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ABSTRACT

In the past few years, several efforts have been devoted to reduce
individual sources of latency in video delivery, including acquisition,
coding and network transmission. The goal is to improve the quality
of experience in applications requiring real-time interaction. Never-
theless, these efforts are fundamentally constrained by technological
and physical limits. In this paper, we investigate a radically different
approach that can arbitrarily reduce the overall latency by means of
video extrapolation. We propose two latency compensation schemes
where video extrapolation is performed either at the encoder or at the
decoder side. Since a loss of fidelity is the price to pay for compen-
sating latency arbitrarily, we study the latency-fidelity compromise
using three recent video prediction schemes. Our preliminary results
show that by accepting a quality loss, we can compensate a typical
latency of 100 ms with a loss of 8 dB in PSNR with the best ex-
trapolator. This approach is promising but also suggests that further
work should be done in video prediction to pursue zero-latency video
transmission.

Index Terms— Extrapolation, low-latency video delivery, video
deep learning

1. INTRODUCTION

Ultra low-latency video delivery is an essential feature in many ap-
plications involving interactions among humans (e.g., video confer-
encing, virtual and augmented reality) or between humans and ma-
chines (e.g., teleoperation of unmanned vehicles or robots, remote
surgery, etc.). In these scenarios, the Glass-to-Glass (G2G) latency,
intended as the delay between the acquisition of a video frame by an
agent and its display by a second (remote) agent [1], plays a major
role in the overall quality of experience perceived by users [2].

G2G latency consists of acquisition, coding, buffering at trans-
mitter, transmission, buffering at receiver, decoding, and display de-
lays. In the past decades, significant efforts have been devoted to
optimizing each of these individual sources of delay. Nevertheless,
the minimum achievable latency is still constrained by technological
and physical limits (the most evident being the speed of light), which
represent a hard lower bound beyond which latency cannot be further
reduced. With these clear limitations in mind, in this paper, we in-
vestigate how we can further reduce the G2G latency to be arbitrary
low. Given the uncompressible physical delays in video delivery, a
possible way to achieve this goal is to predict video frames that have
not been received yet using those already available at the receiver.

The use of prediction/extrapolation to compensate latency is not
new. It has been already employed in a number of applications, in-

cluding virtual reality [3], tactile interfaces [4], cloud gaming [5],
etc. Nevertheless, to the best of our knowledge, this simple idea
of using extrapolation has not been explored and analyzed yet for
the case of latency compensation in video transmission. In this pa-
per, we consider for the first time the application of extrapolation to
ultra-low or even zero latency video communication. To this end,
we analyze two possible schemes to integrate extrapolation together
with a conventional video codec, i.e., extrapolating from the original
frames at the encoder side before coding and transmission, or at the
decoder side based on the available decoded (quantized) frames. In
both cases, if the prediction horizon is large enough, all sources of
delay (including the time needed for extrapolation) can be compen-
sated and a predicted frame can be displayed at the receiver while it
is acquired at the transmitter.

Since the extrapolated frames are in general different from the
true ones, latency compensation produces a loss of fidelity. In
this paper, using different recent learning-based extrapolation algo-
rithms, we characterize the trade-off between latency and fidelity.
Our aim is to study the feasibility of latency compensation based on
frame extrapolation. Our preliminary results on a driving car dataset
indicate that the effectiveness of this approach depends significantly
on the content and that there is still large space for improvement in
video extrapolation techniques.

2. RELATED WORK

Extrapolation as a means to compensate latency has been applied
in many fields. In virtual reality headsets, predicting future head
movements provides a low-cost solution to reduce latency, which is
one of the main causes of motion sickness [3]. To provide a seamless
experience with respect to touchscreen devices, the authors of [4]
extrapolate the finger’s movement to compensate software latency.
In cloud gaming, it has been proposed to render speculative frames
of future possible outcomes, delivering them to the client ahead of
time [5]. Our work relies on similar ideas, but applies them to a
generic video coding architecture.

From a video coding point of view, all recent video coding stan-
dards from ITU-T ISO/IEC (e.g., HEVC, SHVC, or VVC) have low-
latency profiles that optimize the predictive coding structure. The
MPEG-1 VVC [6] has added some features enabling low latency
at a signaling level such as the Gradual Decoding Refresh (GDR).
GDR redistributes the bitrate of the intra-frames over many frames,
smoothing the bandwidth consumption, and thus the transmission
latency, over time. To reduce the transmission delay, the 5G ultra-
reliable low latency communications (URLLC) mode targets radio
access delays of less than one millisecond [7]. Despite these de-
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Fig. 1. An example of latency compensation with (a) extrapolation at the decoder and (b) extrapolation at the encoder. I and I indicate
decoded (quantized) and predicted (extrapolated) frames, respectively. F is the extrapolation function.

velopments, as pointed out in [8], current video systems are still
subject to G2G delays from 50 to 400 ms. In order to satisfy the
requirements of latency-sensitive applications, Bachhuber ez al. [1]
analyzed all delay components in a video communication system.
Frame skipping and frame preemption mechanisms are proposed to
further reduce the G2G latency. Neglecting the buffering and net-
work transmission delays, direct communication with a latency of
about 20 ms is achieved.

These works optimize specific sources of delay in the processing
pipeline, which intrinsically limits the maximum latency reduction
that can be achieved. Instead, in this paper we consider the global
G2G latency, with the goal to arbitrarily reduce it.

3. LATENCY COMPENSATION VIA EXTRAPOLATION

We propose to compensate latency using frame extrapolation. This
extrapolation can be applied at either the encoder or at the decoder
side, as illustrated in Fig. 1. For the sake of simplicity, we assume
here a low-delay encoder configuration, where the encoding order of
frames is identical to the display order. Nevertheless, the proposed
scheme generalizes to any GOP structure. In the following, we de-
scribe the two compensation schemes in detail.

3.1. Extrapolation at the decoder side

In this scheme, no modification of the transmitter is required with
respect to a standard transmission pipeline: the acquired frames are
compressed and transmitted to the receiver, where they arrive with
some latency. Figure 1(a) illustrates the extrapolation at the decoder
side with an example. In this figure, I,, represents the n-th frame
of the video. We assume in this example that the G2G latency ¢ is
equal to two frames (corresponding to a time of 2/ f seconds, where
f is the frame rate). Therefore the decoder receives I, n—2 (the com-
pressed version of I,,_2) when the encoder is already acquiring I,,.
In order to compensate this latency, the decoder runs a frame ex-
trapolation algorithm F which takes as input a given number k of
available decoded frames, and produces a prediction I, of frame n

as:
In = F({Tn—n,In—n—1, s In—n—r+1}; b). (1)

The k input frames are also referred to as confext frames. For exam-
ple, in Figure 1, £ = 2 context frames are considered. The parameter
h is the temporal horizon of the extrapolation mechanism. It deter-
mines the amount of latency we want to compensate for. The larger
is h, the more difficult it is to get a reliable prediction, as we show in
the experimental results. The parameter h determines the trade-off
between latency compensation and quality degradation. In the ex-
ample we have h = 2, meaning that we want to fully compensate
for the latency 6. While the context frames k are dependent of the
extrapolators used, the temporal horizon h is chosen depending on
the application, there is no relationships between these two variables.
With these settings, the extrapolation algorithm produces:

In = F({In-2,1n_3};2). ()

Therefore, the estimation I,, of frame I,,, extrapolated from com-
pressed frames, can be displayed at the decoder while frame I, is
acquired by the encoder.

3.2. Extrapolation at the encoder side

The extrapolation at the encoder sides is illustrated in Figure 1(b),
following up the example used in the previous section. The extrapo-
lation method F(+; h), is used this time with the acquired frames: I,,,
In—1, ..., In_k+1 used as context frames. Likewise, the prediction
depends on the temporal horizon h, i.e., we compute

I(n+h)=F({In,In-1,...,In_k}; h). 3)
As for the previous example, we have k=2 and h=2 here. Then,
the extrapolated frames are compressed, transmitted, decoded, and
displayed. In this case, only the transmitter has to be adapted and a
plain, standard receiver is employed. The extrapolation performed at
the encoder provides a preemptive transmission latency compensa-
tion. In the considered example, the compressed, extrapolated frame

I is displayed while the frame I, is acquired by the transmitter.



context k¥ horizon h

Copylast 1 1
FlowNet2 + warping 2 1
MCNet 5 5
SDCNet 2 1

Table 1. Frame extrapolation methods and their number of context
and default prediction horizon.

With either the decoder-side or encoder-side extrapolation
schemes, it is possible to compensate the same amount of latency.
This potentially includes also the time to perform extrapolation,
which might be not negligible, depending on the adopted method. In
a multicast scenario, the extrapolation at the encoder has an advan-
tage compared to the extrapolation at the decoder, as extrapolation
is run only once, and more complex techniques with possibly more
powerful hardware may be employed. Nevertheless, this also means
that the latency compensation is the same for all the receivers. This
may be suboptimal when the G2G latency differs among receivers.
In such case, the extrapolation at the decoder gives more flexibil-
ity. Furthermore, one could also consider a variant of the proposed
approaches where extrapolation is performed both at the encoder
and the decoder side. In this case, extrapolation at encoder is used
to compensate for some minimum, common latency; then, each
receiver can further compensate latency according to its needs. Fi-
nally, latency compensation comes with a cost in terms of fidelity
loss. In the following experiments, we study this latency-distortion
trade-off using some off-the-shelf video extrapolators.

4. EXPERIMENTS AND DISCUSSION

This section evaluates the feasibility of frame extrapolation as an ef-
fective latency compensation tool. Specifically, we characterize the
loss in quality for different amounts of compensated latency, using
different off-the-shelf extrapolators to implement F. All the exper-
iments are conducted using the HEVC HM codec implementation
(16.24) [9] using the encoder_intra_main.cfg configuration.

4.1. Choice of the extrapolators

As discussed in [10], video prediction methods can be motion-based,
pixel-based, or fusion-based. Motion-based methods seek to com-
pute the motion of image pixel intensities which corresponds to the
motion of objects in a scene. Deep learning methods in this cate-
gory compute optical flow with neural networks. Combined with a
warping operation, next frames are inferred from previous images.
Pixel-based methods seek to generate each pixel from scratch, i.e.,
they do not use explicit motion representations such as an optical
flow or motion vectors. Fusion-based methods combine both motion
and pixel-based methods. In this work, we select one method from
each category. FlowNet-2 [11] is a motion-based technique com-
bined with a warping operation, which can effectively predict the
next frame. MCNet [12] is a pixel-based technique built upon the
Encoder-Decoder Convolutional Neural Network and Convolutional
LSTM for pixel-level prediction, which independently capture the
spatial layout of an image and the corresponding temporal dynamics.
Finally, SDCNet [13] is a fusion-based approach that models mov-
ing appearances with both convolutional kernels and vectors as opti-
cal flow. Some characteristics of the considered extrapolation meth-
ods are reported in Table 1. Each extrapolator is designed to work
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Fig. 2. Evolution of the latency compensation-distortion trade-off in
terms of PSNR.

with a certain number k& of context frames, and a certain prediction
horizon h. The latter might be different (smaller) than the desired
latency to compensate. In this case, we simply apply the extrapola-
tion recursively, i.e., we progressively add extrapolated frames to the
context.

We also include a simple frame-copy extrapolation, dubbed
Copylast. This method just copies the last available frame at the
encoder/decoder, and is reported as a very low complexity baseline.

4.2. Datasets

The considered learning-based extrapolation methods require data
to be trained on. In our experiments, we have trained the unsu-
pervised methods SDCNet and MCNet on the Caltech Pedestrian
dataset [14], which contains 128419 images from 65 different video
sequences at 30 fps with the resolution 640 x 480. All the frames are
center cropped into 640 x 448. This dataset provides us with both
quantity and variety and reflects a real-case scenario. For the su-
pervised method FlowNet2 [11], we need ground-truth optical flow,
which is not available on the previous dataset. Therefore, we use the
weights pre-trained on the MPI Sintel dataset [15]. Sintel is an action
movie and as such contains many fast movements that are difficult
for traditional non learning-based methods. The test experiments
(along with rate-distortion analysis shown in next section) are done
on the DriveSeg [16] Manual scene. Similar to the training set, the
dataset has been captured from a moving vehicle during continuous
daylight driving through a crowded city street. It comprises 5000
frames taken at 30 fps. We center crop the frames of the sequence
into 640 x 448.

4.3. Study of the distortion-fidelity trade-off

To evaluate the scheme where extrapolation is performed at the de-
coder, the DriveSeg test set at 30 fps is compressed using HEVC
with different quantization parameters QP € {22,27,32,37} for
all the selected methods. Rate-Distortion (RD) points are computed
considering an extrapolation horizon h € {1,...,5} to compensate
alatency 6€{33 ms, 67 ms, 100 ms, 133 ms, 167 ms}. For the case
of extrapolation at the encoder, the same test set is considered, with
the same an horizon h € {1,...,5} and the same QPs for compress-
ing extrapolated frames with HEVC.



—BDPSNR | —BDSSIM | —BDVMATF |
latency compensa- 33 100 167 33 100 167 33 100 167
tion (ms)
Copylast 10.78 (+0.02)  14.21 (+0.02) 15.61 (+0.01)  0.19 (+0.00)  0.35(+0.00)  0.43 (+0.00) 46.52 (-0.14)  65.44 (-0.09)  71.65 (-0.07)
MCNet 8.34 (-0.15) 12.26 (-0.28)  14.79 (-0.29)  0.06 (+0.00)  0.17 (-0.01)  0.28 (-0.02)  30.28 (-0.94)  50.86 (-2.49)  64.54 (-3.08)
FlowNet-2 + warp  7.35(+0.03)  11.23(-0.03)  13.17 (-0.04)  0.05 (+0.00)  0.15(+0.00) 0.24 (+0.00) 25.42 (-0.20) 51.15(-0.03)  65.29 (+0.23)
SDCNet 520 (+0.14)  8.28 (+0.10)  9.74 (+0.09)  0.05(-0.02)  0.15(-0.07)  0.24 (-0.13)  17.27 (-0.13)  36.00 (-0.13)  46.63 (-0.09)

Table 2. Quantitative results on DriveSeg scene: results for the extrapolation at the decoder side and gain/loss (in parenthesis) obtained with

the extrapolation scheme at encoder side.

Original frame
attime t

Last available frame
at time t-100 ms

Extrapolated
(latency-compensated)
frame with SDCNet

Fig. 3. Qualitative results for a latency compensation of 100 ms. The
extrapolation at decoder side scheme is used. The HEVC codec uses
a quantization parameter QP = 32. Images taken from the Kitti
[17] dataset.

The distortion between displayed and original frames is evalu-
ated using three objective metrics: PSNR in the YCbCr color space
[18], SSIM [19], and VMAF [20]. This yields a rate-distortion curve
for each possible extrapolation horizon (latency compensation) h.
We compare all curves to the case h = 0, i.e., without any extrapo-
lation. The average quality losses over different rates, expressed by
the negative Bjgntegaard delta metric (BDPSNR, BDSSIM and BD-
VMAF), are reported in Table 2, where the first numbers are the BD
metric values for the extrapolation at the decoder side, and the num-
bers in parentheses are the differences with respect to this scheme
when using extrapolation at the encoder. We can observe that extrap-
olation at the encoder/decoder produces essentially the same quality
losses for a given amount of compensated latency.

Extrapolation at encoder is performed on original frames, and
may therefore be more efficient. Nevertheless, for the considered
values of P, extrapolation at the decoder is still efficient, even us-
ing decoded context frames. In both cases, the fidelity loss intro-
duced by the extrapolation dominates that induced by compression.

Figure 2 illustrates visually the latency-distortion trade-off in
terms of BDPSNR. As expected, the larger the amount of latency
we compensate, the higher the quality loss we incur. For typical
G2G latency values of 100 ms observed in remote control applica-
tions [21, 22], on the test dataset used in this work, the PSNR loss
ranges between 12.3 and 8.3 dB with the considered extrapolation
techniques.

4.4. Discussion

We have verified quantitatively the expected trade-off between fi-
delity and latency compensation for a specific dataset. This aspect
is key for the feasibility of latency compensation, as distortion is the
unavoidable consequence of arbitrarily reducing latency. The effec-
tiveness of latency compensation depends significantly on the inter-
polation operator F. The proposed scheme employing recent frame
prediction techniques entails PSNR drops in excess of 8 dB for 100
ms reduction. This motivates the study of better future frame predic-
tion algorithms in the future.

The fidelity metrics alone might not be sufficient to explain the
feasibility of latency compensation through extrapolation. Figure 3
shows the results of compensating 100 ms on a frame of the Kitti
dataset [17], which similar to the training set. The interpolation
of SDCNet has clear visual deformations compared to the original
frame. Nevertheless, we can observe that the position of the bike is
approximately aligned with the original frame. On the other hand,
Copylast (which only uses the last available frame and corresponds
to not compensating any latency) produces a lag between the actual
position of the bike and the displayed one. We can imagine that,
depending on the application (e.g., teleoperation), the SDCNet pre-
diction brings valuable information (the bike position), even though
such quality metrics as PSNR are not able to catch this aspect. This
example highlights the essential objective of latency reduction, i.e.,
to gain more knowledge about the future representation of the dy-
namic scene by anticipating next images. This question is not only
essential at the human perceptual level, but also at the machine level.
We can imagine this future understanding as key components for the
machine to anticipate behaviors.

5. CONCLUSION

This paper introduces a tool that allows us to compensate latency in a
video transmission scheme at the price of additional complexity but
also of degradation of the frame fidelity. Depending on the applica-
tion, many configurations are possible extrapolation at the encoder,
extrapolation at the decoder, or both at the encoder and decoder. The
degradation is essentially caused by the extrapolation approaches.
The goal of this paper is not to propose a better extrapolation ap-
proach to reduce this loss, but rather demonstrating the applicability
of the latency compensation relying on such tool. Future works may
concern the improvement of existing extrapolating methods for such
task.
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