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Introduction

We aim in this paper to analyze existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem 8 > < > : div ru q 1 + jruj 2 + a(x)u = b(x) q 1 + jruj 2 ; in B; u = 0; on @B;

(1.1)

where B = B(0; R) is the open ball of center 0 and radius R in R N , with N ! 2, and a : B 3 [0; +I[ and b : B 3 R are continuously dierentiable radially symmetric functions, i.e., a(x) = a(jxj; 0; : : : ; 0) and b(x) = b(jxj; 0; : : : ; 0) for all x P B. For a radially symmetric function w : B 3 R, with a slight abuse of notation, we will sometimes write, for x P B, w(jxj) in place of w(x).

The equation in (1.1), where a; b are positive constants, has been introduced either for modeling capillarity phenomena for compressible uids, or for describing the geometry of the human cornea, when they are respectively supplemented with non-homogeneous conormal boundary conditions [START_REF] Finn | On the equations of capillarity[END_REF][START_REF] Finn | Capillarity problems for compressible uids[END_REF][START_REF] Athanassenas | Compressible uids in a capillary tube[END_REF][START_REF] Finn | On the capillary problem for compressible uids[END_REF][START_REF] Athanassenas | A capillarity problem for compressible liquids[END_REF], or with homogeneous Dirichlet boundary conditions [START_REF] Okrasi | A nonlinear mathematical model of the corneal shape, Nonlinear Anal[END_REF][START_REF] Okrasi | Bessel function model of corneal topography[END_REF][START_REF] Okrasi | Regularization of an ill-posed problem in corneal topography[END_REF][START_REF] Coelho | A one-dimensional prescribed curvature equation modeling the corneal shape[END_REF][START_REF] Griths | ODE/PDE analysis of corneal curvature[END_REF][START_REF] Okrasi | Nonlinear parameter identication in a corneal geometry model[END_REF][START_REF] Okrasi | Solution estimates for a system of nonlinear integral equations arising in optometry[END_REF][START_REF] Okrasi Nski | On a nonlinear boundary value problem modeling corneal shape[END_REF][START_REF] Corsato | The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions[END_REF][START_REF] Corsato | A prescribed anisotropic mean curvature equation modeling the corneal shape: a paradigm of nonlinear analysis[END_REF]. We refer to these papers for the derivation of the models, further discussions on the subject, and an additional bibliography.

With reference to the Dirichlet problem (1.1), we recall that, according to [START_REF] Okrasi | A nonlinear mathematical model of the corneal shape, Nonlinear Anal[END_REF], the surface of the human cornea is modeled as a membrane, whose shape is described by the graph of the function u and is determined by balancing all forces acting over, that is surface tension, elasticity, and intra-ocular pressure. The relevant physical parameters are incorporated into the coecients a and b, which respectively measure the relative importance of the elasticity and of the intra-ocular pressure versus the surface tension.

It has been later pointed out in [START_REF] Okrasi | Regularization of an ill-posed problem in corneal topography[END_REF] the interest of studying also the case where the coecients are non-constant functions, in order to provide a better tting of the model with the experimental data. This actually appears more relevant for the coecient b, rather than for a; however, in this work we allow both a and b to be non-constant functions. We further stress that in our results we let a to vanish and we impose no sign condition on b.
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We notice that conning the consideration of problem (1.1) to spherical domains is justied by the fact that the surface of the cornea may be approximately, although not exactly, modeled as a surface of revolution.

Our existence and uniqueness result for problem (1.1) then reads as follows.

Theorem 1.1. Let B = B(0; R) be the open ball of center 0 and radius R in R N , with N ! 2. Suppose that a; b P C 1 (B) are radially symmetric functions, with a(x) ! 0 in B. Then, there exists a unique solution u P C 2 (B) of (1.1), which is radially symmetric. In addition, if b(x) ! 0 in B and b T = 0, then u(x) > 0 in B and ru(x) ¡ x < 0 on @B:

The proof of Theorem 1.1 consists of two parts. First, in Section 2, we prove a uniqueness result for the more general problem

8 > < > : div ru q 1 + jruj 2 + a(x)u = b(x) q 1 + jruj 2 ; in ; u = 0; on @; (1.2)
where is any bounded domain in R N , with a Lipschitz boundary @, and a : 3 [0; +I[ and b : 3 R are arbitrary continuous functions. This result for (1.2) relies on a rather general comparison principle for the solutions of (1.2), whose proof exploits a technical idea from [START_REF] Bottaro | Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati[END_REF] and which has an independent interest. Next, in Section 3, by further requiring that the coecients a; b are continuously dierentiable and radially symmetric, we establish the existence of a classical radial solution of (1.1). This is achieved by solving the one-dimensional singular problem

8 > < > : r N 1 v H p 1 + v H 2 H + r N 1 a(r)v = r N 1 b(r) p 1 + v H 2 ; in ]0; R[; v H (0) = 0; v(R) = 0; (1.3)
where r = jxj. The radial solution we nd is therefore the unique solution of (1.1).

In general, the study of mean curvature problems requires much care because it is fraught with a number of technical diculties, the main one being the possible occurrence of derivative blow-up phenomena, even in simple onedimensional situations (see, e.g., [START_REF] Bonheure | Classical and nonclassical solutions of a prescribed curvature equation[END_REF][START_REF] Obersnel | Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation[END_REF] and the references therein). However, for problem (1.1), we are able to show that an a priori bound for the gradient of its possible (radially symmetric) solutions can be obtained by a direct, but delicate, argument which exploits the special structure of the equation, the October 29, 2018 regularity of the coecients and the geometry of the domain. These estimates eventually enable us to use a simple continuation method based on the implicit function theorem to prove the solvability of (1.3) and hence of (1.1).

We nally mention that extending Theorem 1.1 to the general setting of problem (1.2) remains an open question. Indeed, in the light of the conclusions achieved in [START_REF] Corsato | A prescribed anisotropic mean curvature equation modeling the corneal shape: a paradigm of nonlinear analysis[END_REF], we know that, for non-convex domains, singular solutions possibly not attaining the Dirichlet boundary conditions may occur even in the case of constant coecients. On the other hand, the method, developed in [START_REF] Corsato | The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions[END_REF] to deal with (1.2) in case the coecients a; b are positive constants, fails when b is not constant. In this respect a brief discussion is produced in Section 4.

Uniqueness of solutions

The proof of the uniqueness of the solution of problem (1.2) is based on the following comparison lemma, whose proof is partially inspired from [START_REF] Bottaro | Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati[END_REF][START_REF] Arcoya | Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions[END_REF]. Lemma 2.1. Let be a bounded domain in R N , with N ! 2, having a Lipschitz boundary @, and let a; b P L I () be given functions, with ess inf a ! 0. Assume that u 1 ; u 2 P W 1;I () are such that Z ru 1 ¡ r q 1 + jru 1 j 2 dx + Z au 1 dx Z b q 1 + jru 1 j 2 dx Z ru 2 ¡ r q 1 + jru 2 j 2 dx + Z au 2 dx Z b q 1 + jru 2 j 2 dx (2.1) for all P W 1;I 0 (), with (x) ! 0 in , and u 1 (x) u 2 (x) on @: (2.2)

Then, u 1 ; u 2 satisfy u 1 (x) u 2 (x) in :

(2.3) Proof. Set u = u 1 u 2 . We want to prove that u(x) 0 in . For any given c P R, dene c = fx P j u(x) = cg and I = fc P R j meas ( c ) > 0g: Setting I 1 = fc P R j meas ( c ) > 1g and, for n ! 2, I n = fc P R j 1 For every k ! 0, dene k = (u k) + P W 1;I 0 () and E k = fx P y j u(x) ! kg:

Then, pick = k as a test function in (2.1).

Let us dene a function

f : [0; 1] 3 R, by f(s) = Z r(u 2 + su) ¡ r k q 1 + jr(u 2 + su)j 2 dx;
where, to simplify the notations, we omit the indication of the dependence of f on k. Observe that, by the denition of k , we have ru ¡ r k = jr k j 2 . Then, the mean value theorem yields the existence of P ]0; 1[ such that

Z ru 1 q 1 + jru 1 j 2 ru 2 q 1 + jru 2 j 2 ¡ r k dx = f(1) f(0) = f H () = Z ru ¡ r k q 1 + jr(u 2 + u)j 2 dx Z (r(u 2 + u) ¡ ru) (r(u 2 + u) ¡ r k ) (1 + jr(u 2 + u)j 2 ) 3 2 dx = Z jr k j 2 q 1 + jr(u 2 + u)j 2 dx Z (r(u 2 + u) ¡ r k ) 2 (1 + jr(u 2 + u)j 2 ) 3 2 dx ! Z jr k j 2 q 1 + jr(u 2 + u)j 2 dx Z jr(u 2 + u)j 2 jr k j 2 (1 + jr(u 2 + u)j 2 ) 3 2 dx ! Z jr k j 2 (1 + jr(u 2 + u)j 2 ) 3 2 dx ! 1 (1 + (kru 1 k I + kru 2 k I ) 2 ) 3 2 Z jr k j 2 dx: (2.4) October 29, 2018
We notice that this estimate might alternatively be deduced from the strong convexity, on all compact convex subsets of R N , of the function g : R N 

3 R dened by g() = p 1 + jj 2 .
On the other hand, we have (2.7)

Z au k dx ! Z aj k j 2 dx ! 0 (2.5) and Z b 1 q 1 + jru 1 j 2 1 q 1 + jru 2 j 2 k dx = Z b jru 2 j 2 jru 1 j 2 k q 1 + jru 1 j 2 q 1 + jru 2 j 2 q 1 + jru 1 j 2 + q 1 + jru 2 j 2 dx kbk I Z jru 2 j jru 1 j k dx kbk I Z ru k dx = kbk I Z r k k dx: (2.
We rst suppose N ! 3. Using the H older inequality and the Sobolev imbedding theorem, we obtain from (2.7)

Mkr k k 2 L 2 () Z y E k r k k dx k E k k L N (y) kr k k L 2 () k k k L 2N N 2 () C k E k k L N (y) kr k k 2 L 2 () ;
where

C = C(N; ) is the imbedding constant of H 1 0 () into L 2N N 2 (). If
October 29, 2018 N = 2, we x p > 2 and, arguing as above, we nd

Mkr k k 2 L 2 () Z y E k r k k dx k E k k L p (y) kr k k L 2 () k k k L 2p p 2 () C k E k k L p (y) kr k k 2 L 2 () ;
where C = C(p; N; ), with N = 2, is the imbedding constant of H In order to show that u(x) 0 in , we assume by contradiction that u + T = 0. The denition of the set y implies that 0 = meas (E ku + kI ) = meas (fx P y j u(x) ! ku + k I g) = meas (fx P y j u(x) ! k for all k < ku + k I g) given r > 0, there is c r P L p loc (), with p ! N, if N ! 3, and p > 2, if N = 1 or N = 2, such that, for a.e. x P , for all s 1 ; s 2 P R, with r s 1 s 2 r, and all 1 ; 2 P R N , with j 1 j; j 2 j r, h(x; s 1 ; 1 ) h(x; s 2 ; 2 ) c r (x) j 1 2 j: If u 1 ; u 2 P W 1;I () are such that Z ru 1 ¡ r q 1 + jru 1 j 2 dx + Z h(x; u 1 ; ru 1 ) dx Z ru 2 ¡ r q 1 + jru 2 j 2 dx + Z h(x; u 2 ; ru 2 ) dx for all P W 1;I 0 (), with (x) ! 0 in , and (2.2) holds, then, u 1 ; u 2 satisfy (2.3).

To prove this conclusion, we follow that same patterns of the proof of Lemma The following general uniqueness result is a direct consequence of Lemma 2.1. Theorem 2.2. Let be a bounded domain in R N , with N ! 2, having a Lipschitz boundary @, and let a; b P L I () be given functions, with ess inf a ! 0. Then, problem (1.2) has at most one weak solution u P W 1;I 0 ().
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Existence of solutions

In this section we prove the existence of solutions of problem (1.3) and, hence, of problem (1.1). Throughout we assume N ! 2. We begin with an elementary regularity result. 3) between 0 and r. We

get r N 1 v H (r) q 1 + v H (r) 2 = Z r 0 s N 1 a(s)v(s) b(s) q 1 + v H (s) 2 ds and hence v H (r) r = q 1 + v H (r) 2 r N Z r 0 s N 1 a(s)v(s) b(s) q 1 + v H (s) 2 ds:
By applying L'Hospital's rule, we easily see that there exists

lim r30 1 r N Z r 0 s N 1 a(s)v(s) b(s) q 1 + v H (s) 2 ds = a(0) v(0) b(0) N ;
that is, v HH (0) exists and v HH (0) = a(0) v(0) b(0) N :

Since we can write the equation in (1.3) R, dened by u(x) = v(jxj), satises, for i; j = 1; : : : ; N, @ i u(x) = v H (jxj) x i jxj in B n f0g; @ i u(0) = 0; @ ij u(x) = v HH (jxj) v H (jxj) jxj

in the form v HH (1 + v H 2 ) 3 2 N 1 r v H p 1 + v H 2 + a(r)v = b(r) p 1 + v H 2 ; (3.1) or equivalently v HH N 1 r v H (1 + v H 2 ) + a(r)v(1 + v H 2 ) 3 2 = b(r)(1 + v H 2 ); (3.2) we conclude that v P C 2 ([0; R]) C 3 (]0; R[).
x i x j jxj 2 + v H (jxj) jxj ij in Bnf0g; @ ij u(0) = ij v HH (0); and thus u P C 2 (B). Further, as div ru(x)

q 1 + jru(x)j 2 = v HH (jxj) (1 + v H (jxj) 2 ) 3 2 + N 1 jxj v H (jxj) q 1 + v H (jxj) 2 in B n f0g;
and div ru q 1 + jruj 2 (0) = Nv HH (0); we conclude that u is a solution of (1.1).

The proof of the solvability of problem (1.3) is based on a simple continuation method combining the implicit function theorem with the obtention of suitable a priori bounds on the solutions. To this end we imbed problem (1.3) into the one-parameter family

8 > < > : r N 1 v H p 1 + v H 2 H + r N 1 a(r)v = r N 1 b(r) p 1 + v H 2 ; in ]0; R[; v H (0) = 0; v(R) = 0; (3.3) where P [0; 1].
The following result provides the required a priori bound, uniform in , on the possible solutions of (3.3). Lemma 3.2. Assume a; b P C 1 ([0; R]), with a(r) ! 0 in [0; R]. Then, there exists a constant K > 0 such that any solution v P C 2 ([0; R]) of (3.3) 

any solution v P C 1 ([0; R])C 2 (]0; R]) of (3.3) belongs to C 2 ([0; R])C 3 (]0; R])
and satises (3.4). The former assertion follows from Lemma 3.1, while the latter one is a consequence of the next three steps.

Step 1. For all r P [0; R], we have

B 1 2(N 1) (r 2 R 2 ) v(r) B 1 2(N 1) (R 2 r 2 ) (3.8)
and hence there exists K 1 P ]0; +I[ such that jv(r

)j K 1 in [0; R]. Dene a function : [0; R] 3 R by setting (r) = B 1
2(N 1) (r 2 R 2 ). Let us prove the former inequality in (3.8). For all r P [0; R], we have

r N 1 HH (r) (N 1)r N 2 H (r)(1 + H (r) 2 ) + r N 1 a(r)(r)(1 + H (r) 2 ) 3 2 r N 1 B 1 N N 1 r N 1 b(r) q 1 + H (r) 2 :
Hence the functions u 1 (x) = (jxj) and u 2 (x) = v(jxj) satisfy the assumptions of Lemma 2.1 and therefore we have v(r) ! (r) in [0; R]. Setting = , a similar computation shows that also the latter inequality in (3.8) holds true.

Step 2. There exists K Thus, by the continuity of a H at r, (3.8) and (3.7), we nd again that (3.12) and (3.13) hold and then a contradiction follows. In the latter case, by using the continuity of a H at r, (3.8), (3.7) and (3.9), we infer

r N 1 v H n q 1 + v H n 2 H + r N 1 a(r)v n = r N 1 b n (r) q 1 + v H n 2 ; in ]0; R[; v H n (0) = 0; v n (R) = 0; such that lim n3+I (max v H n ) = +I: (3.9) For each n, let r n P [0; R] be such that v H n (r n ) = max v H n . Since v H n (0) = 0,
lim inf n3+I v HHH n (r n ) (1 + v H n (r n ) 2 ) 3 2 ! N 1 r 2 :
Hence, (3.13) holds, for all large n, yielding a contradiction as before.

Assume that r = R. Again we distinguish two cases: either a(R) > 0, or a(R) = 0. In the former case, by using the continuity of a and a H at R, (3.8), (3.7) and (3.9), we nd as above that (3.12) and (3.13) hold and then the desired contradiction follows. In the latter case, from (3.1), by using (3.10), (3.8) and (3.6), we get the contradiction

N 1 R = lim n3+I N 1 r n v H n (r n ) q 1 + v H n (r n ) 2 = lim n3+I a(r n )v n (r n ) b n (r n ) q 1 + v H n (r n ) 2 = 0:
Therefore, we have shown that there exists K H P ]0; +I[ such that v H (r) K H in [0; R]. In a totally symmetric way we can prove the existence of K HH P ]0; +I[ such that v H (r) ! K HH in [0; R]. Thus, by setting K 2 = maxfK H ; K HH g, the conclusion follows.

Step 3. There exists K 3 P ]0; +I[ such that jv HH (x)j K 3 in [0; R]. As in the proof of Lemma 3.1, for all r P ]0; R], we have

v H (r) r = q 1 + v H (r) 2 r N Z r 0 s N 1 a(s)v(s) b(s) q 1 + v H (s) 2 ds;
and, therefore, from Step 1 and Step 2, jv H (r)j

r p 1 + K 2 2 r N Z r 0 s N 1 (kak I K 1 + kbk I ) ds = 1 N q 1 + K 2 2 (kak I K 1 + kbk I ) : (3.14) 
The desired bound on v HH is nally deduced from (3.2), by using (3.6), (3.14) and the conclusions achieved in the previous steps. An application of the implicit function theorem yields the existence of solutions of (3.3) close to a known solution, in particular, the existence of solutions for all small values of P [0; 1]. October 29, 2018 3) has a solution v 0 for some 0 P [0; 1[. Then, there exists 0 > 0 such that, for all P [ 0 ; 0 + 0 ], problem (3.3) has a unique solution v P C 2 ([0; R]), which satises kv v 0 k C 2 < 0 .

Proof. Dene the Banach space

C 2 0 ([0; R]) = fv P C 2 ([0; R]) j v H (0) = 0; v(R) = 0g;
endowed with the norm of C 2 ([0; R]), and the operator p :

C 2 0 ([0; R]) ¢ R 3 C 0 ([0; R]) by setting p(v; ) = r N 1 v HH + (N 1)r N 2 v H (1 + v H 2 ) r N 1 av(1 + v H 2 ) 3 2 + r N 1 b(1 + v H 2 ): It is clear that v P C 2 0 ([0; R]
) is a solution of (3.3), for some P R, if and only if p(v; ) = 0: Further, it is a standard matter to verify that p is of class C I , with partial derivative

@ v p(v; )[w] = r N 1 w HH + (N 1)r N 2 (1 + v H 2 )w H + 2(N 1)r N 2 v H 2 w H 3r N 1 av p 1 + v H 2 v H w H + 2r N 1 bv H w H r N 1 a(1 + v H 2 ) 3 2 w;
for all w P C 2 0 ([0; R]).

Claim: @ v p(v 0 ; 0 )[w] = 0 if and only if w = 0.

Let us dene the functions

p 0 = (N 1) v H 0 2 r + 2(N 1) v H 0 2 r 3av 0 q 1 + v H 0 2 v H 0 + 2 0 bv H 0 and q 0 = a(1 + v H 0 2 ) 3 2 :
Observe that p 0 , q 0 P C 0 ([0; R]) and, for w P C and observe that w P C 2 0 ([0; R]) is a solution of (3.15) if and only if it is a xed point of K. Then, we can apply the Fredholm alternative [START_REF] Evans | Partial Dierential Equations[END_REF]Theorem D.5] and conclude that

@ v p(v 0 ; 0 ) : C 2 0 ([0; R]) 3 C 0 ([0; R])
is a linear homeomorphism. Hence, the implicit function theorem [1, p. 38] yields the existence of a constant 0 > 0 and a map V : ] 0 0 ; 0 + 0 [ 3 C 2 0 ([0; R]) of class C I such that, for all (v; ) P C 2 0 ([0; R])¢R, with kv v 0 k C 2 < 0 and j 0 j < 0 , p(v; ) = 0 if and only if v = V ():

The conclusions then follow by also using Theorem 2.2, as far as uniqueness is concerned.
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If we further assume that a H (r) ! 0 and b H (r) 0 in ]0; R[, then the solution v of (1.3) is also decreasing in [0; R]. Indeed, assume, by contradiction, that max v H > 0 and let r 0 P ]0; R] be such that v H (r 0 ) = max v H . As v H (R) < 0 we must have r 0 P ]0; R[ and then v HH (r 0 ) = 0. The same calculations performed along Step 2 in the proof of Lemma 3.2 and, in particular, the identity v HHH (r 0 )

(1 + v H (r 0 ) 2 ) 3 2 = a H (r 0 )v(r 0 ) + a(r 0 )v H (r 0 ) b H (r 0 ) q 1 + v H (r 0 ) 2 + N 1 r 2 0 v H (r 0 ) q 1 + v H (r 0 ) 2
imply that v HHH (r 0 ) > 0, which is impossible at an interior maximum point of v H . with a a positive coecient, is intimately related to the geometric properties of @. In this respect J. Serrin established in [START_REF] Serrin | The problem of Dirichlet for quasilinear elliptic dierential equations with many independent variables[END_REF] a fundamental criterion for the solvability of the Dirichlet problem associated with (4.1) and (4.2). This relies on a mean convexity assumption on @, introduced in [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF][START_REF] Serrin | The problem of Dirichlet for quasilinear elliptic dierential equations with many independent variables[END_REF], which was proven to be sucient, and in suitable sense even necessary, for the existence of classical solutions. Yet, in [27, p. 480] J. Serrin also emphasized \the delicacy of the situation when any but the simplest equations are treated". Notwithstanding, basically applying Serrin's method, the solvability of problem (1.2) can be proved under a smallness assumption on the size of the coecient b and a version of the mean convexity condition on @. Namely, from [START_REF] Marquardt | Remark on the anisotropic prescribed mean curvature equation on arbitrary domains[END_REF], one can infer the following result.

October 29, 2018 Proposition 4.1. Let be a bounded domain in R N , with N ! 2, having a boundary @ of class C 2; , for some P ]0; 1[, with non-negative mean curvature. Suppose that a; b P C 1; () satisfy a(x) ! 0 and C jb(x)j < 1 in ;

where C > 0 is the embedding constant of W 1;1 0 () into L 1 (). Then, problem

(1.2) has a unique solution u P C 2; (). In addition, if b(x) ! 0 in and b T = 0, then u(x) > 0 in and ru(x) ¡ (x) < 0 on @; (x) being the unit outer normal to at x P @.

In [START_REF] Bergner | On the Dirichlet problem for the prescribed mean curvature equation over general domains[END_REF]Remark (a), p. 342] it was further claimed, yet without an explicit proof, that using the methods of [START_REF] Bergner | The Dirichlet problem for graphs of prescribed anisotropic mean curvature in R n+1[END_REF] the mean convexity assumption might be suitably relaxed, allowing boundary points with negative mean curvature, but at the expense of requiring severe conditions on the size both of the coecients and of the domain.

In view of Theorem 1.1, these results however do not appear satisfactory, due to the assumed, rather unnatural, smallness restrictions.

On the other hand, it was shown in [START_REF] Corsato | A prescribed anisotropic mean curvature equation modeling the corneal shape: a paradigm of nonlinear analysis[END_REF] that singular solutions, which do not attain the homogeneous Dirichlet conditions at boundary points having negative mean curvature, may occur, even in the case of constant coecients. In this specic frame the problem was rather exhaustively investigated in [START_REF] Corsato | The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions[END_REF], where a broad existence and uniqueness result was proven within a suitable class of generalized solutions, without placing any additional condition either on the (positive constant) coecients, or on the (Lipschitz) boundary of the domain. Since one cannot expect to nd classical solutions, in [START_REF] Corsato | The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions[END_REF] an explicit quantitative condition was introduced, which relates the size of the ratio of the coecients of the equation with the geometry of the domain and guarantees that the solution previously obtained attains the homogeneous Dirichlet condition, even at boundary points where the Serrin's mean convexity assumption fails. The approach, developed in [START_REF] Corsato | The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions[END_REF] to deal with (1.2), was based on converting, by a change of variable, the problem into a variational one. Yet, unfortunately, such method does not work when the coecient b is not constant, thus leaving open the question of the solvability of problem (1.2) in a general setting.

  meas () is nite, each I n is nite and, thus, I is at most countable. The Stampacchia theorem implies that, for any c P R, ru(x) = 0 a.e. in c and,

  can pick k 0 P ]0; ku + k I [ such that k E k 0 k L p (y) = meas (E k 0 ) 8), we have kr k 0 k L 2 () 1 2 kr k 0 k L 2 () and hence kr(u k 0 ) + k L 2 () = 0: This implies that u(x) k 0 < ku + k I in ; which is impossible. Remark 2.1 From the proof of Lemma 2.1 it follows that a more general version of the comparison principle stated above holds true. Namely, suppose that h : ¢ R ¢ R N 3 R satises the L 1 -Carath eodory conditions and, for any October 29, 2018

2. 1 .

 1 We pick r = maxfku i k I ; kru i k I j i = 1; 2g and we rst show that there is a constant M > 0 such that there is a constant C > 0 such that Mkr k k L 2 () C kc r E k k L p (y) kr k k L 2 k k L p (y) = 0: Thus, we can conclude as in the proof of Lemma 2.1.This statement extends various classical comparison principles previously obtained in the literature (see, e.g.,[START_REF] Gilbarg | Elliptic Partial Dierential Equations of Second Order[END_REF] Section 10.1]).

Lemma 3 . 1 .

 31 Let a; b P C 0 ([0; R]) C 1 (]0; R[) be given. Then, any solution v P C 1 ([0; R])C 2 (]0; R]) of (1.3) belongs to C 2 ([0; R])C 3 (]0; R[) and satises the equation in (1.3) for all r P [0; R]. Proof. Pick r P ]0; R] and integrate the equation in (1.

Remark 3 . 1

 31 Setting, by convention, v H (r) r = v HH (0); if r = 0; we can also say that v satises (3.1) for all r P [0; R]. October 29, 2018 Remark 3.2 If v P C 2 ([0; R]) is a solution of (1.3), then the function u : B 3

Lemma 3 . 3 .

 33 Let a : [0; R] 3 [0; +I[ and b : [0; R] 3 R be continuous functions. Assume that problem (3.

2 0

 2 R]),(3.15) can be written as (e P (r) w H ) H = e P (r) q 0 (r)w:(3.16)Multiplying(3.16) by w and integrating, we get, for all r P ]0; R],e P (r) w H (r)w(r) [0; R]. Hence, passing to the limit in (3.17), we obtain 0 = lim r30 e P (r) w H (r)w(rr) q 0 (r)w 2 (r) dr;which implies w H = 0 and hence w = 0.Let us dene the compact operator K : C 0 ([0; R]) 3 C 0 ([0; R]

4

  Concluding remarksAs already noticed in the Introduction, extending Theorem 1.1 to the general setting of problem (1.2) is still an open question. Indeed, it is a well established fact that the existence of classical solutions of the, possibly non-homogeneous, Dirichlet problem for the prescribed mean curvature equation

	div	ru 1 + jruj 2 p	!	= NH(x) in ;	(4.1)
	as well as for the capillarity equation			
	div	ru 1 + jruj 2 p	!	= au in ;	(4.2)

Passing to a subsequence, still labeled by (r n ) n , we can also suppose the existence of r P [0; R] such that lim n3+I r n = r:

As v n P C 3 (]0; R[), from (3.2), we can compute, for all r P ]0; R[, v HHH n (r) = a H (r)v n (r) [START_REF] Ambrosetti | A Primer of Nonlinear Analysis[END_REF] 

Suppose that r = 0. We rst observe that

= +I:

From (3.11), by using the continuity of a and a H at 0, (3.8), (3.7) and (3.9), we nd that

Thus, we conclude that, for all large n, v HHH n (r n ) > 0; (3.13) which is impossible, as r n is an interior maximum point of v H n .

Suppose that r P ]0; R[. Two cases may occur: either a(r) > 0, or else a(r) = 0 and then, due to (3.5), a H (r) = 0. In the former case, by using the continuity of a at r and (3.9), we get

October 29, 2018

Now we are in position of proving our main existence result for (1.3). and let (v n ) n be the corresponding sequence of solutions of (3.3). Lemma 3.2 implies that there is a constant K > 0 such that, for all n, kv n k C 2 K:

The Ascoli-Arzel a theorem yields the existence of a subsequence of (v n ) n , still labeled as (v n ) n , and a function

Passing to the limit, as n 3 +I, on both sides of the integral reformulation of the equation in (3.3)

dr in ]0; R[; we get

dr in ]0; R[: As, by (3.18), v £H (0) = 0 and v £ (R) = 0, we conclude that v £ is the solution of (3.3) for = £ . Lemma 3.3 would contradict the denition of £ , unless £ = 1. This implies the existence of a solution v of (1.3). October 29, 2018