1(t)
(x− b(t))2i

(2i)!
,

so that (1.1a) yields that αi and βi satisfy the recurrence formula{
β−,i+1 = 1

c−
β′−,i − 1

c−
b′α−,i,

α−,i+1 = 1
c−
α′−,i − 1

c−
b′β−,i+1,

{
β+,i+1 = 1

c+
β′+,i − 1

c+
b′α+,i,

α+,i+1 = 1
c+
α′+,i − 1

c+
b′β+,i+1,

(i > 0). (2.2)

Finally, (1.1c) imposes,
b′ = α−,0 − α+,0. (2.3)

We thus see that all the coefficients of θ, that is (α±,i), (β±,i), and b′ are completely given by α−,0 and α+,0.
The idea of the flatness method consists in constructing α−,0 and α+,0 so that θ and b satisfy the initial and
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final conditions and then, the controls u0 and u1 are given by

u0(t) := −
∞∑
i=0

α−,i(t)
b(t)2i+1

(2i+ 1)!
+

∞∑
i=0

β−,i(t)
b(t)2i

(2i)!
, (2.4a)

u1(t) :=

∞∑
i=0

α+,i(t)
(1− b(t))2i+1

(2i+ 1)!
+

∞∑
i=0

β+,i(t)
(1− b(t))2i

(2i)!
. (2.4b)

The proof of Theorem 1.1 relies on the above formal computation that we justify by using the Gevrey
functions.

3 Gevrey functions

We recall here some standard results on the Gevrey functions, and we study systems of the form (2.2) when
the first two terms are Gevrey of order σ. Let us quote for instance [32–34] for some references on the Gevrey
functions.

Notation 3.1. For M,R > 0 and σ > 1, we denote by G(M,R, σ) the set of functions f ∈ C∞(R) such that∥∥∥f (n)∥∥∥
L∞(R)

6M
(n!)

σ

Rn
(n ∈ N).

We recall the following results

Lemma 3.2. Assume σ > 1. Then there exist φσ : R→ [0, 1] and ησ : R→ R+ two Gevrey functions of order σ
such that

φσ(t) =

{
1 if t 6 0,

0 if t > 1,
φσ(t) + φσ(1− t) = 1 (t ∈ R),

supp ησ ⊂ [0, 1], ησ > 0,

∫
R
ησ ds = 1.

(3.1)

In particular, there exist M0, R0 > 0 such that φσ, ησ ∈ G(M0, R0, σ).

Proof. We set k := (σ − 1)−1 and we consider the Gevrey function of order σ

φσ(t) :=


1 if t 6 0,

e−((1−t)−k)

e−((1−t)−k) + e−(t−k)
if t ∈ (0, 1),

0 if t > 1.

Then, we set

ησ :=
φσ(t)φσ(1− t)∫

R
φσ(s)φσ(1− s) ds

(t ∈ R).

One can check that φσ and ησ satisfy the properties of the lemma.

Lemma 3.3. Assume `, i, j ∈ N and σ > 1. Then

∑̀
m=0

(
`

m

)
(`−m+ i)!σ (m+ j)!σ 6

(
i!j!(i+ j + `+ 1)!

(i+ j + 1)!

)σ
.

We have the following crucial result
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Proposition 3.4. Assume σ > 1, Mf ,Mα,Mβ , R, χ ∈ R∗+. Suppose f ∈ G(Mf , R, σ) and let us consider the
sequences (αi)i∈N and (βi)i∈N defined by

α0 ∈ G(Mα, R, σ), β0 ∈ G(Mβ , R, σ)

and for any i > 0, {
βi+1 = χβ′i − χfαi,
αi+1 = χα′i − χfβi+1.

(3.2)

Then, for any ρ > 0 such that

ρ 6
23−σR

3
and ρ 6

2Mα

3χ
(
Mβ

R +MαMf

)
Mf

, (3.3)

we have, for any `, i ∈ N, ∥∥∥α(`)
i

∥∥∥
L∞(R)

6
Mαχ

i

R`ρi
(`+ 2i)!σ

i!2−σ(2i)!σ−1
, (3.4)∥∥∥β(`)

i+1

∥∥∥
L∞(R)

6

(
Mβ

R
+MαMf

)
χi+1

R`ρi
(`+ 2i+ 1)!σ

i!2−σ(2i+ 1)!σ−1
. (3.5)

If β0 = 0, then one can take Mβ = 0 in the above statements.

Remark 3.5. Note that in [5], the authors show an induction result similar to Proposition 3.4 (see [5, Theo-
rem 2.1]). More precisely, they can deal with more general non-linearities as the one associated with the Stefan
problem, but they also need a smallness condition that we avoid here.

Proof of Proposition 3.4. We consider ρ > 0 satisfying (3.3). We show (3.4)–(3.5) by induction on i. For
i = 0, (3.4) is a consequence of α0 ∈ G(Mα, R, σ). Then, using that f ∈ G(Mf , R, σ), α0 ∈ G(Mα, R, σ), and
β0 ∈ G(Mβ , R, σ) combined with the Leibniz rule, we deduce,

∣∣∣β(`)
1

∣∣∣ 6 χ
∣∣∣β(`+1)

0

∣∣∣+ χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
α
(`−m)
0 f (m)

∣∣∣∣∣ 6 χ
Mβ (`+ 1)!σ

R`+1
+
χMαMf

R`

∑̀
m=0

(
`

m

)
(`−m)!σ (m!)

σ
.

Using Lemma 3.3, we obtain (3.5) for i = 0.
Assume now (3.4)–(3.5) for i ∈ N. Then (3.2) and the Leibniz rule imply

∣∣∣α(`)
i+1

∣∣∣ 6 χ
∣∣∣α(`+1)
i

∣∣∣+ χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
β
(`−m)
i+1 f (m)

∣∣∣∣∣ . (3.6)

Using (3.4) and that σ > 1, we have

χ
∣∣∣α(`+1)
i

∣∣∣ 6 Mαχ
i+1

R`ρi+1

(`+ 2 + 2i)!σ

(i+ 1)!2−σ(2i+ 2)!σ−1
ρ

R

(i+ 1)2−σ(2i+ 2)σ−1(2i+ 1)σ−1

(`+ 2 + 2i)σ

6
Mαχ

i+1

R`ρi+1

(`+ 2 + 2i)!σ

(i+ 1)!2−σ(2i+ 2)!σ−1
ρ2σ−2

R
. (3.7)

Using (3.5) and that f ∈ G(Mf , R, σ), we have that

χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
β
(`−m)
i+1 f (m)

∣∣∣∣∣ 6 χi+2

R`ρi

(
Mβ

R +MαMf

)
Mf

(i)!2−σ(2i+ 1)!σ−1

∑̀
m=0

(
`

m

)
(`−m+ 2i+ 1)!σ (m!)

σ
.
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Applying Lemma 3.3 and using that σ > 1, we find

χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
β
(`−m)
i+1 f (m)

∣∣∣∣∣ 6 Mαχ
i+1

R`ρi+1

(`+ 2 + 2i)!σ

(i+ 1)!2−σ(2i+ 2)!σ−1

ρχ
(
Mβ

R +MαMf

)
Mf

2Mα
.

Using the above estimate and (3.7), in (3.6), together with the condition (3.3) on ρ, we deduce (3.4) for αi+1.
We proceed similarly for βi+1: applying the Leibniz rule on (3.2), we deduce

∣∣∣β(`)
i+2

∣∣∣ 6 χ
∣∣∣β(`+1)
i+1

∣∣∣+ χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
α
(`−m)
i+1 f (m)

∣∣∣∣∣ . (3.8)

From (3.5), we have

χ
∣∣∣β(`+1)
i+1

∣∣∣ 6 (Mβ

R
+MαMf

)
χi+2

R`ρi+1

(`+ 2i+ 3)!σ

(i+ 1)!2−σ(2i+ 3)!σ−1
ρ2σ−2

R
. (3.9)

Using (3.4) and that f ∈ G(Mf , R, σ), we have that

χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
α
(`−m)
i+1 f (m)

∣∣∣∣∣ 6 MαMf

R`
χi+2

ρi+1

1

(i+ 1)!2−σ(2i+ 2)!σ−1

∑̀
m=0

(
`

m

)
(`−m+ 2i+ 2)!σm!σ.

The above estimate and Lemma 3.3 imply

χ

∣∣∣∣∣∑̀
m=0

(
`

m

)
α
(`−m)
i+1 f (m)

∣∣∣∣∣ 6 1

3

(
Mβ

R
+MαMf

)
χi+2

R`ρi+1

(`+ 2i+ 3)!σ

(i+ 1)!2−σ(2i+ 3)!σ−1
.

Inserting the above estimate and (3.9) into (3.8), we deduce∣∣∣β(`)
i+2

∣∣∣ 6 (1

3
+
ρ2σ−2

R

)(
Mβ

R
+MαMf

)
χi+2

R`ρi+1

(`+ 2i+ 3)!σ

(i+ 1)!2−σ(2i+ 3)!σ−1
.

Using (3.3), the above inequality implies (3.5) for βi+1.

Corollary 3.6. With the assumptions of Proposition 3.4, if σ < 2, then the function defined by

S(t, x) :=
∞∑
i=0

αi(t)
x2i+1

(2i+ 1)!
+
∞∑
i=0

βi(t)
x2i

(2i)!
(t, x ∈ R), (3.10)

is Gevrey of order σ in time and 1 in space and

∂`t∂
n
xS(t, x) =

∑
2i+1>n

α
(`)
i (t)

x2i+1−n

(2i+ 1− n)!
+
∑
2i>n

β
(`)
i (t)

x2i−n

(2i− n)!
(t, x ∈ R). (3.11)

Moreover, for any r > 0, there exist C, r̃ > 0 such that

∣∣∂`t∂nxS(t, x)
∣∣ 6 C

n!

rn
(`!)σ

r̃`
(t, x ∈ R, |x| 6 r). (3.12)

Proof. Applying Proposition 3.4, we deduce the existence of C > 0 such that for t, x ∈ R,∣∣∣∣α(`)
i (t)

x2i+1−n

(2i+ 1− n)!

∣∣∣∣ 6 C
χi

R`ρi
|x|2i+1−n (`+ 2i)!σ

i!2−σ(2i)!σ−1
1

(2i+ 1− n)!
. (3.13)
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∣∣∣∣β(`)
i (t)

x2i−n

(2i− n)!

∣∣∣∣ 6 C
χi+1

R`ρi
|x|2i−n (`+ 2i+ 1)!σ

i!2−σ(2i+ 1)!σ−1
1

(2i− n)!
. (3.14)

Using that
(`+ 2i)! 6 2`+2i`!(2i)!, (2i)! 6 22i(2i+ 1− n)!(n− 1)!

and similar relations for βi, we deduce that if |x| 6 r,∣∣∣∣α(`)
i (t)

x2i+1−n

(2i+ 1− n)!

∣∣∣∣+

∣∣∣∣β(`)
i (t)

x2i−n

(2i− n)!

∣∣∣∣ 6 C
n!

rn

(
2σ

R

)`
(`!)σ

1

i!2−σ

(
χ4σ+1r2

ρ

)i
. (3.15)

Since σ < 2, ∑
i>0

1

i!2−σ

(
χ4σ+1r2

ρ

)i
<∞,

Therefore, the function S defined by (3.10) is C∞ in time and space and satisfies for any t, x ∈ R, |x| 6 r,

∣∣∂`t∂nxS(t, x)
∣∣ 6 C

n!

rn

(
2σ

R

)`
(`!)σ.

4 Analyticity of the solutions of the Stefan problem

In this section, we show that the solutions of the Stefan problem are analytic in the time and space variables
for any positive time and more precisely that we can write θ under the form (2.1) provided that we choose the
controls adequately. The proof is based on results of [12] that we recall here.

Let us assume that θ0 and b0 satisfy (1.7). We consider u0, u1 : [0, T ] → R analytic and such that u0(0) =
θ0(0), u1(0) = θ0(1), u0 < 0 and u1 > 0. One can for instance take u0 and u1 as constant functions. Then
from [12], the system (1.1)–(1.3) admits a unique solution (b, θ) in [0, T ]. Moreover, b is analytic in time and
after a change of variable, the temperature is also analytic in time. Let us precise this result.

First, we consider the map

T(t) :=

∫ t

0

1

b(s)2
ds.

We have that T is a bijection from [0, T ] onto [0, Tb], where Tb :=
∫ T
0

1
b2 ds, and we can define

f(τ) := u0(T−1(τ)) (τ ∈ [0, Tb]),

v(τ, y) := θ(T−1(τ), yb(T−1(τ)))− (1− y)f(τ) (τ ∈ [0, Tb], y ∈ [0, 1]).

It is proven in [12] that for any closed interval I in (0, Tb], there exist M > 0, Kτ > 0 and Ky > 0 such that for
all τ ∈ I and y ∈ [0, 1], ∣∣∂nτ ∂qyv(τ, y)

∣∣ 6MKn
τK

q
y(n+ q)! (n > 0, q ∈ {0, 1, 2}). (4.1)

The above estimates yield in a standard way the analyticity of v in time and space. For sake of completeness,
let us give a sketch of proof of this property. First, we deduce from (1.1a) that for τ ∈ [0, Tb], and y ∈ [0, 1],

∂τv − c∂yyv = b(T−1(τ))b′(T−1(τ))y (∂yv − f(τ))− (1− y)f ′(τ)

and thus

∂yyv =
1

c
∂τv + yd(τ)∂yv + f0(τ) + yf1(τ) (4.2)

8



with d, f0, f1 analytic in (0, T ]. By taking possibly M and Kτ larger, we can also assume that for all τ ∈ I,∣∣∣d(n)(τ)
∣∣∣+
∣∣∣f (n)1 (τ)

∣∣∣ 6MKn
τ n! (n > 0). (4.3)

We can also suppose that

Ky >
1

c
Kτ + 2M + 1. (4.4)

Then we can show by induction on q that for any τ ∈ I, y ∈ [0, 1], and n > 0,∣∣∂nτ ∂qyv(τ, y)
∣∣ 6MKn

τK
q
y(n+ q)!. (4.5)

From (4.2), we deduce

∂nτ ∂
3
yv =

1

c
∂n+1
τ ∂yv +

n∑
k=0

(
n

k

)
d(n−k)∂kτ ∂yv + y

n∑
k=0

(
n

k

)
d(n−k)∂kτ ∂

2
yv + f

(n)
1 (τ) (4.6)

From (4.1) and (4.3), the above relation yields

∣∣∂nτ ∂3yv(τ, y)
∣∣ 6 1

c
MKn+1

τ Ky(n+ 2)! +M2Kn
τKyn!(n+ 1)2 +M2Kn

τK
2
yn!(n+ 2)(n+ 1)2 +MKn

τ n!

= MKn
τK

2
y(n+ 3)!

(
1

c

Kτ

Ky

1

n+ 3
+
M

Ky

n+ 1

(n+ 2)(n+ 3)
+M

n+ 1

n+ 3
+

1

K2
y

1

(n+ 1)(n+ 2)(n+ 3)

)
.

Combining this relation with (4.4), we obtain (4.5) for q = 3. The induction for q > 4 is completely similar.
We deduce from (4.5) the existence of ε > 0 such that for y ∈ [1− ε, 1] and τ ∈ I,

v(τ, y) =

∞∑
q=1

vq(τ)
(y − 1)q

q!
.

Thus, for any interval J of (0, T ], we can decompose θ as (2.1a) for t ∈ J and for x ∈ [(1 − ε)b(t), b(t)]. We
can proceed similarly for x ∈ [b(t), (1 + ε̃)b(t)] and we obtain (2.1b). Due to (4.5), the formal computation done
in Section 2 is justified, and we obtain (2.2) and (2.3). We can thus apply Proposition 3.4 (with σ = 1) and
Corollary 3.6. This shows that the decompositions (2.1a) and (2.1b) hold for x ∈ [0, b(t)] and x ∈ [b(t), 1].

5 Proof of the main results

We are now in position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We set

ũ0(t) := θ0(0) < 0 and ũ1(t) := θ0(1) > 0.

From Section 4, the corresponding solution (̃b, θ̃) of (1.1)–(1.3) with the above controls satisfies (2.1) for t ∈
(0, T ]. The corresponding coefficients α̃±,i and β̃±,i verify β̃±,0 = 0, (2.2) and (2.3). Since b̃ ∈ (0, 1) in (0, T ],
there exists ε ∈ (0, 1) such that

εT

3

∥∥∥b̃′∥∥∥
L∞(0,T )

< b̃

(
T

3

)
< 1− εT

3

∥∥∥b̃′∥∥∥
L∞(0,T )

.

We consider now φσ and ησ satisfying the property of Lemma 3.2. The function defined by

b̂(t) := b̃

(
T

3

)
+

∫ t

T
3

b̃′(s)φσ

(
3s− T
εT

)
ds (5.1)
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satisfies b̂(t) ∈ (0, 1) for t > T/3 and is constant after t > (1 + ε)T/3. We denote by b̂0 the value of b̂(t) after
t > (1 + ε)T/3, and we introduce,

γ(t) :=
3
(
b̂0 − b

)
T (2− ε)

ησ

(
3t− T (1 + ε)

T (2− ε)

)
(t ∈ R)

and for τ ∈ (0, T ),

α−,0(t) := α̃−,0(t)φσ

(
3t− T
εT

)
+ vφσ

(
T − t
T − τ

)
(t ∈ (0, T ]), (5.2)

α+,0(t) := α̃+,0(t)φσ

(
3t− T
εT

)
+ vφσ

(
T − t
T − τ

)
+ γ (t) (t ∈ (0, T ]). (5.3)

We define b by b = b̃ in [0,min(τ, T/3)] and satisfying (2.3) in [min(τ, T/3), T ]. Taking the difference between
(5.2) and (5.3), we can check that

b(t) := b̂(t) +
(
b− b̂0

)∫ (3t−T (1+ε))/(T (2−ε))

−(1+ε)/(2−ε)
ησ(s) ds (t ∈ [T/4, T ]).

In particular, we have b(t) = b̂(t) for t < T (1 + ε)/3.
We also define α±,i and β±,i with (2.2) and with β±,0 = 0. From the properties of φσ and ησ (see Lemma 3.2),
we deduce that

α±,i = α̃±,i, β±,i = β̃±,i (i > 0, t ∈ (0,min(τ, T/3)]),

α−,0(T ) = v, α+,0(T ) = v, α±,i(T ) = 0 (i > 1), β±,i(T ) = 0 (i > 0), b(T ) = b.

Moreover, there exist M,R > 0 such that α−,0, α+,0, b
′ ∈ G(M,R, σ). We can apply Proposition 3.4 and

Corollary 3.6 and define θ by (2.1). Following the computation of Section 2, we deduce that θ and b satisfy (1.1)
with

(b, θ) = (̃b, θ̃) in (0,min(τ, T/3)] and b(T ) = b, θ(T, x) = v(x− b) (x ∈ [0, 1]).

Proof of Theorem 1.2. We define

α(s) := v0φσ(s) + vφσ(1− s) (s ∈ R).

Then, we set

if b0 > b, α−,0 := α

(
t

T

)
, α+,0 := α

(
t

T

)
+
b0 − b
T

ησ

(
t

T

)
(t ∈ R),

and

if b0 < b, α−,0 := α

(
t

T

)
+
b− b0

T
ησ

(
t

T

)
, α+,0 := α

(
t

T

)
(t ∈ R).

We also set

b(t) := b0 +
(
b− b0

) ∫ t/T

0

ησ(s) ds

and we consider α±,i and β±,i for i > 1 given by (2.2) with β±,0 = 0. We can check that (2.3) holds true.
We assume T > 1, and we thus deduce from the above construction that there exist M > 0 and R > 0 such

that α−,0, α+,0 ∈ G(M,RT, σ) and b′ ∈ G
(
M
T , RT, σ

)
. We apply Proposition 3.4: the condition (3.3) writes

ρ 6
23−σRT

3
and ρ 6

2T 2

3χM2
. (5.4)
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In particular, for T large enough, one can take

ρ := ρ0T, with ρ0 :=
23−σR

3
.

With this choice, we can apply Corollary 3.6 and define θ by (2.1). Following the computation of Section 2, we
deduce that θ and b satisfy (1.1) with

(b(0), θ(0, ·)) = (b0, v0(· − b0)) and (b(T ), θ(0, ·)) = (b, v(· − b)).

From the property of ησ, we have that b is monotone and thus b(t) ∈ (0, 1) for any t ∈ [0, T ]. We also deduce
that

α±,0(t) > min(v0, v) > 0. (5.5)

Moreover, we have the following estimates, for any i ∈ N:

‖α±,i‖L∞(R) 6
Mχi

ρi0T
i

(2i)!

i!2−σ
, ‖β±,i+1‖L∞(R) 6

M2

T

χi+1

ρi0T
i

(2i+ 1)!

i!2−σ
. (5.6)

Thus

δ(t, x) :=

∞∑
i=1

α−,i(t)
(x− b(t))2i

(2i+ 1)!
+

∞∑
i=1

β−,i(t)
(x− b(t))2i−1

(2i)!

satisfies for 0 < x < b(t),

|δ(t, x)| 6 Cδ
T

where Cδ :=

∞∑
i=1

Mχi

ρi0

1

i!2−σ
+

∞∑
i=0

M2χi+1

ρi0

1

i!2−σ
<∞.

We thus deduce from (2.1a), the above relation and (5.5) that for T large enough

θ(t, x)

x− b(t)
= α−,0(t) + δ(t, x) >

1

2
min(v0, v) > 0 (x < b(t))

and with a similar argument, one can show that for T large enough,

θ(t, x)

x− b(t)
>

1

2
min(v0, v) > 0 (x > b(t)).

6 Numerical illustrations

In this section, we present some numerical tests based on our theoretical results. First, we estimate the error
associated with the truncation of the series defining the solutions, see (2.1).

Corollary 6.1. Assume the same hypotheses of Proposition 3.4 and that σ < σ′ < 2. Then the series defined
by (3.10) satisfies the following property:∥∥∥∥∥

∞∑
i=N

αi(t)
x2i+1

(2i+ 1)!
+

∞∑
i=N

βi(t)
x2i

(2i)!

∥∥∥∥∥
L∞((0,T )×(0,1))

= o

(
1

(lnN)(N !)2−σ′

)
. (6.1)

Proof. Using (3.4) and (3.5),∥∥∥∥∥
∞∑
i=N

αi(t)
x2i+1

(2i+ 1)!
+

∞∑
i=N

βi(t)
x2i

(2i)!

∥∥∥∥∥
L∞((0,T )×(0,1))

= o

( ∞∑
i=N

1

i!2−σ′

)
. (6.2)

11



Now, using Stirling formula,

∞∑
i=N

1

i!2−σ′
6
∞∑
i=N

exp

(
−(2− σ′)

(
i+

1

2

)
ln i− i

)
.

Since the function g(x) :=
(
x+ 1

2

)
lnx−x is increasing and convex in [1,∞), we deduce from the above estimate

that
∞∑
i=N

1

i!2−σ′
6
∫ ∞
N

exp (−(2− σ′)g(x)) dx 6
exp (−(2− σ′)g(N))

(2− σ′) lnN
.

Using again the Stirling formula, we deduce the result.

Now to illustrate the construction of our control, we follow for instance the proof of Theorem 1.2 to pass
from a stationary state to another. We only need some functions φσ and ησ, and we can use the explicit
formula given in Lemma 3.2. This allows us to build α±,0 and b. Then we use (2.2) for i = 1, . . . , N and build
the approximations of the solutions with the formula (2.1) where the series are truncated at i = N . Due to
Corollary 6.1, we know that the convergence of these series is quite quick which allows us to consider small
values of N . In Figure 4, we illustrate the convergence of the controls u0 and u1 with respect to N . In this test,
we take c− = c+ = 1, T = 1, b0 = 1/2, v0 = 1, b = 3/4 and v = 4.

Let us mention that in order to compute the coefficients α±,i and β±,i defined by induction in (2.2), we use
the symbolic calculus in Matlab to differentiate the formulas.

With the same parameters as above, Figure 2 corresponds to the numerical test for N = 7. We represent
the two controls u0 and u1, and the evolution of b and of θ with respect to time.

Finally, in Figure 3, we consider the dependence of the controls u0 and u1 with respect to T . We see in
particular that for T = 0.5, the control u0 have positive values whereas for T = 0.75 and for T = 1, this control
remains negative.

We can observe the convergence of the controls when N is growing on Figure 4 where we observe a “smoothing
effect”.
On Figures 3 and 4, the controls are almost constant for abscisses less than 0.25 and larger than 0.75 and thus
those areas are excluded from these figure.
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