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Abstract. Despite their advantages, normalizing flows generally suffer
from several shortcomings including their tendency to generate unrealistic
data (e.g., images) and their failing to detect out-of-distribution data. One
reason for these deficiencies lies in the training strategy which traditionally
exploits a maximum likelihood principle only. This paper proposes a new
training paradigm based on a hybrid objective function combining the
maximum likelihood principle (MLE) and a sliced-Wasserstein distance.
Results obtained on synthetic toy examples and real image data sets show
better generative abilities in terms of both likelihood and visual aspects
of the generated samples. Reciprocally, the proposed approach leads to a
lower likelihood of out-of-distribution data, demonstrating a greater data
fidelity of the resulting flows.

1 Introduction

Approximating probability distributions thanks to normalizing flows (NFs) has
proven to be a powerful approach to accurately represent the underlying pro-
cesses at the origin of collected data. NFs are designed to provide a tractable
approximation of the data-generating density pX by transforming a base nor-
mal distribution through a series of bijective transformations [1]. The usual
approach to train such architectures relies on the principle of maximum likeli-
hood estimation (MLE), i.e., maximizing the joint density of the observed data
with respect to (w.r.t.) the parameters of the network. The constraint of relying
on a parametric family of distributions may however raise crucial issues. Indeed,
the optimality of MLE holds only when there is no model misspecification, i.e.,
the true data distribution pX belongs to the family that can be represented
by the optimized model. In practice, it is difficult to ensure a priori that the
chosen family of functions is able to accurately model the targeted distribution.
Hence the choice of the learning objective becomes largely an essential but most
often empirical question. Moreover, training NF explicitly uses a Gaussian like-
lihood, i.e, a function of the two first moments. Hence, optimizing a Gaussian
likelihood function leaves any higher order moments completely free. A more
refined way of fully characterizing the targeted distribution would be to match
all the other higher order moments as well. Clearly, using a statistical distance
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between distributions during the training process would shift the optimization
task from a nonlinear regression problem w.r.t. the likelihood parameters to a
more relevant problem of looking for the best matching between the generated
distribution and the targeted one. Grover et al. [2] proposed a hybrid objective
that bridges implicit and prescribed learning by combining MLE and adversar-
ial training using a GAN. The hybrid objective has a balancing effect between
perceptually good-looking samples and an accurate density estimation of the
inputs. The authors also demonstrate that this hybrid objective has a regular-
izing effect, which permits the model to outperform MLE as well as adversarial
learning. However the choice of using an adversarial architecture is accompa-
nied by the well-documented drawbacks of GANs. An adversarial architecture
requires the training of an additional discriminator which is notoriously unsta-
ble, can lead to mode collapse [3] and can produce overconfident predictions
from out-of-distribution (OoD) inputs [4].

To overcome the issues mentioned above, this paper introduces a novel hy-
brid loss function to be used to train NF. As suggested above, in addition to the
conventional MLE-based term, the proposed hybrid training loss also incorpo-
rates a term to measure the discrepancy between the generated and the targeted
distribution. This term derives from the Sliced-Wasserstein distance (SW) [5]
between the true data distribution and the generated samples. Experimental
results show that augmenting the MLE objective with this term consistently
achieves higher likelihood as well as better quality of the generated samples. It
also demonstrates better OoD detection capabilities compared to classical train-
ing of flow-based models. Section 2 introduces the proposed method referred
to as sliced-Wasserstein NF (SW-NF) and its hybrid learning objective. Sec-
tion 3 illustrates its performances on numerical experiments. Conclusions and
prospects are reported in Section 4.

2 Sliced-Wasserstein flows

2.1 Normalizing flows

NFs are a flexible class of deep generative networks that learn a change of variable
between two probability distributions pX and pZ through an invertible trans-
formation fθ : X 7→ Z = fθ(X) parametrized by θ [1]. In general, pX is only

known through samples x = {xn}Nn=1 and, for tractability purpose, pZ is chosen
as a centered normal distribution with unit variance. The parameters θ defining
the operator fθ are then adjusted according the MLE principle and exploiting
the change of variable

pX(x) = pZ (fθ(x))
∣∣∣det Jf−1

θ

∣∣∣ with Jf−1
θ

=
∂f−1

θ

∂x
(1)

In other words, the network is trained by minimizing the negative log-likelihood
(NLL) or equivalently the loss function denoted by LMLE(x; θ) = − log(pX(x)).
Without loss of generality, this work focuses on NFs based on affine coupling
layers. Examples of such flows include RealNVP [6], Glow [7] among others.



2.2 Sliced-Wassertein distance

In recent years, Wasserstein distance, which is intimately related to the the-
ory of optimal transport (OT), has received a considerable attention from the
machine learning (ML) community because of its theoretical properties when
comparing distribution. However, it suffers from strong computational and sta-
tistical limitations, which have severely hindered its effective use in problems
in high dimensions. Several workarounds have been proposed to alleviate these
issues and to enable the use of OT in ML applications. In particular, the Sliced-
Wasserstein (SW) distance is an alternative OT metric [5]. It has been increas-
ingly popular since it benefits from a significantly reduced computational cost
over the Wasserstein distance, especially on large-scale problems. In a nutshell,
the SW distance compares high-dimensional distributions by comparing their
projected 1d-distributions for which the computation of the Wasserstein distance
is closed-form. According to a Monte Carlo principle the SW distance between
two distributions pX and pZ empirically represented by two sets of samples x
and z, respectively, can be approximated by i) drawing a large set of vectors
u1, . . . , uJ uniformly distributed over the unit sphere then ii) averaging the true
1d-Wasserstein distances between the slices of the two distributions along direc-
tions ui. It will be denoted as LSW(x, z) in what follows. Its formulation through
its projections onto the unit sphere is well adapted when samples are vectors.
Introduced by Nguyen et al. [8], the so-called convolution SW (CSW) general-
izes SW to images using a series of convolutions in the spirit of a multiresolution
approach. We denote LCSW(x, z) the corresponding distance measure.

2.3 Hybrid objective function

The proposed SW-NF method builds on a NF neural architecture fθ to target
a normal latent distribution pZ so that the likelihood of the observed data pX
is well-defined and tractable for exact evaluation and MLE training. Departing
from conventional strategies deployed to train NFs, this work proposes to derive
a hybrid objective function that binds the likelihood of a prescribed model to
high order moment matching. To this aim the conventional MLE-based objective
is augmented with an additional term measuring the discrepancy between the
respective distributions of the original data x ∼ PX and the generated data
x̃ = f−1

θ (z). Note that the likelihood loss is prescribed on the latent space
while the SW-based distance between the generated and target distributions
can be prescribed over the data space. Thus the proposed hybrid objective is a
combination of reconstruction and feature losses defined as

L(x, z; θ) = L⋆W(x, f−1
θ (z)) + αLMLE(x; θ) (2)

where α is a hyperparameter balancing the two terms and L⋆W refers to ei-
ther LSW for vector data sets or to LCSW for image inputs, respectively. It is
worth noting that the new objective function can be interpreted as a regular-
ized counterpart of the change of variable on the data space. Moreover it has
the great advantage of not depending on an auxiliary network as in [2]. Note



Objective NLL SW ∥κ3∥22 ∥κ4∥22
MLE 0.52 0.0033 0.2233 5.6124
SW 1.78 0.0007 0.0026 0.1822
SW-Flow 0.41 0.0008 0.0501 0.2259
Flow-GAN [2] 0.51 1.23 0.4756 7.7725

Table 1: Circle data set: assessment of goodness-of-fit (for all metrics, the lower
the better).

Objective Inception NLL (bits/dim) CSW ∥κ3∥22 ∥κ4∥22
MLE 2.42 3.54 1514.26 64.94 2462.37
SW 1.28 9.81 1190.11 13.13 598.54
SW-Flow 3.04 3.19 1014.26 6.24 656.37
Flow-GAN 3.21 4.21 1621.78 72.3 3079.12

Table 2: CIFAR-10 data set: assessment of goodness-of-fit (for inception score,
the higher the better; for all other metrics, the lower the better).

that the SW-based discrepancy measure between the generative model and the
data distributions can also be prescribed over the latent space by replacing the
SW-based term in (2) by L⋆W(z, fθ(x)).

3 Numerical experiments

This section assesses the versatility and the accuracy of proposed SW-NF method
through numerical experiments. First, experiments conducted on the Circle data
set from scikit-learn are presented to provide some insights about key ingredi-
ents of the proposed approach. Then the performance of SW-NF is illustrated
through more realistic experimental settings exploiting the CIFAR-10 and SVHN
image data sets. It is compared to the alternative training strategies which con-
sist in relying on the sole MLE or SW terms in (2) and to the Flow-GAN method
which hybridizes MLE and GAN losses [2]. For all results reported below, the
stochastic gradient descent is implemented in Pytorch, with the Adam optimizer,
a learning rate of 10−4 and a batch size of 4096 or 8192 samples. When dealing
with the toy example, the NF implementing the unknown mapping f is chosen
as a RealNVP [6] and the conventional SW distance is chosen for hybridization.
When dealing with the image-driven experiments, the network architecture is
Glow [7] and the CSW is considered as a statistical distance. The proposed
learning strategy is compared with conventional method from two task-driven
perspectives, namely goodness-of-fit and OoD detection.
Goodness-of-fit: We first study the goodness-of-fit of the targeted latent space
through the learned inverse transform. This evaluation is conducted by evaluat-
ing not only the NLL but also the (C)SW distance and the 3rd- and 4th-order
cumulants κ3 and κ4 which are expected to be equal to zero for the prescribed
normal distribution pZ . Table 1 and Table 2 report the results reached by the



5 4 3 2 1
Negative bits per dimension

0.0

0.2

0.4

0.6

0.8

1.0 SVHN
CIFAR10

(a) MLE training

6 5 4 3 2 1
Negative bits per dimension

0.0

0.2

0.4

0.6

0.8

1.0
SVHN
CIFAR10

(b) Hybrid training

Fig. 1: Likelihood histogram for 1000 CIFAR-10 images (orange) and 1000 SVHN
images (blue) prescribed by a CSW-NF trained on CIFAR-10 images.

proposed SW-NF approach for the circle-shaped and the CIFAR-10 data sets,
respectively. Table 2 also gives the inception score for visual inspection of the
images. Interestingly, the proposed SW-NF method provides significantly bet-
ter NLL scores than the sole MLE-based learning strategy. For the two data
sets, it also leads to competitive results in terms of (C)SW and normality fea-
tures, reaching scores close to SW-based learning. In addition, when considering
the CIFAR-10 images, it leads to higher inception score, thus suggesting higher
visual quality of the generated samples.

Method Moons Blobs
MLE 0.37 0.54
SW 0.61 0.70
SW-NF 0.53 0.73

Table 3: Circle data set: performance of OoD in term of AUROC (the closer to
1 the better).

Out-of-distribution detection: The second set of experiments assesses the
ability of detecting OoD data. Table 3 reports the area under the receiving oper-
ator caracteristics (AUROC) for moon-shaped and blob-shaped data sets given
a model trained on circles. In the absence of SW term in the training loss, the
model constantly shows lower ability to discriminate OoD data from the training
distribution data. In the context of CIFAR-10 data sets, the experimental setup
of [9] has been considered. Glow-based NFs have been trained on CIFAR-10
and we monitor the prescribed likelihood for both CIFAR-10 and SVHN images.
Fig. 1 (a) shows the results obtained by a sole MLE-based training: this model
predicts a higher likelihood of OoD data. Fig. 1 (b) depicts similar plots when
considering the proposed hybrid loss: it leads to lower likelihood to OoD data
coming from the SVHN data set.



4 Conclusion

This paper introduces a new paradigm to train normalizing flow. It consists
in augmenting the loss term derived from the conventional maximum likelihood
principle with a discrepancy measure between the generated and targeted distri-
butions. The resulting hybrid loss function thus combines a Gaussian likelihood
with a (convolutional) sliced-Wasserstein distance between distributions. Nu-
merical experiments show the better performance of the proposed hybrid train-
ing procedure in terms of perceptual as well as statistical quantitative metrics.
On top of that, one observes a better robustness of the out-of-distribution be-
havior. This works consists of a step towards the design of more powerful NF
implemented as true generative models, beyond their simple use as nonlinear
regressors structurally imposed by a conventional MLE training.
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