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A personalized path generation for an
autonomous vehicle overtaking maneuver

Benoit Vigne, Rodolfo Orjuela, Jean-Philippe Lauffenburger,
Michel Basset

Université de Haute-Alsace, IRIMAS UR7499, Mulhouse, France
(e-mail: firstname.name@uha.fr).

Abstract: The acceptability by a population for new technology is conditioned by its benefits
and its adaptability. While an autonomous vehicle could be a nice solution as an intelligent
transportation system to decrease road crashes, traffic jams, etc., the choice of a driving style
(relaxed/sporty) could be a good factor of adaptability. This study presents a method to optimize
a local overtaking trajectory defined as a sigmoid function integrating constraints of comfort,
safety, and path continuity. An only one driving style parameter allows obtaining different paths
from smooth to tight shapes respecting previous constraints. Simulations of use cases show good
performance of the developed algorithm.
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1. INTRODUCTION

In the last decade, research on path planning focused on
generating optimal paths with a predetermined metric
consisting in distance, jerk, fuel consumption, maximum
speed and minimized time. The most common meth-
ods are classified into six families: Graph search meth-
ods (A*, Dijkstra algorithms), sampling-based planners
(Rapidly-exploring Random Tree algorithm), artificial
potential fields, interpolating curves planners (clothöıd,
spline, Bezier, polynomial, sigmoid), numerical optimiza-
tion (Model Predictive Control) and artificial intelligence
(fuzzy logic, Recurrent Neural Network). This list is non-
exhaustive and methods can be mixed. All have strengths
and limits, reviewed in details in Gonzalez et al. (2016)
and Claussmann et al. (2020).

As these methods have now reached maturity, passenger
comfort is emerging as an additional criterion and several
solutions - including those mentioned above - have been
proposed to improve driving comfort. One consists in
limiting the forces acting on the car and its passengers.
Longitudinal and lateral forces stem respectively from
accelerating/braking action and steering. Logically limit-
ing longitudinal and lateral jerks as well as acceleration
results in smoother vehicle motion (González et al., 2016).
Another method aims at generating human-like paths
minimizing steering control discontinuity and smoothness.
Clothöıd curves with continued curvature is well suited
and is already used for road and railway design (Alia et al.,
2015). However, their complexity to draw limits its use for
real-time applications.

Path personalization requires to adapt passenger parame-
ters of the path planner and decision making modules to
mimic human driving style. Two approaches are used in
the litterature: the first one is explicit since the user has to
fit himself his/her ride comfort wishes. In Bae et al. (2020)
a full scale from cautious to aggressive is used to determine
thresholds for both longitudinal and lateral acceleration

and jerk used by an optimal motion planning algorithm.
The second one is implicit and involves a learning phase to
estimate driving parameters. In Huang et al. (2021), multi-
dimensional time series regression allows the calibration of
longitudinal and lateral models of lane change maneuvers.
Only the implicit approach makes it possible to fine tune
the model according to a typical parameter such as relaxed
or sporty driving style. However, the learning process may
take time and might not be able to be adapted to a shared
Autonomous Vehicle (AV) service.

Most often, comfortable and sporty driving style can be
considered antagonistic. The comfortable style is synony-
mous of a smooth path while the sporty style is associated
to a tight path. This feature is particularly true in the
overtaking process with two lane change maneuvers with
one decision making process. In this paper we defined
and merged criteria for both styles, to optimize a local
trajectory under constraints while ensuring a continuous
comfort profile adaptation through an explicit parame-
ter. Moreover, we successfully used the sigmoid function
with parameters based on vehicle dynamic and geometric
constraints. This guarantees the feasibility of generating
smooth to tight path shapes without discontinuity while
ensuring lateral stability.

The rest of this paper is organized as follows. Section
2 describes the problem formulation, including the work
assumptions and the studied driving maneuver. Section 3
reports the overall optimization method and its adaptation
to the overtaking maneuver, path generation is presented
in Section 4. Section 5 describes the validation process
and results are discussed. Finally, Section 6 draws some
conclusions and highlights some perspectives.

2. PROBLEM STATEMENT

One of the most challenging driving situation is the over-
taking maneuver because of simultaneous control of both



lateral and longitudinal positions. Overtaking involves at
least two vehicles driving at different speeds in the same
direction and on the same lane. The ego vehicle (EV) is the
controlled vehicle arriving behind the leader vehicle (LV)
at a higher speed so that it has to overtake LV. As shown
in Fig. 1, the maneuver can be split into three successive
phases. In phase ①, after safety check, the decision making
process triggers a local path generation to shift EV on its
adjacent lane and bring it alongside LV. In phase ②, the
two vehicles drive in parallel lanes at different speeds so
that EV overtakes LV. This transition deals with a small
lateral gap between vehicles and requires more attention.
In the final phase ③, the decision-making process condi-
tioned by safety can trigger a local path generation to
bring EV back to the initial lane in front of LV.

1
2

3

Fig. 1. Overtaking maneuver

In this context, the maneuver dependent on a double lane
change could be affected by the driving style. We propose
a method to generate personalized path from smooth to
tight shapes respecting constraints of comfort, safety and
continuity with only one parameter.

The maneuver description provides the framework of our
study of local path planning. However, an overtaking ma-
neuver also depends on additional vehicles neighboring
both EV and LV. For instance, on the highway, vehicles on
adjacent lanes can hinder pulling out to pass LV in front
(phase ①), or vehicles in front of LV, can hamper the re-
turn phase (phase ③). On a rural road, the decision-making
process must prohibit a frontal crash with a vehicle driving
on the opposite lane. In such situations longitudinal speed
must be adjusted and a complex decision-making process
must be developed.

The present work focuses on the lateral motion only and
restricts therefore the overtaking maneuver to a scenario
meeting the three following conditions:

• EV and LV are locally the only vehicles.
• The speed of both vehicles is constant during the
whole maneuver.

• The road is straight.

The first assumption allows focusing only on trajectory
generation with a decision-making process reduced to
the control of the lane change depending on the relative
position of EV and LV. The second assumption reduces
the trajectory generation to lateral path generation with
constant speed profiles. The last one is safety-oriented
and avoids dangerous overtaking maneuver in a curve.
We acknowledge that making the maneuver conditional to
these three assumptions may influence the driving style.

3. PROPOSED PARAMETERS OPTIMIZATION

In our case, the lateral deviation y is defined using a
parametric function of the longitudinal position x and
several parameters. This expression integrates comfort and

vehicle dynamics limits definitions and allows deducing
optimal parameters for a safe lane change maneuver.
Among the natural S shape curves (spline, hyperbolic
tangent, etc.), sigmoid curves are popular due to the
few parameters characterizing them (Ben-Messaoud et al.,
2018).

3.1 The sigmoid function

The overtaking local path can be defined through the
sigmoid function:

y(x) =
dlat

1 + e−ξ(x−
dlong

2 −b)
(1)

with 4 parameters having an impact on the curve shape.
The lateral deviation dlat is a constant dependent on
the road width. The longitudinal stretching dlong is a
constant dependent on the vehicle speed and the initial
distance between EV et LV (see section 4). The two last
parameters are ξ, the curvature form factor, and b, the
spatial longitudinal delay.

To allow the sigmoid curve respecting both geometri-
cal and vehicle dynamics constraints under personalized
driving styles, ξ and b are bounded as demonstrated in
Ammour et al. (2020):

ξmin < ξ < ξmax

bmin < b < bmax

with

ξmin = 2
dlong−2bmin

log
(

1−yerr

yerr

)
ξmax =

√
ρmax(γ+1)3

dlatγ(γ−1)

bmin = 0

bmax =
dlong

2 − 1
ξmax

log

(
1− yerr
yerr

)
(2)

where γ = e1.3170, yerr the relative error on the curve

extremities, and ρmax =
aymax

v2x
the maximum curvature

defined by Rajamani (2012), aymax being the maximum
desired lateral acceleration and vx the vehicle longitudinal
speed.

Noteworthly distinct values of b and ξ can define different
local path trajectories as shown in Fig. 2. The obtained
shape of curve is fully related to the personalized driving
style. A sporty driving style with high lateral acceleration
provides shape ③ while shape ① is for a relaxed driving
style (Fig. 1, top panel).

However, the driving comfort is not only associated with
the acceleration but also with the acceleration change,
namely the jerk. While the lateral acceleration is correctly
bounded, the jerk could show non-acceptable limits. For
example, as shown in Fig. 2, the lowest bound of the jerk
is around 6 m.s−3 while the comfort criterion mentioned
in (Bae et al., 2020) limits it to ±2 m.s−3.

The lateral jerk Zlat must be bounded to minimize a very
uncomfortable feeling. Its expression is derived from y(x)
by supposing x(t) = vxt :

Zlat(t) =
d3y

dt3
(3)

By substituting (1) in (3) and after some mathematical
manipulations, the lateral jerk is given by :



Fig. 2. Sigmöıd curves and their derivatives according to
the choice of ξ and b with dlat = 3.5 m, dlong = 250 m,
vx = 22 m.s−1, aymax = 2 m.s−2 et |zymax| = 2 m.s−3

Zlat(t) = dlat(vxξ)
3e−ξ(X) 1−4e−ξ(X)+e−2ξ(X)

(1+e−ξ(X))4

with X(t) = vxt− dlong

2 − b
(4)

As the curve extremums are defined when its derivative is
zero, its minimum Zlatmin is obtained for X = 0 allowing
to bound ξ:

ξ ≤ ξmax1 with ξmax1 = 3

√
8|Zlatmin|
dlatv3x

(5)

So, to fit with both maximal lateral acceleration and jerk,
the upper ξ limit becomes: ξ ≤ min(ξmax, ξmax1).

Altogether the two parameters ξ and b allow modifying the
path shape knowing their lower and upper bounds. Our
objective is to find the best pair meeting a personalized
driving style requirement based on two characteristics
relaxed or sporty, as curve ② in Fig. 2, according to the
definition of normalized comfort. This could be done by
optimizing a cost criterion.

3.2 Cost criterion definition

The [ξ, b] relaxed or sporty characteristics can be defined
by a cost criterion introduced hereafter:

• Smooth/relaxed driving style can be associated
with the acceleration change, i.e. the jerk synonymous
with comfort. In our study, since the longitudinal
speed is assumed constant during overtaking, only
the lateral jerk Zlat is taken into account. For the
local sigmoid path, as shown in (5), the jerk is
directly dependent on parameter ξ. Consequently, a
comfortable path is obtained by minimizing ξ to avoid
sharp lane change. To normalize results (comprised
between 0 and 1), the proposed cost function is: Jsmooth = min

ξ

(
ξ − ξmin

ξmax − ξmin

)2

ξmin ≤ ξ ≤ ξmax

(6)

• Tight/sporty driving style has to generate a racing
feeling. This could be done with the minimization
of the local trajectories, i.e. minimizing the distance

spent on the adjacent lane. Assuming that dlong is
constant, this can be achieved using only the param-
eter b in (1). Considering bmax and bmin imposed
by safety maneuver constraints (see Section 4), the
bounds of the spatial delay b, and the necessity of a
normalized cost criterion, the tight cost criterion is
defined as follows: Jtight = min

b

(
bmax − b

bmax − bmin

)2

bmin ≤ b ≤ bmax

(7)

As shown in Fig. 2,the two Jsmooth and Jtight cost func-
tions relying on parameters ξ and b respectively are antag-
onistic: sporty style requires a high spatial delay obtained
for high curvature form factor while relaxed style requires
a low form factor obtained for low spatial delay. A smooth
continuous variation from relaxed to sporty S shapes is
performed introducing a weighting factor α between the
two cost functions (6) and (7). So, we propose a global
cost function J couple the smooth and tight criteria:{

J = (1− α)Jsmooth + αJtight
0 ≤ α ≤ 1

(8)

4. PERSONALIZED OVERTAKING MANEUVER

Each phase of the overtaking maneuver (see Section 2) re-
quires particular bounds and constraints on the global cost
function (8) according to safety and continuity conditions.
This section describes how these conditions are considered
in the optimization algorithm.

4.1 Pullout phase

As shown in Fig. 3, tend defines the time where EV and
LV are side by side and also the pullout phase length dlong
because dlong = xEV (tend). Thus:

dlong =
vEV

vEV − vLV
xLV 0 (9)

where xLV 0 is the initial inter-distance between EV and
LV.

dw1

dlong

x
0 ˜xEV = xEV (t̃)

xLV 0 x̃LV = xLV (t̃) xl(tend)

y

0

dlat

2

dlat

t=tend

t=0

Fig. 3. Pullout phase

The continuity constraint ensures a smooth transition
between paths. This transition is defined at the local curve
extremities, i.e. for xEV = 0, xEV = dlong and respectively
for lateral position y = 0 and y = dlat with relative error
yerr to tolerate minimum discontinuity. The continuity
factor imposes a system of inequalities:{

y(0) ≤ yerr dlat
y(dlong) ≥ (1− yerr) dlat

(10)

Using (1), system (10) translates into two inequality con-
straints on ξ and b:



dw2

x
0 x̃EV = xEV (t̃) dlongxEV (bmin)

L

Fig. 4. Return phase : adjacent distance

dw3

x
0 x̃EV = xEV (t̃)xLV (t̃) = x̃LV xEV = dlong

Fig. 5. Return phase : Safety gap
−ξ

(
−b− dlong

2

)
≥ log

(
1− yerr
yerr

)
−ξ

(
−b+

dlong
2

)
≤ − log

(
1− yerr
yerr

) (11)

The longitudinal safety gap dw1 between the two vehi-
cles is defined as the distance between the two vehicles
when EV crosses the center line (see Fig. 3). The safety
constraint is then given by:

x̃LV − x̃EV ≥ dw1 (12)

where x̃i is the vehicle position when EV crosses the center
line. From (12) and (9), the upper bound of parameter b
is given by:

b ≤ vEV

vEV − vLV

(xLV 0

2
− dw1

)
(13)

Since the lower bound of ξ is obtained for b = 0 and there
is no reason to anticipate a lane change, i.e. for b < 0, we
adopt 0 as its lower bound:

b ≥ 0 (14)

Altogether, the formulation of pullout phase optimiza-
tion is defined by the following cost function, bounds and
nonlinear inequalities:

J(ξ, b) = (1− α)

(
ξ − ξmin

ξmax − ξmin

)2

+ α

(
bmax − b

bmax − bmin

)2

0 ≤ α ≤ 1
ξmin ≤ ξ ≤ ξmax

0 ≤ b ≤ bmax

−ξ

(
−b− dlong

2

)
≥ log

(
1− yerr
yerr

)
−ξ

(
−b+

dlong
2

)
≤ − log

(
1− yerr
yerr

)
(15)

4.2 Return phase

To minimize path segment connection, phases ② and ③ of
the overtaking maneuver (see Fig. 1) are fused. The side
by side driving phase is obtained by a distance dw2 where
EV drives along LV as shown in Fig. 4 such that:

dw2 =
vEV

vEV − vLV
L, (16)

where L is the LV length.

A safety gap is maintained between both vehicles. Follow-
ing the same approach as in the pullout phase, dw3 defines
the vehicle inter distance to be respected by EV when it
crosses back the center line (see Fig. 5). The parameter
dlong gives the maximal distance for the return maneuver.

Same requirements are used to define the cost function
bounds and constraints.Like (11), the continuity factor
is given by: {

y(dlong) ≤ yerrdlat
y(dw2) ≥ (1− yerr)dlat

(17)

Using (1), the following inequality constraints are ob-
tained:

−ξ

(
dw2 − b− dlong

2

)
≥ log

(
1− yerr
yerr

)
−ξ

(
−b+

dlong
2

)
≤ − log

(
1− yerr
yerr

) (18)

Therefore, the safety constraint becomes:

x̃EV − x̃LV ≥ dw3 ⇒ b ≥ dw3
vEV

vEV − vLV
− dlong

2
(19)

and with the maximum curvature, continuity has to be
maintained with b upper bound:

b ≤ dlong
2

− 1

ξmax
log

(
1− yerr
yerr

)
(20)

Altogether, the formulation of the return phase op-
timization is defined by the following cost function,
bounds, and nonlinear inequalities:

J(ξ, b) = (1− α)

(
ξ − ξmin

ξmax − ξmin

)2

+ α

(
b− bmin

bmin − bmax

)2

0 ≤ α ≤ 1
ξmin ≤ ξ ≤ ξmax

bmin ≤ b ≤ bmax

−ξ

(
dw2 − b− dlong

2

)
≥ log

(
1− yerr
yerr

)
−ξ

(
−b+

dlong
2

)
≤ − log

(
1− yerr
yerr

)
(21)

5. VALIDATION RESULTS

In the first step of the validation process, a proof of concept
is performed. Both optimization formula (15) and (21)
together with criterion (8) are tested to modify the sigmoid
parameters to swtich the driving feeling from comfortable
to sporty. In the second step, the optimization algorithm is
integrated into a simulation architecture allowing to gen-
erate a local path for overtaking maneuvers and validates
dynamically EV trajectories.

5.1 Optimization findings

To observe the evolution of ξ and b for a driving style
switching from relaxed to sporty, both pullout and return
optimization processes (15) and (21) are computed un-
der MATLAB software using fmincon function with the
interior-point solver algorithm. Since both cost functions



are convex, they offer a global solution regardless of the
different constraints.

We adopt the conventional 2.vEV distance for the safety
gap dw1 where 2 s is the global reaction time. There is no
legal definition for the safety distance dw3, so we adopt
dw3 = 25 m. Since there is no constraint on the return
maneuver length, dlong is fixed to dw2 + 200 m where 200
m could correspond to a maximal distance for a lidar to
detect another leader vehicle. This sensor characteristic is
used to set xLV 0 = 200 m. If LV is a truck, the length L is
chosen to be 20 m while L of is set to 5m for a car. Road
width lane dlat is set to 3.5 m.
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Fig. 6. Variations of sigmoid parameters with driving style
during pullout phase
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Fig. 7. Variations of sigmoid parameters with driving style
during return phase

Parameter α varying from 0 to 1 allows an evolution
for a driving style going from relaxed to sporty. Raw
optimization computational results present a very steep
slope and can not be directly used. In both cases, the
full-scale ξ and b variations are obtained by defining an
operating area with inequality constraints bounded by line
segments as shown in Fig. 6 and 7. For the pullout phase,
the inequalities are:{

ξ < (ξmax − ξmin)α+ ξmin

ξ > 2(ξmax − ξmin)(α− 0.5) + ξmin

b < α bmax

(22)

and for the return phase, inequalities are related to pa-
rameter ξ only:{

ξ < (ξmax − 0.6ξmax)α+ 0.6ξmax

ξ > 2(ξmax − ξmin)(α− 0.5) + ξmin
(23)

With those new constraints, optimization findings are
in line with expectations on both continuity and the

monotony . In both phases, the higher the parameter α is,
the higher the ξ is, generating higher lateral acceleration
and consequently sporty feeling. Moreover, this feeling is
emphasized by a decreasing gap between the vehicles when
a sporty driving style is required. In phase ① in Fig. 1,
b should be positive, whereas in phase ③ it should be
negative.

The initial vehicle inter-distance or global return distance
depends on the driving situation and is not necessarily
equal to 200 m. It is interesting to note in Fig. 8 that
ξ and b maintain their relative properties depending on
driving style: with a sporty style, ξ remains high regardless
of distances and imposes a higher the curvature form and
a lower safety gap. On the opposite, with comfortable
style, b remains low regardless of xLV 0 providing low ξ
and smooth trajectory. With a daily style (an intermediate
driving style defined by α = 0.5), the optimization adjusts
both parameters in relation to safety distance when dlong
is short in the return phase. The same conclusions are
obtained for the return phase.
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Fig. 8. Varaitions of pullout phase parameters with xLV 0

value

5.2 Driving situations

The validation is performed by integrating the parameters
optimization algorithm in a local path generation to simu-
late a realistic overtaking scenario. We perform simulations
on a 1000 m distance straight line. There are two lanes,
each one is 3.5 m large without static or dynamic obstacles
(except LV). EV starts at position (0,0) at 300 m behind
LV. The leader is either a car (5 m long) or a truck
(20 m long). The ego speed is 22 m.s−1 and the leader
speed is 10 m.s−1. EV detects LV when 200 m behind
it. Demonstration is done for 3 different driving styles
corresponding to 3 values of α: 0-comfortable, 0.5-daily
and 1-sporty.

5.3 Results and discussion

Fig. 9 and 10 compare trajectories with the different
driving styles. Pullout and return trajectories are similar
independently of the vehicle type. However, we can notice
that the distance covered on the adjacent lane for truck
overtaking is longer than when overtaking a car due to its
length.

Acceleration and jerk do not exceed the fixed limits
(respectively ±2 m.s−2 and ±2 m.s−3) and are conform
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Daily
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Fig. 9. Car overtaking

Comfortable
Daily
Sporty

Fig. 10. Truck overtaking

to the driving style. The sporty driving experience is
reinforced when th vehicle gap decrease. In addition,
comfort is reduced for the return phase due to a small
distance dlong set at 200 m. Improvement could be done
by adjusting this parameter to α.

Fig. 11 shows the truck overtaking maneuver whith a
sporty driving style. The circle markers give ego and leader
positions when ego crosses center line. Both safety gaps are
dw1 = 44 m ≥ 2vEV and dw3 = 48 m ≥ 25 m highlighting
that safety constraints are respected.

6. CONCLUSION AND PERSPECTIVES

In this work, we have optimized the parameters of a
sigmoid function to personalize local trajectory in an over-
taking maneuver according to a driving style preference.
This optimization is performed by introducing continuity
and safety constraints. A variation shape from smooth to
tight can be obtained only by control a single parameter
control α in order to personalize driving style. A simulation

Fig. 11. Safety gap

framework is presented to confirm our analysis. Future
work is considered to extend it to personalized decision
making by relaxing some assumptions.
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