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Chapter 1

The model

1.1 Introduction
The term distributed algorithm refers to a class of algorithms aimed at being executed by au-
tonomous communicating processing units, called processes, processors, or agents. Such algo-
rithms are used in various applications. They depend on many features of the distributed system
(computing units, communication medium, global control, ...) in which they are run.

Communication medium. Agents can interact following two main models: in the shared
memory model, agents communicate by reading and writing shared variables; in the message
passing model, they exchange information by sending and receiving messages through communi-
cation channels. There are different shared memory models depending on the semantics of the
memory access primitives (types of the shared objects).

In the same way, several message passing models exist: for instance, messages can be sent
point-to-point or broadcasted over the network; communication may be by hand-shake 1 (i.e.,
send and receive are atomic) or asynchronous; communication channels may ensure that messages
are received in the same order they have been sent (FIFO property).

In the context of this document, we consider only message passing distributed systems with
point-to-point communications. The collection of communication channels induces a directed
graph (or digraph, for short), called the communication graph or communication network, where
agents are the vertices of the digraph and communication channels are its edges. This digraph
will be denoted by G = (V, E).

Global information and implicit knowledge. Without any specific assumptions, agents
are supposed to have only local information: each agent has a complete control on incoming and
outgoing information (number and identifiers of its ports) and local variables.

However, the local algorithm associated to an agent (cf. below) may make use of some global
information like the size of the network or the diameter of the communication graph.

Another property that can be used in a distributed algorithm is the availability of unique
identifiers: each agent may use its identifier to tag its messages.2 Otherwise, the networked
system is said to be anonymous.

1The terms communications with blocking receipts or (unfortunately) synchronous communications are also
used.

2However, identifiers are not supposed to be mutually known, i.e., local algorithms cannot use the set of
identifiers.
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1.2 Computational model
A distributed algorithm for a networked system of agents is a collection of finite state automata,
one per agent. Automata may be deterministic or not.

Agents communicate with each other by sending and receiving messages over end-to-end
communication channels. The underlying communication graph is supposed to be fixed and
strongly connected. We will assume that communications are non-faulty: no message is lost,
duplicated, or garbled by the communication medium.

u

v1

v2

w1

w2

w3

Figure 1.1: Anatomy of an agent

Each agent can send and receive messages along its incoming and outgoing channels, respec-
tively. In Figure 1.1, the agent u has two incoming channels from v1 and v2, or equivalently, v1
and v2 are its incoming neighbors. Similarly, it has three outgoing neighbors, namely w1, w2,
and w3. The red dots are the u’s incoming ports and the blue ones are its outgoing ports. The
fact that an agent can distinguish its incoming ports is called the non-masquerading property.

1.3 Formal model
LetM be a non-empty set, modelling the set of all possible messages, M(M) be the set of finite
multisets with elements fromM, and letM(E,M) =M(M)E where E is the set of edges in the
communication graph.

1.3.1 States, configurations, transitions
The following definition formally defines the local algorithm of an agent u as a transition system

over a set of states Σu.

Definition 1.1. A local algorithm of an agent u is a sextuple Au = (Σu, Iu,M,`i
u,`s

u,`r
u)

where Σu is a set of states, Iu ⊂ Σu is the set of initial states,M is the set of all messages, `i
u is

a relation on Σu×Σu, `s
u and `r

u are relations on Σu×M×Outu×Σu and Σu×M× Inu×Σu,
respectively.

Let us consider a distributed algorithm A = (Au)u∈V ; a configuration of A consists of the
collection of local states, one per agents, and a collection of multisets3 of messages, one per
channel, i.e., an element of M(E,M). A configuration thus models a global state of the system:
if M ∈ M(E,M) and (u, v) is a channel in E, then M(u,v) represents the state of this channel,
that is to say the set of messages in transit along the channel. The initial configurations are the
configurations where each agent is in an initial state and the message collection is empty.

3The structure of messages in transit may be refined depending on the type of communications.
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The system evolves as individual agents execute actions following their local algorithms. A
transition of the (global) system corresponds to a transition of a single agent u, which may affect
not only the state of u but also the collection of messages in transit.

Definition 1.2. The transition system induced by a distributed algorithm for a set of agents
V = {u1, . . . , un}, is the triple (C, I,`) where

• C is the set of configurations. A configuration C ∈ C is a tuple (σu1 , . . . , σun
, M) where

σui ∈ Σui for every ui ∈ V and M ∈M(E,M).

• I is the set of initial configurations, i.e., C = (σu1 , . . . , σun , M) is in I if for every agent
ui, σui

is an initial state of the agent ui and M = ∅E .

• ` is a binary relation on C defined as follows: C ` C ′ if C = (σu1 , . . . , σun
, M) and

C ′ = (σ′
u1

, . . . , σ′
un

, M ′) where there exists a unique k ∈ {1, . . . , n} such that forall j 6= k,
σ′

uj
= σuj

and

– either (σuk
, σ′

uk
) ∈`i

uk
;

– or there exist m ∈M and v ∈ Outuk
such that (σuk

, m, v, σ′
uk

) ∈`s
uk

, and M ′ and M
are identical except for the channel (uk, v) where M ′

(uk,v) = M(uk,v) ∪ {m};

– or there exist m ∈M and v ∈ Inuk
such that m ∈M(v,uk), (σuk

, m, v, σ′
uk

) ∈`r
uk

, and
M ′ and M are identical except for the channel (v, uk) where M ′

(v,uk) = M(v,uk) \{m}.

Let us now introduce some notation. First, if u ∈ V = {u1, . . . , un} and C = (σu1 , . . . , σun , M)
is any configuration in a distributed algorithm, then σu(C) denotes the internal state of the agent
u in C, namely σu(C) = σu. Similarly, if (u, v) is an edge of the communication graph, then
M(u,v)(C) denotes the multiset of messages in transit from u to v, and M(C) is the state of the
communication medium, namely M(C) = M .

From Definition 1.2, it is clear that a global transition C ` C ′ correspond to a unique local
transition of an agent u. Conversely, a local transition of some agent u may correspond to several
global transitions. More precisely, from Definition 1.1 and Definition 1.2, we immediately obtain
the following applicability conditions.

Lemma 1.1. Let C be any configuration of an algorithm and let `u be a transition of some
agent u.

• If `u corresponds to (σ, σ′)∈ `i
u, then `u is applicable to C if and only if σu(C) = σ.

• If `u corresponds to (σ, m, v, σ′)∈ `s
u, then `u is applicable to C if and only if σu(C) = σ.

• If `u corresponds to (σ, m, v, σ′)∈ `r
u, then `u is applicable to C if and only if σu(C) = σ

and m ∈M(v,u)(C).

1.3.2 Executions and computations
Definition 1.3. An execution of the distributed algorithm A corresponding to the transition
system A = (C, I,`) is a finite or infinite sequence of configurations (C0, C1, . . . , Ct, . . . ) such
that:

• every Ct is a configuration of A, i.e., Ct ∈ C;

• C0 is an initial configuration, i.e., C0 ∈ I;
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• for every index t, Ct ` Ct+1.

An execution is complete if it cannot be extended, i.e., either it is infinite or the final config-
uration Ct is such that there is no configuration C such that Ct ` C.

Due to asynchronism, a distributed algorithm admits several complete executions even with
deterministic local algorithms: they depend on the agent schedule (who takes the next step) and
on the message schedule (what message in transit is received). That corresponds to external
non-determinism, as opposed to the possible internal non-determinism in local algorithms.

Consider an execution α = (C0, C1, . . . , Ct, . . . ). Any transition Ct ` Ct+1 in α is the
occurrence of a (local) transition of a single agent u. Hence, α can be defined by giving the
initial configuration C0 and the sequence e1, . . . , et, . . . , where et is called an event, and is the
occurrence of the local transition involved in Ct−1 ` Ct.

The event e is said to be an internal event (resp. a send event, a receive event) when e
corresponds to a local transition of the form `i

u (resp. `s
u, `r

u). In each of these three cases, e is
performed by u, which is denoted agent(e) = u.

Note that two distinct events ei and ej may correspond to the same transition by the same
agent u but applied to two distinct configurations Ci−1 and Cj−1, which can differ on the state
of M or on the states of agents other than u (cf. Example 1.3.2).

Conversely, each event in α corresponds to a single local transition of the algorithm. Hence,
we may say that the event e is applicable to a configuration C if the underlying local transition
is applicable to C in the sense of Lemma 1.1).

Example. Consider a system of two agents u and v such that there is a communication channel
from u to v, from v to u, and the set of messages is M = {?}. The local algorithm of u and v is
given by:

Σ� = I = {ι} `i
�= ∅ `s

�=`r
�= {(ι, ?, �̄, ι)}

where � ∈ {u, v} and ū = v ∧ v̄ = u.
The complete executions of this system are infinite sequences of occurrences of the four

transitions {su, ru, sv, rv} with su = (ι, ?, v, ι) ∈`s
u, ru = (ι, ?, v, ι) ∈`r

u, sv = (ι, ?, u, ι) ∈`s
v, and

rv = (ι, ?, u, ι) ∈`r
v.

Notation:

1. If C is a configuration such that e is applicable to C, then e ·C denotes the configuration
C ′ obtained by applying the transition involved in e to C.
For example, if C = (σ1, . . . , σu, . . . , σn, M) and e is a send event given by (σu, m, v, σ′

u) ∈`s
u,

then e ·C = (σ1, . . . , σ′
u, . . . , σn, M ′) where M ′ and M are identical except for the channel

(u, v) where M ′
(u,v) = M(u,v) ∪ {m}.

2. If α = (C0, C1, . . . , Ct, . . . ) is an execution and xu is a variable of the agent u, then xu(t)
denotes the value of xu in the configuration Ct. If e denotes the t-th event in α, then xu(e)
denotes the value of xu just after e, i.e., in configuration Ct.

3. Let m̂ denotes the occurrence of a message4 received in an execution α. Because of the
definitions in Section 1.3.1, the receipt of m̂ corresponds to a unique sending of m̂ that
does occur before its receipt in α. These two events in α are denoted s(m̂) and r(m̂).

4Note that m̂ is not an element of M. Indeed, in the context of a given execution, occurrences of messages
may be distinguished in the same way as occurrences of local transitions (i.e., events).
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Figure 1.2: The Diamond Lemma

Definition 1.4. Let α = (C0, e1, . . . , et, . . . ) be any execution of a distributed algorithm. The
direct causality relations in the set of events in α are defined as follows:

ei <α,u ek ⇐⇒

 agent(ei) = agent(ek) = u
and

i < k (i.e., ei occurs before ek in α)

ei  α ek ⇐⇒ ei = s(m̂) and ek = r(m̂)

The causality relation, denoted ≺α, is defined as the transitive closure of
(⋃

u∈V <α,u

)
∪( α).

The relation ≺α is a partial order on the set of events in α. If ei and ek are not related by ≺α,
i.e., ¬(ei ≺α ek) and ¬(ek ≺α ei), then ei and ek are said to be concurrent in α. The following
lemma shows that the total ordering of events in α preserves the causality relation ≺α, i.e., α is
a linear extension of ≺α.

Lemma 1.2. If e ≺α e′ then e occurs before e′ in α.

Proof. Let α = (C0, e1, . . . , et, . . . ) be any execution. First, if e is a direct cause of e′, i.e.,
e <α,u e′ or e α e′, then e occurs before e′ in α by definition of <α,u and α (see Definition 1.4).
In the general case, by definition of the causality relation ≺α, there exist a finite set of indices
i0, . . . , ik such that e = ei0 , e′ = ei`

, and every eik
is a direct cause of eik+1 . From the above

remark, we have that ik < ik+1. By transitivity, we obtain that i0 < i`, i.e., e occurs before e′

in α.

The following lemma is useful in many proofs of the next chapters. It involves several execu-
tions (as opposed to the previous lemma) and demonstrates some commutativity properties of
the applicability relation. It is illustrated in Figure 1.2.

Lemma 1.3 (Diamond lemma). Let C be a configuration of a distributed algorithm, and let e
and e′ be two events of distinct agents, both applicable to C. Then, e′ is applicable to e · C, e is
applicable to e′ · C, and e′ · e · C = e · e′ · C.

Proof. The proof is by a rather tedious case analysis, and we limit it to the case where e is a send
event and e′ is a receive event. Let agent(e) = u and agent(e′) = v, and let m and m′ denote the
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messages involved in e and e′, respectively. Since u 6= v, we have σv(e ·C) = σv(C). Moreover,
the message m′ sent to v is in transit in C since e′ is applicable to C. Because e is a send event,
m′ is still in transit in e ·C. Lemma 1.1 shows that e′ is applicable to e ·C. Similarly, we obtain
that e is applicable to e′ ·C.

We easily check that for any agent w distinct from u and v, σw(e′ · e ·C) = σw(e · e′ ·C) =
σw(C). Moreover, σu(e′ ·C) = σu(C) and σu(e′ · e ·C) = σu(e ·C). Hence, σu(e′ · e ·C) =
σu(e · e′ ·C) = σu(e ·C). In the same way, we obtain that σv(e′ · e ·C) = σv(e · e′ ·C) = σv(e′ ·C).

The same arguments show that Mc(e′ · e ·C) = Mc(e · e′ ·C) = Mc(C)∪{m} if c is the channel
involved in e, Mc(e′ · e ·C) = Mc(e · e′ ·C) = Mc(C) \ {m′} if c is the channel involved in e′, and
Mc(e′ · e ·C) = Mc(e′ · e ·C) = Mc(C) otherwise. It follows that e′ · e ·C = e · e′ ·C.

Then we give a third obvious lemma, whose proof is omitted, providing examples in which
the previous lemma applies.

Lemma 1.4. Let α be an execution of a distributed algorithm with two consecutive events et and
et+1 that are concurrent in α, and let C be the configuration in α just before applying et. Then
the agents performing et and et+1 are different, and et+1 is applicable to C.

Lemma 1.5. Let α be a finite execution of an algorithm A and let α′ be a linear extension of
the causality relation in α. Then α′ is an execution of A and the final configurations of α and
α′ are equal.

Proof. Let α = (C0, e1, . . . , e`). Since α′ is a linear extension of ≺α, there exists a permutation σ
of {1, . . . , `} such that α′ = (C0, e′

1, . . . , e′
`) with e′

t = eσ(t). Moreover, σ preserves the causality
relation in α, i.e.,

eσ(s) ≺α eσ(t) =⇒ s < t.

Recall that any permutation σ is a product of transpositions. Moreover, if σ preserves the
causality relation ≺α, then the transpositions involved in this product may be chosen such that
each of them also preserves ≺α. To prove the lemma, it thus suffices to prove it when σ is a
transposition.

Let τ = τi,j be such a transposition with i < j. First, we prove that for every index t
such that i < t 6 j, et and ei are concurrent in α. Since i < t, Lemma 1.2 shows that
¬(et ≺α ei). Now suppose ei ≺α et. Since τ preserves ≺α, we have τ−1(i) = j < τ−1(t).
Moreover, either τ−1(t) = t or τ−1(t) = j, depending on whether t < j or t = j. Both cases
lead to a contradiction, and the conclusion follows. Applying Lemmas 1.4 and 1.3 repeatedly,
we obtain that α′ = (C0, e1, . . . , ei−1, ei+1, · · · , ej , ei, ej+1, · · · , e`) is an execution of A.

In the same way, we show that every index t such that i 6 t < j, et and ej are concurrent in
α, and thus α′ = (C0, e1, . . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1, . . . , e`) is an execution of A.

Theorem 1.1. Let α be any finite execution of a distributed algorithm A, and let α′ be any
permutation of the elements in α. Then the following conditions are equivalent:

1. α′ is a linear extension of the causality relation ≺α;

2. α′ is an execution of A.

Moreover, if the above conditions hold, then the causality relations ≺α and ≺α′ coincide and the
final configurations of α and α′ are equal.

Proof. The implication (1)⇒ (2) is just Lemma 1.5. To show the converse implication, suppose
that α′ is an execution of A. By definition, the direct causality relations are pairwise equal in α
and in α′, so ≺α and ≺α′ coincide. And Lemma 1.2 implies that α′ is a linear extension of this
common causality relation.
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If the conditions in Theorem 1.1 both hold, then α and α′ are said to be equivalent, which is
denoted by α ∼ α′. Then we define the equivalence class Cα w.r.t. the relation ∼, i.e., Cα is the
set of all the linear extensions of ≺α. This equivalence class is called a computation of A.

1.3.3 Space-time diagrams
Given an execution α of a distributed algorithm, the events in α can be visualized in a space-
time diagram: An horizontal line is drawn for every agent u (each agent is sequential) and the
events of u are drawn on the line from left to right, according to their occurrence in α. And, for
every pair of events e, e′ such that e  e′, an arrow is drawn from e to e′. As an example, the
space-time diagram of an execution with three agents u, v and w is given in Figure 1.3.

a1 b1 c1

a2 b2
c2

d2 e2

a3

b3
c3

u

v

w

a1 b1 c1a2 b2 c2 d2 e2a3 b3 c3

Figure 1.3: An example of a space-time diagram

Space-time diagrams help to visualizing the causality relation and the concept of computation.
Indeed, the relations {<u}u∈V and are naturally represented in the diagram, and the causality
relation corresponds to the paths. For instance, one can easily see that a3 is a cause of c1 in
Figure 1.4. In the same way, one can easily get that the events b3 and d2 are concurrent.

Given a space-time diagram, we can derive an execution by projecting the events on a single
line (similar to “physical time”). A space-time diagram can also be used to generate an equivalent
execution: events may be moved along a line, as long as

• the orderings of events on the same lines are all preserved;

• the arrows are drawn from left to right.

In other words, a space-time diagram actually pictures a computation. The diagram in Figure 1.5
is obtained from the diagram in Figure 1.3 by translating events on each line. The resulting
execution is equivalent — w.r.t. the causality relation — to the original execution.

1.4 Complexity of a distributed algorithm
Usual complexity measures used for sequential algorithms (space and time complexity) does not
encompass the peculiarities of distributed algorithms, and may be irrelevant when comparing
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Figure 1.4: Causality in a space-time diagram

a1 b1 c1

a2 b2 c2

d2

e2

a3

b3
c3

u

v

w

a1 b1 c1a2 b2 c2 d2 e2a3 b3 c3

Figure 1.5: An equivalent execution

distributed algorithms. Two specific complexity measures may be defined, namely the message
complexity and the time complexity.

The message complexity of an execution is defined as the total number of messages exchanged
in the execution.

For time complexity, we first introduce the relation < defined on the set of messages exchanged
in an execution as follows:

m < m′ ⇐⇒ r(m) ≺ s(m′)

The relation < is a partial ordering, and we may consider the chains of messages connected
by <. The time complexity of an execution is then defined as the length of the longest chain of
messages in the execution.

Other complexity measures may be considered: for instance, the bit complexity measure that
takes into account the total number of bits exchanged in the execution.

1.5 Pseudo-code for distributed algorithms
The description of local algorithms as transition systems is clearly too low level, and the use of
pseudo-codes is thus highly preferable. We use a non-deterministic pseudo-code, based on guarded
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commands that allows agents (automata) to have a high degree of (internal) non-determinism.
An algorithm written in the non-deterministic pseudo-code has the following form:

(g1 → cmd12 · · ·2 gn → cmdn)∗

where g1, . . . , gn are boolean expressions called guards and cmd1, . . . , cmdn are sequences of
statements called commands. The operator 2 carries out a non-deterministic choice among
open guards, i.e., selects one command block cmdk0 among the set {cmdk | gk} and executes
cmdk0 . Finally, the operator ∗ executes infinitely many times the block of guarded commands
(g1 → cmd12 · · ·2gk → cmdk).

Commands. The syntax used for writing commands is similar to the one used for usual (se-
quential) pseudo-code. The language includes:

• Expressions, that are well formed and well typed terms built from variables, constant values
and operators. Variables, constants and expressions may be of base type (boolean, integer
or real), of array type or of set type. Operators are the usual operators defined for the
corresponding types, e.g., +, −, / and ∗ for integer and real expressions; ¬, ∧, ∨ and
comparison operators (<, 6, =, 6=, …) for boolean expressions; and usual set operators (∪,
∩, \, …) for expressions involving sets.

• Statements, including assignments (Figure 1.6a), conditionals (Figure 1.6b) and loops (Fig-
ure 1.6c).

x← x + 1

Recu[v]← true

(a) Assignements

if <cond> then
<body>

else
<body>

end if
(b) Conditionals

for all <cond> do
<body>

end for

while <cond> do
<body>

end while
(c) Loops

Figure 1.6: Statements available in pseudo-code

Guards. A guard is a boolean expression that may involve the variables of the agent and
the state of the incoming channels (see the next paragraph). It is always associated to some
command (hence the term guarded commands used earlier). In a given configuration C, a guard
is opened if the boolean expression evaluates to true, in which case the associated command
may be selected for execution. If more than one guard is opened, a non-deterministic choice is
made among opened guards and only one command is executed.

Here is an example of a guarded command:

Du :: {∀v ∈ Inu recu[v] = true}
decu ← true

Du is a (optional) label, used for referencing the guarded command; the expression
“∀v ∈ Inu recu[v] = true” is the guard; the statement “decu ← true” is the associated command.

9



send 〈msg〉 to v

(a) Sending messages

{A message 〈m〉 arrives from v}
receive 〈m〉
…

(b) Receiving messages

Figure 1.7: Handling of messages in pseudo-code

Communications. We introduce a new instruction dedicated to sending messages, given in
Figure 1.7a, where msg is an expression and v is an outgoing neighbor (i.e., v ∈ Outu)5. Sends
are non-blocking, in the sense that the messages to be sent are immediately forwarded to the
communication medium and cannot block the execution of the algorithm.

For receipts, we introduce a two-fold syntax, as shown in Figure 1.7b. In addition to usual
boolean expressions, guards can use informal statements related to the state of incoming channels
like “A message 〈m〉 arrives from v”. Note that the “from v” part is optional; when present, it
binds v to the port number on which the message has been received. Hence, the semantics of
the receive primitive as well as this type of conditionals allow agents to inspect a message before
receiving it. Secondly, the special instruction “receive 〈m〉” performs the actual receipt of 〈m〉,
i.e., the removal of 〈m〉 from the communication medium. It must be used exclusively related to
a guard involving the availability of the message to be received. Note that, in this context, the
“receive” instruction is non-blocking.

{A message 〈tok, a, b〉 arrives from v}
receive 〈tok, a, b〉
…

Figure 1.8: Message tuples

The above description of communication primitives allows algorithms to handle various kinds
of messages: messages may be tuples whose first entry is a constant value used to filter specific
messages. Consider for example the snippet given in Figure 1.8. The guard will be opened when
a message 〈m〉 arrives such that m is a 3-tuple with a first entry that is the constant value tok;
the second and third entries will be bound to the variables a and b, respectively.

An example of a distributed algorithm written in non-deterministic pseudo-code is given in
Algorithm 1. Note that in the example, the 2 and ∗ operator are left implicit, i.e., the algorithm
should be read as (I12I22S2R2D)∗.

The non-deterministic pseudo-code allows to deal with two kinds of non-determinism: an
external one and an internal one. The communication model ensures that messages are trans-
mitted in an arbitrary (but finite) time. Thus, messages arrive in an arbitrary ordering, which
provides a (external) source of non-determism in the execution of agents. On the other side,
the 2 operator enforces non-determinism in the execution of internal actions. In Algorithm 1,
both I1 and I2 guards are opened initially. The 2 operator results in a non-deterministic choice
among I1 and I2 (and potentially other opened guards)

5According to the model of communications given in Section 1.2, v stands for the port number corresponding
to the communication channel from u to v.
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Algorithm 1 A algorithm in non-deterministic pseudo-code
State variables for agent u:

x, y, with values in {red, yellow,⊥}, initially ⊥
rcount, ycount, integers, intially 0

I1 :: {x = ⊥}
x← red
rcount← rcount + 1

I2 :: {x = ⊥}
x← yellow
ycount← ycount + 1

S :: {x 6= ⊥, once}
for v ∈ Outu do

send 〈x〉 to v
end for

R :: {A message 〈m〉 arrives}
receive 〈m〉
if m = red then

rcount← rcount + 1
else

ycount← ycount + 1
end if

D :: {rcount + ycount = N}
if rcount > ycount then

y ← red
else

y ← yellow
end if

11



1.6 Traversal vs. round-based algorithms
In this section, two special classes of distributed algorithms will be discussed, namely the traversal
algorithms for which all events in any execution are totally ordered by the causality relation, and
the round-based algorithms whose executions are structured into communication closed layers
called rounds.

Definition 1.5. A traversal algorithm is a distributed algorithm with the following two prop-
erties.

1. In each execution, there is only one initiator, which starts the algorithm by sending out
exactly one message.

2. Upon the receipt of a message, any agent sends out one message.

In each reachable configuration of a traversal algorithm, there is either one message in transit,
or exactly one agent that has just received one message and not (yet) sent a message in reply.
In a more abstract way, the messages exchanged in any execution, if taken together, can be seen
as a single object (a token) that is handed from agent to agent, and so “visits” agents.

Classically traversal algorithms are obtained by running a token algorithm on top of any
distributed algorithm A: every guard in A is augmented with the condition that the agent hands
the token, and the token travels along communication paths in A. The resulting algorithm is thus
a traversal version of A. As an example, the traversal version of the Echo algorithm coincides
with the Tarry algorithm (cf. Chapter 2).

Algorithm 2 The token algorithm
Initialization:

tokenu ∈ {false, true}, initially true if u is the initiator and false otherwise

Guarded commands:
RTu :: {A message 〈tok〉 has arrived}

receive 〈tok〉
tokenu ← true

STu :: {tokenu = true }
select v ∈ Outu . usually according to A
send 〈tok〉 to v
tokenu ← false

Similarly to the use of a token, the round-based structure kills a certain degree of non-
determinism, but it does it in a totally opposite way that consists in enforcing concurrency
(instead of sequentiality).

Algorithms are structured in synchronized rounds: In each round, an agent first emits mes-
sages, then receives messages, and finally makes a state transition (internal events). Rounds are
synchronized in the sense that any message received at round t has been sent in round t. Observe
that all agents are initiators in a round-based algorithm.

12



Any algorithm A can be easily structured into synchronized rounds using empty messages
(w.r.t. A’s semantics) and simple integer counters. Algorithm 3 for round simulation can be run
on top of any distributed algorithm A: at every round, an agent sends messages it has to send
in A if any; otherwise it sends an empty message (first instruction in Su). Moreover, the guarded
command Iu is completed with the state transitions in A triggered by the receipts in Ru.

In the resulting algorithm, called the round-based version of A, agents operate in lock-step
rounds. It prohibits some possible interleavings of A’s events, and thus reduces the set of possible
executions. Moreover, it induces a coarser grain of atomicity: the desired safety properties have
to be verified only at the end of each round.

Question 1. Give the pseudo-code of the round-based version of the Phase algorithm (cf. Chap-
ter 2) and compare the set of its executions with the set of the executions of the Phase algorithm.

Algorithm 3 Simulation of synchronized rounds
Initialization:

statusu ∈ {S, R, I}, initially S
cu ∈ N, initially 1
rcountu ∈ N, initially 0

Guarded commands:
Su :: {statusu = S }

send 〈mv, cu〉 to every outgoing neighbor v . mv depends on A
statusu ← R

Ru :: {statusu = R and a message 〈m, c〉 with cu = c has arrived}
receive 〈m, c〉
rcountu ← rcountu + 1
if rcountu = |Inu| then

rcountu ← 0
statusu ← I

end if

Iu :: {statusu = I }
cu ← cu + 1
statusu ← S

13



Chapter 2

Distributed computation of a
function

We consider a non-empty set V and a function f : Vn 7→ V stable by permutation, i.e.,

∀v ∈ Vn,∀σ ∈ Σn, f(µσ(1), . . . , µσ(n)) = f(µ1, . . . , µn).

In other words, the value of f depends on the multi-set denoted {{µi | i ∈ {1, . . . , n}}}. We
may also consider the restricted class of functions whose values only depend on the set {µi | i ∈
{1, . . . , n}}, i.e., functions f : 2V 7→ V. Besides, we consider the distributed algorithms over a
directed graph G = (V, E) where each agent u (1) has an initial value µu ∈ V and (2) a write
once variable decu ∈ V ∪ {⊥}, initialized to ⊥. When assigning a value different from ⊥ to decu,
the agent u is said to decide. Such an algorithm A is said to compute f if any of its complete
executions satisfies the following properties

Termination: ∃u ∈ V, ∃t, decu(t) 6= ⊥
Validity: ∀u ∈ V, ∀t, decu(t) 6= ⊥ =⇒ decu(t) = f({{µu, u ∈ V }}).

Roughly speaking, the two above properties specify that every agent eventually decides and
that the sole possible decision value is f({{µu | u ∈ V }}). Termination may be strengthened by
requiring that all the agents (and not only one) make a decision.

We now present some classical algorithms that compute functions of the set of initial values.
Each of them require some specific properties on the communication graph G and some global
knowledge or global control (e.g., identifiers, knowledge of the network size, ... ).

2.1 The Gossip algorithm
The first algorithm that we present, called the Gossip algorithm, assumes agents to have unique
identifiers. First, each agent tags its initial value with its identifier. Then it repeatedly collects
messages from all its incoming neighbors and sends the set of collected initial values to all its
outgoing neighbors. It decides after collecting N initial values, where N is a parameter of the
algorithm. The pseudo-code for the Gossip algorithm is given in Algorithm 4.

Theorem 2.1. The Gossip algorithm computes any function of the multi-set of initial values if
the communication graph is strongly connected and the parameter N is the network size.

Question 2. Prove Theorem 2.1.

14



Algorithm 4 The Gossip algorithm

Initialization:
HOu ∈ 2V ×V , initially {(u, µu)}
newu ∈ {false, true}, initially true
decu ∈ V ∪ {⊥}, initially ⊥

Guarded commands:
Ru :: {A message 〈HO〉 has arrived}

receive 〈HO〉
if HO * HOu then

HOu ← HOu ∪HO
newu ← true

end if

Su :: {newu = true}
for all v ∈ Outu do

send 〈HOu〉 to v
end for
newu ← false

Du :: {|HOu| = N , once}
decu ← f(HOu[2])
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2.2 The Tree algorithm
The second algorithm, called the Tree algorithm, assumes bidirectional links. The set of (incom-
ing or outgoing) neighbors of u is denoted by Nu. Informally, the algorithm proceeds as follow.
Each agent u can send only one message. Moreover, it can do it only when either it has received
a message from each of its neighbors except one denoted by v or it has received a message from
all its neighbors. In the first case, u is allowed to send its message to v while it sends it to any of
its neighbor in the second case (non-deterministic choice). The agent u makes a decision when
it has received a message from all its neighbors. The pseudo-code for the Tree algorithm is given
in Algorithm 5.

Algorithm 5 The Tree algorithm (for a function f of sets)
Initialization:

HOu ∈ 2V , initially {µu}
recu ∈ {true, false}Nu , initially [false, . . . , false]
sentu ∈ {true, false}, initially false
decu ∈ V ∪ {⊥}, initially ⊥

Guarded commands:
Ru :: {A message 〈HO〉 has arrived from v}

receive 〈HO〉
HOu ← HOu ∪HO
recu[v]← true

Su :: {(∃v ∈ Nu, ∀w 6= v recu[w] = true) ∧ sentu = false}
send 〈HOu〉 to v
sentu ← true

Du :: {∀v ∈ Nu recu[v] = true, once}
decu ← f(HOu)

Observe that the Tree algorithm can be used in the general context of an anonymous network.

Theorem 2.2. The Tree algorithm computes any function of the set of initial values if the
communication graph is a bidirectional tree.

We start by the following lemma, which proves termination.

Lemma 2.1. In any complete execution of the Tree algorithm on a bidirectional tree, there are
at least two deciders.

Proof. Let α be any complete execution of the Tree algorithm on a bidirectional tree. From the
code, we deduce that α is finite; let C be the final configuration in α. Since the communication
graph is a bidirectional tree, there are exactly 2(n − 1) edges in G, where n = |V |. Hence,
there are 2(n − 1) bits recu[v]. Let Fu be the number of recu[v] bits that are false in C, and
let F =

∑
u∈V Fu. The number of agents u with Fu = 0, Fu = 1, and Fu > 2 are denoted by ν0,

ν1, and ν2+ , respectively. Hence, we have

n = ν0 + ν1 + ν2+ .
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Finally, let νd be the number of agents that have decided in C, and let νs be the number of
agents that have sent a message in C. Since α is complete, there is no message in transit in C,
and thus

|E| = 2(n− 1) = F + νs.

Moreover,
νd = ν0 and νs = ν0 + ν1.

Therefore,
2(n− 1) = F + νs > ν1 + 2ν2+ + ν0 + ν1 = 2n− νd.

It follows that νd > 2, as required.

For validity, we first show that if some agent u decides in an execution α of the Tree algorithm,
then any agent v 6= u has sent a message previously and the decision by u is a consequence of
all these send events.

Lemma 2.2. If an agent u makes a decision in an execution α of the Tree algorithm, then every
agent v different from u sends a message in α and this send event is a cause of the decision event
by u.

Proof. Let us first introduce some notation. Let du denote the decision event by u, and if it
occurs, let sv denote the sole send event by v corresponding to the commands Sv. For any
non-negative integer δ, let Sδ be the set of agents at distance δ from u, i.e.,

Sδ = {w ∈ V | d(w, u) = δ}.

The causality relation in α is denoted by ≺ as no confusion may arise.
By induction on δ > 1, we first prove that if v ∈ Sδ, then sv occurs in α, v sends its message

to an agent in Sδ−1, and sv ≺ du.

1. Base case δ = 1. Let v ∈ S1, i.e., v is a neighbor of u. The decision rule of the Tree
algorithm enforces the agent u to decide only if it has received a message from all its
neighbors, in particular from v. Moreover, it holds that

sv ≺ rv
u ≺ du

where rv
u denotes the receipt corresponding to sv, i.e., sv → rv

u.

2. Suppose that the above claim holds for δ > 1, and let v ∈ Sδ+1, that is there exists a
neighbor w of v that is in Sδ. By the inductive hypothesis, the agent w sends a message
to an agent x in Sδ−1 and sw ≺ du. The guard in Sw implies that

(a) either w has received a message from all of its neighbors, in particular from v;
(b) or w has received a message from all of its neighbors but x. Since x ∈ Sδ−1, we have

v 6= x.

In both cases, v has sent a message to w ∈ Sδ and sv ≺ sw ≺ du. Since the communication
graph is a tree, it is strongly connected, and thus V = ∪n

δ=0Sδ, which completes the proof.

Lemma 2.3. If an agent u decides in a configuration C, then its variable HOu in C is equal to
the set of initial values.
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Proof. Lemma 2.2 shows that
∀v ∈ V \ {u}, sv ≺ du.

The lemma immediately follows from the above causality relations, the contents of the messages
exchanged in the algorithm, and the initialization and update rules for the variables HOv.

Question 3. Prove that there are exactly two deciders in any complete execution which are
neighboring in the communication graph.

Answer: We start by showing that 2 deciders are necessarly neighbors. Let u and v be two
deciders in an execution α (Lemma 2.1 shows that there is at least 2 deciders in any execution).
We proceed by contradiction. Suppose that u and v are not neighbors, i.e., d(u, v) = δ > 2.
Consider w such that d(u, w) = 1 and d(v, w) = δ − 1 > 1. From the proof of Lemma 2.2, we
have:

• w has sent a message to u;

• w has sent a message to some agent x ∈ Sv
δ−2.

However, w can send only one message and x 6= u since u ∈ Sv
δ . We obtain a contradiction.

Hence, u and v are neighbors.
Now, consider u, v and w three agents that decides in α. From the previous claim, u, v and

w are pairwise neighbors. Hence, there exists a cycle in the communication graph G, which is
impossible since G is a tree.

The Tree algorithm (cf. Algorithm 5) computes any function of the set of initial values, but
does not compute functions of the multi-set of initial values. However, the above analysis shows
that the variant of the Tree algorithm in Algorithm 6 works for any function of the multi-set of
initial values (the symbol “q” denotes the adjunction operator of multi-sets).
Question 4. 1. Explain the role of the flagu variables.

2. Prove that Algorithm 5 does not compute f if f is a function of multi-sets.

3. Show that Algorithm 6 copes with functions of multi-sets.

2.3 The Echo algorithm
In this section, we assume bidirectional links, unique identifiers (non-anonymous network), and
a distinguished agent called the leader. The Echo algorithm is an algorithm with a specific local
algorithm for the leader: it spontaneously sends a message to all its neighbors, and then waits
for incoming messages. When it has received a message from all its neighbors, the leader may
decide.

Any other agent u waits for receiving a first message: upon this first receipt (of a message
sent by v), the agent u sends a message to all its neighbors except v. When u has received a
message from all its neighbors, it sends a message back to v.

The pseudo-codes for the leader and the non-leaders are given in Algorithm 7 and Algorithm 8,
respectively. The key point of this algorithm is that the set of links (u, v) in E such that the
first message received by v has been sent by u forms a spanning directed tree, with a root that
coincides with the leader.

Theorem 2.3. The Echo algorithm computes any function of the multi-set of initial values if
the communication graph is a bidirectional connected graph.
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Algorithm 6 The Tree algorithm (for a function f of multi-sets)

Initialization:
HOu ∈M(V), initially {{u}} . where elements in M(V) are multi-sets of values in V
recu ∈ {true, false}Nu , initially [false, . . . , false]
sentu ∈ {true, false}, initially false
decu ∈ V ∪ {⊥}, initially ⊥
flagu ∈ {true, false}, initially false

Guarded commands:
Ru :: {A message 〈HO, flag〉 has arrived from v}

receive 〈HO, flag〉
if flagu = false then

HOu ← HOu qHO
else

HOu ← HO
end if
recu[v]← true
if ∀w ∈ Inu recu[w] = true then

flagu ← true
end if

Su :: {(∃v ∈ Nu, ∀w 6= v recu[w] = true) ∧ sentu = false}
send 〈HOu, f lagu〉 to v
sentu ← true

Du :: {∀v ∈ Nu recu[v] = true, once}
decu ← f(HOu)

Question 5. Prove Theorem 2.3.

Question 6. What can be computed by the Echo algorithm in the absence of identifiers?

2.4 Tarry’s algorithm
Tarry’s algorithm is a “sequentialization” of the Echo algorithm, with the use of one virtual token
moving over the communication graph according to the following two rules (see Section 1.6 in
Chapter 1):

1. an agent never forwards the token twice through the same link;

2. a non-leader agent forwards the token to its father (the neighbor from which it first received
the token) only if there is no other link possible according to the previous rule.

Therefore, Tarry’s algorithm is a traversal algorithm: in every execution, events are totally
ordered by the causality relation, and the first and last events in every complete execution are
performed by the same agent.
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Algorithm 7 The Echo algorithm (leader)

Initialization:
HOu ∈ 2V ×V , initially {(u, µu)}
recu ∈ V Nu , initially [false, . . . , false]
decu ∈ V ∪ {⊥}, initially ⊥

Guarded commands:
Ru :: {A message 〈HO〉 arrives from v}

receive 〈HO〉
HOu ← HOu ∪HO
recu[v]← true

Su :: {true, once}
for all v ∈ Nu do

send 〈HOu〉 to v
end for

Du :: {∀v ∈ Nu recu[v] = true, once}
decu ← f(HOu[2])

The pseudo-codes for the leader and the non-leaders are given in Algorithm 9 and Algo-
rithm 10, respectively, in the case where f is a function of the set of initial values.
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Algorithm 8 The Echo algorithm (non-leader)

Initialization:
HOu ∈ 2V ×V , initially {(u, µu)}
recu ∈ V Nu , initially [false, . . . , false]
fatheru ∈ V ∪ {⊥}, initially ⊥

Guarded commands:.
Ru :: {A message 〈HO〉 arrives from v}

receive 〈HO〉
recu[v]← true
HOu ← HOu ∪HO
if fatheru = ⊥ then

fatheru ← v
for all w ∈ Nu \ {v} do

send 〈HOu〉 to w
end for

end if

Su :: {∀v ∈ Nu recu[v] = true, once}
send 〈HOu〉 to fatheru
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Algorithm 9 Tarry’s algorithm (the leader)

Initialization:
sentu ∈ {true, false}Nu , initially [false, . . . , false]
recu ∈ N, initially 0
HOu ∈ 2V , initially {µu}
decu ∈ V ∪ {⊥}, initially ⊥

Guarded commands:
Iu :: {once}

choose v ∈ Nu

send 〈HOu〉 to v
sentu[v]← true

Ru :: {A message 〈HO〉 arrives from v}
receive 〈HO〉
recu ← recu + 1
HOu ← HOu ∪HO
if ∃v ∈ Nu, sentu[v] = false then

choose v0 such that sentu[v0] = false
send 〈HOu〉 to v0
sentu[v0]← true

end if

Du :: {recu = |Nu|, once}
decu ← f(HOu)
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Algorithm 10 Tarry’s algorithm (non-leader)

Initialization:
fatheru ∈ V ∪ {⊥}, initially ⊥
sentu ∈ {true, false}Nu , initially [false, . . . , false]
HOu ∈ 2V , initially {µu}

Guarded commands:
Rv :: {A message 〈HO〉 arrives from v}

receive 〈HO〉
HOu ← HOu ∪HO
if fatheru = ⊥ then

fatheru ← v
end if
if ∃w ∈ Nu, sentu[w] = false ∧ w 6= fatheru then

choose w0 such that sentu[w0] = false ∧ w0 6= fatheru

send 〈HOu〉 to w0
sentu[w0]← true

else if sentu[fatheru] = false then
send 〈HOu〉 to fatheru

sendu[fatheru]← true
end if
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2.5 The Phase algorithm
In the Phase algorithm, all agents share the same local algorithm: Each agent repeatedly sends a
message containing the collected values to its outgoing neighbors in one shot. The i-th sending is
allowed only if the agent has received at least i−1 messages from each of its incoming neighbors.
An agent may decide when it has received at least D messages, where D is any fixed integer,
hence a parameter of the Phase algorithm. The pseudo-code for the Phase algorithm is given
in Algorithm 11. The Phase algorithm computes any function of the multi-set of initial values
if each agent ”knows” an upper bound of the diameter of the communication graph, in a sense
that is made precise in the following theorem.

Algorithm 11 The Phase algorithm

Initialization:
HOu ∈ 2V ×V , initially {(u, µu)}
rcountu ∈ NInu , initially [0, . . . , 0]
scountu ∈ N, initially 0
decu ∈ V ∪ {⊥}, initially ⊥

Guarded commands:
Ru :: {A message 〈HO〉 arrives from v}

receive 〈HO〉
HOu ← HOu ∪HO
rcountu[v]← rcountu[v] + 1

Su :: {∀v ∈ Inu scountu 6 rcountu[v] ∧ scountu < D}
for all w ∈ Outu do

send 〈HOu〉 to w
end for
scountu ← scountu + 1

Du :: {∀v ∈ Inu rcountu[v] > D, once}
decu ← f(HOu[2])

Theorem 2.4. The Phase algorithm computes any function of the multi-set of initial values if
the communication graph G is a strongly connected digraph and the parameter D is at least equal
to G’s diameter.

We start the proof of Theorem 2.4 by a series of lemmas on any fixed execution α of the
Phase algorithm. Actually, the first lemma is totally general in the sense that it holds for any
algorithm.

Lemma 2.4. Let (u, v) be any link of the communication graph and let s(i) and r(i) denote the
i-th send event and the i-th receive event of a message exchanged along this link in α, if exist.
Then, if r(i) occurs in α, then s(i) also occurs in α and is a cause of r(i).

Proof. Let i be any positive integer such that s(i) and r(i) are two events that occur in α. As
above, the causality relation in α is just denoted by ≺.
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First, observe that if the communication channels ensure the FIFO property, we have s(i)  
r(i) and the lemma trivially holds.

In the general case, consider m(j) such that s(m(j))  r(j). Since messages are received
exactly once, all the integers m(1), · · · , m(i) are pairwise distinct and

|{m(j) | 1 6 j 6 i}| = i

By the pigeon hole principle, there exists j ∈ {1, . . . , i} such that i 6 m(j). Then if the four
events s(i), s(m(j)), r(j), and r(i) occur in α, then they are related by

s(i) 4 s(m(j)) ≺ r(j) 4 r(i)

and thus s(i) ≺ r(i). The first relation is because i 6 m(j), the second one is by definition of m(j)
which leads to s(m(j))  r(j), and the last one holds because j 6 i. The same arguments show
that the existence of r(i) implies that of r(j), then that of s(m(j)), and finally the existence s(i).

Lemma 2.5. If some agent u decides in the execution α (event du) and D is an upper bound
on the diameter of the communication graph, then any agent v executes at least one send event
in α and the first one is a cause of du.

Proof. Since the communication graph G = (V, E) is strongly connected, there exists a path
v = w0, w1, · · · , wk = u from v to u. Moreover, this path may be chosen in such way that its
length k is at most equal to G’s diameter (geodesic), and so at most equal to D. Let s

(i)
wj and

r
(i)
wj denote the i-th send event and the i-th receive event in α along the links (wj , wj+1) and

(wj−1, wj), if any. Both are executed by the agent wj . Then, all the events s
(1)
w0 , · · · , s

(k)
wk−1 and

r
(1)
w1 , · · · , r

(k)
wk , · · · , r

(D)
wk occur in α and satisfy

s(1)
w0
≺ r(1)

w1
≺ s(2)

w1
≺ · · · ≺ r(k−1)

wk−1
≺ s(k)

wk−1
≺ r(k)

wk
4 r(D)

wk
≺ du.

The red causality relations are by Lemma 2.4, the blue ones are because of the guard in send
commands, the green ones follow from k 6 D, and the black one is due to the guard in the
decision command (Du).

We are now in position to prove Theorem 2.4.

Proof. Let α be an execution of the Phase algorithm with a communication graph of finite
diameter (strongly connected) at most equal to D.

For the Validity property, assume that some agent u decides in α. Lemma 2.5 shows that
every agent v sends at least one message and this first event s

(1)
v satisfies s

(1)
v ≺ du. From the

update rules of the HO variables, it follows that

HOv(s(1)
v ) ⊆ HOu(du).

Since initially HOv = {(v, µv)} and HOu(du) ⊆ {(v, µv) | v ∈ V }, it follows that HOu(du) =
{(v, µv) | v ∈ V }, as required.

For Termination, let us assume that α is complete; then by construction of the algorithm, α
is finite, and let e denote the last event in α. Let u denote one agent that realizes the minimum
of the scount counters at the end of α, i.e.,

scountu(e) = min
w∈V

scountw(e).
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Since α is complete, there is no message in transit in the final configuration of α. In particular,
for every incoming neighbor v of u, we have scountv(e) = rcountu[v](e), which implies

rcountu[v] > scountu.

It follows that scountu(e) > D because, otherwise, the agent u would be allowed to send a
message, and thus α would not be complete. Hence for every u’s incoming neighbor v, it holds
that rcountu[v](e) = scountv(e) > D, and hence u is allowed to decide. Since α is complete, the
event du occurs in α, which completes the proof of Termination.

Question 7. What can be computed by the Phase algorithm in the absence of identifiers?

2.6 Finn’s algorithm
Finn’s algorithm is similar to the Gossip algorithm with a more clever decision rule that does
not require any agent to know the network size. Nevertheless, like the Gossip algorithm, this
algorithm relies on the assumption of unique identifiers. In addition to the variable HOu con-
taining pairs of the form (v, µv), each agent u maintains a variable OKu in which it collects some
identifiers. The agent u repeatedly sends messages of the type 〈HOu, OKu〉. It may decide when
|OKu| = |HOu|. The pseudo-code for Finn’s algorithm is given in Algorithm 12.

Theorem 2.5. The Finn’s algorithm computes any function of the multi-set of initial values if
the communication graph is strongly connected.

For the proof of the above theorem, we start with several lemmas stating general properties
of an arbitrary execution α of Finn’s algorithm. As above, the causality relation in α is simply
denoted by “≺” as no confusion may arise.

Lemma 2.6. For every event e in α and every agent u, it holds that

OKu(e) ⊆ HOu[1](e)

Proof. The proof is by induction on the sequence of events in α: the base case is a direct
consequence of the initializations of HOu and OKu, and the inductive step is because of their
update rules.

Lemma 2.7. If e and e′ are two events occurring in α such that e ≺ e′, then

HOu(e) ⊆ HOv(e′) ∧OKu(e) ⊆ OKv(e′)

where u = agent(e) and v = agent(e′).

Proof. We consider the following two base cases:

1. e <u e′. The code of the algorithm implies that both the variables HOu and OKu may
not decrease. We then directly derive the two inclusions of the lemma in that case.

2. e  e′.1 The command in Rv gives HOv(e′) = HOu(e) ∪ HOv(e′
−) and OKv(e′) =

OKu(e)∪OKv(e′
−) where HOv(e′

−) and OKv(e′
−) denote the values of the variables HOv

and OKv in α just before e′, respectively.
1In fact, e′ does not stand for the sole receipt, namely the first instruction in the command Ru, but it stands

for the last one. Many thanks to Maxime P. !

26



Algorithm 12 Finn’s algorithm

Initialization:
decu ∈ V ∪ {⊥}, initially ⊥
HOu ∈ 2V ×V , initially {(u, µu)}
OKu ∈ 2V , initially ∅
recu ∈ {false, true}Inu , initially [false, . . . , false]
newu ∈ {false, true}, initially true

Guarded commands:
Au :: {∀v ∈ Inu recu[v] = true, once}

OKu ← OKu ∪ {u}
newu ← true

Du :: {|OKu| = |HOu|, once}
decu = f(HOu[2])

Su :: {newu}
for all v ∈ Outu do

send 〈HOu, OKu〉 to v
end for
newu ← false

Ru :: {A message 〈HO, OK〉 arrives from v}
receive 〈HO, OK〉
recu[v]← true
if OK * OKu ∨HO * HOu then

HOu ← HOu ∪HO
OKu ← OKu ∪OK
newu ← true

end if
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The two inclusions of the lemma in the general case, namely when e ≺ e′, are obtained by using
the definition of the causality relation and the transitivity of this relation and of inclusion.

For any agent u, we denote au the single event in α corresponding to the assignment of OKu

in the guarded command Au, if executed.

Lemma 2.8. If u belongs to some variable OKv(e), then au occurs in α and au ≺ e.

Proof. From Algorithm 12, we obtain that u is the sole agent allowed to add its identifier in
OKu. Moreover, it can do it only when executing the command in Au. This shows u belongs to
some variable OKv after and only after au in any execution of the algorithm.

Suppose now ¬(au ≺ e). By Theorem 1.1, there exists an execution α′ equivalent to α in
which au occurs after e in α′. Since α and α′ are equivalent, the variables evolve in the same
way in the two executions, which contradicts the above claim.

Proposition 2.1. Any execution of Finn’s algorithm with a communication graph that is strongly
connected satisfies the Validity property.

Proof. Let α be any execution of Finn’s algorithm with a communication graph that is strongly
connected and in which some agent u makes a decision. Let du denote the corresponding event.
The proof consists in showing that HOu[2](du) is the multi-set of initial values {{µv | v ∈ V }},
i.e., HOu(du)[1] = V .

Let v be any agent in V . Since the communication graph is strongly connected, there exists
a directed path w` = v, . . . , w1 = u from v to u. We now show by induction on i, 1 6 i 6 `, that
awi occurs in α with awi ≺ du. For any agent w, let fw the first event executed by w in α, if any.

1. Base case i = 1. The identifier u belongs to HOu[1] from the initialization, i.e., u ∈
HOu[1](fu). By Lemma 2.7, u also belongs to HOu[1](du). The decision rule implies that
HOu[1](du) = OKu(du), and by Lemma 2.8, au = aw1 occurs in α with aw1 ≺ du.

2. Assume now that awi
occurs in α with awi

≺ du for some integer i, such that 1 6 i < `.
Then we have

fwi+1 4 s1
wi+1

≺ r1
wi
≺ awi

where s1
wi+1

and r1
wi

denote the first send and receive event along the link from wi+1
to wi. The last relation is because of the guard in Awi

, and the previous one is by
Lemma 2.4. Since wi+1 belongs to HOwi+1 [1](fwi+1), it also belongs to HOwi+1 [1](s1

wi+1
).

By Lemma 2.7, wi+1 ∈ HOu[1](du), and the guard in Du enforces HOu[1](du) = OKu(du).
Lemma 2.8 shows that awi+1 occurs in α with awi+1 ≺ du, as required.

Therefore,
fw`
≺ aw`−1 ≺ du,

and thus v = w` ∈ HOu[1](du). It follows that HOu[1](du) = V , which completes the proof.

For Termination, observe that any complete execution α of Finn’s algorithm is finite. Let us
denote the last element in α by e.

Lemma 2.9. Every agent eventually decides in any complete execution of Finn’s algorithm.

Proof. Since α is complete, each agent v executes the command Su at least once. Moreover,
there is no message in transit in the final configuration of α. This shows each agent v executes
the command Av, i.e., av occurs in α. Hence, v ∈ OKv(e).
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Let u be any agent in V . Since the communication graph is strongly connected, for every
agent v, there exists a directed path w` = v, . . . , w1 = u from v to u. The role of the variables
new is to guarantee that in the final configuration of any complete execution, we have

OKw`
⊆ · · · ⊆ OKw1 .

It follows that OKv(e) ⊆ OKu(e). Therefore, OKu(e) contains the identifier v since v ∈ OKv(e),
which shows OKu(e) = V .

From the latter equality and Lemma 2.6, we obtain that HOu[1](e) = V . Therefore, u decides
in α.
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Chapter 3

Leader election

The problem of leader election has been posed by G. Le Lann in 1977, who also proposed the
first solution. The problem consists in reaching a configuration where exactly one agent is in
the state leader and all other agents are in the state lost. The non-leaders ought or ought not
know the identity of the leader as part of the problem; in any case, an extra phase may be added
where the leader broadcasts its identity to the other agents.

A typical situation where election must be held is when a centralized algorithm (e.g., the
Echo algorithm) is to be executed and there is no a priori candidate to serve as initiator of this
algorithm. For example, this is the case when agents may leave or join the system: because the
set of agents is unknown in advance, it is not possible to assign one agent once and for all to the
role of leader.

Traditionally, the leader election problem has been viewed and studied as a way to understand
the effects of symmetry in a distributed system: roughly speaking, a leader election algorithm
consists in breaking it down.

A large number of results about the election problem exist. The results in this chapter has
been selected for inclusion with the following criteria:

1. The networked system is supposed to be fully asynchronous, and all components (agents
and channels) are reliable.

2. The agents are supposed to have unique identifiers (cf. Theorem 3.1).

3. We will concentrate on developing general methods for the design of leader election al-
gorithms, rather than presenting a collection of disparate algorithms. In particular, we
explain how to derive solutions from the algorithms studied in Chapter 2.

3.1 Preliminaries
Each agent u is supposed to have an output variable stateu initially equal to sleep.
Definition 3.1. A leader election algorithm is an algorithm that satisfies the following proper-
ties:

1. Each agent has the same local algorithm.

2. The algorithm is decentralized, i.e., any non-empty subset of agents may initiate1 an exe-
cution of the algorithm.

1An agent u is an initiator of an execution if the first event by u in this execution is not a receipt.
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3. In every complete execution of the algorithm, there is exactly one leader u and the others
are non-leader, i.e.,

∃u ∈ V, (stateu = leader) ∧ (∀v ∈ V \ {u}, statev = lost).

The algorithms that meet the first condition are said to be symmetric.
Question 8. Consider the algorithm in which each agent has the code in Algorithm 13. Is it a
leader election algorithm?

Algorithm 13

Initialization:
stateu ∈ {passive, active}, initially passive
leaderu ∈ {yes, no,⊥}, initially ⊥

guarded commands:
Iu :: {stateu = passive}

stateu ← active
if u = 1 then

leaderu ← yes
else

leaderu ← no
end if

In this chapter, we study the leader election problem under the following assumptions:

1. The system is supposed to be fully asynchronous.

2. Every component, to be an agent or a channel, is reliable.

3. Each agent is identified by a unique name, its identity, and it may use it in its local
algorithm. The identities are drawn from the total ordered set [N ] = {1, . . . , N}. For
simplicity, we assume that the identity of the agent u is u, i.e., V ⊆ [N ].

3.1.1 Leader election in anonymous networks
The following theorem states that there is no election algorithm for anonymous networks, i.e.,
when agents do not have an identifier. The proof uses the symmetry (of the network and of the
local algorithms) to build an infinite execution in which no agent may declare leader.

Theorem 3.1. The leader election problem is not solvable on an anonymous ring, even if the
ring size is known.

Proof. The proof is by contradiction: suppose that A is a leader election algorithm for such a
system. We inductively construct an infinite execution of A, denoted α = (C0, C1, . . . , Ct, . . . )
such that every configuration Ckn, with n = |V |, is symmetric, i.e., satisfies

∀u, v ∈ V, Ckn[u] = Ckn[v] ∧ Ckn[M.u] = Ckn[M.v], (3.1)
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where Ct[u] denotes u’s state in the configuration Ct and Ct[M.u] denotes the multiset of messages
in transit to u in Ct. Hence, no leader is elected in any configuration Ckn, which leads to a
contradiction.

The initial configuration C0 is symmetric since agents have no identifiers and there is no
message in transit. Suppose that the configuration C = Ckn is symmetric. Since the algorithm
A is also symmetric and all the agents have the same incoming neighborhood, each agent u can
execute the same local transition in C: if eu denotes the corresponding event, and Cu = eu ·C,
then we have

∀u, v (Cu[u] = Cv[v]) ∧ (Cu[M.u] = Cv[M.v]).

Lemma 1.3 (Diamond Lemma) shows that eu is applicable to Cv, ev is applicable to Cu and
eu ·Cv = ev ·Cu. By applying the events e1, . . . , en successively to C, we obtain a new configu-
ration C ′ = C(k+1)n such that

∀u, v C ′[u] = C ′[v] ∧ C ′[M.u] = C ′[M.v].

Observe that Theorem 3.1 also holds for arbitrary communication graphs in which all the
nodes have the same incoming neighborhood: for instance, it holds for bidirectional rings or for
a complete communication graph. Hence, to break symmetry, one can take advantage of some
asymmetry in the communication graph or, more simply, one may assume unique identifiers.
This is precisely the role of the above third assumption. Under this assumption, the strategy
may then consists in electing the agent with the smallest (or greatest) identity. In this case, the
leader election problem is referred to as the extra-finding problem.

3.2 The Le Lann algorithm
In the Le Lann algorithm, given in Algorithm 14, each initiator computes the set of identifiers of
all the initiators and registers as leader or non-leader depending on its own identifier being the
minimum of the computed set. This algorithm assumes that the topology of the network is an
oriented ring with communication channels enforcing the FIFO property.

3.3 Extinction
As agents have unique identifiers, it is possible to use a wave algorithm, like those given in
Chapter 2, to perform an election. In short, it consists in using the wave algorithm to compute
the set of all identifiers; the elected leader is then the agent with the smallest identifier. However,
the chosen wave algorithm must meet the requirements given in the introduction of the chapter:
it must be decentralized and may tolerate any subset of agents as initiators.

Given these preconditions, it is clear that the Echo algorithm (see Section 2.3 in Chapter 2)
cannot be used directly for leader election, as it is centralised. In a similar way, the Tree algorithm
(see Section 2.2) is not a good candidate either: the initiators of the Tree algorithm are the leaves
of the network. Hence, it cannot tolerate any subset of agents as initiators.

The extinction principle applies to wave algorithms that are centralized (i.e., such that there
is only one initiator) and such that only the initiator decides. An example of such an algorithm
is the Echo algorithm, as introduced in Section 2.3 of Chapter 2.

In short, the extinction consists in applying the following rules:

• Each initiator starts a wave, using its own identifier to uniquely identify the wave.
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Algorithm 14 The Lelann Algorithm
Variables:

stateu ∈ {sleep, cand, lost, leader}, initially sleep
Su ⊆ V , initially ∅

Guarded Commands:
Iu :: {stateu = sleep}

send 〈tok, u〉 to nextu

Su ← {u}
stateu ← cand

Ru :: {A message 〈tok, v〉 arrives}
receive 〈tok, v〉
if stateu ∈ {sleep, lost} then

stateu ← lost
send 〈tok, v〉 to nextu

else if v = u then
if u = min(Su) then

stateu ← leader
else

stateu ← lost
end if

else
Su ← Su ∪ {v}
send 〈tok, v〉 to nextu

end if
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• When an initiator u receives a message belonging to a wave with an identifier greater than
its own, u drops it. Otherwise, u behaves accordingly to the wave algorithm.

• When an initiator u decides in the wave it started, it proclaims itself as the leader.

3.3.1 The Chang-Roberts Algorithm
The Chang-Roberts algorithm (see Algorithm 16) can be obtained by applying the extinction
principle to the Ring algorithm, given in Algorithm 15. The Ring algorithm applies when the
communication graph is an oriented ring; each agent u has a parameter nextu denoting the
successor of u in the ring. It is a centralised algorithm: one agent, the initiator, sends a message
〈tok〉 to its successor. Any other agents (the so-called non-initiators) awaits for receiving the
message and then forwards it to their successor. The algorithm terminates when the initiator
receives 〈tok〉.

Algorithm 15 The Ring algorithm
Variables:

decu ∈ {false, true}, initially false

Guarded Commands:
Iu :: {decu = false, once}

send 〈tok〉 to nextu

Du :: {A message 〈tok〉 arrives }
receive 〈tok〉
decu ← true

(15.a) If u is the initiator

Guarded Commands:
Rv :: {A message 〈tok〉 arrives}

receive 〈tok〉
send 〈tok〉 to nextv

(15.b) If v is not the initiator

An initiator u of the Chang-Roberts algorithm starts an instance of the Ring algorithm by
sending a message containing its identifier to its successor. When receiving a message, agents
obey the following rules:

• An initiator receiving a message with an identifier greater than its own drops it.

• An initiator receiving a message containing its own identifier proclaims itself as the leader.

The pseudo-code for the Chang-Roberts algorithm is given in Algorithm 16.

Correction of the Chang-Roberts algorithm To prove the Chang-Roberts algorithm cor-
rect, we consider α a complete execution of the algorithm and w the initiator in α with the
smallest identity. We denote the sequence of agents on the oriented ring as u1, . . . , un, with
u1 = w. We then start by proving a few lemmas.

Lemma 3.1. For all configurations in α, stateu1 6= lost.

Proof. As u1 = w is an initiator, its first event in α corresponds to Iw. After that, statew = cand
and, as w has the smallest identity among initiators, it can only change to the value leader (see
the pseudo-code for Rw in Algorithm 16).
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Algorithm 16 The Chang-Roberts algorithm

Variables:
initu ∈ {false, true}, initially true iff u is an initiator
stateu ∈ {sleep, cand, lost, leader}, initially sleep

Guarded commands:
Iu :: {initu = true ∧ stateu = sleep}

stateu ← cand
send 〈tok, u〉 to nextu

Ru :: {a message 〈tok, v〉 arrives}
receive 〈tok, v〉
if stateu ∈ {sleep, lost} ∨ v < u then

stateu ← lost
send 〈tok, v〉 to nextu

else if v = u then
stateu ← leader

end if

Lemma 3.2. If v is an initiator such that v 6= w then v never receives the message 〈tok, v〉.

Proof. Let ui = v (so i 6= 1) and let rj (resp. sj) denotes the event where uj receives (resp.
sends) the message 〈tok, v〉. From the pseudo-code, if ri occurs in α, we have:

ri � si−1 � ri−1 � · · · � s1 � r1

Yet, stateu1 just before r1 is not lost (from Lemma 3.1). Thus, w = u1 never sends a message
〈tok, v〉, i.e., the event s1 does not occur in α. Hence, ri does not occur in α.

Lemma 3.3. For all i such that 1 6 i 6 n, ui receives the message 〈tok, u1〉.

Proof. Consider i such that 2 6 i 6 n−1 and ui receives 〈tok, u1〉. Following the pseudo-code of
Rui , if ui is not an initiator or has lost the election, the message is forwarded to ui+1. Otherwise,
ui is an initiator and u1 < ui by definition, so the message is also forwarded. In both cases, ui+1
receives 〈tok, u1〉. As u1 is an initiator, its first event in α is sending a message to u2, so u2
also receives 〈tok, u1〉. Finally, un receives 〈tok, u1〉 and as stated precedently, it forwards the
message to its successor in the ring, namely u1, so u1 also receives 〈tok, u1〉.

Theorem 3.2. The Chang-Roberts algorithm is correct if the graph of communications is an
oriented ring.

Proof. Let α be a complete execution and v ∈ V .

1. If v is not an initiator, then statev = lost after the first receipt (direct from the pseudo-
code).

2. Otherwise, v is a initiator.
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• If v 6= w, then v receives the message 〈tok, u1〉 (from Lemma 3.3). Before the receipt,
statev is either lost or cand as v never receives the message 〈tok, v〉 (by Lemma 3.2).
Hence statev = lost after receiving 〈tok, u1〉.

• If v = u1 then, from Lemma 3.3, v receives 〈tok, u1〉

3.4 The Itai-Rodeh algorithm
The Itai-Rodeh algorithm is a randomized algorithm that solves the leader election problem in
an anonymous oriented ring, and terminates with probability 1. All agents execute the same
local algorithm, which is parametrized by two integers n and N such that n is the size of the
network and N > n. The base principle of the algorithm is that each initiator picks a random
number in the set {1, . . . , N} as its identifier and then runs the Chang-Roberts algorithm (cf.
Algorithm 16).

Obviously, it may happen that two distinct nodes u and v choose the same identifier k.
Two problems may then arise: First, following Chang-Roberts, it may happen that v receives a
message 〈tok, k〉 sent initially by u, and wrongly elects itself as the leader. This problem can
be circumvented by attaching a counter hops to each token that counts the number of times the
token is transmitted. In this way, u receives its own token when the hop counter equals n.

However, in the case where k is minimal, both u and v are elected as leaders. To detect this
situation, each token also carries a boolean value unique, which is true at the moment the token
is generated, but set to false if it is forwarded by an agent with the same identifier. An agent
can thus become leader when it receives its own token (hops = n) with unique = true.

The above sketched scheme may not terminate when the minimal identifier is selected by
two distinct agents. If so, each agent with the minimal identifier starts a new Chang-Roberts
algorithm, with a new identifier and at a higher level: at the next level, a new identifier is chosen
randomly in {1, . . . , N} by each agent that initiates the new level. The level is also indicated in
the token, and tokens of some level abort all activity of smaller levels. The complete pseudo-code
for the Itai-Rodeh algorithm is given in Algorithm 17.

Proposition 3.1. In every execution of the Itai-Rodeh algorithm, there is at most one leader.

Proof. Let α be an execution of the Itai-Rodeh algorithm. For any positive integer `, let S`

denote the set of agents that generate a token at level ` in α. We first prove the following two
lemmas.

Lemma 3.4. For any positive integer `, S`+1 ⊆ S`.

Proof. An agent may generate a token at level ` + 1 only if it receives its own token at level `.
The lemma immediately follows.

Lemma 3.5. If a token with level ` is generated in the execution α, then either exactly one agent
becomes a leader at that level and no token at level ` + 1 is generated, or there is at least one
agent that generates a token at level ` + 1.

Proof. Suppose that S` 6= ∅ and S`+1 = ∅, and let Smin
` 6= ∅ the subset of agents in S` with

minimal identifier (at level `). Since S`+1 = ∅, Lemma 3.4 shows that S`′ = ∅ for any integer
`′ > `. It follows that the tokens generated by any agent u at level ` cannot be purged by an
agent at a higher level. Hence, the token generated by u ∈ Smin

` returns to u. Two cases then
arise: either Smin

` = {u}, or
∣∣Smin

`

∣∣ > 2. In the first case, the token returns with unique = true,
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Algorithm 17 The Itai-Rodeh algorithm

Initialization:
stateu ∈ {passive, active}, initially passive
leaderu ∈ {yes, no,⊥}, initially ⊥
idu ∈ {1, . . . , N}
levelu ∈ N, initially 0

Guarded commands:
Iu :: {stateu = passive}

stateu ← active
idu ← rand({1, . . . , N})
levelu ← 1
send 〈tok, idu, 1, true, levelu〉 to nextu

Ru :: {a message 〈tok, id, hops, unique, `〉 arrives}
receive 〈tok, id, hops, un, `〉
if (stateu = passive) ∨ (leaderu = no) ∨ (levelu < `) ∨ (levelu = ` ∧ id < idu) then

leaderu ← no
send 〈tok, id, hops + 1, unique, level〉 to nextu

else if (levelu = `) ∧ (idu = id) then
if hops < n then

send 〈tok, id, hops + 1, false, ` 〉 to nextu

else
if unique = true then

leaderu ← yes
else

idu ← rand({1, . . . , N})
levelu ← levelu + 1
send 〈tok, idu, 1, true, levelu〉 to nextu

end if
end if

end if
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and u is elected. In the second case, the token returns with unique = false, and Smin
` = S`+1, a

contradiction.

We can now conclude the proof of Proposition 3.1. Assume that the agents u and v are
elected as leaders at level `u and `v, respectively. Then S`u

6= ∅ and S`v
6= ∅. Lemma 3.5 implies

that `u = `v, and then u = v.

Proposition 3.2. The Itai-Rodeh algorithm terminates with probability 1.

Proof. Let us fix the parameter N with N > n. Let pk be the probability that among k agents
that choose an identifier in the set {1, . . . , N}, exactly one agent obtains the minimal identifier.
In particular, p1 = 1 and pk > pk+1. We set

p = min
k∈[n]

pk = pn.

Since N > n, we have p > 0.
If a token is generated at level `, then Lemma 3.5 implies that the probability not to elect

a leader at level ` is less than 1 − p < 1. Hence the probability not to have elected a leader by
level ` is less than (1− p)`, and the result follows from lim` 7→∞(1− p)` = 0.

The probabilistic analysis by Itai and Rodeh reveals that the expected number of levels is
bounded by eN(N − 1). Moreover, the expected complexity of the algorithm is O(N log N)
messages.
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Chapter 5

Detection of distributed
termination

A computation of a distributed algorithm terminates when the algorithm has reached a terminal
configuration, that is a configuration in which no further steps are applicable. At that point, it is
important to distinguish the fact that an agent has reached a terminal state in the algorithm (e.g.,
by making a decision) from the one in which it does not participate to the algorithm. Indeed,
upon the receipt of a message, an agent in a terminal state may be required to participate again
in the algorithm (e.g., to allow other agents to enter a terminal state). If the agents in terminal
states are said to be passive, then termination corresponds to the global state in which all agents
are passive and there is no message in transit. As an example, the Tree algorithm actually
terminates when every agent has sent one message (in which case it is declared as passive) and
all messages have been received.

Detecting termination is crucial for debugging and managing distributed systems. Only after
termination can the variables of a distributed algorithm be discarded, demonstrating the relation-
ship between termination and distributed garbage collection. Also, a deadlock of a distributed
algorithm results in a terminal configuration, and detecting deadlocks amounts to detecting
termination.

The point is thus to design a distributed algorithm on the top of the base algorithm that cor-
rectly detects its termination: There is no false detection (safety) and termination is eventually
detected (liveness). The algorithm for termination detection is a control algorithm that is super-
imposed on the base algorithm: it must just observe the base algorithm and may not interfere
with it. For instance, it must not stop the activity in the base algorithm. Finally, termination
may be detected by all the agents or just by a subset of agents (e.g., one single agent).

As above exemplified, the semantics of termination depends on the semantics of the passive
states. Formally, the problem is specified in an abstract way as follows:

R1 Each agent is either active or passive.

R2 Only an active agent can send a message.

R3 Each active agent can become passive spontaneously.

R4 A passive agent can become active only upon the receipt of a message.

Termination is achieved when all the agents are passive and all the communication channels
are empty. Because of the rules R1-4, termination is a stable property.
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Algorithm 18 The (dummy) base algorithm
State variables for agent u

stateu ∈ {active, passive}

Sb :: {stateu = active}
Send 〈msg〉 to some agent q

Rb :: {A base message 〈msg〉 arrives from v}
Receive 〈msg〉
stateu ← active

Ib :: {stateu = active}
stateu ← passive

• In the case of synchronous communications, the predicate on communication channels is
trivially verified. Thus, termination can be detected if all agents are in the passive state.

• We consider the atomic model, where sequences of base events are collapsed into one event.
Thus, in a single event, a passive agent receives a base message, becomes active, performs
some computation, eventually sends some messages to its neighbors, and then become
passive again. With this restriction, agents are always passive and termination can be
detected when the communication channels are empty.

5.1 The 4-counter algorithm
The 4-counter algorithm applies in the atomic model. Its main principle is to count the messages
being sent and received along the communication channels to spot messages in transit. It also
assumes the availability of a ring substructure {un}06n<N such that {un}06n<N = V and, forall
k such that 0 6 k < N , there is a communication channel from u(k+1)modN to uk.

Each agent u holds two state variables ru and su, for counting the messages received and
sent by u, respectively. The initiator starts a wave on the ring substructure to compute the
accumulated sum of the counter su and ru, by sending a token with two counters. When an
agent u receives the token, it adds the values ru and su and forwards the token to the next
agent in the ring. One wave compute two values R? and S?, and defines a cut in the execution.
Unfortunately, a cut may be inconsistent as R? and S? can not discriminate messages. This
is illustrated in Figure 5.1: At time t0, the token has visited all the agents and R? = S?, but
termination does not hold. Indeed, the token has recorded the sending of message m1 by w but
not its receipt by v, while it recorded the receipt of message m2 by w but not its sending by v.

Therefore, stating R? = S? is not sufficient to detect termination. Using two consecutive non
overlapping waves, we obtain four counters R?, S? (from the first wave), R′? and S′? (from the
second wave). The termination can now be detected when R? = S′?.

Lemma 5.1. There is no false detection.

Proof. We denote S(t) (resp. R(t)) the total number of messages sent (resp. received) at time
t. Observe that we have ∀t R(t) 6 S(t) from causality, and that S (and R) is increasing:
∀t, t′ t 6 t′ =⇒ S(t) 6 S(t′).
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m1 m2

u
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w

κu

κv

κw

t0

Su = 3 Ru = 1

Sv = 0 Rv = 3

Sw = 4 Rw = 3

Figure 5.1: Counter-example in the case of 2 counters

Consider t1 and t2 (resp. t3 and t4) the begin and end time of the first (resp. second wave).
Note that, since two waves are distinct, we have: t2 < t3. Moreover, by definition of the
algorithm, we have R? 6 R(t2) and S(t3) 6 S′?. Putting it all together, we obtain:

R? 6 R(t2) 6 S(t2) 6 S(t3) 6 S′?

Hence, from R? = S′?, we can deduce that R(t2) = S(t2). Then, at time t2 the communication
channels are empty, which, in the atomic model, implies termination.

Lemma 5.2. Termination is always detected.

Proof. Suppose that the base algorithm is terminated at time t. Then we have: R(t) = S(t) and
∀t, t′ S(t′) = S(t). So any two consecutive waves started after t will compute 4 values such that
S? = R? = S′? = R′?.

5.2 The Dijkstra-Feijen-Van Gasteren algorithm
The Dijkstra-Feijen-Van Gasteren algorithm can be used to detect the termination of a centralised
base computation. It applies in the context of synchronous communications, and assumes the
existence of a spanning oriented ring substructure as in Section 5.1. As communications are
synchronous, the communication channels are empty at all times. The termination can then be
detected when all agents are passive.

The main principle of the algorithm is to forward a token along the underlying ring structure.
All agents holds a color attribute (red or yellow) that relates to its status. The token also gets
a color that relates to the state of the visited agents. The initiator starts a wave by sending a
yellow token to its neighbor in the ring. The rules for forwarding the token and updating the
color attributes are the following:

R1 The token is initially held by the initiator u0.

R2 Only a passive agent can forward the token.

R3 When agent ui sends a message to a some agent uj such that i < j, it changes its color
attribute to red.

R4 A red agent forwarding the token sets the token color to red and sets its own color to
yellow.
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R5 When the detection fails, the initiator starts a new wave.

Rule R3 comes from the fact that a passive agent visited by the token may be turned into the
active state by receiving a message from an active agent. This situation is depicted in Figure 5.2:
while the token is held by agent uk, agent ui sends a message to uj , where j < k < j.

The termination is detected when: the token is back at u0; the token is yellow; u0 is yellow
and passive.

u0

uN−1

uj

uk

ui

Figure 5.2: DFG: Illustration of R3

Question 9. Prove that the Dijkstra-Feijen-Van Gasteren algorithm is safe, i.e., there is no
false detection.

Question 10. Show that if the system terminates during the i-th wave, then it is detected no
later than the i+2-th wave.

5.3 The Djikstra-Scholten algorithm
The Dijkstra-Scholten algorithm assumes diffusive computations: all but one of the agent are
initially passive. The sole initially active agent is denoted by e. Moreover, the communication
graph is supposed to be bidirectional and (strongly) connected.

The basic idea of the algorithm is to maintain a dynamic tree whose vertices are the agents
that either are active or do not know whether the activity they induced has terminated. As a
consequence, termination will be detected by the sole agent e from which activity results. Hence
the agent e is the unique initiator of the Dijkstra-Scholten algorithm (leader), and the unique
agent in charge of termination detection.

The mechanism for an agent to detect that the activity it triggered has terminated is the use
of acknowledgements (control messages). Each agent u maintains two control variables, namely
Cu and fatheru: Cu is a local counter that u increments each time it sends a (base) message,
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and that it decrements upon the receipt of an acknowledgement. It follows that u knows that
the activity it triggered terminates when Cu = 0.

Upon the receipt of a message from v, the agent u, if passive, declares v as its father or sends
an acknowledgement to v otherwise. The message that made it active comes from its father, and
u acknowledges this message only when it becomes passive and Cu = 0. The pseudo-code for u
is given below (Algorithm 19).

Let us consider any finite execution α of the algorithm, and let C be the final configuration.
The correctness proof of the Dijkstra-Scholten algorithm relies on the properties of a directed
tree defined with respect to C. We start with a series of preliminary lemmas about the values
of the variables Cu and fatheru in C.

Lemma 5.3. If fatheru = ⊥, then Cu = 0 and u is passive.

Proof. This is a direct consequence of the initializations of fatheru and Cu, the fact that all
agents other than e are initially passive, and the guarded commands Su, Ru, Iu, and RAu.

Lemma 5.4. The value of the counter Cu is equal to the total number of agents whose father is u
plus the number of messages sent by u and in transit in C, plus the number of acknowledgements
sent to u and in transit in C.

Proof. The property on Cu holds initially. Moreover, it is invariant under the guarded commands
Su, Ru, Iu, and RAu.

Lemma 5.5. If fatheru = v, then fatherv 6= ⊥.

Proof. The proof is by contradiction: assume that fatherv = ⊥. Lemma 5.3 shows that Cv = 0.
By Lemma 5.4, it follows that there is no agent whose father is v, a contradiction.

The same argument as above proves the following lemma.

Lemma 5.6. If u has sent a base message that is in transit in C or if it is the receiver of an
acknowledgement that is in transit in C, then fatheru 6= ⊥.

Lemmas 5.5 and 5.6 lead to define the directed graph T = (VT , ET ), where:

VT = {u ∈ V | fatheru 6= ⊥} ∪ {msg ∈M | msg in transit in C}
∪{ack | ack in transit in C}

ET = {(fatherv, v) | v ∈ VT ∩ V } ∪ {(v, msg) | msg in transit in C and sent by v}
∪ {(v, ack) | ack in transit in C and sent to v}

Moreover, every edge of the form (fatherv, v) corresponds to an event in α associated to the
guarded command Rv; if this event is the t-th event in α, then the edge is labelled by t.

As an immediate consequence of the definition of ET , we obtain the following Lemma.

Lemma 5.7. Every node in T that is not an agent has no outgoing edges.

Proof. By definition of VT and ET .

Lemma 5.8. Let u, v, and w be three agents. If (u, v) and (v, w) are two distinct edges in T
labelled by t and t′, respectively , then t′ > t.
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Algorithm 19 The Dijkstra-Scholten algorithm

Initialization:
stateu ∈ {active, passive}, initially passive if u 6= e, statee initially active
fatheru ∈ V ∪ {⊥}, initially ⊥ if u 6= e, fathere initially e
Cu ∈ N, initially 0

Guarded commands:
Su :: {stateu = active}

send 〈msg〉 to some agent v
Cu ← Cu + 1

Ru :: {A base message 〈msg〉 arrives from v}
receive 〈msg〉
stateu ← active
if fatheru = ⊥ then

fatheru ← v
else

send 〈ack〉 to v
end if

Iu :: {stateu = active}
stateu ← passive
if Cu = 0 then

if fatheru 6= u then
send 〈ack〉 to fatheru

else
announce termination

end if
fatheru ← ⊥

end if

RAu :: {A message 〈ack〉 arrives}
receive 〈ack〉
Cu ← Cu − 1
if Cu = 0 and stateu = passive then

if fatheru 6= u then
send 〈ack〉 to fatheru

else
announce termination

end if
fatheru ← ⊥

end if
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(I)

t

Rv(m)

fatherv = ⊥
Cv = 0

fatherv = u

(a) Edge t

(II)
Sv(m′) Rw(m′) Iw RAv(ack′

m)

fatherw := v send 〈ackm′〉 to v

Cv > 1t′

fatherw = v fatherw = ⊥

(b) Edge t′

Figure 5.3: Sequential construction of T

Proof. The proof is by contradiction: let us assume t′ 6 t.
If t = t′, then the two edges correspond to the same event and thus are equal. It follows that
t′ < t.
From the code in the guarded command Rv, it follows that just before t in α, the agent v has
no father. Lemma 5.3 shows that then v is passive and the counter Cv = 0 (cf. Figure 5.3a).

The t′-th event in α corresponding to the receipt of a base message m′ sent by v to w is
preceded by the sending of m′ since α is a linear extension of the causality relation; let Sv(m′)
denote the event containing this sending. The code of the algorithm implies that Cv > 1 in a
period starting at Sv(m′). This period is finite since t′ < t and because of the values of the
counter Cv. It may end only upon the receipt of an acknowledgement ackm′ sent by w to v; let
Iw(ackm′) and RAv(ackm′) the two events in α containing the sending and the receipt of ackm′ ,
respectively (cf. Figure 5.3b). The code of the command Iw implies that w has no father in
a period starting at Iw(ackm′), a contradiction with the fact the edge (v, w) is labelled by t′

in T .

Combining Lemmas 5.7 and 5.8, we obtain that the directed graph T is acyclic.

Lemma 5.9. If VT 6= ∅, then T is a directed tree rooted at the node e.

Proof. Assume that VT 6= ∅, and let j ∈ VT with two incoming neighbors i and i′ in T . By
definition of ET , both i and i′ are in V . We consider the three following cases.

1. The node j is in V . Hence i = fatherj and i′ = fatherj , which shows that i = i′.

2. The node j is a base message msg. Thus msg has been sent by i and i′. Since any message
has a unique sender, we obtain that i = i′.
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3. The node j is an acknowledgement. Since any message (in particular, any acknowledge-
ment) has a unique receiver, we also have i = i′ in this case.

This shows every node of T has at most one incoming neighbor.
Moreover, Lemma 5.5 shows that every node j in VT ∩ V has an incoming neighbor, and

Lemma 5.6 yields the same conclusion for the other nodes in VT , namely the messages and the
acknowledgements that are in transit. Hence every node of T has exactly one incoming neighbor.
Since T is acyclic, it follows that T is a directed tree.

Theorem 5.1. The Dijkstra-Scholten algorithm correctly detects termination of any diffusing
computation.

Proof. Suppose that the agent e detects termination in some configuration C. Then fathere = ⊥
holds in C, and Lemma 5.9 shows that T is empty, i.e., every agent has no father. Combining
Lemmas 5.3 and 5.4, we obtain that all agents are passive and there is no base message in transit,
which completes the safety proof.

Liveness is a straightforward consequence of the pseudo-code.
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Chapter 6

The Consensus Problem and the
FLP Result

Roughly speaking, the consensus problem consists in reaching a configuration where agents decide
on a common value. It is a fundamental problem in distributed computing and has many real-
world applications, especially in any application that involve replication.

Formally, let V be a non-empty set of values such that ⊥ /∈ V. We assume that each agent u
has an initial value µu ∈ V and an output variable yu ∈ V ∪ {⊥}, which is initially set to ⊥.
When the agent u assigns some value v ∈ V to its variable yu, u is said to decide v. An algorithm
solves the distributed consensus problem if in every execution of this algorithm each agent decides
exactly once, all the decision values are equal, and the common decision value is one initial value.

In a system without any failure, this problem is easy to solve: if V is totally ordered, then
any algorithm that computes the maximum initial value (cf. Chapter 2) achieves consensus.

As explained above, the consensus problem is the paradigm of fault-tolerance, and hence one
fundamental issue is to solve it in the context of failures. Various types of failures of various
severity levels may happen: for example, messages may be lost or duplicated; or some agents
may crash (i.e., stop to take steps forever), may omit to execute some transitions, or they may
misbehave arbitrarily. In this chapter, we will assume that channels are reliable, and at most f
agents are prone to crash failures.

6.1 Computing model
We consider a networked system of n agents, where the communication graph is complete. The
set of agents may be denoted by V = {1, . . . , n}. The class of algorithms under consideration is
restricted to the algorithms with only two types of guarded commands:

Ru,m :: {a message 〈m〉 arrives}
receive 〈m〉
stateu ← fu(m, stateu)
send 〈mi1〉 to vi1 , . . . , send 〈mik

〉 to vik
% {vi1 , . . . , vik } is any (possibly empty)

set of agents

Ru,∅ :: {true}
stateu ← fu(∅, stateu)
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send 〈mi1〉 to vi1 , . . . , send 〈mik
〉 to vik

% {vi1 , . . . , vik } is any (possibly empty)
set of agents

where fu is a transition function, and {vi1 , · · · , vik
} as well as the messages {mi1 , · · · , mik

}
are determined by u’s current state and some sending function gu. Local algorithms are thus
deterministic and differ on their transition and sending functions.

Definition 6.1. A step is any pair (u, m) where u is an agent and m ∈M∪ {∅}. A schedule σ
is a (possibly infinite) non-empty sequence of steps.

Let A be an algorithm of the above form. There is a unique guarded command Ru,m associ-
ated to the step (u, m). This step is applicable to the configuration C of the algorithm A if the
message 〈m〉 is in transit towards u in C, while (u, ∅) is applicable to any configuration of A.
If e = (u, m) is applicable to C, denoted e |= C, then there is a unique resulting configuration
(each local algorithm is deterministic) which is denoted e ·C.

Definition 6.2. A schedule σ is a (possibly infinite) non-empty sequence of steps e1, . . . , el, . . . .

It is applicable to a configuration C of an algorithm A, denoted σ
A
|= C, if

• e1 is applicable to C0 = C

• For all k > 0, ek+1 is applicable to Ck and Ck+1 = ek+1 · Ck.

For convenience, we will write σ = . . . el . . . e1.
There is a clear one-to-one correspondance between the executions of the algorithm A and the

pairs (C0, σ) where C0 is an initial configuration of A, and σ is a schedule applicable to C0. The
sole steps applicable to an initial configuration are of the form (u, ∅). Observe that the notions of
step and schedule relate only to agents and messages, and can be defined independently to some
algorithm. However the corresponding guarded commands, the applicability of schedules and
the resulting executions are semantical notions in the sense that they depend on the algorithm
under consideration.

Lemma 6.1. Let A be an algorithm, and let C be one of its configurations. If the step e = (u, m)
and the finite schedule σ are both applicable to C, and if e does not occur in σ, then e is applicable
to σ ·C.

Proof. If m = ∅, then Ru,m is applicable to any configuration. Otherwise, m ∈ M is in transit
in configuration C. Since u does not execute any action in σ, m is still in transit in σ ·C, so
Ru,m is applicable to σ ·C. The same argument applies to σ and Ru,m ·C. Moreover, for all
agent v 6= u, the state of v in configuration Ru,m ·C is the same as in C, and the state of u in
σ ·C is the same as in C. Hence, Ru,m ·σ ·C = σ ·Ru,m ·C

Since (u, ∅) is applicable to any configuration, a complete execution of any algorithm of the
above form is infinite. An agent u that has not crashed in an infinite schedule σ takes an infinite
number of steps in σ, in which case u is said to be correct; otherwise, it is faulty. This terminology
of correct and faulty agent is naturally extended to complete executions (of an algorithm).

Definition 6.3. A complete execution α of an algorithm A is admissible if

1. every message sent in α to a correct agent is eventually received in α;
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2. there is at most one faulty agent in α.

Admissible executions thus model executions with reliable channels and at most one crash
failure.

We now prove a key lemma which is a “macro-version” of the Diamond Lemma (Lemma 1.3,
Chapter 1).

Lemma 6.2. Let A be an algorithm, and let C be one of its configurations. If σ1 and σ2 are two
schedules both applicable to C such that the sets of agents taking steps in σ1 and σ2 are disjoint,
then, σ2 is applicable to σ1 ·C, σ1 is applicable to σ2 ·C and σ2 ·σ1 ·C = σ1 ·σ2 ·C

Proof. The proof is straightforward by a repeated application of Lemma 6.1.

For convenience, we define the following equivalence relation on complete executions. Let α =
(C0, σ) and α′ = (C ′

0, σ′) be two infinite executions and u ∈ V . The relation of indistinguishability
with respect to u, denoted ∼u, is defined as

α ∼u α′ ⇐⇒ ∀t ∈ N∗ stateu(σ(1 : t) ·C0) = stateu(σ′(1 : t) ·C ′
0)

For every configuration C of an algorithm, we can naturally construct the directed graph
GC = (CC , EC) where CC is the set of configurations reachable from C, and (C1, C2) ∈ EC if there
exists a step e such that C2 = e ·C1. Clearly, GC is a directed tree, rooted at C.

6.2 The impossibility result
Theorem 6.1 (FLP). There is no consensus algorithm that tolerates one crash failure, even
with reliable channels and a complete communication graph.

We prove this result for the problem of binary consensus where the set of values is V = {0, 1}.
The proof is by contradiction: we suppose that there exists a binary consensus algorithm A that
tolerates one crash failure. This means that every admissible (complete) execution of A satisfies:

Termination: every correct agent eventually decides.

Agreement: if u and v decide ν and ν′, then ν = ν′.

Integrity: if u decides the value ν, then ν is one of the initial value.

Any initial configuration C0 of A corresponds to a mapping from V to {0, 1}, and thus may
be denoted by C0 = (µ1, · · · , µn) if for every agent k, µk is its initial value.

A configuration C is ν-decided, ν ∈ {0, 1}, if there exists v ∈ V such that yv = ν in C. The
agreement property implies that if C is ν- and ν′-decided, then ν = ν′. If C is neither 0-decided
nor 1-decided, then C is said to be non-decided. Observe that if C is ν-decided, then every
configuration in GC is ν-decided.

We define the valency of a configuration C as the set of values ν such that there exists
a ν-decided configuration in CC . The configuration C is ν-valent if there exists one ν-decided
configuration in CC . A configuration C is bivalent if it is both 0-valent and 1-valent; otherwise it is
monovalent. Obviously, if C is ν-monovalent, then any configuration in CC is also ν-monovalent.

Lemma 6.3. There exists an initial bivalent configuration.
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¬u
¬u

α ∼ α′

(0, 0, . . . , 0)

(1, 0, . . . , 0)

(1, 1, . . . , 0)

(1, 1, . . . , 1)

µu = 0
µu = 1

Figure 6.1: Initial bivalence configuration

Proof. The proof is by contradiction: suppose that there is no bivalent initial configuration.
Consider a chain {Ci}06i6n of initial configurations where

Ci = (1, . . . , 1, 0, . . . , 0)

denotes the initial configuration where all the entries are equal to 0 except the first i entries
that are equal to 1. The validity property implies that C0 is 0-monovalent. Similarly, Cn is 1-
monovalent. By assumption, there is no bivalent initial configuration, and so each configuration
Ci is either 0-monovalent or 1-monovalent. It follows that, along the chain of initial configu-
rations C0, C1, . . . , Cn, there exist two neighboring configurations Cj and Cj+1 such that Cj is
0-monovalent and Cj+1 is 1-monovalent. This is depicted in Figure 6.1. Let u be the single agent
whose initial values in Cj and Cj+1 are 0 and 1, respectively.

Consider an infinite schedule σ applicable to Cj such that u takes no step in σ. As Cj+1 differs
only from Cj by the initial value of u, σ is also applicable to Cj+1. This yields two admissible
executions α and α′ of A that are indistinguishable from the viewpoint of any agent v different
from u:

∀v ∈ V \ {u}, α ∼v α′.

From some point in α and α′, all the configurations are 0-decided and 1-decided, respectively, a
contradiction.

Let C be any reachable configuration of A, and let e be a step applicable to C, i.e., e |= C.
We introduce the following two sets of (reachable) configurations of A:

1. C = {σ ·C | σ |= C ∧ e /∈ σ}

2. D = e · C = {e ·C ′ | C ′ ∈ C ∧ e |= C ′}.

Lemma 6.4. If C is bivalent, then D contains at least one bivalent configuration.

Proof. For the sake of a contradiction, suppose that D does not contain any bivalent configura-
tion. Under this assumption, we first show two claims.
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Claim 1. The set D contains two configurations D0 and D1 which are 0-monovalent and 1-
monovalent, respectively.

Proof. Since C is bivalent, there exist two schedules leading to a 0-monovalent configuration and
1-monovalent configuration from C. Let σ0 and σ1 be such schedules of minimal lengths, and let
Ci = σi ·C. For each i ∈ {0, 1}, we consider the two following cases:

1. If Ci ∈ C, then Lemma 6.1 shows that e is applicable to Ci. We set Di = e ·Ci.

2. Otherwise, Ci = σ2
i .e.σ1

i ·C, with e /∈ σ1
i . The configuration e ·σ1

i ·C is in D, and so is
monovalent. Since the schedule σi is of minimal length, σ2

i is empty, i.e., Ci = e ·σ1
i ·C.

Then we set Di = Ci.

In both cases, the configuration Di is i-monovalent and is in D.

Claim 2. The directed tree CC contains one of the two following patterns

D1

D0

e′e

e

D0

D1

e′e

e

where D0 and D1 are 0-monovalent and 1-monovalent, respectively.

Proof. We consider the subtree of configurations in C, and the underlying undirected graph, which
is connected. In this graph, every configuration C ′ may be colored in red or yellow according to
the following rule:

1. if e ·C ′ is 0-monovalent, then C ′ is yellow;

2. otherwise, C ′ is red.

The above claim shows that there is at least one yellow configuration and one red configuration.
There exists two neighboring configurations in the graph with different colors since it is connected,
which proves the claim.

We complete the proof of Lemma 6.3 in the case the first pattern occurs (the proof for the
second pattern is similar), i.e.,

D0 = e ·C0 and D1 = e ·C1 = e.e′ ·C0.

Let u and v the two agents in e and e′, respectively. There are two cases to consider:

1. u 6= v. A direct application of the Diamond lemma leads to a contradiction.

2. u = v. Let σ an infinite schedule applicable to C0 in which the agent u takes no step.
The termination property ensures that from some point in σ, the configurations in the
corresponding execution are all monovalent. Let Γ be the first one, and let ν its valency.
The Diamond Lemma applied to the configuration C0 and the two disjoint schedules e and
σ yields ν = 0. Then this lemma applied to C0 and the two disjoint schedules σ and e.e′

gives ν = 1, a contradiction.
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Consequently, the set of configurations D contains a bivalent configuration.

We now construct an admissible execution of the algorithm A in which all the configurations
are bivalent, which is in contradiction with the Termination property, and thus prove the FLP
theorem. For that, we proceed with a round robin argument: at each level k, we start with
a bivalent configuration Ck−1 and a specific step ek applicable to Ck−1. Then we construct a
finite schedule σk that is applicable to Ck−1 and ends with ek, and such that Ck = σk ·Ck−1 is
bivalent.

1. The first configuration C0 is an initial bivalent configuration of A given by Lemma 6.3.

2. Suppose that the above construction up to level k − 1 is achieved. Let ek = (u, m) be the
step where u = k mod n and m is the first message sent to u and in transit in Ck−1 if
exists, and m = ∅ otherwise. Lemma 6.4 ensures that there is a finite schedule σk that is
applicable to Ck−1, ends with ek, and leads to a bivalent configuration Ck.

With the above construction, the limit schedule (for the Cantor topology) σ = limk→∞ σk · · ·σ1
is an admissible schedule (no agent failure and no message loss). Therefore, the corresponding
execution (C0, σ) is admissible and violates the Termination property.
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