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Abstract 18 

The massive contamination of the environment by plastics is an increasing global 19 

scientific and societal concern. Knowing whether and how these pollutants affect the behaviour 20 

of keystone species is essential to identify environmental risks effectively. Here, we focus on 21 

the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus 22 

edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify 23 

the environment and provide numerous ecosystem functions and services. Specifically, we 24 

assess the effect of virgin polypropylene beads on mussels’ chemotactic (i.e. a directional 25 

movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change 26 

in movement properties such as speed, distance travelled or turning frequency in response to a 27 

chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics 28 

and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual 29 

mussels reduced both their gross distance and speed, changes interpreted here as an avoidance 30 
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behaviour. When exposed to polypropylene leachates, mussels moved less compared to control 31 

conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic 32 

leachates, mussels significantly changed the direction of movement suggesting a leachate-33 

induced loss of their negative chemotaxis response. Taken together, our results indicate that the 34 

behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as 35 

its mobility are impaired when exposed to microplastic leachates, potentially affecting the 36 

functioning of the ecosystem that the species supports. 37 
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1. Introduction 43 

Chemical communication is a key process in ecology that has been extensively studied 44 

over a wide range of organisms, both terrestrial and marine (Zimmer & Butman, 2000; 45 

McClintock & Baker, 2001; Dicke & Takken, 2006; Paul et al., 2006; Ng et al., 2013; Tabata, 46 

2018). Specifically, chemical signals play a key role in intra- and inter-specific interactions 47 

(e.g. predation, reproduction, competition, aggregation) and others processes such as habitat 48 

selection, eventually affecting individual fitness, and community and ecosystems dynamics at 49 

larger scales (Murlis et al., 1992; Bradbury & Vahrencamp, 1998; Dicke & Takken, 2006; 50 

Bornancin et al., 2017; Zimmer & Butman, 2020). Many marine species rely on chemicals to 51 

get information about their environment (Zimmer & Butman, 2000). For instance, the majority 52 

of molluscs possess sensory organs, such as the osphradium that contains chemoreceptors 53 

which allows the detection of e.g. food, conspecifics and predators (Lucas, 1931; Morton, 1962; 54 

Lindberg & Sigwart, 2015).  55 

Intertidal mussels are considered as key ecosystem engineers on both soft and hard 56 

substrates (Reise, 2002; Borthagaray & Carranza, 2007). Noticeably, these organisms are 57 

motile; they use their foot both to move and attach themselves to their substrate through the 58 

production of byssal threads, extracellular collagenous structure (Schneider et al., 2005; Waite 59 

et al., 2005). Both their motility and byssal production allow them to spatially self-organise into 60 

dense mono- and multi-layered beds, which decrease the vulnerability to predation, desiccation, 61 

heat, and wave dislodgement, while increasing fertilization success and survival (Nicastro et 62 

al., 2012; Iwasaki, 2015; Zardi et al., 2021). Through the formation of beds, intertidal mussels 63 

locally dominate rocky shores and operate a biogenic transformation of the habitat (Paine & 64 

Levin, 1981; Menge & Sutherland, 1987; Reise, 2002). These relatively stable and resilient 65 

structures enhance local biodiversity by facilitating the establishment and maintenance of a 66 

range of different species (Reise, 2002; Palomo et al., 2007; Borthagaray & Carranza, 2007; 67 
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Arribas et al., 2014; Spilmont et al., 2018). Beyond their ecological role, mussels also play an 68 

important economic and heritage value through professional and recreational fishing, e.g. global 69 

aquaculture production for Mytilus edulis and M. galloprovincialis was 287,957 tons in 2016 70 

(FAO Fishstat) with an estimated net worth ranging between US$2.5 106 and US$100 106 in 71 

the United States only (Zippay & Helmuth, 2012). 72 

Previous studies have shown that cues from damaged conspecifics and predators of 73 

intertidal mussels can significantly affect their movement and aggregation rate (Côté & 74 

Jelnikar, 1999; Nicastro et al., 2007; Kong et al., 2019), though exceptions exist (Commito et 75 

al., 2016; Kong et al., 2019; Manríquez et al., 2021). An exposure to these cues also triggers 76 

morphological and physiological changes such as thicker shell, production and quality of byssal 77 

threads (Leonard et al., 1999; Kong et al., 2019). Intertidal mussels can differentiate chemical 78 

signals from predators and behave accordingly to their specific prey handling techniques, e.g. 79 

the mussel Mytilus edulis increases byssus production when exposed to crab (Cancer irroratus) 80 

cue but not when exposed to starfish cue (Asterias rubens; Garner & Litvaitis, 2013). Though 81 

various mussel species share the sensory capacity to perceive, discriminate and adapt to 82 

different environmental chemical signals, the presence and intensity of behavioural responses 83 

to chemical stimuli, in particular in Mytilidae, is fundamentally cue-dependent (Nicastro et al., 84 

2007; Garner & Litvaitis, 2013; Kong et al., 2019; Manríquez et al., 2021). 85 

Chemotaxis (i.e. a directional change in movement in response to a chemical stimulus) 86 

and chemokinesis (i.e. a non-directional change in movement properties such as speed, distance 87 

travelled or turning frequency in response to a chemical stimulus) are key behavioural processes 88 

involved in the response to chemical cues (Bell & Tobin, 1982; Wilkinson, 1985). Only a few 89 

studies have addressed chemotaxis in bivalves and interactions with conspecifics, i.e., De 90 

Vooys (2003) with M. edulis and Huang et al. (2007) with Tridacna squamosa, and between a 91 

bivalve (Montacuta ferruginosa) and its commensal species (Echinocardium cordatum; 92 
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Morton, 1962). Specifically, the chemical communication on which an important part of 93 

behaviour is based, such as mate and food searching, as well as danger detection, can be altered 94 

by a range of anthropogenic chemicals (Fleeger et al., 2003; Lürling & Scheffer, 2007; Seuront, 95 

2010, 2011, 2018). This disrupting effect of anthropogenic chemicals on intra and inter-species 96 

chemical communication has, to date, received considerably less attention. 97 

This issue is, however, particularly relevant given the growing awareness of the ubiquity 98 

and toxicity of plastic compounds and their leachates in marine systems (Gall & Thompson, 99 

2015; Jamieson et al., 2017; Gunaalan et al., 2020). Plastic pollution is one of the main 100 

challenges of the 21st century through their deleterious physical and chemical effects on aquatic 101 

life (Derraik, 2002; Gall & Thompson, 2015; Anderson et al., 2016; Rochman et al., 2016; 102 

Sussarellu et al., 2016; Auta et al., 2017), leading to the death of millions of aquatic organisms 103 

annually (Ocean Conference United Nations, 2017). These effects can be due to either 104 

macroplastic (> 5 mm), microplastic (< 5 mm) and nanoplastic (< 100 nm) items either 105 

produced directly in the smaller form industrially or resulting from the breakdown of larger 106 

plastic items (Cole et al., 2011; Paul-Pont et al., 2018). Plastic pollution has also a far more 107 

pernicious effect on marine life through the release of various molecules that are either absorbed 108 

(i.e. intrinsically bounded) to the polymer during the manufacturing process (e.g. light and heat 109 

stabilizers, antioxidants, nucleating and antistatic agents, flame retardants, plasticizers and 110 

colorants) or adsorbed at the surface of a polymer such as persistent organic pollutants, which 111 

include polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated 112 

diphenyl ethers, pesticides or heavy metals (Delaeter et al., 2022). Recent studies have shown 113 

that direct exposure to either microplastics (Crump et al., 2020) or microplastic leachates 114 

(Seuront, 2018) can interfere with the cognitive system, sensory perception, and thus behaviour 115 

of marine invertebrates. For instance, the intertidal mussel M. edulis behaviourally responds to 116 

microplastic leachates through an increase in aggregation rate and frequency (Seuront et al., 117 
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2021). However, despite the ever-increasing concern about the ecological impact of plastic 118 

leachates (Gunaalan et al., 2020; Delaeter et al., 2022), it is still unknown whether plastic 119 

leachates interfere with conspecific or prey-predator chemical signals in bivalves in general, 120 

and in intertidal mussels in particular. 121 

In this context, we aim to determine whether the chemotactic and chemokinetic 122 

responses in an ecologically and economically important intertidal mussel species are affected 123 

by microplastics leachates. To do so, we first assessed the presence of chemotactic and/or 124 

chemokinetic responses of M. edulis to cues from intact and injured conspecifics and the 125 

predatory cues from the invasive Asian shore crab Hemigrapsus sanguineus. This species is 126 

invasive along European coast and has been reported in other regions, it was first recorded in 127 

France in 1999 (Breton et al., 2002) and became the dominant mussel predator of the rocky 128 

intertidal shores of the eastern English Channel (Rolet et al., 2020) less than two decades after 129 

its first report from our sampling area, i.e. 2006 (Dauvin et al., 2009). Noticeably, given their 130 

short common evolutionary history of M. edulis and H. sanguineus, our behavioural approach 131 

provides a first step towards the assessment of M. edulis naivety status (i.e. the ability to 132 

recognize a new predator as a threat). We subsequently inferred how leachates from virgin 133 

polypropylene pellets may alter M. edulis chemotactic and chemokinetic responses. We further 134 

discuss how the observed behavioural changes are relevant for the ecology of the species in the 135 

context of increasing anthropogenic pressure on marine coastal ecosystems. 136 

2. Material and Methods  137 

2.1. Study organisms 138 

Both individual Mytilus edulis (1.5–2.0 cm in shell length; Supplementary Materials, 139 

S1) and H. sanguineus (1.4–2.4 cm in length; Supplementary Materials, S1) were sampled in 140 

March 2021 at low tide on a rocky intertidal reef of the infra-littoral zone of the Fort de Croy 141 

(Wimereux, France; 50°45'52.3"N, 1°35’55.1"E) along the French coast of the English 142 
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Channel.   143 

Collected organisms were brought back to the laboratory within an hour. Prior to the 144 

experiments, mussels were acclimatised for 1 week under a natural 12:12 light:dark cycle in 145 

85 L tanks filled with running aerated natural seawater (T = 10 °C, S = 33‰, pH = 8.08) directly 146 

pumped from the collection site, and no additional food was provided. H. sanguineus were 147 

sorted by sex, and kept in separate 85 L tanks in which crabs were acclimatised for 1 week and 148 

fed ad libitum daily with mussels previously crushed with a natural stone (to avoid the use of 149 

metal objects, hence to prevent metal ions from touching mussel tissue; Commito et al., 2016). 150 

Crabs were kept in darkness during the acclimation to enhance food consumption (Spilmont et 151 

al., 2015) and thus stimulate predator-induced alarm response in mussels as described here 152 

below. 153 

2.2. Chemical cues 154 

The effects of four natural chemical cues were assessed on the chemotactic and 155 

chemokinetic behaviour of M. edulis: (1) natural (i.e. control) seawater, (2) conspecific cues, 156 

(3) injured conspecific cues, and (4) fed crab cues. To assess the effect of microplastic leachates 157 

on the abovementioned natural cues, these treatments were subsequently mixed with 158 

microplastic (MP) leachate seawater. Note that the seawater used in all our experiments was 159 

consistently pumped directly from the collection site, hence could contain plastic leachates and 160 

cues naturally occurring at this site. As such, in the absence of additional experimentally-161 

generated cues, natural seawater was considered as cue less. 162 

Conspecific cue seawater was prepared through the addition of 20 mussels which were 163 

placed for a 24 h period into 1 L of aerated seawater. Injured conspecific cue seawater was 164 

prepared through the addition of 20 injured mussels previously crushed with a stone, to 1 L of 165 

aerated seawater for a 24 h period. Crab cue seawater was prepared through the addition of 3 166 

males and 3 females Hemigrapsus sanguineus (sex ratio of 1:1) into 1L of aerated seawater for 167 
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a 24h period. For more information about exact sizes, see Supplementary Materials, S1. 168 

For the mixed cues experiments, commercially available polypropylene pellets 169 

(typically 3.3–4.7 mm in diameter; Pemmiproducts, Aachen, Germany) were added to the 170 

previous treatment (i.e. natural seawater, conspecific, injured conspecific and crab cues). They 171 

were left 24 h in aerated tanks at a concentration of 12 g of pellets per litre (ca. 600 MPs per L, 172 

or equivalently 20mL of MPs per L; Seuront, 2018; Seuront et al., 2021), in order to have four 173 

new solutions: seawater with leachates, conspecifics cues with leachates, injured conspecifics 174 

cues with leachates and crab cues with leachates. As a first approximation of the nature of the 175 

additive content of our polypropylene pellets, we ran a pyrolysis analysis coupled to a gas 176 

chromatography and a high-resolution spectrometer (see Supplementary Materials, S2), which 177 

led to the identification of 2 antioxidants (i.e. 4-tert-octylphenol,  4tOP, and Butyl 178 

hydroxytoluene, BHT) and 6 plasticizers (i.e. Diethyl phthalate, DEP, Diisobutyl phthalate, 179 

DIBP, Dibutyl phthalate, DBP, Bis(2-ethylhexyl)phthalate, DEHP, Di-n-octyl phthalate, DIOP, 180 

and Diisononyl phthalate, DINP). 181 

2.3. Chemotactic and chemokinetic assay 182 

Both acclimatation and experiments were consistently carried out under the same 183 

controlled conditions. Temperature was measured at the beginning and at the end of the 184 

experiment. Before the start of each experiment, byssal threads were carefully cut with scissors 185 

to separate the mussels from each other and from the substrate. Behavioural experiments were 186 

conducted in 22 cm diameter glass arenas with smooth, featureless surfaces (Fig. 1). To infer 187 

the presence of a chemotactic and/or chemokinetic response of the individual mussel to the 188 

different cues, their positions were recorded with respect to a point source. This point source 189 

was obtained by four equidistant holes (0.5 cm in diameter) drilled through the side of a clay 190 

pot (6.5 cm in diameter; Fig. 1) which had a top central hole. Arenas were filled with 600 mL 191 

unfiltered seawater saturated in oxygen. Five milliliters (5 mL) of either control or treatment 192 
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seawater was injected in a clay pot through the top hole at a rate of 0.7 mL s-1. Thus, the 193 

concentration of MP leachates, which is the same for all solutions containing plastic leachates, 194 

that flows out of the clay pot, was estimated at 1.66 mL L-1 (50 MPs per litre). Once fully mixed 195 

in the arena, this concentration reached 0.166 mL L-1 (5 MPs per litre), a concentration 196 

consistent with those found in coastal waters, i.e. 3.5 ± 2.0 MPs L-1 with concentrations between 197 

1 and 6.4 MPs per wild M. edulis (United Kingdom; Li et al., 2018).  Immediately after the 198 

treatment or control injection, each specimen was placed individually at a distance of 4 cm from 199 

each side hole of the pot (n = 4 mussels; Fig. 1).  Video recording started immediately after the 200 

injection of water cue in the clay pot, at a rate of 1 frame per minute for 1h30 using a GoPro 201 

camera (GoPro HERO7 Black, GoPro Inc., San Mateo, California, USA) placed 40 cm above 202 

the experimental container. The choice of using four mussels per arena was made to minimize 203 

aggregations between mussels, which decreases with the distance between the mussels (Côté & 204 

Jelnikar, 1999; Nicastro et al., 2007).  205 

 206 

 Figure 1: experimental design of one arena of the chemotaxis and chemokinesis experiments. Mussels 207 

were placed at equidistant distances from each other at 4 cm from the holes in a glass arena. To see how 208 

the liquid diffuses from the point source clay pot, see Supplementary Materials, S3.  209 

 210 

Each day, three treatments were run concurrently: seawater (control; n = 6 arenas) and 211 

two different treatments (n = 6 arenas for each treatment; Table 1; Fig. 2). Six additional arenas 212 

Point source

Mussel

Hole
5 cm
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using seawater as control were also performed. Thus, the sample size for each cue was: seawater 213 

n = 30 arenas; seawater with leachates n = 12 arenas and n = 6 arenas all other cues tested with 214 

and without plastic leachates (see the experimental plan; Table 1; Fig. 2). An additional control 215 

was also performed. Each mussel was only used once and then discarded, no mussels showed 216 

injury or mortality signs during the experiment. 217 

 218 

Table 1: Experimental timetable of the chemotaxis experiments. Stimuli without plastic leachates (light 219 

colour): (grey) Control, natural seawater, i.e. no stimulus; (green) stimuli from conspecifics Mytilus 220 

edulis; (blue) stimuli from injured M. edulis; (orange) stimuli from fed Hemigrapsus sanguineus; stimuli 221 

with microplastic (MP) leachates (dark colour). For each treatment, 6 replicates were performed each 222 

day (two replicates of the same treatment 3 times a day at 2h interval) and an additional control (n = 6) 223 

was carried out on Day 5. 224 

 225 

 226 

227 

Figure 2: Flow diagram of the treatments and their replications. Stimuli without plastic leachates (light 228 

colour): (grey) Control, natural seawater, i.e. no stimulus; (green) stimuli from conspecifics Mytilus 229 

edulis; (blue) stimuli from injured M. edulis; (orange) stimuli from fed Hemigrapsus sanguineus; stimuli 230 

with microplastic (MP) leachates (dark colour). 231 

Without microplastic
leachates

With microplastic
leachates

Point source injection

Seawater
n = 30

Conspecific cues
n = 6

Injured
conspecific cues

n = 6

Crab cues
n = 6

Seawater
n = 12

Conspecific cues
n = 6

Injured
conspecific cues

n = 6

Crab cues
n = 6
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 232 

2.4. Behavioural analysis 233 

Though we specifically chose to use of four mussels per arena to minimize the 234 

probability of occurrence of aggregation behaviour, overall four mussels ended-up as two 235 

aggregates of two mussels (i.e. physical contact between their shells) and two as almost-236 

aggregated (i.e. at a distance of less than 2 cm). These 6 mussels represent less than 2% (i.e. 237 

6/312×100) of the total number of mussels used in the experiment, but could may have affected 238 

the behaviour of other mussels in the same arena (Côté & Jelnikar, 1999; Nicastro et al., 2007; 239 

Commito et al., 2014). Consequently, to avoid a potential bias related to the presence of 240 

aggregated conspecifics, the behavioural responses for the different endpoint were not studied 241 

at the level of the individual but at the level of the arena. Thus, for the different behavioural 242 

parameters studied, the data from the four mussels of each arena averaged and used as sample 243 

unit in the statistical analyses. Aggregated and almost-aggregated mussels have been included 244 

in the dataset. 245 

First, motility was assessed by comparing the proportion of motile and non-motile 246 

mussels, to have an average percentage of mussel motility per arena. Chemokinesis was 247 

subsequently assessed through mean speed, gross distance (i.e. the total distance covered by the 248 

mussel between its initial and final position), net distance and confinement index (i.e. the ratio 249 

between net distance and gross distance) per arena. These parameters were measured only for 250 

mussels moving a net distance above 1 cm (i.e. approximately half mussel’s shell length) using 251 

the TrackMate plugin of ImageJ (Tinevez et al., 2017). Note that the choice of a net distance 252 

greater than 1cm was specifically made because distances less than 1 cm were assigned by 253 

TrackMate to mussels oscillating around their center of mass without actually actively moving 254 

as their foot was never observed outside their valves (see Supplementary Material, S4). 255 

Chemotaxis was estimated by recording the final motile mussel position with reference to the 256 



 
 

12 

source point, in order to have an average percentage of mussels with a negative chemotaxis 257 

(repulsion from the source point) per arena. 258 

2.5. Statistical analyses  259 

To compare differences among all treatments and to take into account the potential 260 

confounding effect of running treatments on different days, the motility, speed, gross distance, 261 

net distance, confinement index and chemotaxis of mussels, observed in the control seawater, 262 

were compared between days with an ANOVA (for more details, see Supplementary Material, 263 

S5). As no significant differences (p > 0.05; see Supplementary Material, S5) were found 264 

among control replicates run in different days, behavioural data for each treatment from controls 265 

and treatments were pooled across days for further analyses. 266 

Motility data were not normally distributed (Shapiro’s test, p = 0.004), but showed a 267 

homogeneity of variance (Levene’s test, p = 0.931). Parametric analysis was used based on the 268 

assumption that ANOVA is relatively robust to the effects of non-normality (Zar, 1999); 269 

therefore, data were analysed using a 2-way ANOVA with treatment (control or microplastic 270 

leachates) and cues (seawater, conspecifics, injured conspecifics or crabs) as fixed factors. 271 

Significant effects were examined using Tukey-HSD post-hoc test.  272 

In order to measure the speed, gross distance, net distance, confinement index and 273 

chemotaxis, only mussels with a net distance greater than 1 cm (about half a body length) were 274 

considered, hence the sample size per treatment was: seawater n = 27, seawater with leachates 275 

n = 12 and n = 6 for the other treatments. The distribution of speed, gross distance, net distance 276 

and confinement index measurements were tested for normality (Shapiro’s test, p = 0.00005, 277 

p = 0.00004, p = 0.070, p = 0.406, respectively) and homogeneity of variance (Levene’s test, 278 

p = 0.141, p = 0.616, p = 0.582, p = 0.060, respectively). As all parameters showed a 279 

homogeneity of variance, but were not always normally distributed, parametric analyses were 280 

consistently used as described above. A 2-way ANOVA with treatment (control or microplastic 281 
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leachates) and cues (seawater, conspecifics, injured conspecifics or crabs) as fixed factors was 282 

finally performed and significant effect were further examined using a Tukey-HSD post-hoc 283 

test.  284 

To assess the chemotaxis, i.e. to compare the direction of motile mussels (with a net 285 

distance greater than 1cm), attraction (positive chemotaxis) or repulsion (negative chemotaxis) 286 

to the source point, a 2-way ANOVA with treatment (control or microplastic leachates) and 287 

cues (seawater, conspecifics, injured conspecifics or crabs) as fixed factors was used, followed 288 

by a Tukey-HSD post-hoc test when significant differences were identified. Prior to this test, 289 

normality (p = 0.013) and homogeneity of variance (p = 0.109) were measured, as homogeneity 290 

of variance was confirmed, this test could be performed (Zar, 1999). All statistical analyses 291 

were performed using the software R Core Team (2021). 292 

3. Results 293 

3.1. Chemokinesis 294 

3.1.1. Motility 295 

Polypropylene leachates inhibited significantly mussel motility for all cues tested 296 

(Treatment; p = 0.043; Fig. 3, Table 2).  Specifically, a significantly higher percentage of 297 

mussels moved in the control treatment (no leachate) than when they were exposed to 298 

microplastic leachate (Tukey’s test: p = 0.049). 299 

Table 2: results of 2-way ANOVA applied to the percentage of motile mussels with Treatment (control 300 

or microplastic leachates) and Cue (seawater, conspecifics, injured conspecifics or crabs) as fixed 301 

factors.  302 
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 303 

 304 

 305 
Figure 3: percentage of motile Mytilus edulis by replicate in control seawater and natural cue treatments 306 

(light blue) and microplastic leachates treatments (dark blue). Significant differences (p < 0.05; Tukey-307 

HSD) between treatments were identified by different letters and the number, n, of arenas used was also 308 

indicated.  309 

3.1.2. Speed 310 

There was a significant effect of Cue (Cue; p = 0.005; Fig. 4, Table 3). Specifically, 311 

regardless of the treatment, mussels always moved significantly slower when exposed to crab 312 

cues than when exposed to conspecifics cues or to control seawater (Tukey’s test: p = 0.043 313 

Source of variation df MS F p
Treatment 1 3066.9 4.230 0.0434
Cue 3 419.0 0.578 0.6315
Treatment × Cue 3 285.2 0.393 0.7581
Residuals 70 725.0

a         b a b a b a        b 

n = 30    n = 12 n = 6     n = 6 n = 6 n = 6 n = 6     n = 6
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and p = 0.002 respectively). However, the speed of mussels exposed to conspecific cues, injured 314 

conspecific cues and control seawater did not significantly differ (Seawater; Tukey’s test: p > 315 

0.05).   316 

Table 3: results of 2-way ANOVA applied to the mean speed by replicate with Treatment (control or 317 

microplastic leachates) and Cue (seawater, conspecifics, injured conspecifics or crabs) as fixed factors.  318 

   319 

 320 

321 

Figure 4: mean speed of Mytilus edulis by replicate in control seawater and natural cue treatments (light 322 

blue) and microplastic leachates treatments (dark blue). Significant differences (p < 0.05; Tukey-HSD) 323 

Source of variation df MS F p
Treatment 1 0.7950 3.536 0.06439
Cue 3 1.0567 4.700 0.00488
Treatment × Cue 3 0.3418 1.520 0.21723
Residuals 67 0.2248

a          a a a ab        ab b         b 

n = 27    n = 12 n = 6     n = 6 n = 6 n = 6 n = 6      n = 6
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between treatments were identified by different letters and the number of arenas used was also indicated 324 

(n = ). 325 

3.1.3. Gross Distance 326 

The gross distance travelled by mussels varied significantly depending on the Cue (Cue; 327 

p = 0.0498; Fig. 5, Table 4). Specifically, regardless of the presence of leachates, the gross 328 

distance was always lower in mussels exposed to crab cues than when exposed to sea water 329 

(Tukey’s test: p = 0.032 respectively). There were no significant differences for the mussel 330 

speed when exposed to conspecific cues, injured conspecific cues and the control (Seawater; 331 

Tukey’s test: p > 0.05). 332 

 333 

Table 4: results of 2-way ANOVA applied to the mean gross distance by replicate with Treatment 334 

(control or microplastic leachates) and Cue (seawater, conspecifics, injured conspecifics or crabs) as 335 

fixed factors. 336 

   337 

 338 

Source of variation df MS F p
Treatment 1 31.94 1.617 0.2080
Cue 3 54.21 2.744 0.0498
Treatment × Cue 3 30.38 1.538 0.228
Residuals 67 19.76
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 339 

Figure 5: mean gross distance travelled by Mytilus edulis by replicate in control seawater and natural 340 

cue treatments (light blue) and microplastic leachates treatments (dark blue). Significant differences 341 

(p < 0.05; Tukey-HSD) between treatments were identified by different letters and the number of arenas 342 

used was also indicated (n = ). 343 

3.1.4. Net Distance and Confinement index 344 

There was a significant effect of the Treatment  ´ Cue interaction (Treatment ´ Cue; 345 

p = 0.036; Fig. 6, Table 5). However, the Tukey’s test revealed no significant differences 346 

(p > 0.05) for the net distance traveled by mussels between every cues and treatments, even if 347 

a marginal difference was found between conspecifics with and without microplastic leachates 348 

(p = 0.094).  349 

The confinement index did not differ among factors nor treatments (Table 6). 350 

a          a ab ab ab       ab b         b 
n = 27    n = 12 n = 6     n = 6 n = 6 n = 6 n = 6      n = 6
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Table 5: results of 2-way ANOVA applied to the mean net distance by replicate Treatment (control or 351 

microplastic leachates) and Cue (seawater, conspecifics, injured conspecifics or crabs) as fixed factors.  352 

   353 

 354 

 355 

Figure 6: mean net distance travelled by Mytilus edulis by replicate in control seawater and natural cue 356 

treatments (light blue) and microplastic leachates treatments (dark blue). Significant differences 357 

(p < 0.05; Tukey-HSD) between treatments were identified by different letters and the number of arenas 358 

used was also indicated (n = ). 359 

 360 

Source of variation df MS F p
Treatment 1 2.031 1.360 0.2477
Cue 3 2.042 1.367 0.2604
Treatment × Cue 3 4.491 3.006 0.0363
Residuals 67 1.494

a          a a a a      a a a 
n = 27    n = 12 n = 6     n = 6 n = 6 n = 6 n = 6      n = 6
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Table 6: Results of 2-way ANOVA applied to the mean confinement index by replicate with Treatment 361 

(control or microplastic leachates) and Cue (seawater, conspecifics, injured conspecifics or crabs) as 362 

fixed factors.  363 

  364 

 365 

3.2.  Chemotaxis 366 

There was a significant effect of the Treatment ´ Cue interaction on the mussel 367 

chemotaxis (Treatment ́  Cue; p = 0.038; Fig. 7, Table 7), as significantly more mussels showed 368 

a negative chemotaxis to crab cue without microplastic leachates than with microplastic 369 

leachates (Tukey’s test: p = 0.047). 370 

 371 

Table 7: results of 2-way ANOVA applied to the percentage of mussels moving away from the source 372 

point with Treatment (control or microplastic leachates) and Cue (seawater, conspecifics, injured 373 

conspecifics or crabs) as fixed factors.  374 

 375 

 376 

  377 

Source of variation df MS F p
Treatment 1 0.003253 0.257 0.614
Cue 3 0.007719 0.609 0.611
Treatment × Cue 3 0.024363 1.923 0.134
Residuals 67 0.012667

Source of variation df MS F p
Treatment 1 1976.1 1.920 0.1704
Cue 3 596.3 0.579 0.6305
Treatment x Cue 3 3051.7 2.965 0.0382
Residuals 67 1029.2
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 378 

Figure 7: percentage of M. edulis moving away from the point source by replicate in control seawater 379 

and natural cue treatments (light blue) and microplastic leachates treatments (dark blue). Significant 380 

differences (p < 0.05; Tukey-HSD) between treatments were identified by different letters and the 381 

number of arenas used was also indicated (n = ). 382 

4. Discussion 383 

4.1. Cue-specific chemotactic and chemokinetic responses in Mytilus edulis   384 

Taken together, our results show that M. edulis exhibit both chemotactic and 385 

chemokinetic response to chemical cues, and that these responses are cue-dependent.  386 

4.1.1. Lack of behavioural response towards conspecific cues 387 

Mytilus edulis did not show any behavioural change in response to conspecific cues, in 388 

accordance with previous work on the effect of conspecific cues on M. edulis aggregation 389 

patterns (Commito et al., 2016). These observations are, however, in contrast with previous 390 

studies which showed that positive chemotaxis was the main driver of conspecific aggregation 391 

ab        ab ab ab ab      ab a       b 

n = 27   n = 12 n = 6     n = 6 n = 6     n = 6              n = 6      n = 6



 
 

21 

in bivalves (Huang et al., 2007) and in particular in M. edulis (De Vooys, 2003). These 392 

discrepancies may, however, be related to (i) potential behavioural divergence in M. edulis 393 

between those living on the bottom of a concrete ditch with running seawater or on beach 394 

groynes as seen in Netherlands (De Vooys, 2003) with those living on natural rocky shores 395 

habitats as seen in France (present work) and/or (ii) the presence of a seasonal component in 396 

the behavioural response of M. edulis to conspecific cues (De Vooys, 2003). Though the 397 

identification of the mechanisms at the origin of the above-mentioned behavioural differences 398 

lies well beyond the scope of the present work, it warrants the need for further work. 399 

 400 

4.1.2. Lack of behavioural response toward injured conspecifics cues 401 

No behavioural changes were observed either in terms of chemotaxis or chemokinesis 402 

in response to injured conspecifics cues. These results are consistent with previous observations 403 

conducted on Mytilus edulis (Commito et al., 2016). They contrast, however, with the results 404 

of studies conducted on other mussel species, which may be indicative of a species-dependent 405 

behaviour. For instance, the motility of the zebra mussel (Dreissena polymorpha) decreases in 406 

response to crushed conspecifics cues (Toomey et al., 2002; Czarnołęski et al., 2010). 407 

Brachidontes variabilis has been shown to adapt its behaviour when exposed to injured 408 

conspecifics by seeking and selecting the most appropriate refuges (Shin et al., 2008). Other 409 

studies showed an increase in aggregation rates, which is implicitly driven by a change in 410 

motility in both the Mediterrenean mussel Mytilus galloprovincialis and the brown mussel 411 

Perna perna in the presence of injured conspecifics (Nicastro et al., 2007).  412 

 413 

4.1.3. Crab cues induce a chemokinetic and potentially a chemotactic responses in Mytilus 414 

edulis 415 
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  M. edulis behaviour was significantly altered by the presence of 416 

Hemigrapsus sanguineus cues through a chemokinetic response. Specifically, although motility 417 

is not affected, a decrease in both gross distance and speed compared to seawater control 418 

treatment was recorded. These results are consistent with previous experiments highlighting a 419 

decrease in movement of M. edulis and of another intertidal mussel (Hormomya mutabilis) in 420 

response to predator cues (Reimer & Tedengren, 1997; Ishida & Iwasaki, 2003). These 421 

observations are consistent with the activity reduction used by many aquatic animals as an anti-422 

predator strategy (Clements et al., 2020). Indeed, low movement in mussels decreases water 423 

motion, visibility and odour dispersal and thus the probability of being spotted by predators 424 

relying on hydrodynamical, visual and chemical cues (Ishida & Iwasaki, 2003; Garner & 425 

Litvaitis, 2013; Clement et al., 2020).  In addition, our results suggest a negative chemotactic 426 

response of M. edulis to crab cues. This observation would be consistent with early evidence of 427 

chemodetection and chemotaxis in bivalves (Morton, 1962; De Vooys, 2003, Huang et al., 428 

2007). However, to our knowledge, a chemotactic response of a bivalve to its predator has yet 429 

to be documented. Here, we move a step forward by showing that M. edulis was able to have 430 

an adapted behaviour response to predator cues by limiting its movements and by appearing to 431 

move in the opposite direction to the source. The combination of these two complementary 432 

adaptive strategies to predator cues may provide an important defence strategy against predators 433 

and may add a short-term component to the acknowledged long-term anti-predator traits of M. 434 

edulis, such as its phenotypic plasticity (i.e. increase in its byssal attachment strength and the 435 

thickness of its shell following the presence of crab cues; Leonard et al., 1999; Cheung et al., 436 

2004).  437 

We finally stress that the chemokinetic and possible chemotactic behavioural changes 438 

observed in the native M. edulis in response to the invasive crab predator H. sanguineus indicate 439 

that M. edulis is not naive to this predator. Prey naiveté is a lack of its ability to recognize a 440 
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new predator as a threat and subsequently develop an effective anti-predator behaviour, due to 441 

the lack of coevolution between the predator and the prey (Anton et al., 2020). The invasion of 442 

H. sanguineus in the eastern English Channel is relatively recent, i.e. about 16 years at our study 443 

site (Dauvin et al., 2009). The invader has now supplanted the native populations of the 444 

European green crab Carcinus maenas (Rolet et al., 2020). The lack of naiveté of M. edulis 445 

reported in the present work noticeably contrasts with observations conducted in South Africa 446 

where, 28 years after its introduction, the invasive mussel (M. galloprovincialis) still had not 447 

developed any anti-predator responses to cues from a native predator (the spiny lobster Jasus 448 

lalandii), which instead had an effect on the native mussel (P. perna; Nicastro et al., 2007). 449 

These observations suggest different predator-prey co-evolution history between M. edulis and 450 

M. galloprovincialis.  451 

The overall M. edulis behavioural response to the different chemical cues inferred in the 452 

present work highlights a cue-specific response. Specifically, M. edulis responds to predatory 453 

crab cue previously fed on conspecifics (diet cue) but not to damaged released conspecific cues 454 

(alarm cue). This result is consistent with previous observation conducted on Macoma baltica, 455 

a marine bivalve which showed a strong response to fed crab effluents but a lack of response to 456 

injured conspecifics cues (Griffiths & Richardson, 2006). However, this behavioural response 457 

is likely to be species-dependent, as the same pattern was not observed for 458 

Mercenaria mercenaria (Smee & Weissburg, 2006). This observation further suggests the 459 

existence of a hierarchy in the behavioural responses. Predator cues may be a more 460 

unambiguous threat compared to crushed conspecific cues which could instead be caused by a 461 

variety of risks, such as wave action, sand, storms, rockslides, and trampling (Zardi et al., 2006; 462 

Nicastro et al., 2019).  463 

 464 
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4.2. Alteration of Mytilus edulis chemotactic and chemokinetic responses by 465 

microplastic leachates 466 

The addition of plastic leachates disrupted the chemotactic and/or chemokinetic 467 

behaviour of M. edulis from all treatments, indicating that polypropylene leachates can alter the 468 

neurosensory abilities of this species, hence its way of acquiring and processing information 469 

and therefore their decision-making. 470 

 471 

4.2.1. Microplastic leachates alter M. edulis chemokinetic behaviour 472 

The percentage of non-motile mussels was significantly greater in the presence of 473 

microplastic leachates, regardless of the cues. This may be the result of an inhibition of the 474 

neuromuscular performance of M. edulis by polypropylene leachates. Previous studies showed 475 

a deleterious effect of plastic additives on motility of mussel D-shape larvae (M. edulis; 476 

Capolupo et al., 2020), fish larvae (Danio rerio; Kim et al., 2020), cladoceran (Daphnia magna; 477 

Lithner et al., 2009), drosophila (Drosophila melanogaster; Kaur et al., 2015), nematodes 478 

(Caenorhabditis elegans; Tseng et al., 2013) and rats (Vermeer et al., 2014). Thus, there is a 479 

significant effect of polypropylene leachates on mussel motility which could lead to larger scale 480 

disturbances. Indeed, any changes related to the chemosensory, referential, and behavioural 481 

abilities of M. edulis may have implications on their aggregation rate and consequently for the 482 

survival and reproduction of the species but also for intra- and interspecific competition for 483 

space with potentially cascading effects for coastal ecosystems (Borthagaray & Carranza, 2007; 484 

van de Koppel et al., 2008; Nicastro et al., 2012; Iwasaki, 2015, Zardi et al., 2021). 485 

Thus, in seawater contaminated with leachates, mussels were significantly less motile 486 

than in the control seawater treatment. This contrasts with the behaviour of the mollusc 487 

Littorina littorea, which was not affected by the presence of leachates from virgin 488 

polypropylene microbeads, although leachates concentration was higher (ca. 10- to 100-fold 489 
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higher) than in our study (Seuront, 2018). This observation highlights distinct species 490 

chemosensitivity to plastic leachates.  491 

 492 

4.2.2. Microplastic leachates alter M. edulis response to conspecific cues 493 

In the present study, M. edulis behaviour towards conspecific cues was impacted by 494 

plastic leachates, via a decrease in their motility. There were less motile mussels, which in 495 

comparison to mussels exposed to conspecific cues without leachates, seems to cover a smaller 496 

net distance, however this last response was not significant. This observed decrease in motility 497 

and possible smaller net distance in response to conspecific cues with leachates may impact the 498 

aggregation rate of mussels which may have larger scale spatial and ecosystem implications. 499 

However, M. edulis motility and aggregation rate have been shown to increase in seawater 500 

contaminated by plastic leachate (Seuront et al., 2021). Higher leachates concentration (ca.10- 501 

to 100-fold more concentrated than in our study; Seuront et al., 2021) may, however, account 502 

for this discrepancy. 503 

 504 

4.2.3. Microplastic leachates alter M. edulis response to injured conspecific cues  505 

The combined signal of the injured mussels and leachates impact their chemokinetic 506 

response through a large percentage of non-motile mussels. Since no behavioural changes have 507 

been demonstrated in response to chemical cues from injured conspecifics, polypropylene 508 

leachates appear to affect the mussel itself and not its behaviour in response to injured 509 

conspecifics. Thus, the addition of leachates could lead to the reduction of motility found in the 510 

presence of injured conspecific cues.  511 

 512 

4.2.4. Microplastic leachates alter M. edulis response to crab cues 513 
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When exposed to a mixture of crab cue and microplastic leachates, M. edulis showed a 514 

significantly lower proportion of motile mussels and a significant change in direction compared 515 

to the crab cue treatment without leachates, which may result in an inhibition of its negative 516 

chemotaxis. In addition, although the gross distance and speed did not significantly differ for 517 

this treatment than for the crab cues without leachates treatment, they were significantly 518 

reduced compared to the control and control with leachates. This change in speed and distance 519 

is related to the behavioural response of the mussel to the crab and does not appear to be affected 520 

by polypropylene leachates at the concentration used in this study. However, these leachates 521 

reduce mussel motility and affect chemotaxis, the latter suggesting a neurosensory impairment 522 

rather than a neuromuscular one. This could indicate that plastic leachates may be masking the 523 

signal and/or lead to sensory deficiencies. Plastics leachates have also been reported to have 524 

neurological effect and act on the cognition of organisms in their way of acquiring and 525 

processing information and thus their decision-making (Seuront, 2018; Crump et al., 2020). For 526 

instance, the cognitive response of a prey to its predator is affected by plastic leachates in 527 

another mollusc, the gastropod Littorina littorea (Seuront, 2018). Indeed, the vigilance and 528 

anti-predation behaviours of gastropods (i.e. righting time, skioptic withdrawal, time to explore, 529 

avoidance response) have been shown to be altered and/or inhibited in the presence of plastic 530 

leachates (Seuront, 2018). 531 

The impairments described above are in line with previous work showing that phthalates 532 

(DEHP, DBP, DIBP) can alter the neurological behaviour in nematodes (Tseng et al., 2013). 533 

Indeed, these are the dominant additives found in our polypropylene beads (Supplementary 534 

Materials, S2). Phthalates disrupt the nematode’s antioxidant defence system, the morphology 535 

of some thermosensory neurons and the genes involved in this thermotaxis function (Tseng et 536 

al., 2013), altering their locomotion, i.e., body bends, head thrashes, and reversal frequencies 537 

(Tseng et al., 2013). In similar fashion, these additives could induce a neurotoxicity in mussels, 538 
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which would act on the neurosensory system and lead to an alteration of their movements and 539 

chemotactic capacities. A disturbance in M. edulis motility and neuro-sensory response could 540 

have consequences in aggregation rate and would impact the mussel growth, reproduction and 541 

anti-predator responses (Harger, 1968; Schneider et al., 2005; van de Koppel et al., 2008; Zardi 542 

et al., 2021). These impairments could lead to changes in mussel bed formations, to a decrease 543 

in mussel population and ultimately impact the ecosystem structure and functioning in M. edulis 544 

(Borthagaray & Carranza, 2007).  545 

5. Conclusion 546 

Taken together, our results show that M. edulis behavioural responses are cue-specific. 547 

Critically, exposure to plastic leachates altered mussel behavioural responses by altering their 548 

motility. The fitness of mussels is directly related to their motility through their ability to 549 

aggregate. The impact of microplastic leachates also altered the response of mussels to 550 

conspecific cues, which is a direct link to aggregation, and to their crab predator cues. This 551 

observation indicates that chemical communication among mussels may be disrupted by plastic 552 

leachates, suggesting that aggregation rate and bed formation and also prey-predator interaction 553 

may be impacted on the short-term, at least by polypropylene leachates and at the concentration 554 

tested here which is consistent to the contamination occurring in the marine environmental (i.e. 555 

5 MPs L-1). Prey-predator interactions are essential traits of the ecology of marine systems and 556 

variations in the ability to detect predation risk can significantly influence population and 557 

community structures (Ferrari et al., 2010). The changes caused by plastic leachates may have 558 

important effects on the bioengineering role of M. edulis and have cascading effects on the 559 

associated communities. Given the predicted increase in plastic pollution and the relative 560 

limited information on plastic leachates compared to plastic ingestion (Fauvelle et al., 2021), 561 

our work highlights effects of plastic leachates that may have fundamental knock-on effects on 562 

the functioning of intertidal ecosystems and the services provided to society. However, before 563 



 
 

28 

extrapolating our results any further, it is crucial to look at the impact of plastic leachates on 564 

the predator behaviour, to see if its predatory performance is also affected or not in a plastic-565 

contaminated environment. 566 
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