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Abstract

In this article, we consider a jump diffusion process (X¢):>0 with drift function b, diffusion
coefficient ¢ and jump coefficient £. This process is supposed to be ergodic, exponentially -
mixing and stationary. It is observed at discrete times t = 0, A, ..., nA. The sampling interval
A tends to 0 and the time interval nA tends to infinity. We construct a robust, adaptive
non-parametric estimator of the function &* thanks to a penalized least-square approach. We
provide bounds of the empirical and L2-risk of our estimator.

Keywords: jump diffusions, nonparametric estimation, model selection.

Subject classification: 62G05, 62M05.

The code of the simulation study is available on math.univ-1illel.fr/~“schmisse/recherche.
html

1 Introduction
We consider the jump diffusion given by the one-dimensional stochastic differential equation
dXt = b(Xt)dt+0(Xt)th +§(Xt*)st7 XO =N (1)

with n a random variable, (W;);>¢ a Brownian motion independent of i and (L;);>¢ a pure jump
centred Lévy process independent of (Wy,n). It can be written

L= /Ot/Rz(u(dz,dt) —v(dz)dt)

where p is a Poisson measure of intensity v(dz)dt. We do not assume that the jumps are of finite
intensity, only that L; is centred and has moments of any order.

The diffusion is observed at discrete times ¢t = 0, A,...,nA under the asymptotic framework:
nA — oo and A — 0. Our aim is to construct adaptive non-parametric estimator of the jump
coefficient £* on a compact interval A C R.

Jump diffusions are used to modelize dynamical systems where the noise is discontinuous or
too intensive to be modeled by a Brownian motion, for instance polymerazation phenomenons
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(Berestycki (2004)), telephone noise (Protter and Talay (1997)), or finance (see Ait-Sahalia and
Jacod (2009) or Protter and Talay (1997) for instance). There are many articles on the estimation
for jumps diffusions, although quite few estimate the jump coefficient nonparametrically.

For the parametric estimation, we can cite Shimizu (2006) or Shimizu and Yoshida (2006) who
estimate the three coefficients b, o and £ for stationary finite intensity processes thanks to a contrast
function. Their estimators are consistent and asymptotically normal if the sampling interval A is
sufficiently small. The estimators of the parameter of b and £2 converge with rate vnA, whereas
the estimator of the parameter of 02 converges with rate \/n.

For nonparametric estimation, Bandi and Nguyen (2003) use kernel estimators of the infinitesi-
mal moments, My = b(z), My = o%(x) + £(z) [ 2?v(dz) and My = *(x) [ 2*v(dz). Their estima-
tors are asymptotically normal and converge with rate (nA)’g/ 5. Their estimator do not depends of
the regularity of the functions, and are not adaptive. Hanif et al. (2012) and Hanif (2016) construct
estimators of the infinitesimal second moment o 4+ £? [ z2v(dz) with reweighted Nadaraya-Watson
and Gamma Nadaraya-Watson estimators respectively. Their estimators converge almost surely,
and are asymptotically normal.

To estimate o2 or £2 non parametrically, a threshold is often used to suppress (or find) the
jumps. For instance, Mancini (2009) estimate the integrated volatility. The estimator converge,
and in the finite activity cas, the estimator is asymptotically normal. Mancini and Reno (2011)
(for the finite intensity case) and Song et al. (2022) (for compound Poisson processes) estimate the
diffusion coefficient o2, using local time and kernel estimators. Schmisser (2019) construct a robust
and adaptive estimator of o2 and of the second infinitesimal moment, even for infinite intensity
Lévy processes.

Mancini and Rend (2011) for the finite activity case and Park and Wang (2021) for the finite
intensity case both construct estimators for the jump coefficient &2, using local times and kernel
estimator. The rate of convergence of the kernel estimator of £2 is (nA)~2/% 4 A1/2,

There are two possibilities to construct an estimator of the jump component. Either take the
second infinitesimal moment when the increments are big enough (when a jump is suspected):
indeed, for finite intensity processes (see for instance Park and Wang (2021, Section 5.2)).

(X(et1a — Xia)?
A

The problem of this method is that the small jumps will not be kept. It is not very important if
the Lévy process is a compound Poisson process, but if the jumps have infinite activity or infinite
intensity, the small terms will not be so small.
In this article, like Bandi and Nguyen (2003), we use the second possibility and consider an
estimator based on the fourth moments of the increments:
(Xkr1)a — Xia)?

Ten = A = 54(XkA)/z4z/(dz) + centred terms + small terms.

| X(etnya—Xka|>Al/2-c = §2(XkA)/22y(dz) + centred terms -+ small terms.

The Brownian terms are small because of the power 4, and it only remains the jumps. We introduce
a sequence of increasing subspaces S,, of L?(A) and construct a sequence of estimators éﬁq by
minimizing on each S, the contrast function ~,(t) = 2 37| (Tia — t(Xxa))?. When [ z%v(dz) is
known, its L2-risk is bounded by

. 2 D
4 4 4 _ 4|2 gm
E( <ot ’LQ(A)> 5“5 “Gullyt ELA A
bias term variance term
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where D, is the dimension of the subspace S,,. The bias term decreases when the dimension
D,,, increases, whereas the variance term increases. To find a good bias-variance compromise, we
introduce a penalty, pen(m), proportional to the variance term. To choose the dimension, we
minimize the quantity v, (€2 1) + pen(m) and deduce the "best" dimension /. Finally, we prove
that the risk of the robust estimator, éfh, satisfies an oracle inequality.

The paper is divided as follows: the model and its assumptions are stated in Section 2. In
Section 3, we construct the estimator and bound its risk. Section 4 is devoted to the simulations
and the proofs are gathered in Section 5.

We introduce some notations.

In all the paper, C' means a constant that does not depend on n, A or the dimension D,,, but
may be different from one line to another. We note A < B if A < CB where C is a constant that
does not depend on n, A or D,,. R7 is the set of positive numbers, and ¢ the set of fonctions ¢
that are r times continuously differentiable.

We set I, = [ z"v(dz) if this quantity exists.

For a function ¢ in L?(A), and 7 a density, ||t||fr = [, t*(z)m(dz) and the empirical norm is
||t\|i = 23" t*(Xpa). We consider three different projections: ¢, is the orthogonal projection of
t on Sy, (for the L2-norm), t,, » is the orthogonal projection of ¢ on S,, for the ||.|| -norm and II,,¢
is the orthogonal projection on S,, for the empirical norm ||.|| ,.

2 Model and assumptions

We consider the stochastic differential equation given by (1) and assume the following assumptions:
Assumption Al.
a. The functions b, o and & are Lipschitz.

b. The drift function b is elastic:

M >0,3C > 0,Vz, |z| > M ,zb(x) < —Cz?

c. The diffusion and jump functions o and § are bounded from below and above: there exists
00701750351 S (Rj—)ﬁl such that

Ve,0 <& <&(x) <& and 0<og<o(zx) <o

d. The Lévy measure has moments of any order: Yk > 2, [o |z|*v(dz) < 4o0.
e. Iy = [pz*v(dz) = 1.

Item a ensures that SDE (1) has a unique strong solution (see Applebaum (2009, Theorem 6.2.9).
According to Masuda (2007, Theorem 2.2 and Lemma 2.4), under Assumptions Ala-d, the process
(X¢)e>0 has a unique stationary distribution, is ergodic and exponentially S-mixing. Assumption e
ensures that the model is identifiable: indeed, if we replace v(.) by cv(c.) and & by £/c, we obtain
the same process (X;)¢>o. If this assumption is not fulfilled, our estimator will estimate £*(Xya )14,
wich enables us to see at least the shape of &.

We can know assume:
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Assumption A2.
a. The process (X)i>0 s stationary.
b. Its stationary measure has a density m which is bounded on any compact set.

c. the density w is bounded from below and above on the compact of estimation A:

Imp, m;Ve € A, 0 < mp < m(x) <.

By Masuda (2007, Theorem 2.2), it implies that X; has also moments of any order.

Let us consider the o-algebra %, = o (0, (Ws)o<s<t, (Ls)o<s<t)-

The following proposition helps us to control the increments of the process. It is proved for
instance in Applebaum (2009, Theorems 4.4.21 and 4.4.23)).

Proposition 1. According to the Burkholder-Davis-Gundy inequality, for any p > 0, there exists
a constant C), such that:

s p t+h p/2
E( sup /U(Xu)qu 7| <o, / A(X)du| |7
s€ft,t+h] [Jt t
and
s p t+h p/2
E| sup /g(Xuf)dLu \F: | < C,E / E(X)du| |Z, | IB?
s€ft,t+h] [/t t

t+h
+ C,E (/ |7 (X )| du |ﬁt> I,
¢

To simplify the notations, let us set

(k+1)A

(k+1)A (k+1)A
BkA :/ b(XS)ds, ZkA :/ O'(Xs)dWS and chA :/ g(XS—)dLS.
kA kA kA

The following lemma follows almost directly from the Burkholder-Davis-Gundy inequality (see for
instance Schmisser (2014, proof of Proposition 1)).

Lemma 2. For any integer p > 0:
Vu > 07 E < sup (Xeru)zp‘ yu) rg 1+ |Xu|2p
0<s<A

and
Vu >0, E < sup (Xgpu — X))

0<s<t

3%) < Cyyp (lf%pfm) + P (Ufp + ffplg» .

Then, as b, 0? and & are Lipshitz: E (|Byal®) < A?P, E(JEZ) < AP and E (Jpa)? =
AP (Xpa)Lop + O(A3/2),
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We need to control the variance term, more precisely the moments of the jumps. The Lévy-
Khintchine formula states that E (ei“LA) = = A Ja(e™ ~1-iuz)u(dz)  The following lemma is exactly
Lemma 13 of Carpentier et al. (2021).

Lemma 3. We get the following moments:

E (LY) = IsA + (3513 + 561515 + 28151) A* + (2101314 + 280115 ) A® + 10513 A%

To bound the risk the adaptive estimator, we apply a Talagrand’s inequality. To this end, we
need independent and bounded random variables. As we have an exponentially S-mixing process,
we can construct independent random variables thanks to the Berbee’s coupling lemma. But to
work with nearly bounded variables, we need the following assumption:

Assumption A3.
a. The jumps are sub-exponential: IM,C, X € (R*%)3, Vz,|2| > M v([—z,2]°) < Ce .
b. In, n > 1, such that A" = O(n™1).

c. The Blumenthal-Getoor index is strictly less than 2: there exists B < 2, f_ll 2Pu(dz) < .

This is not a very strong assumption, as fil 22v(dz) is already finite.
Under Assumption Al and 3, for any ¢ < A/&;, any ¢ > 0, E (e“Xt) < 0.
Proof. Apply Theorem 2.2 of Masuda (2007) with

N ew c 2 5c  3c—c? 2 —c
f (.’L‘):e - 1|x>1+€‘(1+2—8+ 1 2+ 3 .174) 1‘z|<1. O

Under this assumption, the increments can be bounded. The small jumps (smaller than \/Z)
have the same comportement than the Brownian motion terms. As we have only sub-exponential-
jumps, the size of the bigger jumps is also nearly bounded. The following lemma is proved in
Schmisser (2019, Lemma 2):

Lemma 4. Under Assumptions A1-A3, we have:
e Ve>0,Vr>0,P (|BkA| > Alfa) <n7".
o Vr>0,P(|Zyal = ro1AY?In(n)) < 2n7".

e Vp>0,Vr >0, for any Cy and c(p) large enough:
1 qn
P (|Jeal = Cyr*In(n)/A) Sn™" and P o Z JER > e(p)&P(r+1)*An*(n) | <"

where g, > 21n(n)/B, and B the B-mixing coefficient.
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3 Estimation of the jump coefficient

Our aim is to construct an adaptive nonparametric estimator of the jump function £ on the interval
A. To make the diffusion terms small, we consider the fourth moments of the increments:

T — (X(ernya — Xea)'  (Bra + Zya + Jra)’
kA — A - A .

We can write Tpa = £4(Xpa)ls + Exa + Fra where

AEga = (Bea + Zia + Jia)* — (Zka + Jia)* + E ((Zia + Jea)*| Fra) — €4(Xpa) 1A
AFpn = (Zia + Jia)* —E ((Zea + Jea)*| Fra) -

The terms Exa are small, whereas Fpa are centred. The following Lemma is proved in Section 5,
using Lemma 2.

Lemma 5.
o E (E,%A) <A E (E,%A) <A and E (ESA) <A.
o E(Fpa|lZra) =0, E (Fiy) S 1/A% and

8
Var (Fya|Fka) = & Xea)ls (XXA)IS +0 (%) .

3.1 Subspaces of approximation

To construct an adaptive estimator of £*, we consider a sequence of increasing subspaces Sy C ... C
Spms - . such that U,,S,, is dense in L?(A). We minimize a contrast function v, (t) on each S,, and
then choose the best estimator by introducing a penalty function (see for instance Barron et al.
(1999)). The rate of convergence of our estimator will depend on the regularity of the coeflicient &,
i.e. its modulus of smoothness.

Definition (Modulus of smoothness). The modulus of continuity of a function f is defined by

w(f,t) = sup [f(z) = f(y)l

|z—y|<t

If f is Lipschitz, the modulus of continuity is proportional to t. If w(f,t) = o(t), then f is constant:
the modulus of continuity cannot measure higher smoothness.
We define the modulus of smoothness by

T

ot = s IALF gy where 83(7.0) = SO0 ) e+ k)

k=0

If f € €" (that is if f is r-times continuously differentiable), then for 1 < p < oco:

wr(f,)y < w(f), 1),
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Definition (Besov space). The Besov space BS ., is the set of functions:

B3 oo ={f € L, supt™*w,(f,1)2 < oo}
t>0

where r = |a+ 1]. The norm on a Besov space is defined by:

1flss = supt”“w(f, B2+ 1fll2 -

For more details see DeVore and Lorentz (1993).

Assumption A4. We consider a series of vectorial subspaces of L*(A), (Sm)me.x, satisfying the
assumptions

a.

b.

The subspaces S, have finite dimension D,, and are increasing: Ym, Sy C Spt1-

The ||.|| ;2 and |.||,, norms are connected:
361, Ym Yt € S, |t < 61D |1t 72 (A)

with ||t||2LQ(A) = [, t*(x)dz and ||t|| = sup,c4 [t(2)|. This implies that, for an orthonormal
SR A < 610w

basis o of Sy,

There exists a constant ¢o such that for any m € N, there exists an orthonormal basis (V) e
of Sim such that
VA, card(N, [[¥atn ]l o, # 0) < ¢o.

For any function t € %5 .,
2 —2a
EIC» vm, ||t - tm||L2 < CDm

where t,, is the orthogonal projection L? of t on Sy,.

Assumptions A4 a, b and d are quite standard (see for instance Comte et al. (2007)). Assumption
A4 ¢ is an additional assumption, which is not satisfied by the trigonometric basis, for instance.
However, it is fulfilled by subspaces generated by piecewise polynomials of degree 7, spline functions
of degree r, or compactly supported wavelets.

3.2

Estimator with fixed m

We then define the contrast function

n

(Tha — t(Xga))” (2)
k=1

SRS

Yn(t) =

and for any m € #,, = {m, D%, < (nA)/In(n)}, we consider the estimator

4 .
Em = arg min 7, (t). (3)

m

The easiest bound is obtained for the empirical risk.
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Proposition 6. Under Assumptions A1-A/, for any m such as D,, € My :

(6 -l) < let gl o122 v eas O

where E4(x) = £(x)1zea and

== <£11& @E (£8(Xa)) 18> .

The empirical risk is not very intuitive: indeed, the empirical norm is random, and the stationary
measure 7 is unknown. Nevertheless, the L?-risk can also be bounded, even if the bound is less
sharp.

Corollary 7. Under Assumptions A1-A/, for any m such as D,, < 2, = \/nA/In(n):

<H5m §4H )<5||€4 €L, || + 482 A+4OA

Moreover,

T || 4 412 =D, 4C
)) §57T—0||g - m||L2(A)+48 — +7T—0A

(

3.3 Adaptive estimator

A 42
mfé- L2(A

We obtain a sequence of estimators of ¢4, and have to choose the best. If £* belongs to the Besov

space %5 ., then the bias term H§4 — aniZ is smaller than D,,?* and the risk is optimal for

D,, = (nA)~1/ (429 The optimal estimator satisfies:
. 2
E ([, - &) S oy s s a

The rate (nA)~2¢/(2a+1) ig standard for nonparamatric estimation of &. As the regularity of £*
is unknown, we have to choose the best estimator automatically. To this aim, we introduce the
penalty function pen(m) = kED,,,/(nA) and choose the best dimension m:
" = arg min {v,(E) + pen(m).}
meMn
Our estimator achieves the best rate of convergence (up to a multiplicative constant).

Theorem 8. Under Assumptions A1-A3, for any k > ko with Ky a universal constant,

E(Héﬁln—fiHDN 1nf (Hg _§m7rH nA)+A+A

The bound of the L2-risk of the estimator is the same:

i

Corollary 9.

& ¢

’ i 4 4112 :Dm 1
LZ(A)) S mlen;{n (H5 o meU(A) + HnA) + X + A.
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3.4 Robust estimator

The constant = = min(&§ I, %EW (¢8(Xa)) Is) is unknown, but can be estimated to construct a
robust estimator. Let us first estimate h(z) = £8(z)Is. Let us note

(Xktna — Xia)®
A

where Gya is small and Hya is centred:

= &(Xia)ls + Gra + Hya,

‘/k13 =

AGra = (Bea + Zia + Jia)® = (Zka + Jka)® + E ((Zia + Jea)®| Fra) — €(Xpa) s
AHpa = (Zga + Jea)® = E ((Zka + Jia)®| Fra) -

The following lemma bounds the moments of G and H:

Lemma 10.

E(Gial Fra) S A, E(Gial Zra) S A,
1 1
As previously, we consider the contrast function v, (t) = + 7' (Via — t(Xka))? and the
estimator ftm = argmingeg,, Y2,»(t). This estimator is consistent:
Lemma 11.
D,

R 2
E (Hm - hmHn) <~ ) + o4 A

where ha(x) = h(x)lzca.

Let us set hy = SUD,c A \hln(n)(xﬂ.
Let us now estimate the second term, ¢ /moE (ES(X A)) Iz. We consider the rectangular kernel
K(x) :=1|4<1/2 and set

fn(z) = %ZKh(Xi — ) with Kp(z)= %K(x/h).
k=1

We take a grid (z1, ... ,xlnz(n)) of equally spaced points of A, and compute the minimum of 7 ;%
on this grid:
Mog:= min 7 Ti).
O i<y wa (@)

Finally, we obtain an estimator of the constant =:

(1

:= min (ﬁl, %Vn) + AY4 4+ 1/In(n)
7o

with V,, = 2377 | Via. The estimator = is consistent:

Lemma 12. Under Assumptions A1-3, we have that

i (|é — =5/ >C/In(n) + A1/4) <n4
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Let us set
D'"L

nA’

The resulting robust estimator fm is also optimal (up to a multiplicative constant):

= arg 1nf %(gm) + k=

Corollary 13. The robust estimator satisfies the oracle inequality: Under Assumptions A1-A3,

N 2
E(&%—&h}g mf(k—fmw A)+A+A

D,,
B (e -, ) S i, (l6t = ehlae +508 ) + o+

3.5 Comparison with the estimator obtained by thresholding

Moreover,

Park and Wang (2021) and Mancini and Reno (2011) construct an estimator of £? by taking the
second infinitesimal moments and keeping only the increments big enough: they consider

2
(X+1)a — Xka)
A [ X (et1ya—Xpa|>AL/2-<-

Then, they construct a kernel estimator of £2, in the case where the jumps have finite intensity and
&2 belongs to 2. Their estimator is asymptotically normal, and the risk for the optimal bandwith
is bounded by

E (@@ - €@)*) S ma) ™ + A,

Similarly, Schmisser (2019) estimate first the second infinitesimal moment g = 02 + £2, then o2 by
thresholding. An estimator of £2 can be obtained by substraction. If g and o2 belong to a Besov
spaces of regularity o, and a,z, the risk of the adaptive estimator £? is bounded by:

s (e -,

where 3 is the Blumenthal-Getoor index (that is, 8 = info>0f{ [(]2|* A 1)v(dz) < oo}). If the Lévy
process has finite activity, then 8 = 0. If the intensity is finite, 5 < 1. For both estimators, it is
assumed than I, = [ 2%v(dz) = 1.

The problem is, the first estimator can only be calculated for finite intensity processes, and is
not adaptive. Whereas the rate of convergence of the second depends on the Blumenthal-Getoor
index, and on the regularity of o2.

In order to compare those bounds to the risk of our estimator ém, we can remark that

Vei—e],

Therefore, we get that, if I, is known:

= (|ve-e

< (nA)2ozg/(2ag+1) +n—2aa/(2ag+1) +A1—ﬁ/2
r2A)) ~

H£ 5““ L2(A)

L2(a) Mg &)

< (nA)72a/(2a+1) +A.
L2(A)

10
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This bound is more general than the rate obtained by Park and Wang (2021), and sharper than
the one obtained by Schmisser (2019). In particular, if the jump coefficient £ is more regular than
the diffusion coefficient o2, the rate is better. Moreover, if the jumps have infinite activity, the
remainder term is smaller.

However, we assume in this paper than the fourth moment of the Levy measure, Iy = [ 2*v(dz),
is equal to 1, which is not the standard assumption. If no assumptions are made on the moments
of v, the function £ is not identifiable. So it can only be estimated up to a multiplicative constant.
Even if we want to impose I = 1, it is interessant to know the shape of &.

4 Simulations

We choose to consider the linear subspaces S, generated by the spline functions of degree r (that
is, piecewise polynomials of degree r and 1. It is also possible to consider piecewise polynomials
of degree r or subsepaces generated by wavelets. We choose the spline functions because they are
explicits, contrary to wavelets functions, and because the resulting estimator is continuous if r > 1,
which is not the case for piecewise polynomials.

We compute the series of estimators ffn_r for r between 0 and 4 and m between 0 and max(1/nA/In(n), 7)

(for m = 7, we already have D,, = 128, for m bigger, the computations become too slow). To obtain
the adaptive estimator, we minimise first with regard to m, then to r.

We choose k = 8 for the simulations. We consider 3 different models. For each model, we let n
and A vary and realize 200 simulations for each value of (n, A). We compute the robust estimator

Aﬁﬁi, the selected dimension Dy, 7, the estimated penalty constant = and the L?-error
N—-1 R 2 . 2
risk = 3 (Eh,0(0) = 6109) (@1 —2) = [ (Ehste) ~€'0) o
§=0
for (xg,x1,...,2N) a regular subdivision of A. We also compute the empirical error for each é,,w.

Then we deduce the dimension (Mep¢, Tope) that minimizes the empirical error (denoted by errn ).
To compare this oracle estimator to the robust one, we compute an oracle or which is the mean
of the logarithmic ratio between the two errors. To compare our estimator to the one obtained
by substraction, we also compute the error obtained by the square root of our estimator, riskl =

2
/¢4 2
L2

. 2
in Schmisser (2019): risk2 := HfQ - 5124HL2. We add the empirical risks of the estimators of the

and the risk of the previous estimator obtained by thresholding and substraction

diffusion coefficient ¢ and the second moment g(x) = o?(x) + £?(x), also computed in Schmisser
(2019).

For each model, we provide two tables. The first one show some results for the estimator éfhi:
the mean and standard deviation of the risk of the robust estimator ffh,; (in fact, the square root of
these quantity, to have a norm), a criteria of comparison between the risks of the robust estimator
and the ’oracle’ estimator; or = mean(In(risk/err)), the mean and the standard deviation of the
estimated penalty constant = and the mean and the standard deviation of the selected dimension
Dm);.

On the second table, we write the mean and standard deviations of riskl and risk2 (more
precisely, the square roots of those quantities) in order to compare these two estimators. We also

11
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290

add the means and standard deviation for the risk of the estimators of ¢ and o2.

4.1 Models

In the first two models, L; is simply a compound Poisson Process:

t Ny
[ ez =Y e, a
0 k=1

where N; is a Poisson Process of intensity A, t1,...,tn, the times of the jumps, and ((x)r>0 are
independent, identically distributed of binomial law: P (¢, = £1) = 1/2.

Model 1: Ornstein-Uhlenbeck Let us consider the process given by the equation:
dX; = —2Xydt + dWy 4+ d Ly

with binomial jumps: P(¢ = 1) = P(¢{ = —1) = 0.5 and the intensity of the Poisson process is 1.
We have that I, =1, I, =1, Ig =1, Ig = 1.

Model 2: non-constant coefficient

X2 +3

dX; = —2X;dt + /2 + 0.5sin(rX;)dW; + ﬁd@
with binomial jumps: P(( =1) =P ({ = —1) = 0.5.

Model 3: nearly stable processes

3+ X2
dXt=—2Xt+1/1+Xt2th+ 2+ 0.5sin(X,-)dL;

with L; a nearly stable process: v(dz) = %1‘,3‘31. [ is the Blumenthal-Getoor index of the
process. We take 8 = 1/2 and we get that I =1, Iy = 3/7, Is = 3/11 and Is = 3/15.

4.2 Results

The risk of the adaptive estimator { 7 decreases when n increases (for fixed A). When the period
of observation (nA) is fixed, the risk seemb to be either stable, either decreasing with A, especially
when A is not small enough. When nA < 100, our estimator nearly always select the smallest
dimension, whereas for nA > 103, the algorithm can select more complex models. Our estimator
is truly adaptive, and the oracle seems to be quite small.

For the estimated penalty constant é, it can be noted than when n increases, the variance
decreases as well: = converges to a constant depending on A. When A decreases, this constant
decreases as well. This is because

Vi = E(Va) ~ AT'E ((Ja + Zia)®) > E (8(Xa)) Is.

12



Figure 1: Model 1
dX; = —2Xdt + dWy + dL; with binomial jumps.

2.0

1.0

0.5

0.0

-0.4 -0.2 0.0 0.2 0.4

—— estimator \/ffhj estimator §~2 = G — 62,
n=10° A = 1072
Risk of ff‘;w:

n A risk = Dy, &

mean sd or mean sd | mean sd
103 | 1071 | 0.67 0.75 0 275 43.3 1 0
10* [ 1071 | 0.61  0.36 0 27.7  24.0 1 0
10° | 1071 | 0.60 0.21 0.0014 | 22.0 11.7 | 1.06 0.42
103 [ 1072 | 0.50  0.92 0 4.54  7.99 1 0
10 | 1072 | 0.16 0.21 0 4.44  6.22 1 0
10° | 1072 | 0.087 0.089 0 3.86  2.49 1 0
107 | 1073 | 0.37 0.54 0 2.76  3.50 1 0
10° | 1073 | 0.11 0.14 0 2.13  2.42 1 0

Comparison of the estimators 4/ Afhi and 52.
n A riskl risk2 risk g risk o2
mean sd mean sd mean sd mean sd

102107 ] 028 029 | 023 0.22 034 024 0.42 0.15
10* | 107t | 027 0.15 | 020 0.12 0.33 0.14 0.42 0.091
10° [ 1071 | 027  0.12 | 020 0.084 | 0.25 0.083 0.41 0.049

10311072 ] 022 032 | 037 043 | 040 0.42 0.12 0.075
10* | 1072 | 0.075 0.094 | 0.15 0.14 | 0.23 0.14 0.11  0.039
10 | 1072 | 0.042 0.043 | 0.14 0.11 | 0.21 0.050 0.093 0.067

10* 1073 | 018 0.23 | 036 0.43 0.40 0.42 0.10 0.043
10° | 1072 | 0.056 0.069 | 0.15  0.15 0.23 0.15 0.099 0.039
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Figure 2: Model 2

2
dX; = —2X;dt + \/2+ 0.5sin(7X;)dW; + || g—adL; with binomial jumps.

1.0

-1.0

-0.5

estimator /€%

n=10°A=10"2.

estimator 2 = g, — &

Risk of the estimator ffhi.

2
o

n A risk = Dy, 5
mean sd or mean sd | mean sd

103 | 1071 | 2.87 320 0.19] 614 870 1 0

104 | 1071 | 229 133 033 | 394 240 | 1.01 0.07

10% | 1071 | 2.10 1.02 0.16 | 338 141 | 2.35 1.53

103 | 1072 | 3.63 492 0.11 | 128 189 1 0

10 | 1072 | 1.86 1.25 0.70 | 131 174 1 0

10 | 1072 | 0.82 0.92 0.44 | 101 24 | 3.55 1.07

10211073 325 3,51 0.10] 91 50 1 0

10° | 1073 | 1.83 1.07 094 | 89 72 | 1.01 0.07

Comparison of the estimators 4/ A%W: and £2.
n A riskl risk?2 risk g risk o2
mean sd | mean sd risk sd risk sd

10311077 | 046 054] 0.84 0.73] 099 063 1.44 0.29
104 | 1071 | 037 026 | 0.77 038 ] 0.95 039 1.43 0.18
10° | 1071 | 046 030 | 078 0.29 | 0.85 0.32 1.42 0.10
10311072 058 0.75] 1.24 159 ] 1.25 143 055 00.31
104 | 1072 | 021 025| 0.67 055 | 0.71 039 0456  0.19
105 | 1072 | 0.48 0.38| 0.54 035 | 048 0.38 0.43 0.084
1011073 053 060 1.21 1.28] 1.21 128 0.11 0.13
10° | 1073 | 020 0.22 | 0.71 042 | 0.71 042 0.033 0.026
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2
X, = —2Xydt + \ | YradW; + /2 + 05sin(r X, JdL, v(2) = 755s

15 20 25 3.0

1.0

Figure 3: Model 3:

; /4
—— estimator i

n=10°A=10"2.

Estimation of EA%I

estimator 52 =Ggmn—0

1l

2
o

n A risk = Dy, 7
mean  sd or mean sd | mean sd

10 | 1071 | 3.91 2.83 0.0098 | 182 222 1 0

104 | 1071 | 3.75 1.57 0.015 135 84 1.04 0.18

10° | 107' | 373 0.88 0.0081 | 117 45 1.58 0.55

10 | 1072 | 1.41 224 0.23 23.0 61.9 1 0

10* | 1072 | 0.86 0.66 0.67 173 184 | 1.03 0.17

10° | 1072 | 0.61 0.35 020 | 15.1 81 | 2.11 0.97

1011073 ] 107 133 0.29 12.8 27.9 1 0

10° | 1073 | 0.68 0.45 1.16 10.2 17 1.14 0.35

Comparison of the estimators 4/ A%W: and £2.
n riskl risk?2 risk g risk o2
mean sd | mean sd | mean  sd mean sd

1031077 | 1.60 1.01] 1.33 0.77| 097 0.58 1.99 0.34
104 | 1071 | 1.58 0.61 | 1.30 0.47| 0.94 0.36 1.99 0.21
10° | 1071 | 1.66 0.58 | 1.28 0.26 | 0.86 0.32 1.99 0.13
103110721 059 0.86] 0.93 097 0.84 0.72 0.82 0.37
104 | 1072 | 0.36 0.42| 0.83 049 | 0.65 0.23 0.78 0.23
105 | 1072 | 0.59 0.36 | 0.71 031 | 0.24 0.28 0.76 0.11
10 [ 1073 ] 048 062 0.84 069 ] 084 0.70 011  0.11
10° | 1073 | 0.33 050 | 0.64 0.30| 0.65 0.30 0.057 0.038
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This is not a drawback, as the penalty should be the variance of the centred terms, more precisely

EA = Amin (|Var (Fk:A |§m)||oo ; % Varﬂ (FA)) .

= is an estimator of this quantity, that converges when A — 0 and nA — oo: by Proposition 6,
24 = Z+ CAY2. In the simple case where the jump and diffusion coefficients are constants, then

22 = A7 Var (Fch) = A" Var ((kaA + O'ZkA)4)
= AT (EE (L{A) +280%¢°E (LEAZEA) — E3(E (Lia))?) + O(A?)
=¢8I + A (3(341F + 281 16) + 0€52815) + O(A?).

When A is not small enough, the term in A is not negligeable, neither is the term in O(A?).

Our estimator \/éfh is better than 52 as soon as the path of discretisation A is small enough
(A <1072), even for compound Poisson processes.

5 Proof

5.1 Proof of Lemma 5 and 10

According to Proposition 1, we have that

E(BAIFia) S A%, E(ZR15ka) S A7, and E(JAFa) S ALy +0(A%). (1)

Let us set
Bia = b(Xxa)A, Bia = Bra — Bya,
Zia = 0(Xea) Wins1)a — Wea), Zkn = Zia — Zya,
Jea = E(Xka)(Lig+1)a — Lia), Jea = Jea — Jpa.

Conditionnally to Fia, B;m, j;m and ZkA are independent. Moreover, we have that
E(BH| Zea) SA7, E(ZR| Fia) SO E(JA| Fia) S8°L ()
Indeed, by Holder inequality and Lemma 2, as the drift function b is Lipschitz,
(k+1)A

E (Bﬁg‘ﬁm) —E (/M (b(X,) — b(XkA))ds> ' Fin

(k+1)A ,
< A% / E ((b(Xs) — b(Xka))?| Fra) ds
kA

(k+1)A
< A%l / E (|X, — Xpa|??| Fin) ds S AZPHY
kA

16



s By Proposition 1 and the same arguments, we get:

- (k+1)A p
E(Z})SE / (0(Xs) — 0(Xa))2ds
kA
(k+1)A
< N"l/ E ((0(Xs) — 0(Xpa)?) ds S APT!
kA
ykA) IZp

(k+1)A p
+E ( (/m (6(X,-) — f(XkA))2ds> 54‘%> I

S AL, + APFUE.
s We first bound the moments of the small terms, Exa in Lemma 5 and Gia in Lemma 10.

304 and

(k+1)A

B (7] #ia) £ B ( | ) e as

A

s Bound of Epa. Let us decompose the bias term

AEia = (Bra + Zia + Jka)* = (Zia + Jea)* + B ((Zea + Jra)t| Fra) — A (Xpals).
7 We can write Fpa = EI(CIA) + E(2) + E(?’) + E(4) where
AEL =E ((JkA + Zka)* — (Jea + ZkA)4’ ngA)
AER =E ((Jua + Zka) = Jia| Fia)
AB} =E (j;clA‘ ym) — A (Xpa) Iy
AEI(;IA) = (Jpa + Zea + Biea)* — (Jia + Zia)*.

s The first three terms are conditional expectations, the last is random. For the first term, we factorize
wo the difference of two squares: indeed, for any z,y € R?, z* — y* = (z — y)(x + y)(2* + y?). Then

AEl(clA) =K ((jkA + Zka) (JkA + Jia + Za + Zm) ((Jm + Zia)? 4 (Jpa + Zm)2> ’ ﬂm) )
20 Then, as E ((Jra + Zra)?) S A2, we obtain by Cauchy-Schwarz inequality and (4):
AE’EX < (A2)1/2 ALAAL/A ~ A3/2.

su Moreover, E,(CA) can be written AEkA = Z C]E (ZiA ‘JkA) As Zpa and Jya are centred

sz and conditionnally independent, by (4), we obtaln.

4
AE,?A),SZN/? (A1, oq+1;—4) S AY2,

17
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Furthermore, by Lemma 3, E (L}, ) = Al + O(A?) and therefore:
ABR = € (Xa)(E (L4) - AL) S A%,

As AE,(fA) = Z?:l CZB%A(Z;CA + Jra)t7, we get that

4
£ ((a52)") £ 28 (B + s> ). o
j=1

By Cauchy-Schwartz inequality and (4), for 2 < j <4,

B (B (s + ) ) < (B (BB ((Zua + o))

< AP (1ymg 4 AV ) < AW, (7)
Moreover, as Bra = Ab(Xga) + Bra, by Equations (4) and (5), for j = 1 we obtain:
E (Bii(Zm + JkA)Gp) < APE (0(Xka)?E ((Zia + Jea)® | Fra)) +E (BiZ(ZkA + JkA)ﬁp)

_ 1/2
< (5 (B8 B (s + ia)™)
< A2p+1 + A2p+1/2A1/2 _ A2p+1.

2 2 2
Then E <(AE,<;2) ”> <A AE (B2) SE ( (ER + BR + ER) ,,> +E <(E;(.§2) p), we
get that, for p > 1,

E(ER) sA.
Bound of Gxa We recall that
AGra = (Bra + Zka + Jin)® = (Zea + Jka)® + E ((Zka + Jia)®| Fra) — A (Xpa)Is.
As for the bound of Epa, we can write Gpa = G,(:A) + GECQA) + G&) + GglA) with
AGR = E ((Zia + Jia)®| Fin) —E ((Z,m ¥ jkA)S‘ gzm)
AGR =E ((ZkA + jkA)S‘ ka) —-E (JEA‘ :%gA)
AGEJDZ =K (ng‘ f%m) — A (Xpa)ls
AG;?A) = (Bra + Zia + Jen)® — (Zia + Jea)®.

Let us note JZ 1= Jpa + Zia and JZ = Jea + Zia. Then by Cauchy-Schwarz, Equations (4) and
(5)s

_ _ . . s
AGSA) =E ((JkA + Zka)(JZ + J2Z) (JZ2 +JZ ) (JZ4 +JZ )‘gkA>
5 (A2)1/2A1/4A1/8A1/8 S AB/Q'
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Moreover, as ZkA and jk A are conditionnaly independant, we get:
8 8
9 . S e ,
AGR =Y ClE (ZIJCAJI?AJ‘ «%;A) SY AP (ALjcg + 15ms) S A2
j=1 j=1

By Lemma 3:
AGY = €(Xpa)(E (LY) — Als) S CA2

Finally, by (5)

e ( (a6i2)"]5) 53
kA

%A) <> E (B,‘ffg(zm + Jm)wP—Qm’] ym)

Jj=2

+ BRE ((Zia + Jua)'*?| Fra) + E (Big(zm + JkA)Mp‘ g‘m)
< AL

Therefore
E(Gia| Fra) SA and E(Gia| Zia) S A.

Let us bound the centred terms, Fia in Lemma 5 and Hpa in Lemma 10.

Moments of Fpa. The term Fpa = % ((ZkA +Jia)* —E ((ZkA + JkA)ﬂ 9‘;@)) is centred.
Moreover, by Equation (4), for any p > 0,

/

oy E JR)+E(Z%) _
E (F’m> ~ A2p ~ AL
Then E (Fi{5) S A3, It remains to bound the quantity Var (Fya [Fra ) — %. By Equation

(4),

A2 Var (FkA |ykA) = Var ((ZkA + JkA)4 ‘ykA)

= E((Zea + Jia)®| Fra) = (B ((Zea + Jia)!| Fia))”
=E ((Zka + Jra)®| Fra) + O(A?).

As
E ((ZkA + JkA)E;’ ka) — Afg(XkA)IS = AGl(clA) + AG;CZA) + AG](C?Z S AS/Q,
we get:
8(Xpa)l
Var (Fia [Fra) — §&ra)ls XA) Slsane

Bound of Hya. We only need an upper bound for the moments of Hya. We have that

L AS+A 1

E (Hia| Zra) < 3B ((ra+Zia)"%| Fra) § = 55— = }

and ) o 1
E (H;VLA‘ y’fﬁ) < EE ((JkA +ZkA)32‘ ﬂlm) < Ti_ = =3
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5.2 Proof of Proposition 6
We recall that the empirical norm is defined by [|t|? = L S°7_ | #(Xja). Then for any ¢ € S,

n

Tn(t) = %Z (Tra — €1 Xka) + & (Xia) — t(XkA))z
k=1
= 3 (s~ X))+ - €+ 2D (Tka — € (XGa)(E (Xra) — HXea)). (8)
k=1 k=1

As éfn minimizes v, (t), n (§ ) < Y (I1,,&*) where II,, is the orthogonal projection on S, for the
||.l,,-norm. Then by (8),

e =& +2 30 (Tka — € (Xral) € (Xua) — €, (Xea)) <
k=1

n

I = €2+ 2 57 (T €1 (Xea)) (€' (Xia) — Tl (Xia))

k=1

Moreover, as Tpa — £2(Xpa) = Era + Fra, we get:

£ -6 <M’ — €12+ 23 (B + Fis)(Eh (Xea) — T (i),

k=1

We have

g 4? £4 4|2 4 412 4 412 4 412 4 4/12
=& = (& g + Mg — )2 and |Tng® — €)% = [Tng® — €417 + Ik — €12
(9)

By substracting HHm§4 — £4Hi in both sides of the inequality, we obtain:

&~ 110 < 2 S0 (Bs + Fia) (€, (Xna) — T (Xis):

By geometric-arithmetic means inequality,

23 Fral@h(Xea) ~ €' (Xpa) <

k=1

1 4 .
6 m mf H Z EI%A
"=
We introduce the unit ball for the m-norm %,, = {t € S,,, ||t||> < 1} and the contrast function
vn(t) = L 30| Frat(Xka). Then by geometric-arithmetic means inequality,

9 1/2
sup UTQL (t))

TtEBm

= ZFkA (Xpa) — L& (Xpa)) < (Héﬁ@ -

2
+6 sup v2(t).
™ t€ By,

IN

et e
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358
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362

Collecting terms, we get:

2 2 1y LII2

& — g

6 1 -
<6 sup v2(t)+ — E3 +7H§;‘n—nmg4
<6 s A0+ 0 Y s

We have two different norms in the bound of the risk. For any deterministic function ¢, ||t||72T =

E (||t||i) As €% is random, we introduce the space €, on which the norms |.||, and |.||, are

1
< —>.
<}

Comte et al. (2007, Lemma 6.1) prove the following lemma for diffusion processes thanks to con-
centration inequalities. However, its proof only relies on the boundedness of the stationary density
m and of the mixing properties of the process (X)¢>o.

equivalent:

2
t
I _
H

Q, = {w, VYm € My, Yt € Sy,

Lemma 14. As
i) (Xi)i>0 is exponentially B-mizing,
i) (Xi)e>0 is stationary and its stationary density w is bounded from below and above on A,

i11) the vectorial subspaces Sy, satisfy Assumption A/,

then
P(QS) < ¢/n®.
. 2
We first bound the risk on €,, where the |.|> is controlled. On Q,, ‘g;‘n —1,,8Y <
. 2 "
2 Hffn —1I1,,¢*|| . Therefore
24 4|2 12 ¢~ 1o 2
€8~ g 10, < 7 BEa +12 sup v2(0). (10)

tEBm

The term sup,c 5 v2(t) can be bounded in two ways. First, let us consider (¢))xea,, an orthonor-
mal basis (for the ||.||_-norm) of S,,. Ast € B,,, it can be written t = Y, axp where Y, a3 = 1.
Then, as v is a linear function

2
sup v2(t) = sup v2 (Z a,\go,\) = sup (Z ax%(%\))
N Zaai=1 \"x

tEBm >aa3=1 A ON=
< sup (z) (Zu,%w) <3 o)
Saax=1 \" A A
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ss By Lemma 5, E (Fya| Zra) = 0 and therefore:

E (v;(px) =E <:L i FMW(XM)>

k=1

1 n
) ZE (@i(XkA)E (FIEA‘ﬁkA))
k=1

- m;E PA(Xka) oA (Xja) FiAE (Fial Fia))

O AC NI NEN]
k=1

¢ By Lemma 5, we get that

E (v2(px)) < % Zi: (SDA Xka) (gs(XAkA)I + \/CE>) :

ws  Using that E (¢3(Xka)) = [ 3 (2)7(z)de = 1, and the boundness of £, we obtain

18 C
E (v == .
(v (ex) TA
w6 Therefore,
D,, CD,,
E( su V E E < I —|— .

s7 The second way of bounding smpt€ ggn v2(t) nearly use the same arguments. Let us remark that if
%8 ¢ € f@n“ then Ht”L?
s for the L?—norm.

< 7710 ||tH O. Then, if we consider (1x)aea,, an orthonormal basis of S,

1

2 2 2

sup v, (t) < su v (t) < E v, .
p ( ) p ( ) 05 (I/JA)

t€Bm tESm,Ht”LZ_E

w0 By Assumption 4 b, >\, Y3 (Xka) < ¢1D,y, and as the process is stationary:
1 1 . ¢1 DiE (FR)
E( sup v2 ) — = F? (X < —— =2
a1 Therefore, as E (F3) =E (£3(Xa)) Is/A+ O (ﬁ):

E ( sup uﬁ(t)) < Efg (11)

tEBm

sz where 2 = min( f[g,%Eﬂ (§S(XA)) Ig). By Lemma 5, E (E,%A) < A. By (10) and (11), we

a3 obtain:
E (Héﬁ‘n -

1% < 195 Pm +cA (12)
S CA.
n 2 - nA
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As I1,,&* is the orthogonal projection for the ||.||,,-norm, HHm§4 - 5i||i < Hféz,ﬂ - ﬁﬁ‘lHi. And as
&m.r and & are deterministic, E (Hg;‘n’ﬂ — {foi) = H{fnm — giHi. Then by (9)

“ 2
e (s - € 10.) <lehn -2 + 522 e

It remains to bound the risk on Q. The function &% is the orthogonal projection (for the .|,
norm) of (Ta,...,T,a) on the vectorial subspace {(t(Xa),...,t(Xpa)) ,t € S}
We have:

N 2
|68 =€ = ImnT = €412 = [[Tng® = €411 + 1ML B + L P2
< |lg&ll; + 12+ FIL;.

By stationarity and Cauchy-Schwarz:
“(

We obtain by Lemma 5:

“ 2
-6 o) S B (I8 10g) + 2

<,11 zn: Eia + sz,A) lﬂn]
k=1
S [(E [Hginﬂ +E [EI%A +FI§A}) P(QZ)} 1/2'

- 2 1 1
4 4
5 ([~ Al 105 = o <3

5.3 Proof of Corollary 7

We again separate the risk on €2, (where the empirical norm ||.||,, is equivalent to the |.|| -norm)
and Q¢. As &}, _ is the orthogonal projection of £* on S,, for the ||.||, - norm:

m,T

&8¢ = et~ e[| +lletn €.

As €4 and &n, = both belong to the subspace Sp,, on

~ 2 ~ 2 ~ 2 2
& —ha|| 10, <2|& -] <a]éh - g +afmagt -1

and as II,,£* is the orthogonal projection of £* on S, for the empirical risk,
€4 — 3“7“721 By (12), we obtain that

“

In addition, by Lemma 5 and Lemma 14:

“

Hm€4 - :ln,ﬂ—Hi S

R 2 ) D,
we. 1%) <5le" — & qllL + 482 +CA.

F4 4
gm - 57’77,771' x n

“og) < (B (It +€2)) " e @n) s L
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389

390

391

392

393

394

395

396

397

398

399

which give the bound for the ||.||_-norm.
To bound the L2-risk, we simply remark that Ht||2L2(A) < 7%0 ||tH72T and that [|¢* —
4 ¢4 |2 4 a2

6% = &nlly < mu[le* = &allz(a) Then

a2 <

e (¢ - ¢4

2 57T1 4 4 2 485 Dm
Hw>§WOMMbMHmnA+CA

5.4 Proof of Theorem 8

For any m € 4, X
7”(531) + pen(m) < ’Yn(Hm§4) + pen(m).

As previously, we decompose the risk on €, and QF. On QF, the bound is the same as in the
previous proof. On 2, as in the proof of Proposition 6, we have:

e —€a]] < et — e + et —m et

L |é: —ng4H2 + 122n:E,§A 112 sup v2(t)
no 121°™ 7r — B 1

+ pen(m) — pen(1h)
where %, ,/ is the unit ball for the |.|| -norm of the vectorial subspace S,, + S;,. On Q,,
&~ e <2fjés e & - <olés -+
2 |11, " — gjﬂi. Then ' '

4
. By the triangular inequality,
n

. 2 -
I —{i” < 3||Hm§4 —§§1Hi+2pen(m) — 2pen(m) +24ZE,%A+24 sup v2(t).
n k=1 t6<93m,m

Let us set p(m,m’) = (pen(m) + pen(m’))/12. Then
H%—ﬁmku<WW$-$M*MMW+MiFﬁ+%&y>ﬁ@—ﬂmm»(m
k=1 m
It remains to bound
E ( sup v2(t) —p(th)) < Z E ( sup  v2(t) —p(m,m’)) .
tE€ B, metn \t€Bp

We can do so using concentration inequalities. The following lemma is deduced from the Berbee’s

coupling lemma and a Talagrand inequality. It is proved for instance in Schmisser (2019, Appendix
A).

Lemma 15 (Talagrand inequality for S-mixing variables). Let us consider Z1, ..., Z, some random
variables exponentially B-mizing. Let us set by > 1/ where ( is the B-mizing coefficient). We define
qn = 2bgIn(n), p, = n/(2q,). We have that 3(q,) < ce™2Pbon(") <=2 Let us consider

I(t) = % f: Fi(Z) — E [Fy(Z)].
k=1
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407

412

413

414

415

416

417

If we can find a triplet (Ms, V' and H) such that:

(7;“"1)‘171 V
Vi, sup Var | — Z F(Zy) | £ —,
teF dn k—iqn qn
(c+1)qw H
sup ||— Fi(Z;, < M5 and E{su I, (t ]S,
teg dn k:chn t( ) ? teg’l ()‘ \/ﬁ
then we have:
6H? % H? M2 D H M2
E |sup [I3(t) — —|| <C— —k—— | +C' =2 —k 2—2
iz - 2| < ospom (ngy )+ e (-n ) 2

where C, C', k1 and ko are universal constants.

The random variables (Fya, Xxa) are exponentially S-mixing, with S-mixing coefficient pro-
portional to A. Let us set Fy(Fxa, Xga) = Frat(Xga). We want to apply Lemma 15 to
vn(t) = %22:1 Frat(Xga). By Equation (11),

=(Dy + Do)
E( sup 120t < EDm + D).
(te%,p/ ()> o nA

m,m

so we can take H? = . Let us set ¢, = cIn(n)A with ¢ such that 8(¢g,A) < n=2. By
Lemma 5, as E (Fxa| Fra) = 0, we have that, for any t € By, v,

E(Dm+Dpyr)
A

1 (i+1)gn 1 (i+1)gn 6818
Var [ — 3 Fiat(Xpa) | = — Y E(E(Fa| Zia) t*(Xpa)) < 20
in k=ign In k=iqn n

Then we can choose V' = £1I5/A. It remains to bound the variables Fya with high probability. We
have the following decomposition:
< Jiat ZﬁA.

~

Fia

Let us introduce a set where this quantity is bounded: for any 0 < a < 1,

Qp.o = {w7Vk7Vp eN,p <8, |Bra| <AV | Zpal < 601AY2In(n); | Jia| < 36A%In(n);

1 (c+1)gn
— Z JE\ <49A 1P (n)
In o
By Lemma 4:
1
P(Op0) S (14

On Q,NQp o, if t € S+ Smry H(Xpa) < (D + Dot )2/ b1 /7o, and Fea S (Jia+ZiA) /A S
Cln*(n)A=. Then we apply Talagrand’s inequality (lemma 15) to v, (t) = Ly t(Xka) Fra
with

il ED D'Y/21n*

_ 5178 H2==2" M,= CTE(H)

v A AN
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o1 with D = Dy, + D,,,. By Lemma 15, we obtain:

1 D/A
E S(t)—12H* | < — -
(te%lfm/ s >+ ~ A P ( ¢ 1/A )
8 ~D1/2//A 8
N D1n®(n) oxp [ ¢ /P 4/\F N D1n®(n)
p2 NGURETIICY R
1 DIn'%(n) VnAlt2e D1n®(n)
S a OPCaD) e P s | T A

22 We obtain that

E| sup v2(t) —p(m,m)| < Z E( sup v2(t)— H?
tEBm,m Dy ety tERB, m!

VnA
< Z E ( sup  v2(t) —H2>
D=1

te'@ﬂl,ﬂl,
1 1 _ /nA}JrZOt Al—?a
- + e In®(n) + .
~nA  nAlt2e n

23 As we can take « as small as we want, we get that

. C’
E ( sup v2(t) —p(m,m)lganB)a> < X (15)

tEBm,m

2« The bound of the risk on (Q, N Qg )¢ is done as in the proof of Proposition 6.

»s 5.5 Proof of Corollary 9

w26 The proof is nearly the same as for the risk of the estimator with m fixed. We have that, for any
427 MM

2 ~ 2
C<2é -] 2lleh .- el (16)

&, - ¢4

2 And on Q, N QB@:

2 R 2 N 2 2
1o, <2|éh — ¢l .| <aféh -] +alimagt - gh 1

F4 4
fm - §7n,7r

N 2
<afés - e +aler-enall-

w2 As HHm§4 - fﬁx”i < Hfffn,w — &4l i, by Equations (13) and (16), we obtain:

2 “ 2
o,ron. <860 - 4]+ leh - gh Il +2lek . - €4

<32|¢d, . — 4|1 + 2|6k . — €417 + 16pen(m)

F4 4
fm - gm,ﬂ'

+192) By +192 sup  (vA(t) — p(m, 1)) .
k=1 te%rn,rh
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444

The risk on (©, N Q5 )¢ is the same as for m fixed, so we get by (15):

e |

&) 5 it (lehe =612 4 pentm) + o +

meMn nA

and ) .
P 4 < ( 4 42 ) L _
B ([ ) S it (leh = €1+ pentm) + o5 + 4

5.6 Proof of Lemma 11
As in the proof of Proposition 6, we decompose the risk on €2, and Qf and get that, on Q,,

s 2 12 &
Hhm —Hth 1o, <12 sup 12,(t) + — > Gia
n tEBm no-

where vy, o(t) = %2221 t(Xga)Hia. By Lemma 10, we have that E (GiA) < A. Moreover, for
(¢x)1<r<D,, an orthonormal basis for the L2- norm of S,,, we have

1 n D
E <p Vg,m) <D E@2alen) =D 5 D E (Hiawi(Xea)) S 2.
m A A k=1

2 .
As hm - hA = Hhm - Hmh
||hm,7r - hA”fr’ we get that

2
Mk = a2, and B ([Mh = hal2) < E (mr = hall2) =

. 2 CD,,
E (Hhm - hAH 1Qn> < s — B2 + =22 4 cA.
n 4 nA

And on €, we get that

(

which ends the proof.

< —

}1/2 < 1 1
~ A3 2pt T

=) 5 (5 (1all) + B (Ga + HLs) ) P (02)

5.7 Proof of lemma 12
Let us set hy = sup,c 4 h(x) and hy = sup, ﬁln(n)(:r).

Bound of h; — le. We have that

hi — | < Hilln(n) - hH

< H]Alln(n) - hln(") ) + thn(n) B hHLOO(A) '

Loo(A) Le(A

By DeVore and Lorentz (1993, 13, p182) and Barron et al. (1999, 4, Lemma 12), if h belongs to the
Besov space %5 . (A), then

2 —2a
i — B2y < CDL2. (1)

27



445

4

i

6

447

448

449

4

o

0

451

452

453

4

&
by

4

o

5

456

457

459

As ¢ is Lipschitz, h = 815 belongs to %5 ., (A) and ||hy, — hA||2LOQ(A) < D;'. Tt remains to bound
Hﬁm - hmHL ™ As hy, and h,, belongs to Sp,,

A)

On Q,,

e -

~ 2 N 2
hm_hmH S(lemHhm_hmH S
Lo (A) L2

hm

¢1Dm

o

2 “ 2 N
§2Hhm—hm §2Hhm—Hmh

Those two terms are bounded thanks to a concentration inequality.

[

2
_hm

s

2 2
+ 2|[ILyh = Ao |, -

Bound of ||II,,h — hm||i As II,,,h is the orthogonal projection of h on Sy, ||II,h — hm||i <
hm — hA||i. Its expectation is ||hy, — hA”i < D2 By (17), ||hm — h||2Loo(A) < D;'. Moreover,

(G+1)an

Var [ )" (A — ha)?(Xka) | < @2E ((hn — ha) (Xa)) < @2 hm — hallzo |m — hall2

Jqn+1

2 -3
S 6Dy

The following lemma is very useful to control the difference between a mean and its expectation.
It is proved for instance in Schmisser (2019, Result 24).

Lemma 16 (Bennet inequality for S-mixing variables). Let us consider Y7, .
tially B-mizing random variables. Let us set by > 1/8 where 8 is the B-mizing coefficient.

define q, = 2boIn(n), pn = n/(2¢,). We have that B(gn) < ce2Pboln(n) < =2 Let us set

Y, =130 Yi. If there exists two constants V' and M} such that, for any j,

Var

then, for any x > 0,

(J+1)an (F+1)gn

Y Y| <@V and | D Vi —E(Yi)| < guMj

k=jgqn+1 k=jqn+1

_ n?

P (|Y” —-E (Yn)| > ZL‘) < 2exp <

2V + xMiqy)

)

By Bennett inequality with V' = ¢, D, and M} = CD,!, as D,, = In(n),

P (|l — hall

Then

) —

m

—4
cnD,

> D;f") < exp (

P (|l — Thll} = D2) S 7

28

QnD;lS + (InD;zg
A

< exp (—c n ) <n
n

) = exp (fcan;ll)

-5

.., Y, some exponen-

We

(18)
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Bound of Hﬁm —1II,,h We know that, on 2,

n

Hhm 1L,k

12 &
<12 Z(B)+ =Y Gin. 19
sup vy )+”kZ:1 kA (19)

n t€Bm
Moreover, for (¢x)aea,, an orthonormal basis for the LZ-norm of S,,,
1< ’
sup v o(t) <Y vaalea) =D | = D Heawa(Xxa)
teBm X x \" ko

and we use again Bennett’s inequality. We recall that |Hga| S AY(ZEA + JEA). For any t € By,
this term is centred: E (v, 2(¢)) = 0. In addition, as E ( Hxa| Zrxa) = 0, its variance is bounded by:

(+1)qn
Var [ 3" Heapa(Xea) | = gn Var (Hapa(Xa)) £ 2
k=jqn+1
On Qp.a, as [oall7e < 2Dy, [[@]l32 = 2D,y we have:

— To o

(j+1)Qn (+1)gn
> Hiapa(Xka) Dl/%/ > |Hial S anv/DmIn¥(

k=jqn+1 O k= Jan+1

And by Bennett’s inequality (Lemma 16) with V’ = C'/A and M} = C’v/D,,, In®(n)A~%, we obtain:

P (| (or)] > 1 > <SP (Q5,)+e < nAlte ) <n O+te ( "AHQ) < pb
y - xp | —c—m n xp [ ——— n=°.
n, 20001 = VD, n%(n)) ~ B P Dy, In*®(n) ) ~ P %)) "~
Then

1 1
P (fz;r; Vi a(t) > lnlg(n)> <P (; Vi a(Pa) > mls(n))
1
< P ‘VEL 2( )| > P N § Dmn_5. (20)
EA: ( 2D (n))

Let us now bound Gia. We have that Gya = G +G —&—GkA—i—Gl(fA), with |G +G ](csA)| <
A2 Moreover, on QB o, by Lemma 4,

1o )2 A2 2% 7 16—2j 16—2;
S3(GR) | S S BAGZS T + 1Y)

k=1 k=1 j=1

<A 2ZA2J 2ja <A8 ]1n16 2] ZJIG 2])

j=1

A2i—2ja—2 (AS—]’ ln1672j(n) + Al_a1j<8 1n16—2j(n) + 1],:8)

A
Moo

1
S A173a ln16(n).

.
Il
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477

478

Then, for n large enough:

1 n
P|= 2 > Al A3 17 <P(Q
(nZGkA— n(n) + n'’(n) | <P (

k=1

Therefore, by Equations (19),

P (Hhm

We recall that, on €,,:

2
> AT
n

(21) and (20

3a lnl’?(n) +

), we obtain:

In? (n)

Ba) ST

> <P(QS)+ Dypn®4+n"°> < Dyyn5.

(21)

(22)

by = ha| S [|Pancn) + hHLoc(A) +In(n) || Pin(n) — M) hH +1In(n thn(n) - Hln(n)hH

By Equations (17), (18) and (22

A 1
+ 1n18(n)A1_30‘> =P (|h1 —h| Z ln(n)> SP(Q)+ n~t <nt

. 1 1
P (|h1 —h| 2 =+ n(n)

| ~ ln(n) In? (n)

Bound of V,, — E (£8(Xa)) Is.

By Lemma 10,

E (Vo) = E (€%(Xea)ls + Gea + Hya)

), we obtain:

Moreover,
dn an
ZVjA < Var Zf X;a) | + Var ZGJA
j=1 j=1
< 2 A\ - In
qn + qn + A - n + A
And on Qp

dn

2 Via| S 2~

Then, with V' = ¢, + 1/A an

P (|Va —E (6(Xa) Is| 2 AY4 + 2) <exp (—

Taking x = 1/In(n), as A = O(n~

(A ICENAIE

I BS, + ZJA + JA

To bound this quantity, we use Bennett’s inequality.

=E (6%(Xpa)) Is + C'AY2.

qTL
+ Var Z Hia
j=1

< g In®(n)A,

d Mj = In®(n)A~, by Bennett’s inequality, we get on Qp ,:

L+A1/4

In(n)

na?
2(V'+ Mjzxqy,)

B Cna?
= eXp i + ln(n) + lng(n)xA o

%) and In(n) = o(1/A), we get:

cn\

> < exp <ln2(n) (1+In

30

(n) + lng(n)A*O‘)

)

< p7o.
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496

Bound of mp — 7p. We have that 7, (z) = % > r_y Kn(Xka) — 2. The expectation of this term is
E (7 (2)) = mp(z) := [ Kp(y — 2)7(y)dy. We have the following bounds:

(k+1)gn 2 (k+1)gn .
Var | Z Kn(Xja) | £ Fn and ‘ Z Kn(Xja)| S e
j=kqn+1 j=kqn+1

Then by Bennett’s inequality (lemma 16) with V' = Cq,/h and M} = C’/h, we get, for any x:

In?(n) nc? In*(n)/(nA)'/2 C"nhln*(n)
- _ ) < _ < _znhm\n
d (”h(m) (@)l 2 C(nA)1/4> S ex Can , Cregai®(m) | ~ P ( (nA)1/2 )
W T TmA AR dn

Let us take h = (nA)~'/2, as g, is proportional to 1“&”), we obtain:

n%(n 3
P (|7?h(x) — mp(x)| > C(;A()J‘l) Sexp (—Cln’(n)) .

Moreover, as 7 is continuous, by Tsybakov (2004, Proposition 1.2 with § = 1): |m,(z) —7(z)| S
C'h. Let (xq,... 7$1n2(n)) be equally spaced points on the interval A. Then

[To —mo| < min |7w(x;) —mo| +  max |Fgay-12(75) — w(25))]

1<5<In () 1<j<In? (n)
1 ln2(n) A
S 2 T i) T Feay e (@) = Ty 2 ()

and therefore

1 In?(n)
N > _ - < =5
P@Omhmw+mmwyﬂ

which ends the proof.
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