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ARTICLE

Deciphering polymorphism in 61,157 Escherichia coli
genomes via epistatic sequence landscapes
Lucile Vigué 1,6, Giancarlo Croce2,3,6, Marie Petitjean 1, Etienne Ruppé1,4, Olivier Tenaillon 1,7✉ &

Martin Weigt 5,7✉

Characterizing the effect of mutations is key to understand the evolution of protein

sequences and to separate neutral amino-acid changes from deleterious ones. Epistatic

interactions between residues can lead to a context dependence of mutation effects. Context

dependence constrains the amino-acid changes that can contribute to polymorphism in the

short term, and the ones that can accumulate between species in the long term. We use

computational approaches to accurately predict the polymorphisms segregating in a panel of

61,157 Escherichia coli genomes from the analysis of distant homologues. By comparing a

context-aware Direct-Coupling Analysis modelling to a non-epistatic approach, we show that

the genetic context strongly constrains the tolerable amino acids in 30% to 50% of amino-

acid sites. The study of more distant species suggests the gradual build-up of genetic context

over long evolutionary timescales by the accumulation of small epistatic contributions.
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Understanding how biological diversity emerges and
evolves is at the heart of molecular evolutionary biology.
The long-standing confrontation between adaptationists1

and neutralists2 has oriented the scientific debate towards com-
paring the relative contributions of natural selection and drift in
the process. While the first ones consider most of the differences
between organisms to result from adaptation to different envir-
onments, the second one support that polymorphisms reflect
mostly random occurrences of equally fit variants.

In recent years, the increasing interest in the role played by
historical contingency has revived this old neutral-versus-
selective debate3. Evolutionary contingency arises when muta-
tions that fix depend on permissive mutations that occurred
before. Once fixed, they influence the fate of upcoming mutations
and become increasingly deleterious to remove—a phenomenon
called entrenchment4. The concept of contingency puts epistasis
at the forefront of molecular evolution: an amino acid that is
neutral or beneficial in a genetic context, can be deleterious in
another due to epistatic interactions between residues5. Char-
acterizing these epistatic interactions is thus key to uncover the
context dependence of mutation effects and understand the
extent to which contingency shapes molecular evolution. More-
over, predicting which non-synonymous mutations are likely or
not to affect a protein is essential in molecular genetics. Though
genetic studies from quantitative trait locus (QTL) analyses to
genome-wide association studies (GWAS) successfully identify
genomic regions associated to a disease or to a trait of interest,
these regions usually encompass multiple neutral mutations in
addition to the causative one. An accurate characterization of
non-synonymous mutation effects would definitely help identi-
fying the causative mutations.

Deep mutational scans and small adaptive landscape recon-
structions allow to experimentally study the effect of mutations or
combinations of mutations in a genetic background3,6. They
highlight the short-term evolutionary constraints the protein
faces and a more general pattern of negative epistasis in which
deleterious mutations become more deleterious in combination.
However, purifying selection removes these mutations from the
population. Consequently, their epistatic interactions may not
contribute to long-term protein evolution. Some experiments
have unveiled a strong role of positive epistasis over long evolu-
tionary times, by measuring the effect of the same mutation in
distant homologs from diverged or ancestral species7,8. For
instance, the same amino-acid change can be deleterious in dis-
tant backgrounds while being neutral or beneficial in its native
background.

Computational approaches can help to bridge the gap between
short-term and long-term evolution. On the one hand, simula-
tions can mimick the fixation of amino-acid changes across many
generations4,9–11. Yet, their results rely on the validity of the
assumptions made to model protein evolution and the effects of
epistasis. On the other hand, data-driven approaches to study
protein evolution become possible thanks to the revolution of
high-throughput sequencing. The accumulation of closely related
and more diverged genome sequences enables us to track the
emergence and the fixation of amino-acid changes over different
timescales. Instead of simulating evolution, we can analyze the
patterns of diversity observed in nature on both short-term
(polymorphisms within a species) and longer-term (fixed differ-
ences between diverged species). The computational study of
epistasis requires models of amino-acid sequences that account
for epistatic interactions between residues. A current tool to
model epistasis is Direct-Coupling Analysis (DCA). DCA is a
statistical physics-based approach12 that aims at modeling the
statistical constraints acting on divergent but homologous protein
sequences. Indeed, differences between homologous sequences

most often represent harmless or, very rarely, beneficial muta-
tions that have been allowed by evolution to persist as they lead to
functional proteins. For example, if a residue is conserved
throughout the alignment of homologous protein sequences, it is
likely crucial to the functionality of the protein and a mutation
would produce a large detrimental effect. Similarly, due to epi-
static interactions, a pair of amino acids may appear with a dif-
ferent frequency than what would be expected based on
conservation of the respective residues. DCA aims to model
statistical patterns (e.g., conservation or correlation patterns, see
Methods for more details) in protein sequence alignments and
relate them to the protein’s biological structure and function. It
successfully identified residue contacts in the three-dimensional
protein fold12, generated new and functional artificial enzymes13,
predicted deep mutational scanning outcomes14,15 and was used
to investigate amino-acid changes between two closely related
genomes16. For all these applications, DCA epistatic models
consistently perform better than simpler non-epistatic modeling
approaches (independent models, IND, often used in bioinfor-
matics for homology detection and sequence alignment). In
contrast with other epistasis-aware methods that can be used for
predictions17,18, DCA is explicitly parameterized in terms of
epistatic couplings and conservation, making it interpretable.

In this work, we use IND and DCA models in a large-scale
study of the Escherichia coli core genome in order to understand
to what extent epistasis constrains the emergence of non-
synonymous polymorphisms within a species, and how these
epistatic constraints are building up through time. We do so by
first predicting the level of variability at each amino-acid site
using both IND and DCA models; subsequently, we confront
these predictions to the variability observed across natural E. coli
isolates. To this end, we have gathered a collection of >60,000 E.
coli genomes. The analysis is complemented by using a sample of
diverged species ranging from Escherichia coli to Yersinia pestis to
study fixed differences accumulating with increasing sequence
divergence. With the statistical power of this genome-scale
approach, we show: (i) that mutation effect prediction can
identify the sites where polymorphisms segregate; (ii) that we can
quantify the contribution of the genetic background to these
predictions; (iii) that epistatic interactions build up slowly over
evolutionary timescales.

Results
Data-driven protein sequence landscapes for the case proteome
of E. coli. The central concept of our work are amino-acid
sequence landscapes, constructed for each protein or protein
domain in some reference genome, here E. coli. These landscapes
associate a DCA score E to any sequence (a1,…, aL). A DCA
score is composed of single-residue terms reflecting amino-acid
conservation and pairwise couplings modeling epistatic interac-
tions between pairs of residues. Low DCA scores correspond to
fully functional sequences whereas high values to non-functional
ones (Fig. 1). We build these amino-acid sequence landscapes by
training DCA models on multiple-sequence alignments (MSAs)
of distant homologs sampled in diverged species (see the sections
“Datasets—interspecies MSAs” and “DCA and IND models”).
These are widely variable sequences (typical sequence identities
are around 20–30%), so they may be understood as a global
sample of the sequence landscape, cf. the dark blue dots in Fig. 1.
To avoid biasing the results, we have removed from the MSAs any
sequence which is too close to E. coli (more than 90% identity in
sequence). Therefore, it is not evident that the resulting models
are informative about the very local structure of the landscape
around the E. coli reference sequence (white and light blue dots
in Fig. 1). The latter might be dominated by idiosyncratic
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constraints characterizing E. coli as a species, while the MSAs of
homologs contain the conserved evolutionary constraints of the
entire protein family. Thus, we want to investigate whether
amino-acid sequence landscapes can unify the study of epistasis
on short and long evolutionary timescales.

Strong signature of selection at the amino-acid level. We first
test, how accurately DCA can model E. coli amino-acid sequen-
ces. To work at a genome scale, we focus on 2053 Pfam
domains19 spanning 281,513 residues among 1432 core genes (see
the sections “Datasets—inter-strain MSAs“ and “Datasets—inter-
species MSAs”) widely present across E. coli strains. We also
perform the same analysis on 1029 entire core gene sequences in
order to increase site coverage. Results presented in the following
sections are those obtained on Pfam domains, results on full-core
genes are presented in Supplementary Figs. 1–5. The results for
full sequences are mostly consistent but of lower quality than
those obtained for Pfam domains, since the MSAs used for model
training contain less and less diverse sequences.

DCA models provide a substitution score for each amino acid
in each position, which depends on the sequence context of the
protein domain in E. coli. On the contrary, the score of each
amino acid in IND models is context-agnostic as it directly
derives from its frequency of occurrence across distant homologs
(see the sections “DCA and IND models” and “Individual
mutation effect prediction by DCA and IND models”). To
compare model predictions to reality, we gather a database of
>60,000 E. coli strains where we record all polymorphisms
occurring at frequencies >5%. We use a ST131 strain as a
reference strain, this clonal complex is a public health concern
because of its virulence and resistance to antibiotics20 and has
thousands of isolates sequenced in the database.

Amino acids observed in E. coli are well predicted by DCA, and
to a lesser extent by IND. In all, 78% of amino acids observed in
the reference strain rank first at their position with a DCA model
while this figure drops to 45% with IND (Fig. 2a), in agreement
with the previous study16. Approximately half of the time an

amino-acid site is polymorphic, the major allele is ranked first by
DCA while minor alleles are more likely to rank second (Fig. 2b).
Here again, DCA predictions overperform those of IND model
(Fig. 2c). The DCA score distribution of E. coli polymorphisms
centers on 0, meaning that DCA predicts them to be close to
neutral (blue distribution, Fig. 2d). In comparison, DCA predicts
that amino acids sampled from distant homologs and inserted in
E. coli sequences will be deleterious (yellow distribution, Fig. 2d),
a prediction IND cannot make. These results are consistent with
the idea that mutations that fix in a population are close to
neutral at the time they occur, but can be deleterious in another
background. Figure 2d compares these scores with random
mutations (gray histogram), predicting them to be even more
deleterious since they include never observed mutations that are
presumably highly counter-selected.

DCA and IND models predict mutation effects of amino-acid
changes. However, the likelihood of observing an amino-acid
change also depends on mutational biases. Among the 20 possible
amino acids, we cannot obtain more than nine by mutating only
one nucleotide of a given codon. On short evolutionary timescales,
polymorphisms that require more than one single-nucleotide
polymorphism (SNP) should rarely occur. If we set the probability
of observing them to zero, the power to predict E. coli
polymorphisms increases slightly but systematically for both models
(by 5.3% for DCA and 11.0% for IND, Supplementary Fig. 6).

These results validate that even though DCA models are
trained on distant homologs, they can capture the effect of natural
selection at different timescales. Their ability to predict amino
acids in the reference strain reflects the action of natural selection
in fixing amino acids when E. coli diverged from other species.
When it comes to predicting polymorphisms, it emphasizes the
action of purifying selection on a shorter term. The better
performance of DCA over IND highlights the major role played
by epistasis in shaping mutation effect and the strong contingency
of amino acids observed in E. coli. These results provide the
support that DCA is an adequate tool to perform further studies
in this work.
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Fig. 1 Schematic representation of the sequence landscape and its relation to sequence data. The landscape is defined via a real-valued function of any
aligned sequence, with low values indicating “good” functional sequences (green area), and high values “bad” non-functional sequences (red area). Natural
sequences can be seen as samples of low values: close orthologs (light blue) of a reference sequence (in white) form a sample which is localized in
sequence space and surrounded by closely diverged species (mid-blue). Distantly diverged homologs (dark blue) form a global sample. All sequence data
are aligned relative to the reference sequence. Within our work, the global sample will be used to infer data-driven landscape models for all proteins
families present in the E. coli core genome, and the variability of the local sample and the closely diverged species will be analyzed for signatures of
selection, epistasis and context dependence of natural amino-acid polymorphisms.
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The sequence context constrains the predicted site variability
in E. coli. Focusing on individual amino acids, we have seen that
native amino acids fixed in E. coli and polymorphisms observed
in a wide collection of strains are strongly contingent on the
genetic background. Going to an amino-acid site perspective, this
raises the question of how much epistasis shapes site variability.

When comparing protein sequences from distant species, we
observe that some sites are conserved while others vary. However,
if mutation effects depend on context, the level of variability
observed at an amino-acid site across distant species may not
reflect how polymorphic this site can be within any specific
species.

We use Shannon entropy as an information-theoretic measure
quantifying the diversity of amino acids observed at a given
site (Fig. 3a). It measures the logarithm (in base 2) of the effective
number of admissible amino acids at a position, if these
were equiprobable. A site with an entropy of zero should only
tolerate one amino acid: it is conserved. A value of one can for
instance correspond to two amino acids at 50% frequency each.
Entropy reaches its maximal value of log2ð20Þ ¼ 4:32, if all 20
possible amino acids are equally likely. Based on this concept, we
can define a Context-Independent Entropy (CIE) from an IND
model and an E. coli specific Context-Dependent Entropy (CDE)
from a DCA model (see the section “Context-independent and
context-dependent entropies”).

We compute CIE at locus i from the amino-acid frequencies
fi(β) in the column i of the MSA of distant homologs as:

CIEi ¼ �Σβf iðβÞ log2 f iðβÞ ð1Þ

where the sum is performed over all 20 amino acids β.
To compute CDE, we first need to determine the probability of

observing a certain amino acid β in position i, given that the other
positions take amino acids a0ni ¼ ða1; ¼ ; ai�1; aiþ1; ¼ ; aLÞ
present in the E. coli reference sequence. Within our

a

b

c

d

Fig. 2 Predicted effects of observed amino acids using an IND model
(neglecting epistasis) or a DCA model (incorporating pairwise epistasis).
a Rank of native amino acid in the reference strain as compared to all 20
possible amino acids. DCA model (red) outperforms IND (yellow) by
predicting twice as many native amino acids to be the best possible. b DCA
rank of major and minor allele for all sites that are polymorphic at a >5%
threshold, among all 20 possible amino acids. Major alleles (alleles at
frequencies >50%, in red) have better ranks than minor alleles (alleles at
frequencies between 5 and 50%, in pink). The distribution of consensus
alleles peaks at the first rank (46.2% of polymorphic sites have major allele
ranking first and 17.6% have second-best rank) while the distribution of
minor alleles peaks at the second rank (13.3% have the best rank against
17.6% that are second-best). c IND rank of major and minor allele for all
sites that are polymorphic at a >5% threshold, among all 20 possible amino
acids. As with DCA, major alleles (in orange) have better ranks than minor
alleles (in yellow) and the distribution of consensus alleles peaks at the first
rank. However, the distribution is spread towards greater ranks (only 24.1%
of polymorphic sites have major allele ranking first and 15.5% have second-
best rank, similarly minor alleles rank first in 9.6% and second-best in
13.3% of polymorphic sites) compared to DCA ranking. d Distribution of
DCA scores of non-synonymous polymorphisms observed at frequencies
>5% across the >60,000 strains (blue) compared to mutations sampled
from an IND model (yellow) or to random mutations (gray). A large
number of possible mutations are predicted to be highly deleterious
(positive scores) compared to naturally occurring polymorphisms that tend
to be neutral (blue distribution centered on zero). Polymorphisms predicted
from IND are slightly deleterious once epistasis is taken into account
(yellow distribution shifted towards positive values). Boxplot center lines
represent medians, box limits are upper and lower quartiles, whiskers
extend to show the rest of the distribution within an 1.5 × interquartile
range, outliers are represented with points; sample size is 3477 mutations
for each of the three groups.
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DCA-based modeling framework, this quantity reads:

Piðβja0niÞ ¼ exp hiðβÞ þ Σj≠iJ ijðβ; ajÞ
n o

=zi; ð2Þ

with the normalization zi chosen such that P becomes a
probability distribution over the values of β, i.e., over the 20
theoretically possible amino acids in position i (gaps are not
considered, since we study the effects of amino-acid substitutions
and not deletions). CDE is now given by:

CDEiða0niÞ ¼ �ΣβPiðβja0niÞ log2 Piðβja0niÞ; ð3Þ
with a0ni being the sequence context of the E. coli reference strain.

CIE and CDE are both model-predicted quantities, that do not
use any E. coli polymorphism data to predict variability within
this species. CIE corresponds to the level of variability observed

across distant species. CDE takes the amino-acid context and the
local epistatic couplings of the reference strain into account to
predict the level of variability within the E. coli sequence
background. If epistasis were negligible, CIE and CDE values
should be comparable.

Figure 3b shows a bivariate histogram of CIE and CDE over all
sites in our dataset. Two distinct communities clearly emerge. On
one side, a top-right peak of sites shows high CDE and CIE. These
sites display very little context dependence (both entropies have
comparable values). They reach entropy values near 4, i.e., close
to the upper limit of log2ð20Þ ¼ 4:32. These sites are variable
across distant species and predicted to be highly polymorphic in
E. coli. On the other side, a left peak of sites has low CDE and low
to high CIE. We predict them to be conserved in E. coli (CDE
close to 0) but they can vary across distant species (CIE ranging

a

b c

f( )log2( f( ))
f( )log2( f( ))
f( )log2( f( ))

f( )log2( f( ))
. . .

−
−

−
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E. coli context
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. . .

CDE Pcoli( )log2(Pcoli( ))−
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Conserved within a 
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Variable within & 
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Fig. 3 Predicting the variability of amino-acid sites. a Entropy quantifies the level of variability of an amino-acid site from conserved (entropy ~ 0) to
highly variable (entropy ~ 4). It can be computed from a non-epistatic model (Context-Independent Entropy (CIE), yellow) i.e., from the frequencies of
amino acids observed across distant species, or from an epistatic model (Context-Dependent Entropy (CDE), red) i.e., from the conditional probabilities of
observing each amino acid in E. coli background. Residues that have strong epistatic interactions with others will be lowly polymorphic once the genetic
context is fixed (low CDE) but can vary between species (high CIE) by co-evolving with their partners (cf. hatched residues). b Bivariate histogram of CDE
and CIE for all sites in the dataset. Two populations of sites are clearly recognizable, in particular separated by their CDE values. c Marginal distributions of
CDE (red) and CIE (yellow) for all sites in the dataset. CDE divides amino-acid sites into two populations of similar sizes: conserved (CDE < 1) and variable
(CDE≥ 1). On the contrary, most of the amino-acid sites have a high CIE, i.e., IND predicts them to be highly variable.
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from 0 to more than 3). We expect these sites to display a low
level of polymorphism across E. coli strains.

CIE and CDE distributions over all sites greatly differ (Fig. 3c).
While only 8.3% of sites are conserved across distant species
(CIE < 1, corresponding to an effective number of amino acids
below 2), we predict 45% of sites to be conserved in E. coli
(CDE < 1) largely due to local epistatic couplings.

Context-dependent entropy accurately predicts polymorphic
and constrained sites in E. coli. We can now confront these
model-based predictions to the observed variability in our dataset
of >60,000 E. coli strains. To do so, we categorize E. coli sites into:
conserved (no polymorphism observed in any of the strains) and
variable (at least 5% of the strains harbor a mutation with respect
to the consensus sequence).

Lowly polymorphic sites (<5%-frequency polymorphisms) can
correspond to variable sites but also to conserved sites with
deleterious mutations segregating at low frequencies (or sequen-
cing errors for some of the lowest frequencies), so we choose to
exclude them from the analysis.

Most of the conserved sites cluster on the left peak of low CDE
(Fig. 4a) whereas variable sites tend to cluster on the top-right
peak of high entropies (Fig. 4b). CDE appears more relevant than
CIE to discriminate conserved from variable sites. Indeed, only
12.7% of conserved sites have CIE < 1 (Fig. 4c) while 56.4% have
CDE < 1 (Fig. 4d). If we integrate mutational biases into our
analysis, by restricting the computation of entropy to 1-SNP
amino-acid mutations (see the sections “1-SNP mutations” and
“Context-independent and context-dependent entropies”), we
find that 70.2% of conserved sites have CDE < 1 whereas only
24.8% have CIE < 1 (Supplementary Fig. 7). Yet, there remain
29.8% of conserved sites that are predicted to be polymorphic
(CDE ≥ 1). Looking at the synonymous diversity across the E. coli
strains, we notice that many 1-SNP synonymous mutations are
missing. This implies that only a limited amount of neutral
diversity can segregate within a population, a limitation probably
due to random drift. We thus use simulations based on the
amount of observed synonymous diversity to estimate the
proportion of sites we expect to see conserved while they could
tolerate polymorphisms (high CDE) (see the section “Simulations
of neutral diversity segregating on amino-acid sites”). These give
results that are consistent with our observations (Supplementary
Fig. 8): polymorphisms may arise on these sites but have not been
observed in nature yet.

These results show that CDE accurately predicts the level of
variability of an amino-acid site by integrating constraints linked
to its function, common to all genetic backgrounds, and local
epistatic couplings that are specific to a given genetic context. CIE
misses most of the conserved sites, demonstrating how strongly
the context reduces the variability, which is possible at an amino-
acid site.

We now want to investigate how much the genetic context
reduces the diversity of amino acids tolerated at a site. In other
words, how contingent on the genetic background the effect of an
amino-acid change is. Comparing CIE to CDE allows to quantify
contingency, as they both measure site variability with CIE being

a

b

c

d

Fig. 4 Predicting amino-acid sites that are conserved or polymorphic in E.
coli. Comparison of the performance of IND and DCA models. a Bivariate
histogram of CDE and CIE for sites that are conserved across
>60,000 strains of E. coli. Most of them cluster on the left peak of low CDE.
b Bivariate histogram of CDE and CIE for sites that are polymorphic at a 5%
threshold across >60,000 strains of E. coli. Most of them cluster on the
right peak of high CDE. c Distribution of CIE for conserved (green) and
polymorphic (blue) sites in E. coli. A non-epistatic model fails at
distinguishing between both populations. Most of the sites are predicted to
have a high entropy so to be highly variable, including those that display no
mutation in >60,000 strains of E. coli (green distribution). d Distribution of
CDE for conserved (green) and polymorphic (blue) sites in E. coli. A model
that incorporates pairwise epistasis predicts a low entropy for conserved
sites (the green distribution peaks near 0) and a high entropy for variable
sites (the blue distribution peaks near 4).
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context-agnostic and CDE being context-aware. We can split
amino-acid sites into three categories (Fig. 5a). First, 8.3% of sites
are conserved across all species as well as in E. coli (CIE < 1). They
are likely to be functionally essential. Mutating away from the
observed amino acid will always be deleterious, so the context has
no real influence on their level of conservation. Second, 55.1% of
sites are variable across all species as well as in E. coli (CIE ≥ 1,
CDE ≥ 1). They are often constrained (CDE < log2ð20Þ), but allow
for a considerable amino-acid variability both in the family and in
the specific E. coli context: at these positions, we may observe
both fixed differences between species and polymorphisms within
the E. coli population. Third, 36.6% of sites are conserved in E.
coli context but variable across species (CIE ≥ 1, CDE < 1). Amino
acids observed in distant species will not be tolerated in this
specific context: evolution is contingent on the genetic
background.

We define the information gain provided by the sequence
context as the difference between CIE and CDE (see the section
“Context-independent and context-dependent entropies”). If both
are equal, no information is contained in the context. The lower
CDE is compared to CIE, the greater the information gain and the
level of contingency. We observe that the majority of sites have a
positive gain in information when the sequence context is known
(Fig. 5b). In 50.5% of sites, the effective number of acceptable

amino acids in the E. coli context is at least a factor two smaller
than what a context-independent analysis of distant homologs
would predict (information gain >1 bit). We conclude that
roughly 30–50% of amino-acid sites show consistent signals of
context dependence.

Epistasis is a diffuse pattern involving a sum of many small
couplings. The higher accuracy of DCA over IND in predicting
site variability and amino acids observed in E. coli proves that
epistasis strongly shapes the effect of mutations. Following this
observation, we want to use DCA as a tool to study epistasis in
natural isolates. First, we look at epistasis between polymorph-
isms arising jointly in E. coli. To do so, we gather all gene
sequences with exactly two amino-acid substitutions (other than
gaps, i.e., deletions or insertions) compared to the reference
strain. For each pair of mutations, we compare the DCA-
predicted effect of the double mutation to the sum of the effects of
each single mutation introduced individually in the reference
sequence (“Epistatic cost”). We observe no clear difference
between these two quantities (Fig. 6a), indicating an absence of
strongly coupled polymorphisms. Two main factors may explain
the absence of strong epistatic couplings between polymorphisms
in E. coli. First, polymorphisms arise on highly variable sites:
these sites are poorly constrained by epistasis (high CDE). Sec-
ond, previous works claim that epistasis is often weak compared
to the typical effect size of mutations21. This second point does
not contradict the strong context dependence of mutations. It
suggests that context might be a collective effect arising from the
accumulation of many small epistatic couplings. Importantly,
these couplings may involve sites that are conserved in E. coli but
vary across distant species. We use inverse participation ratio
(IPR)22 to estimate the proportion of sites effectively coupled to a
locus in amino-acid sequences modeled with DCA (Fig. 6b and
section “Effective proportion of residues coupled to an amino-
acid site”). IPR allows one to determine the effective number of
non-zero components of a distribution. This effective number is
minimal in case of a single one non-zero component, and max-
imal for a uniform distribution with identical entries. We find
that each amino-acid site is coupled to about one-fourth of the
rest of the protein. Taken altogether, these results lead us to
consider that context dependence of mutations does not rely on a
few strong epistatic couplings but on an aggregation of many
small couplings accumulated with divergence.

Gradual construction of the context with divergence. So far, we
have gathered evidence that many small couplings accumulate to
build a genetic context. This translates into an absence of a strong
epistatic signature of polymorphisms co-occurring in E. coli.
However, we expect epistasis patterns to emerge gradually when
the number of substitutions increases. To study how the genetic
background is building up with divergence, we gather 853 Pfam
domains spanning 516 core genes shared by diverged species
from E. coli to Yersinia pestis (Fig. 7a and section “Datasets—
closely diverged species MSAs”).

We start by comparing pairs of homologous sequences. For each
pair, we compute the DCA epistatic cost as being the difference
between the DCA score of the fixed differences altogether and the
sum of their DCA effects when inserted individually in one of the
two genetic backgrounds (see the section “Epistatic cost”). It is worth
noting that a negative DCA epistatic cost corresponds to positive
epistasis: fixed differences are more beneficial, i.e., have a lower DCA
score, taken altogether than expected by the sum of their individual
effects. As gaps can artificially create a pattern of positive epistasis,
we only keep pairs of sequences that have no more than one gap
difference. We observe a clear pattern of positive epistasis that

Always conserved 
Always variable 
Context-conserved

Low 
Information Gain

High 
Information Gain

{

a

b

Fig. 5 Quantifying the effect of the context in reducing amino-acid site
variability. a The genetic background is expected to differentially impact
amino-acid sites. It has a low influence on sites that have the same level of
variability in E. coli and across distant species (blue and light green). On the
contrary, it strongly impacts sites that are variable across distant species
but are conserved in E. coli due to local epistatic couplings (dark green).
b Information gain quantifies the difference between an amino-acid site
variability across distant species and its potential variability in E. coli. Sites
that are variable across distant species (CIE≥ 1) but conserved in E. coli
(CDE < 1) are the ones with the highest information gains (dark green
distribution). Note that the information gain is given in bits, 1 bit
corresponds to an effective reduction of the available amino acids by a
factor 2, 2 bits by a factor 4, and 3 bits by a factor 8.
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increases with divergence (Fig. 7b). This is consistent with a model
where fixed differences are contingent on previous mutations and
entrenched by subsequent ones. Individual couplings are biased
towards positive epistasis (pronounced left tail of negative DCA
couplings between pairs of fixed differences in Fig. 7c). However,
their values rarely fall below -1 (note the log scale of the vertical
axis), a rather low effect size compared to the most extreme epistatic
costs that can be measured between entire sequences in Fig. 7b. This
is consistent with epistatic patterns emerging gradually by addition
of small couplings accumulated with divergence. The more diverged
the sequences, the stronger the epistatic signal because each
additional fixed difference modifies many couplings. These
sequences have evolved naturally since their corresponding species
diverged: the over-representation of positive epistatic couplings that
we detect is consistent with evolution under long-term purifying
selection4.

rplK: a gene displaying a strong epistatic signal. rplK codes for
the L11 protein of 50S subunit of the ribosome. It exhibits a

strong signal of positive epistasis among the 14 non-synonymous
mutations fixed between E. coli and Y. pestis. This relatively small
number of fixed differences offers a good opportunity to inves-
tigate how epistasis emerges at an individual protein level.

The range of epistatic couplings between fixed differences
(Fig. 8a) is consistent with Fig. 7c: no very strong couplings but a
clear tendency towards negative DCA values (i.e., positive
epistasis). The strongest epistatic couplings correspond to pairs
of residues that are in close vicinity in the 3D folding of the
protein (distances <10Å in Fig. 8b). We also observe a clear over-
representation of couplings near −0.2—as compared to the
number of couplings near 0.2—the majority of which correspond
to more distant pairs of sites. Even if these residues are not
necessarily in contact with one another, almost all of them cluster
in the protein structure (red spheres in Fig. 8c). This suggests that
epistasis does not solely arise from direct contacts between few
neighboring residues but also from more distant interactions
between amino acids that contribute to the stability of the protein
structure. We previously found that DCA predicts about one-
fourth of amino-acid sites to be effectively coupled to a given

a

b

Fig. 6 Epistasis observed in E. coli. a Mutational effect ΔEij of observed double mutations with respect to the reference, plotted against the sum ΔEi+ΔEj
of the individual mutation scores. The absence of clear deviations from the diagonal reveals the lack of strong epistatic couplings between pairs of
mutations in our strain dataset. b Histogram of the effective proportion of sites coupled with a given amino acid. It is computed from the inverse
participation ratio: 1/(IPR × proteinlength). The median of the distribution is 24%, meaning that amino-acid sites are generally coupled to about one-fourth
of the other residues in the protein according to DCA modeling of epistasis.
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residue. This figure clearly exceeds the number of residues that
are in physical contact with an amino-acid site but could be
explained by the hypothesis that sites belonging to the same
protein domain are epistatically coupled with one another even if
not in direct contact. These domains of correlated residues that
co-evolve over long evolutionary times are reminiscent of protein
sectors23. They are also consistent with recent experimental work
showing that DCA couplings can capture global phenomena such
as allosteric communication between DNA-binding and ligand-
binding modules in a protein24.

Discussion
The adaptationist and neutralist interpretations of biological
diversity have long neglected epistasis. The complexity of mod-
eling epistasis certainly contributes to explaining why

independent-site models remain common in molecular evolution.
Breen et al. first raised the possibility of epistasis being “the
primary factor" in protein evolution5. Even if their methodology
based on dN/dS computations underwent criticism25, it clearly
called for a deeper and more systematic study of epistasis across
the genome. Experimental studies of mutations in different
genetic backgrounds have confirmed an important role of epis-
tasis in long-term evolution7,8. However, they remain constrained
to the analysis of single proteins. As abundant genetic data for
both E. coli strains and diverged species have become available,
data-driven approaches offer new opportunities. Through the
concept of DCA-informed amino-acid landscapes, this allows for
a large-scale data-driven study of epistasis on both short- and
long-term evolution. The systematic analysis of wide genome
portions has the potential to unveil much more widespread
mechanisms than the potentially idiosyncratic studies led on
specific proteins.

We find that DCA overperforms IND in predicting native
amino acids as well as observed mutations and amino-acid site
variability within E. coli strains. Intriguingly, DCA also ranks
major and minor alleles better than the IND model, suggesting
that epistasis can constrain variable sites. Native amino acids arise
from long-term evolution whereas observed polymorphisms and
site variability within E. coli strains reflect short-term evolution.
Thus, amino-acid landscapes appear relevant to study both short-
and long-term evolution even though they are inferred from
highly diverged species and can only capture evolutionary forces
that are conserved for the entire family. Interestingly, it suggests
that local adaptation of some specific strain to some specific
ecological niche might add on top of these general constraints but
does not dominate evolution. Our data analysis also emphasizes
the importance of mutational biases on short evolutionary
timescales. Neutral polymorphisms that require more than one
SNP are virtually absent.

The better performance of DCA as compared to IND
demonstrates the importance of taking epistasis into account to
understand the effect of amino-acid changes. Recent achieve-
ments in synthetic biology prove that DCA captures enough
protein constraints to predict functional variants having less than
65% identity with amino-acid sequences used to train the DCA
model13. They also experimentally demonstrate that an IND
model fails at generating functional variants. This leads us to
question the widespread use of software based on independent-

a

b

c

Fig. 7 Epistasis between fixed differences in a panel of diverged species.
a Phylogenetic tree of studied strains. Tree built from an amino-acid
sequence alignment of 878 core genes. b DCA epistatic cost decreases
with divergence. It is defined as the difference between the total change in
statistical energy between pairs of sequences and the sum of single-mutant
effects. Negative values correspond to positive epistasis: mutations are
more beneficial (lower DCA score) taken altogether than the sum of their
individual effects. Boxplot center lines represent medians, box limits are
upper and lower quartiles, whiskers extend to show the rest of the
distribution within an 1.5 × interquartile range, outliers are represented with
points. Sample sizes are n= 22,352 for <5%, n= 15,870 for 5−10%,
n= 10,810 for 10−15%, n= 6776 for 15−20%, n= 3564 for 20−25%,
n= 3432 for >25%. c Distribution of epistatic couplings between pairs of
fixed differences between E. coli and Y. pestis. The distribution is shifted
towards negative values corresponding to positive epistatic couplings
between fixed differences: they are better together than the sum of their
individual effects. The relative small values of these couplings as compared
to overall epistatic scores measured between entire sequences (b) indicate
that epistatic patterns build up gradually by an accumulation of many small
couplings.
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site models such as SIFT26 or Polyphen27 to predict mutation
effects. Here, we use DCA to characterize E. coli evolutive history.
However, it paves the way to a far broader range of applications
such as predicting adaptation or understanding molecular
mechanisms underlying genetic diseases. In the latter case, DCA
may prove useful at investigating cases of Dobzhansky–Muller

incompatibilities28 where amino-acid changes that have been
fixed in distant species would be pathogenic to humans. For more
applied purposes, DCA could be used to single out causative
mutations associated to diseases in human genetics.

In agreement with ref. 5, we find that context dependence
dramatically reduces the variability observed at a given amino-
acid site. Epistasis, therefore, plays an important role in evolution.
However, we show that epistatic couplings between pairs of sites
remain small compared to the typical effect of a mutation. Our
data suggest that the strong context dependence of mutation
effect comes from an accumulation of many small couplings.
Consequently, most of the polymorphisms that arise within a
species should have the same effect in all strains: the amino-acid
landscape near a reference strain is locally smooth. In contrast,
the global landscape is rougher, with about one-third of amino-
acid sites where the effect of mutations drastically varies between
distant species. Analyzing a panel of closely diverged species
through DCA modeling, we are able to show how these epistatic
patterns gradually emerge with divergence.

Deep mutational scans have shown that positive epistasis
between pairs of amino acids is less common than negative
epistasis3. However, we show that positive epistatic couplings
between residues dominate long-term evolution. Simulating the
evolution of ArgT protein, Shah et al. have already noticed that,
under purifying selection, mutations that fix are enriched in
positive epistatic couplings with the rest of the background4. This
is because purifying selection favors both mutations that are
beneficial in all backgrounds and mutations that are beneficial in
a given background due to epistatic couplings with the rest of the
sequence. Here, we observe the same phenomenon with real data
and across hundreds of genes. Quantifying these effects experi-
mentally would require performing deep mutational scans on
several homologs at different distances with extremely accurate
fitness estimates to detect small effects.

According to our findings, polymorphisms currently occurring
in E. coli are close to neutral. On the contrary, fixed differences
with Y. pestis tend to be deleterious in E. coli background. These
observations perfectly fit a scenario of contingency and
entrenchment: mutations are neutral at the time when they
appear while being contingent on previous mutations and
entrenched by subsequent mutations4. However, our approach to
analyzing context dependence is necessarily limited by the
accuracy of DCA at modeling epistatic interactions. We have
gathered evidence that DCA correctly captures the local neigh-
borhood near E. coli sequences. These results combined with
other assessments of DCA predictive power12,13 lead us to believe

a

b

c

Fig. 8 Epistatic couplings between amino-acid differences that have fixed
between E. coli and Y. pestis in rplK gene. a Distribution of epistatic
couplings between pairs of fixed differences. The left tail of negative DCA
scores signals an over-representation of positive epistatic couplings.
Boxplot center line represents the median, box limits are upper and lower
quartiles, whiskers extend to show the rest of the distribution within an
1.5 × interquartile range, outliers are represented with points, sample size is
n= 91 couplings. b Joint distribution of epistatic couplings values between
pairs of residues harboring a fixed difference and their physical distance in
the 3D structure of the protein. The strongest couplings correspond to
residues that are in contact (<10Å). However, most of the couplings
involve residues that are more distant than 10Å. c Representation of the 3D
structure of the protein encoded by rplK: residues that differ between E. coli
and Y. pestis are highlighted with red spheres. Most of the fixed differences
cluster together in the same domain, explaining why we observe a strong
epistatic signal even though most of the pairs of fixed differences are not in
physical contact.
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that it should be informative on how context dependence evolves
with divergence. We cannot, though, reject the hypothesis that
some of our observations are not a true biological signal but more
artifacts of DCA modelings. In particular, DCA may capture
some phylogenetic correlations as well as true epistatic couplings.
In fact, accidental cooccurrences of mutations along the branches
of a phylogeny have been previously shown to generate non-
trivial correlations between residue positions29, which in turn
lead to non-zero, but spurious couplings in DCA models30,
overlaying the true epistatic couplings. An analysis of the impact
of the phylogeny (see Supplementary Notes) in our dataset shows
that, as expected, phylogeny-induced spurious couplings result in
lower site entropies than in independent models (Supplementary
Fig. 10a). However, full DCA models capture more couplings and
have therefore even lower site entropies. In addition, the arti-
factual couplings created by phylogeny worsen our ability to
predict observed polymorphic and conserved sites in E. coli
(Supplementary Fig. 10b), proving that phylogeny cannot explain
the patterns we observe across strains.

DCA model performance relies on the quality of the inter-
species MSAs on which models are learned. Pfam-domain MSAs
are deeper and more diverse than full-protein MSAs because
many different proteins across a wide range of organisms can
share the same Pfam domain. As a consequence, DCA models
trained on Pfam-domain MSAs overperform those trained on
full-protein MSAs in predicting native amino acids and mutation
effects (Supplementary Figs. 1–5). However, full-protein MSAs
cover a larger fraction of the genome, and DCA models trained
on them perform well at predicting site variability. The choice of
the MSA reveals a trade-off between the DCA model accuracy
and the fraction of the genome that can be covered. Depending
on the intended applications, one might be favored over
the other.

Since landscape models are inferred one by one for each pro-
tein, we can only capture intraprotein epistasis, but not any
epistatic interaction between proteins. This is not an intrinsic
limitation of the DCA approach, epistatic landscapes connecting
two or more proteins may be inferred from joint MSAs31.
However, the size of the model grows quadratically with the
number of amino-acid sites, making the inference of a full joint
core genome landscape impractical in terms of computational
time. Even by restricting to intraprotein epistasis, we obtain
amino-acid landscapes that are relevant to study evolution on
short and long timescales. The substantial context dependence of
mutation effects that we uncover may be enhanced by accounting
for inter-protein epistasis.

Methods
Datasets—interstrain MSAs. In all, 61,157 E. coli genomes are downloaded from
Enterobase32. In total, 298,781,787 coding sequences are detected by Prokka
1.13.333. In all analyses, the reference strain is the GA4805AA genome (available on
NCBI34 under BioProject accession id PRJNA218163). For each gene in the
reference strain, homologous sequences in the other genomes are retrieved using
phmmer from HMMER 3.3.135 (parameters: --popen 0.0001 --pextend 0.01) fol-
lowed by a curation step where only sequences with less than 10 gaps after being
aligned on the reference and more than 90% identity with the reference are kept.
All genes with at least 60,000 homologous sequences are kept, these are referred to
as core genes. Amino-acid sequences are aligned using mafft v7.47136 and DNA
sequences are reverse-aligned from amino-acid sequence alignments to preserve
codon alignments. Two types of multiple-sequence alignments (MSAs) are gen-
erated: one with the full-length core gene sequences (full gene MSAs, produced for
genes that are present in at least 61,000 genomes) and one per Pfam domain19

present in a core gene (Pfam-domain MSAs).

Datasets—closely diverged species MSAs. The coding sequences of nine gen-
omes of species closely related to E. coli are downloaded from Mage37: Escherichia
coliK12 - chromosome ECK.1, Escherichia coliUMN026 - chromosome ESCUM.2,
Escherichia albertiiTW07627 - chromosome ESCAL.1, Escherichia fergusoniiATCC
35469T - chromosome EFER.2, Salmonella entericasubsp. arizonae serovar 62:z4,

z23:-- RSK2980 - chromosome NC\_010067.1, Klebsiella pneumoniae1162281 -
WGS AFQL.1, Atlantibacter hermannii4928STDY7071316 - WGS CABGLB01.1,
Pantoea ananatisAJ13355 - chromosome NC\_017531.1, Yersinia pestisAngola -
chromosome NC\_010159.1. Homologous sequences are retrieved using vsearch
v2.15.138 usearch_global command against the reference genome (parameters:
--strand plus --id 0.5 --query_cov 0.8 --target_cov 0.8 --maxaccepts 1). Only core
genes (genes with a homolog in all 9 genomes) are kept. Amino-acid sequences are
aligned by mafft v7.47136. Both full-gene MSAs and Pfam-domain MSAs are
generated. Full genes MSAs are also concatenated to produce a unique MSA used
to generate a phylogeny with FastTree 2.1.339.

Datasets—interspecies MSAs. For each full-gene interstrain MSA and full-gene
closely diverged species MSA, the corresponding full-gene interspecies MSA is
produced by querying the corresponding reference amino-acid sequence against
UniRef30 2020-0340 using HHblits 3.341 followed by a curation step where
sequences with more than 10% gap are removed from the MSA.

For each Pfam-domain interstrain MSA and Pfam domain closely diverged
species MSA, the corresponding Pfam-domain interspecies MSA is generated by
downloading the full Pfam alignment from the Pfam 34.0 (March 2021) database19

and aligning the reference sequence to the Pfam HMM using hmmalign from
HMMER 3.3.135. All sites corresponding to inserts in the reference sequence are
removed from the reference sequence, sites that are gapped in the reference
sequence after aligning it to the Pfam HMM are removed from the Pfam MSA.

DCA and IND models. Direct-Coupling Analysis in the pseudolikelihood max-
imization framework (plmDCA)42 is used to train DCA models, using standard
settings: θ= 0.2 (for reweighting) and λJ= 0.01, λh= 0.01 (for L2 regularization).

For each interstrain MSA, the corresponding interspecies MSA is filtered to
remove all sequences with >90% identity with the reference sequence. A DCA
model is then trained if the filtered interspecies MSA contains more than
200 sequences. While this may appear a low threshold, know that most Pfam MSAs
are much larger with an average size of 50,988 sequences, and more than 95% of
Pfam MSAs that have at least 913 sequences (Supplementary Fig. 9).

For each closely diverged species MSA, a tree is built with FastTree39 from the
corresponding interspecies MSA concatenated to the closely diverged species MSA.
The most recent common ancestor to the closely diverged species is inferred from
this phylogeny. Any sequence of the interspecies MSA that descends from this
most recent common ancestor is removed from the interspecies MSA. This is done
in order to limit the risk of phylogenetic couplings to interfere with true epistatic
interactions when training DCA models. A DCA model is then trained if the
filtered interspecies MSA contains more than 200 sequences.

Each time a DCA model is trained, a corresponding IND model is produced
from the frequencies of all possible amino acids or gaps at each position in the
filtered interspecies MSA used to train the DCA model. Frequencies are computed
after a reweighting step (θ= 0.2) to give similar weights to training sequences than
in the DCA model. The reweighting step is performed using DCAUtils.

Individual mutation effect prediction by DCA and IND models. When no
particular software is mentioned, analyses are performed using Python3 v3.843 and
Biopython v1.7744. Amino-acid sites that are gapped in more than 20% of the
sequences of the interspecies or intra-species MSAs are never considered.

A DCA model trained on an interspecies MSA of length L is composed of two
matrices: h and J. They can be used to assign a statistical energy E(a1,…, aL) to any
amino-acid sequence (a1,…, aL):

Eða1; ¼ ; aLÞ ¼ �Σi < jJijðai; ajÞ � ΣihiðaiÞ; ð4Þ
The hi(ai) are site-dependent biases taking into account the importance of single
amino acids in individual sequence positions; the Jij(ai, aj) are epistatic couplings
connecting the amino acids in pairs of positions. The function E is inferred to
maximize the pseudolikelihood of the sequences in the interspecies MSA.

Two amino-acid sequences can be compared to one another by simply making
the difference between their statistical energy values. In particular, the DCA score
of mutating amino acid α into amino acid β at position i in the amino-acid
background (a1,…, ai−1, ai+1,…, aL) is given by:

ΔEi ¼ Eða1; ¼ ; ai�1; β; aiþ1; ¼ ; aLÞ � Eða1; ¼ ; ai�1; α; aiþ1; ¼ ; aLÞ
¼ hiðαÞ � hiðβÞ þ Σj≠iJ ijðα; ajÞ � Σj≠iJ ijðβ; ajÞ;

ð5Þ

The DCA score of the mutation α→ β at locus i in the amino-acid background
(a1,…, ai−1, ai+1,…, aL) can be turned into a conditional probability of observing
the amino acid β at locus i, given that the other positions take amino acids
a0ni ¼ ða1; ¼ ; ai�1; aiþ1; ¼ ; aLÞ. Within our DCA-based modeling framework,
this quantity is given by Eq. (2):

Piðβja0niÞ ¼ exp hiðβÞ þ Σj≠iJ ijðβ; ajÞ
n o

=zi

with the normalization zi chosen such that P becomes a probability distribution
over the values of β, i.e., over the 20 theoretically possible amino acids in position i
(gaps are not considered, since we study the effects of amino-acid substitutions and
no deletions).
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The probability of observing amino acid β at locus i in IND is given by the
frequency of amino acid β at locus i in the interspecies MSA (after sequence
reweighting, see the section “DCA and IND models”): fi(β).

Context-independent and context-dependent entropies. The Context-
Independent Entropy (CIE) is the standard column entropy of the interspecies
MSAs. It is calculated from the position-specific amino-acid frequencies fi(β),
measuring the fraction of sequences in the interspecies MSA having amino acid β
at locus i, using Eq. (1):

CIEi ¼ �Σβf iðβÞ log2 f iðβÞ:
The Context-Dependent Entropy (CDE) is computed from the conditional

probabilities of observing the amino acid β at locus i in the amino-acid context of
the reference strain Piðβja0niÞ with the formula of Eq. (3):

CDEiða0niÞ ¼ �ΣβPiðβja0niÞ log2 Piðβja0niÞ
The difference between CIE and CDE gives the information gain (IG) provided

by the context:

IGiða0niÞ ¼ CIEi � CDEiða0niÞ; ð6Þ

1-SNP mutations. All codons in the reference genome are analyzed in order to
record all possible synonymous mutations and non-synonymous mutations that
can be obtained by mutating them exactly once. These mutations are referred to as
1-SNP mutations. For non-synonymous mutations, the corresponding amino acids
encoded by the mutated codons are also recorded.

The probability of observing an amino acid β can be computed from an IND
model restricted to 1-SNP mutations, by setting to 0 all entries of the fi(β) vector
that do not correspond to 1-SNP mutations and re-normalizing fi(β). These new
probabilities can be used to compute a CIE that is restricted to 1-SNP mutations.

The probability of observing an amino acid β can be computed from a DCA
model restricted to 1-SNP mutations, by setting to 0 all entries of the Piðβja0niÞ
vector that do not correspond to 1-SNP mutations and re-normalizing Piðβja0niÞ.
These new probabilities can be used to compute a CDE that is restricted to 1-SNP
mutations.

Simulations of neutral diversity segregating on amino-acid sites. Simulations
are used to estimate the amount of neutral diversity segregating in E. coli. They are
performed in two steps:

1. A calibration step where synonymous mutations are drawn from a Poisson
distribution of parameter λ. The λ value that best fit the observed amount of
synonymous mutations is selected.

2. A simulation of genome evolution where both synonymous and non-
synonymous mutations are sampled using the selected λ value and can
maintain in the population depending on their fitness cost (synonymous
mutations are supposed to be neutral and DCA score is used as a proxy for
fitness cost of non-synonymous mutations).

All simulations are based on Jukes–Cantor model (JC69). Only sites where the
reference codon is the major allele are considered.

The calibration step is led on codons for which exactly three synonymous
1-SNP mutations are possible. A random number N is sampled from a Poisson
distribution of parameter λ: it corresponds to the total number of synonymous
mutations occurring at this site. N codons are then sampled with replacement from
the three synonymous mutations possible at this site (with equiprobability). Each of
these codons is kept with an acceptable probability of 50%. The number of different
codons that are accepted at each site is recorded. Its minimal value is one (the
reference codon alone) and the maximal value it can take is four (the reference
codon and all three others synonymous mutations). Twenty simulations for each λ
ranging from two to five with a 0.1 step size are run to select the value of λ for
which the average number of synonymous mutations per site is the closest to what
is observed in the >60,0000-strain dataset.

The simulation of genome evolution is then performed for all the sites of the
dataset, excepting those for which the reference codon is not the major allele. For
each site, a total number of mutations, N, is sampled from a Poisson distribution of
parameter λ (using the λ estimated during the calibration step). N codons are
sampled with replacement from the nine possible codons (with equiprobability).
Each of these codons is kept with an acceptance probability p = P(observing
derived amino acid at locus ija0ni)/(P(observing derived amino acid at locus ija0ni) +
P(observing reference amino acid at locus ija0ni)), where P(observing a given amino
acid at locus ija0ni) is the conditional probability of observing this amino acid at
locus i given the amino-acid context of the reference strain, computed with DCA.

Epistatic cost. Epistasis is defined as the deviation from additivity of mutational
effects. Having two mutations in sites i and j of a protein, the total mutational effect
ΔEij, defined as the difference in statistical energy between the double mutant and
the reference sequences, can be compared to the sum ΔEi+ ΔEj of the effects of the
two single-site mutations, individually inserted into the reference sequence. The

epistatic cost for substituting the reference residues αi, αj with βi, βj is the differ-
ence:

ΔΔEij ¼ ΔEij � ΔEi � ΔEj ¼ Jijðαi; βjÞ þ Jijðβi; αjÞ � Jijðβi; βjÞ � Jijðαi; αjÞ; ð7Þ
Similarly, the epistatic cost of an arbitrary number of mutations is the difference

between the total mutational effect ΔEij…n of the mutations altogether (i.e., the
difference in statistical energy between the mutant and the reference sequences)
and the sum ΔEi+ ΔEj+…+ ΔEn of the effects of the all single-site mutations,
individually inserted into the reference sequence:

ΔΔEij¼ n ¼ ΔEij¼ n � ΔEi � ΔEj � ¼ � ΔEn; ð8Þ
For each interstrain MSA, sequences with exactly two mutations compared to

the reference sequence and no gap are gathered. The total mutational effect ΔEij of
each pair of mutations in the reference sequence is computed and compared to the
sum ΔEi+ ΔEj of the effects of the two single-site mutations, individually inserted
into the reference sequence. For all pairs of fixed differences between Y. pestis and
the reference sequences, the epistatic couplings ΔEij are also recorded.

For closely diverged species MSAs, the epistatic cost between each pair of
homologous sequences with no more than one gap difference (but any arbitrary
number of other missense mutations) is computed as well as the proportion of
fixed differences between them.

When comparing epistatic cost between pairs of fixed non-synonymous
differences in rplK to the distance between the corresponding residues in the 3D
structure of the protein, the 4V6E PDB structure is used45. It is displayed using
PyMOL46.

Effective proportion of residues coupled to an amino-acid site. DCA models
are based on a matrix J of pairwise epistatic couplings between residues in a
sequence. The Inverse Participation Ratio (IPR) quantifies how diffuse epistatic
couplings involving a residue at position i are. It is computed as follows:

IPRi ¼ Σj≠iðJijðai; ajÞ2=Σk≠iJ ikðai; akÞ2Þ
2 ð9Þ

with (a1,…, aL) being the reference sequence.
IPRi corresponds to the inverse of the effective number of sites that are

epistatically coupled with a position i. The effective proportion of residues coupled
to an amino-acid site at position i in a sequence of size L is derived from IPRi as
being 1/(IPRi. L).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequence data used in this study have been deposited in the Zenodo database under
accession code 577419247 (https://doi.org/10.5281/zenodo.5774192). The exact list of
genes and Pfam domains analyzed is available at https://github.com/LucileVG/DCA_
polymorphism_Ecoli/gene_domains.csv48. The following public databases were used:
UniRef30 (2020-03), Pfam 34.0 (March 2021), Enterobase, and Mage. The reference
genomes used in this study are the following: GA4805AA genome (available on NCBI34

under BioProject accession id PRJNA218163), Escherichia coli K12 - chromosome ECK.1,
Escherichia coli UMN026 - chromosome ESCUM.2, Escherichia albertii TW07627 -
chromosome ESCAL.1, Escherichia fergusonii ATCC 35469T - chromosome EFER.2,
Salmonella enterica subsp. arizonae serovar 62:z4,z23:-- RSK2980 - chromosome NC
\_010067.1, Klebsiella pneumoniae 1162281 - WGS AFQL.1, Atlantibacter hermanni i
4928STDY7071316 - WGS CABGLB01.1, Pantoea ananatis AJ13355 - chromosome NC
\_017531.1 and Yersinia pestis Angola - chromosome NC\_010159.1.

Code availability
Code is available at https://github.com/LucileVG/DCA_polymorphism_Ecoli and is
linked to Zenodo database under accession code 6624449,lucilevg_2022_6624449
(https://doi.org/10.5281/zenodo.6624449).
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