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Abstract

We are interested in solving the unique continuation problem for the heat equation,
i.e., we want to reconstruct the solution of the heat equation in a target space-time
subdomain given its (noised) value in a subset of the computational domain. Both
initial and boundary data can be unknown. We discretize this problem using a space-
time discontinuous Galerkin method (including hybrid variables in space) and look
for the solution that minimizes a discrete Lagrangian. We establish discrete inf-sup
stability and bound the consistency error, leading to a priori estimates on the residual.
Owing to the ill-posed nature of the problem, an additional estimate on the residual
dual norm is needed to prove the convergence of the discrete solution to the exact
solution in the energy norm in the target space-time subdomain. This is achieved by
combining the above results with a conditional stability estimate at the continuous
level. The rate of convergence depends on the conditional stability, the approximation
order in space and in time, and the size of the perturbations in data. Quite impor-
tantly, the weight of the regularization term depends on the time step and the mesh
size, and we show how to choose it to preserve the best possible decay rates on the
error. Finally, we run numerical simulations to assess the performance of the method
in practice.

1 Introduction

In the present work, we are interested in solving numerically a data assimilation problem
subject to the heat equation. In this problem, neither the boundary conditions nor the
initial data are known. In order to compensate for the lack of initial and boundary data,
we use the knowledge of the solution in a subdomain. We also investigate the influence
of noise on this additional datum. Specifically, we consider a bounded Lipschitz domain
Ω ⊂ Rd, d ∈ {1, 2, 3}, a subset $ ⊂ Ω, and a time interval J := (0, Tf ) with final time
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Tf > 0. Our goal is to approximate the function u : J × Ω→ R that satisfies

L(u) :=
∂u

∂t
−∆u = f in J × Ω, (1)

u = g in J ×$, (2)

where f ∈ L2(J ×Ω) is a given source term and g ∈ H1(J ;H1($)′)∩L2(J ;H1($)) is the
restriction to J×$ of a solution to the heat equation in J×Ω. The model problem (1)-(2)
is ill-posed. Indeed, whenever a solution exists (this is the case whenever g satisfies the
heat equation (1) in J ×$), it is unique, but there is no a priori estimate on the solution
in the usual Hadamard sense. Another difficulty is that we want to consider perturbed
data gδ instead of g to account for some noise in the measurements.

Although we do not have usual stability estimates, so-called conditional stability es-
timates are available. This type of estimate will play a key role in our error analysis.
Conditional stability estimates essentially allow one to control the norm of a function in a
target subdomain by means of weaker norms in a larger domain. Our analysis hinges on
the following result.

Lemma 1 (Conditional stability estimate). Let B be a connected subset of Ω such that
B ⊂ Ω. Let 0 < T1 < T2 < Tf . There exist Cstb > 0 and α ∈ (0, 1] such that for all
v ∈ H1(J ;H−1(Ω)) ∩ L2(J ;H1(Ω)), we have

‖v‖L2(T1,T2;H1(B)) ≤ Cstb

(
‖v‖L2(J ;L2($)) + ‖L(v)‖L2(J ;H−1(Ω))

)α
×
(
‖v‖L2(J ;L2(Ω)) + ‖L(v)‖L2(J ;H−1(Ω))

)1−α
. (3)

Lemma 1 with the additional assumption $ ⊂ B corresponds to Theorem 1 in [8].
This assumption can be removed by using the arguments of the proof of Theorem 1.1
from [23]; see also [24, 17, 1]. The conditional stability estimate from Lemma 1 will be
used to prove the convergence of our approximation method. The constant α therein
has an influence on the convergence rate. For instance, if h is the mesh size and τ the
time step, if polynomials of degree k ≥ 1 (resp., ` ≥ 0) are used for the space (resp., time)
discretization, and provided the noise in the measurements is small enough, our main result
establishes an error bound with decay rate O((hk + τ `+

1
2 )α) in the target subdomain B

(see Theorem 9). We also mention that Lemma 1 admits some interesting extensions.
First, in the case of known boundary conditions (i.e., if we add the assumption v = 0 on
∂Ω), then Lemma 1 remains valid with T2 = Tf , B = Ω, and α = 1 (see Theorem 2 from
[8]). This setting will be considered in our numerical experiments as well. Moreover, in
the case of known initial conditions (i.e., if we add the assumption v(0, .) = v0 in Ω for
some v0 ∈ L2(Ω)), then Lemma 1 remains valid with T1 = 0 provided ‖v0‖Ω is added to
‖L(v)‖L2(J ;H−1(Ω)) in (3) [13]. Other stability estimates are available in the literature, for
instance using Cauchy data on the boundary instead of interior data [22]. For an overview
on analysis techniques of unique continuation for parabolic equations, we refer the reader
to [27].

Since the problem (1)-(2) is ill-posed, a regularization must be considered to devise
a reasonable approximation method. The usual approach is to regularize the continuous
problem before embarking on any discretization method. Several regularization methods
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are available, for instance the quasi-reversibility method [3, 4, 16] or the Tikhonov regu-
larization [20]. These methods have already been applied to solve the data assimilation
problem subject to the heat equation in the one-dimensional case; see [26, 2]. Other nu-
merical approaches have also been proposed and analyzed for the one-dimensional heat
equation, see [21, 28], but, to the best of our knowledge, none of the above-mentioned
references provides an error analysis balancing the stability of the regularization method,
the conditional stability estimate, and the approximation order of the discretization in
space and in time.

An alternative approach is to first discretize the ill-posed problem and then regularize
it at the discrete level. The main advantage of discretizing first and then regularizing is
that it makes it possible to design regularization terms that allow for a rigorous numerical
analysis, leading to error estimates with rates that match the best possible rates deduced
from the conditional stability estimates. The discretize-then-regularize approach has al-
ready been considered for instance in [5, 6, 9] for the stationary version of the present
problem. The analysis was extended to the data assimilation problem subject to the
Helmholtz equation using a high-order discretization in [11]. Data assimilation subject to
non-stationary problems was considered in [12] for the wave equation and in [8, 10] for the
heat equation with known Dirichlet boundary data for the numerical tests. In particular,
[8] considers the semi-discretization in space using lowest-order Lagrange finite elements,
discussing several stability situations, whereas [10] deals with the full discretization of the
problem using the backward Euler scheme in time and still lowest-order Lagrange finite
elements in space. In the latter reference, only the case of unknown initial data, but known
boundary data, is considered. In [15], a method minimizing the dual norm of the PDE
residual augmented by the least-squares error on data fitting was proposed, together with
error estimates for the reconstruction problem. Also in this latter work, the boundary
data are assumed to be known.

In the present work, we use higher-order methods for the discretization in space and
in time. Specifically, we employ a discontinuous Galerkin (dG) method in time and a
hybridized dG method in space (recall that such methods attach discrete unknowns to the
mesh cells and to the mesh faces). The use of a dG method in time is the natural way to
extend the backward Euler scheme to higher order. Furthermore, the use of a hybridized
dG method in space reduces the number of stabilization terms that are needed with respect
to standard finite elements (irrespective of the order of approximation). Indeed, as we shall
see below (see the inf-sup condition from Lemma 3), the hybridized dG method naturally
gives a control on the residuals without the need of any stabilization (which is needed
for standard finite elements). Notice that, at the algebraic level, the discrete unknowns
are globally coupled in time, as is anyway the case for all the methods to solve data
assimilation problems.

To sum up, the added value of the present work is that we consider the data assimilation
problem with unknown boundary conditions (and initial conditions) and that we devise a
higher-order method in space and in time to discretize the above ill-posed problem. The
salient feature of our approximation method is that the regularization term matches the
decay rates of the approximation method. We also emphasize that we rigorously derive an
a priori error estimate that decays at the best possible rate in view of the approximation
capacities of the discretization and of the conditional stability of the continuous problem.
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Finally, we mention that the analysis entails various subtleties because some of the usual
arguments in the analysis of time dG methods cannot be applied here. The reason for this
is that, because of the ill-posed nature of the problem, we cannot invoke a plain coercivity
argument that gives control in the L2(J ;H1

0 (Ω))-norm. As a consequence, we need to add
a stabilization term controlling the time jumps of the discrete solution (and of its gradient)
at all the discrete time nodes. Moreover, in addition to the main analysis arguments used
for well-posed problems (inf-sup stability, consistency), we need an additional, non-trivial
estimate on a suitable dual residual norm. This estimate is indeed key to invoke the
conditional stability estimate from Lemma 1 and prove an error estimate in the energy
norm.

The rest of this work is organized as follows. In Section 2, we present the high-
order discretization method in space and in time. In Section 3, we perform the error
analysis, which combines arguments relevant to well-posed problems (Sections 3.2 to 3.4)
with arguments specific to ill-posed problems (Section 3.5). These steps prepare the stage
for our main results, which are the error estimate (Theorem 7) and the devising of the
regularization to achieve optimal error decay rates (Theorem 9). Finally, in Section 4,
we present some numerical results that corroborate our theoretical results. Moreover, we
illustrate the benefits of high-order discretization methods.

2 Problem discretization

In this section, we describe the space and time discretization, and we present the numerical
scheme studied in the present work.

2.1 Time discretization

In what follows, for two integer numbers p ≤ q, we use the notation {p:q} := {m ∈ N, p ≤
m ≤ q}. We discretize the time interval J using a uniform time step τ := Tf/N (for
simplicity), where N ∈ N∗ is the number of time steps. We then have 0 = t0 < t1 < . . . <
tN = Tf where tn := nτ for all n ∈ {0:N}. We define In := (tn−1, tn) for all n ∈ {1:N}.

For a piecewise smooth function Φτ defined on the above partition of J , we use
the shorthand notation Φn := Φτ |In for all n ∈ {1:N}. We define Φτ (t−n ) := Φn(tn),
Φτ (t+n ) := Φn+1(tn) and [[Φτ ]]n := Φτ (t+n )−Φτ (t−n ). For convenience, we also set [[Φτ ]]0 := 0;
this convention is motivated by the fact that there is no initial condition to enforce in
the present problem. Finally, ∂τt Φτ denotes the broken time derivative of Φτ such that
(∂τt Φτ )|In := ∂tΦ

n for all n ∈ {1:N}.

2.2 Space discretization

Let (Th)h>0 be a family of matching meshes of Ω. In principle, the meshes can have cells
that are polyhedra with planar faces in Rd, and hanging nodes are also possible. How-
ever, the analysis below requires the mesh to be such that the underlying discontinuous
polynomial approximation space has a global H1-conforming subspace with optimal ap-
proximation properties. For simplicity, we will therefore restrict the discussion to meshes
composed of simplices (one can also readily consider meshes composed of cuboids). The
mesh cells are conventionally taken to be open subsets of Rd, and nT denotes the unit
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outward normal to the generic mesh cell T ∈ Th. For a subset S ⊂ Rd, hS denotes the
diameter of S, and for a mesh Th, the index h refers to the maximal diameter of the mesh
cells.

The mesh faces are collected in the set Fh which is split into the set of the mesh
interfaces, F int

h , and the set of the mesh boundary faces, F∂h . Any mesh interface F ∈ F int
h

is oriented by a fixed unit normal vector nF . Moreover, for a piecewise smooth function
v and any mesh interface F ∈ F int

h , [[v]]F denotes the jump of v across F in the direction
of nF . We also use the broken gradient and Laplacian operators, ∇T and ∆T , which are
defined such that (∇T v)|T := ∇(v|T ) and (∆T v)|T := ∆(v|T ) for all T ∈ Th.

To avoid technicalities, we assume henceforth that the mesh family (Th)h>0 is quasi-
uniform. Therefore, we will use h to measure the diameter of any mesh cell or any mesh
face. Moreover, we assume that all the meshes are fitted to the subset $.

2.3 Discrete spaces and bilinear forms

Let k ≥ 1 be the polynomial degree of the hybridized dG method in space and let ` ≥ 0
be the polynomial degree of the dG method in time. We denote by Pk(S) the set of
polynomials of total degree at most k on the subset S ⊆ Ω. Moreover, for a linear space U
composed of functions defined on Ω, we denote by P`(I;U) the set of U -valued polynomials
of degree at most ` on I ⊆ J̄ = [0, Tf ].

The discrete unknowns in space are piecewise polynomials of degree k attached to the
mesh cells and of the same degree k attached to the mesh faces. We define the discrete
spaces

Ûkh := UkT × UkF , UkT := "T∈ThP
k(T ), UkF := "F∈FhP

k(F ). (4)

For a generic pair v̂h ∈ Ûkh , we write v̂h := (vT , vF ) with vT := (vT )T∈Th ∈ UkT and

vF := (vF )F∈Fh ∈ UkF . We denote by Ûkh0 the linear subspace of Ûkh in which all the
degrees of freedom attached to the mesh boundary faces are null. For a generic pair
v̂h ∈ Ûkh , its degrees of freedom associated with a generic mesh cell T ∈ Th are denoted by

v̂T := (vT , v∂T := (vF )F∈F∂T ) ∈ ÛkT := Pk(T )× Pk(F∂T ), (5)

where Pk(F∂T ) := "F∈F∂TPk(F ) and F∂T := {F ∈ Fh | F ⊂ ∂T} collects the mesh faces
composing the boundary of T . We introduce the space-time discrete spaces

Ũ τh := {v̂τh ∈ L2(J ; Ûkh ) | v̂τh|In ∈ P`(In; Ûkh ), ∀n ∈ {1:N}}, (6)

Ũ τh0 := {v̂τh ∈ Ũ τh | v̂τh|In ∈ P`(In; Ûkh0), ∀n ∈ {1:N}}. (7)

Notice that we have Ũ τh = U τT × U τF with

U τT := {vτT ∈ L2(J ;UkT ) | vnT := vτT |In ∈ P`(In;UkT ), ∀n ∈ {1:N}}, (8)

U τF := {vτF ∈ L2(J ;UkF ) | vnF := vτF |In ∈ P`(In;UkF ), ∀n ∈ {1:N}}. (9)

For a generic function v̂τh ∈ Ũ τh , we write v̂τh := (vτT , v
τ
F ) with vτT ∈ U τT and vτF ∈ U τF .

We can now introduce the various bilinear forms needed to formulate the discrete
problem. Let v̂τh, ŵτh be generic functions in Ũ τh (primal variables) and let ζ̂τh , η̂τh be
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generic functions in Ũ τh0 (dual variables). We use the subscript h to indicate the bilinear
forms related to the space discretization, and the superscript τ to indicate those related to
the time discretization. The two bilinear forms associated with the discretization of the
heat equation are

ah(v̂τh, η̂
τ
h) :=

∑
T∈Th

{
(∇vτT ,∇ητT )J×T − (∇vτT ·nT , ητT − ητ∂T )J×∂T

− (vτT − vτ∂T ,∇ητT ·nT )J×∂T
}
, (10)

bτ (vτT , η
τ
T ) :=

∑
n∈{1:N}

{
(∂tv

n
T , η

n
T )In×Ω + ([[vτT ]]n−1, ηnT (t+n−1))Ω

}
. (11)

The stabilization bilinear forms read as follows:

sτh(v̂τh, ŵ
τ
h) := dh(v̂τh, ŵ

τ
h) + dτ (vτT , w

τ
T ), (12)

σh(ζ̂τh , η̂
τ
h) := (∇T ζτT ,∇T ητT )J×Ω + dh(ζ̂τh , η̂

τ
h), (13)

with

dh(v̂τh, ŵ
τ
h) :=

∑
T∈Th

h−1(vτT − vτ∂T , wτT − wτ∂T )J×∂T , (14)

dτ (vτT , w
τ
T ) :=

∑
n∈{1:N−1}

{
([[vτT ]]n, [[wτT ]]n)Ω + ([[∇T vτT ]]n, [[∇T wτT ]]n)Ω

}
. (15)

(Notice that the stabilization bilinear form for the dual variable is only related to the
space discretization.) Finally, the bilinear forms associated with the regularization and
the measurements are

tτh(vτT , w
τ
T ) := γc(τ, h)2(vτT , w

τ
T )J×Ω, (16)

m$(vτT , w
τ
T ) := (vτT , w

τ
T )J×$, (17)

where γ > 0 and the value of c(τ, h) will result from the error analysis (we shall obtain

c(τ, h) = hk + τ `+
1
2 , see (56)). For later use, we define

‖wτT ‖2J×$ := m$(wτT , w
τ
T ). (18)

2.4 Lagrangian and discrete problem

We want to find the saddle-point of the Lagrangian defined for all (v̂τh, ζ̂
τ
h) ∈ Ũ τh × Ũ τh0 by

Lτh(v̂τh, ζ̂
τ
h) :=

1

2
‖vτT − gδ‖2J×$ +

1

2
tτh(vτT , v

τ
T ) +

1

2
sτh(v̂τh, v̂

τ
h)− 1

2
σh(ζ̂τh , ζ̂

τ
h)

+ ah(v̂τh, ζ̂
τ
h) + bτ (vτT , ζ

τ
T )− (f, ζτT )J×Ω, (19)

where gδ := g + δ denotes the available perturbed measurement of g. Notice that there
is no boundary condition on the primal variable, whereas there is a Dirichlet boundary
condition on the dual variable. The motivation for looking for a saddle-point of the discrete
Lagrangian is to minimize the discrepancy with respect to data under the constraint of
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the partial differential equation. This idea is classical, but the key point here is that
the Lagrangian is defined at the discrete level. This makes it simpler to enhance the
convexity/concavity of the discrete Lagrangian by suitable consistent stabilization terms;
see [9] for further discussion.

The discrete problem is derived by seeking a critical point of the Lagrangian and reads
as follows: Find (ûτh, ξ̂

τ
h) ∈ Ũ τh × Ũ τh0 such that

m$(uτT , w
τ
T ) + tτh(uτT , w

τ
T ) + sτh(ûτh, ŵ

τ
h) + ah(ŵτh, ξ̂

τ
h) + bτ (wτT , ξ

τ
T ) = m$(gδ, w

τ
T ), (20)

ah(ûτh, η̂
τ
h) + bτ (uτT , η

τ
T )− σh(ξ̂τh, η̂

τ
h) = (f, ητT )J×Ω, (21)

where the first equation holds for all ŵτh ∈ Ũ τh and the second for all η̂τh ∈ Ũ τh0. For all

(v̂τh, ζ̂
τ
h) and (ŵτh, η̂

τ
h) in Ũ τh × Ũ τh0, we define the bilinear form

Aτh((v̂τh, ζ̂
τ
h), (ŵτh, η̂

τ
h)) := m$(vτT , w

τ
T ) + tτh(vτT , w

τ
T ) + sτh(v̂τh, ŵ

τ
h) + ah(ŵτh, ζ̂

τ
h)

+ bτ (wτT , ζ
τ
T ) + bτ (vτT , η

τ
T ) + ah(v̂τh, η̂

τ
h)− σh(ζ̂τh , η̂

τ
h). (22)

The discrete problem (20)-(21) can be rewritten as follows: Find (ûτh, ξ̂
τ
h) ∈ Ũ τh × Ũ τh0 such

that

Aτh((ûτh, ξ̂
τ
h), (ŵτh, η̂

τ
h)) = m$(gδ, w

τ
T ) + (f, ητT )J×Ω, ∀(ŵτh, η̂τh) ∈ Ũ τh × Ũ τh0.

3 Analysis

This section is organized as follows. We first introduce a time reconstruction operator to
rewrite the bilinear form bτ . This operator is classical in the context of dG methods in
time; see, e.g., [19, Section 69.2.3] or [25, Section 2.3] and the references therein. Then, we
study the stablity properties of Aτh in a suitable residual norm, we introduce interpolation
operators in space and in time, and we bound the consistency error. The second important
step, specific to ill-posed problems, is to bound a suitable dual residual norm. We combine
these bounds with the abstract conditional estimate from Lemma 1 to derive error esti-
mates in the target subdomain B introduced therein. Finally, we state the approximation
properties of the interpolation operator, we tune the size of the stabilization parameter
and we establish the convergence rates for the method.

In what follows, we use the convention A . B to abbreviate the inequality A ≤ CB
for positive real numbers A and B, where the constant C > 0 does not depend on h, τ , the
solution of the continuous and discrete problems. Unless explicitly specified, the constant
C is also independent of the parameter γ.

3.1 Time reconstruction operator

For all vτT ∈ U τT , its time reconstruction Rτ (vτT ) ∈ C0(J ;UkT ) is defined such that
Rτ (vτT )(t+0 ) := vτT (t+0 ) and such that, for all n ∈ {1:N}, Rn(vτT ) := Rτ (vτT )|In ∈ P`+1(In;UkT )
satisfies

(∂tR
n(vτT ), qnT )In×Ω := (∂tv

n
T , q

n
T )In×Ω + ([[vτT ]]n−1, qnT (t+n−1))Ω, (23)
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for all qnT ∈ P`(In;UkT ). Since the function Rτ (vτT ) is continuous in time, its time derivative
is well defined in L2(J ;UkT ). The main consequence of (23) is that the bilinear form bτ

can be rewritten as

bτ (vτT , η
τ
T ) = (∂tR

τ (vτT ), ητT )J×Ω, ∀(vτT , ητT ) ∈ U τT × U τT . (24)

Moreover, it is well-known that the reconstruction operator can be rewritten as

Rn(vτT )(t,x) = vnT (t,x)− [[vT ]]n−1(x)
(−1)`

2
(L` − L`+1) ◦ T−1

n (t), (25)

for all (t,x) ∈ In ×Ω, where L` is the Legendre polynomial of degree ` defined on (−1, 1)
and Tn is the affine mapping from (−1, 1) to In. A consequence of (25) is that

Rn(vτT )(t−n ) = vnT (t−n ), ∀n ∈ {1:N}. (26)

The following stability properties are useful for the present analysis (the proof is outlined
in Section 3.8.1).

Lemma 2 (Stability properties of Rτ ). For all vτT ∈ U τT , we have

‖∂τt (Rτ (vτT )− vτT )‖J×Ω . τ−
1
2dτ (vτT , v

τ
T )

1
2 , (27)

‖Rτ (vτT )− vτT ‖J×Ω + ‖∇T (Rτ (vτT )− vτT )‖J×Ω . τ
1
2dτ (vτT , v

τ
T )

1
2 . (28)

Moreover, for all v̂τh = (vτT , v
τ
F ) ∈ Ũ τh , we have

‖h−
1
2 [[Rτ (vτT )]]F int

h
‖J×F int

h
:=
( ∑
F∈F int

h

h−1‖[[Rτ (vτT )]]F ‖2J×F
) 1

2
. dh(v̂τh, v̂

τ
h)

1
2 . (29)

3.2 Residual stability

For all (v̂τh, ζ̂
τ
h) ∈ Ũ τh × Ũ τh0, we define the residual norm

|||v̂τh, ζ̂τh |||2 := ‖vτT ‖2R + ‖vτT ‖2J×$ + tτh(vτT , v
τ
T ) + sτh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h), (30)

with

‖vτT ‖2R := ‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω + ‖h

1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
, (31)

and ‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
:=
∑

F∈F int
h
h‖[[∇vτT ]]F ·nF ‖2J×F . We observe that |||·||| de-

fines a norm on Ũ τh × Ũ τh0. Our key stability result is the following inf-sup condition.
Notice that this result implies the existence and uniqueness of the solution to the discrete
problem.

Lemma 3 (Inf-sup condition). The following holds for all (v̂τh, ζ̂
τ
h) ∈ Ũ τh × Ũ τh0,

|||v̂τh, ζ̂τh ||| . sup
(ŵτh,η̂

τ
h)∈Ũτh×Ũ

τ
h0\{(0,0)}

Aτh((v̂τh, ζ̂
τ
h), (ŵτh, η̂

τ
h))

|||ŵτh, η̂τh|||
. (32)
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Proof. Let us denote by S the right-hand side of (32).
(i) We first use the test functions ŵτh := v̂τh and η̂τh := −ζ̂τh to get

‖vτT ‖2J×$ + tτh(vτT , v
τ
T ) + sτh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h) = Aτh((v̂τh, ζ̂

τ
h), (v̂τh,−ζ̂τh))

≤ S|||v̂τh, ζ̂τh |||.

(ii) Let η̂τh := (0, (ητF )F∈Fh) with ητF := hJ∇vτT KF ·nF for all F ∈ F int
h and ητF := 0 for

all F ∈ F∂h . Since |||0, η̂τh||| = σh(η̂τh, η̂
τ
h)

1
2 , we have

‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
= ah(v̂τh, η̂

τ
h)

= Aτh((v̂τh, ζ̂
τ
h), (0, η̂τh)) + σh(ζ̂τh , η̂

τ
h)

≤ Sσh(η̂τh, η̂
τ
h)

1
2 + σh(ζ̂τh , η̂

τ
h)

≤ (S + σh(ζ̂τh , ζ̂
τ
h)

1
2 )σh(η̂τh, η̂

τ
h)

1
2 .

Moreover, we also have

σh(η̂τh, η̂
τ
h) = dh(η̂τh, η̂

τ
h) =

∑
T∈Th

h−1‖ητ∂T ‖2J×∂T . ‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
.

This implies that

‖h
1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h
. S2 + σh(ζ̂τh , ζ̂

τ
h).

(iii) We now consider η̂τh := (ητT , 0) with ητT := h2(∂tR
τ (vτT )−∆T v

τ
T ). We have

(∂tR
τ (vτT ), ητT )J×Ω + ah(v̂τh, η̂

τ
h)

= (∂tR
τ (vτT ), ητT )J×Ω +

∑
T∈Th

{
(∇vτT ,∇ητT )J×T − (∇vτT ·nT , ητT )J×∂T

− (vτT− vτ∂T ,∇ητT ·nT )J×∂T
}

= (∂tR
τ (vτT )−∆T v

τ
T , η

τ
T )J×Ω −

∑
T∈Th

(vτT − vτ∂T ,∇ητT ·nT )J×∂T .

Using the definition of η̂τh and recalling the rewriting (24) of bτ , we have

‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω

= ah(v̂τh, η̂
τ
h) + bτ (vτT , η

τ
T ) +

∑
T∈Th

(vτT − vτ∂T ,∇ητT ·nT )J×∂T

= Aτh((v̂τh, ζ̂
τ
h), (0, η̂τh)) + σh(ζ̂τh , η̂

τ
h) +

∑
T∈Th

(vτT − vτ∂T ,∇ητT ·nT )J×∂T

. S|||0, η̂τh|||+ (σh(ζ̂τh , ζ̂
τ
h) + dh(v̂τh, v̂

τ
h))

1
2σh(η̂τh, η̂

τ
h)

1
2 ,

since a discrete trace inverse inequality implies that∑
T∈Th

h‖∇ητT ·nT ‖2J×∂T . ‖∇ητT ‖2J×Ω ≤ σh(η̂τh, η̂
τ
h).
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Furthermore, invoking again inverse inequalities, we have

σh(η̂τh, η̂
τ
h) =

∑
T∈Th

(
‖∇ητT ‖2J×T + h−1‖ητT ‖2J×∂T

)
. ‖h−1ητT ‖2J×Ω = ‖h(∂tR

τ (vτT )−∆T v
τ
T )‖2J×Ω.

This implies that

‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω . S2 + dh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h).

(iv) Gathering the previous estimates leads to

‖vτT ‖2J×$ + tτh(vτT , v
τ
T ) + sτh(v̂τh, v̂

τ
h) + σh(ζ̂τh , ζ̂

τ
h) + ‖h

1
2 [[∇vτT ]]F int

h
·nF int

h
‖2
J×F int

h

+ ‖h(∂tR
τ (vτT )−∆T v

τ
T )‖2J×Ω . S|||v̂τh, ζ̂τh |||+ S2.

Recalling the definition (30) of the triple norm and using Young’s inequality gives the
expected inf-sup condition.

3.3 Interpolation operator and error decomposition

In this section, we define the space-time interpolation operator used in the error analysis.
Its definition is motivated by orthogonality properties. To facilitate the reading, the
approximation properties of this interpolation operator are discussed later in Section 3.7.

Let us first consider the approximation in time. For all v ∈ H1(J ;H1(Ω)) and all
n ∈ {1:N}, we define Ǐ`n(v) ∈ P`(In;H1(Ω)) by

Ǐ`n(v)(t−n ) := v(tn), (33)∫
In

(Ǐ`n(v)− v, qn)Ω := 0, ∀qn ∈ P`−1(In;H1(Ω)). (34)

Furthermore, the approximation in space is realized by using L2-orthogonal projections.
Let y ∈ H1(Ω). For all T ∈ Th, we define Πk

T (y) as the L2-orthogonal projection of y|T
onto Pk(T ), i.e., (Πk

T (y), qT )T := (y, qT )T for all qT ∈ Pk(T ). For all F ∈ Fh, we define
Πk
F (y) as the L2-orthogonal projection of y|F onto Pk(F ), i.e., (Πk

F (y), qF )F := (y, qF )F
for all qF ∈ Pk(F ).

We can now define our space-time interpolation operator by setting, for all v ∈
H1(J ;H1(Ω)),

Îτh(v) := (IτT (v), IτF (v)) ∈ Ũ τh ,

where IτT (v) ∈ U τT and IτF (v) ∈ U τF are such that, for all n ∈ {1:N}, all T ∈ Th, and all
F ∈ Fh,

InT (v) := IτT (v)|In := Πk
T (Ǐ`n(v)), InF (v) := IτF (v)|In := Πk

F (Ǐ`n(v)). (35)

We notice that the approximation operators in space and in time commute. Moreover,
proceeding as in [19, Lemma 69.16], we derive the following useful orthogonality property:
For all v ∈ H1(J ;H1(Ω)) and all wτT ∈ P`(J ;UkT ),

(∂tv − ∂tRτ (IτT (v)), wτT )J×Ω = 0. (36)
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Let us finally define the discrete and interpolation errors on the primal unknown.
Recall that u denotes the solution to the exact problem (1)-(2) and that (ûτh, ξ̂

τ
h) denotes

the solution to the discrete problem (20)-(21). The discrete and interpolation errors on
the primal unknown are then defined as

êτh := ûτh − Îτh(u), θ̂τh := (u, u|Fh)− Îτh(u), (37)

so that we have θ̂τh := ((θτT )T∈Th , (θ
τ
F )F∈Fh) with θτT := u|T − IτT (u) for all T ∈ Th, and

θτF := u|F − IτF (u) for all F ∈ Fh.

3.4 Consistency and a priori residual bound

We now bound the consistency error in the discrete formulation. To this purpose, we
consider the norm

‖θ̂τh‖2# := ‖∇T θτT ‖2J×Ω + ‖h∆T θ
τ
T ‖2J×Ω + ‖θτT ‖2J×Ω

+
∑
T∈Th

{
‖h

1
2∇θτT ‖2J×∂T + ‖h−

1
2 θτT ‖2J×∂T + ‖h−

1
2 θτ∂T ‖2J×∂T

}
+

∑
n∈{1:N−1}

{
‖[[θτT ]]n‖2Ω + ‖[[∇T θτT ]]n‖2Ω

}
+ τ‖∂τt θτT ‖2J×Ω. (38)

Recall that the stability norm ||| · ||| is defined in (30)-(31). In what follows, we assume that

u ∈ H1(J ;H1(Ω)) ∩ L2(J ;H2(Ω)). (39)

Lemma 4 (Consistency and boundedness). Let (ûτh, ξ̂
τ
h) denote the solution to the discrete

problem (20)-(21). Let êτh and θ̂τh be the discrete and interpolation errors on the primal
unknown defined in (37). Under the regularity assumption (39), we have, for all (ŵτh, η̂

τ
h) ∈

Ũ τh × Ũ τh0,

|Aτh((êτh, ξ̂
τ
h), (ŵτh, 0))| .

(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
|||ŵτh, 0|||, (40)

|Aτh((êτh, ξ̂
τ
h), (0, η̂τh))| . ‖θ̂τh‖#|||0, η̂τh|||. (41)

Proof. (i) Proof of (40). Using (êτh, ξ̂
τ
h) = (ûτh, ξ̂

τ
h) − (Îτh(u), 0), the equation (20) in the

discrete problem, the definition (22) of Aτh, and gδ = g + δ, we have, for all ŵτh ∈ Ũ τh ,

Aτh((êτh, ξ̂
τ
h), (ŵτh, 0))

= m$(gδ, w
τ
T )−m$(IτT (u), wτT )− tτh(IτT (u), wτT )− sτh(Îτh(u), ŵτh)

= m$(δ, wτT ) +m$(θτT , w
τ
T )− tτh(IτT (u), wτT )− sτh(Îτh(u), ŵτh).

The Cauchy–Schwarz inequality yields

|m$(δ, wτT )|+ |m$(θτT , w
τ
T )| . (‖δ‖J×$ + ‖θτT ‖J×$)‖wτT ‖J×$,

|tτh(IτT (u), wτT )| . tτh(IτT (u), IτT (u))
1
2 tτh(wτT , w

τ
T )

1
2 ,

|sτh(Îτh(u), ŵτh)| . sτh(Îτh(u), Îτh(u))
1
2 sτh(ŵτh, ŵ

τ
h)

1
2 .
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Moreover, we have

sτh(Îτh(u), Îτh(u)) =
∑
T∈Th

h−1‖IτT (u)− Iτ∂T (u)‖2J×∂T

+
∑

n∈{1:N−1}

{
‖[[θτT ]]n‖2Ω + ‖[[∇T θτT ]]n‖2Ω

}
. ‖θ̂τh‖2#.

The bound (40) follows by gathering the above estimates.
(ii) Proof of (41). Proceeding as above and using now the equation (21) in the discrete

problem, we have, for all η̂τh ∈ Ũ τh0,

Aτh((êτh, ξ̂
τ
h), (0, η̂τh)) = (f, ητT )J×Ω − bτ (IτT (u), ητT )− ah(Îτh(u), η̂τh)

= − ah(Îτh(u), η̂τh)− (∆u, ητT )J×Ω,

where we used that f = ∂tu−∆u in J×Ω and (∂tu, η
τ
T )J×Ω = bτ (IτT (u), ητT ) owing to (36)

and (24). Recalling the definition (10) of ah, we infer that

Aτh((êτh, ξ̂
τ
h), (0, η̂τh)) =

∑
T∈Th

{
− (∇IτT (u),∇ητT )J×T + (∇IτT (u)·nT , ητT − ητ∂T )J×∂T

+ (IτT (u)− Iτ∂T (u),∇ητT ·nT )J×∂T − (∆u, ητT )J×T
}

=
∑
T∈Th

{
(∇θτT ,∇ητT )J×T − (∇θτT ·nT , ητT − ητ∂T )J×∂T

+ (θτ∂T − θτT ,∇ητT ·nT )J×∂T
}
,

where we used the assumed regularity of u and the fact that ητF = 0 for all F ∈ F∂h to
infer that

∑
T∈Th(∇u·nT , ητ∂T )J×∂T = 0. Using Cauchy–Schwarz and inverse inequalities,

we readily obtain (41).

Lemma 5 (A priori residual bound). Under the regularity assumption (39), we have

|||êτh, ξ̂τh|||+ tτh(uτT , u
τ
T )

1
2 + sτh(ûτh, û

τ
h)

1
2 . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 .

Proof. Using inf-sup stability (Lemma 3) yields

|||êτh, ξ̂τh||| . sup
(ŵτh,η̂

τ
h)∈Ũτh×Ũ

τ
h0\{(0,0)}

Aτh((êτh, ξ̂
τ
h), (ŵτh, η̂

τ
h))

|||ŵτh, η̂τh|||
.

Moreover, owing to consistency (Lemma 4), we have, for all (ŵτh, η̂
τ
h) ∈ Ũ τh × Ũ τh0,

|Aτh((êτh, ξ̂
τ
h), (ŵτh, η̂

τ
h))| . (‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 )|||ŵτh, η̂τh|||.

Combining the two bounds gives

|||êτh, ξ̂τh||| . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 .

Finally, observing that

tτh(uτT , u
τ
T )

1
2 ≤ tτh(IτT (u), IτT (u))

1
2 + tτh(eτT , e

τ
T )

1
2 ≤ tτh(IτT (u), IτT (u))

1
2 + |||êτh, ξ̂τh|||,

sτh(ûτh, û
τ
h)

1
2 ≤ sτh(Îτh(u), Îτh(u))

1
2 + sτh(êτh, ê

τ
h)

1
2 ≤ ‖θ̂τh‖# + |||êτh, ξ̂τh|||,

concludes the proof.
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Remark 3.1. (Lemma 5) The a priori residual bound involves three terms, one de-
pending on the interpolation error of the exact solution measured in the ‖·‖#-norm, one
resulting from the presence of noise in the measurements, and one resulting from the
regularization.

3.5 Bound on dual error norm

In this section, we prove another important result bounding some dual norm of the error.
Recall the operator L := ∂t − ∆ so that, for all v ∈ H1(J ;L2(Ω)) ∩ L2(J ;H1(Ω)) and
all η ∈ L2(J ;H1

0 (Ω)), we have 〈L(v), η〉L2(H−1),L2(H1
0 ) = (∂tv, η)J×Ω + (∇v,∇η)J×Ω, where

〈·, ·〉L2(H−1),L2(H1
0 ) stands for the duality product between L2(J ;H−1(Ω)) and L2(J ;H1

0 (Ω)).

The operator L can be extended to space-discrete functions vτT ∈ H1(J ;UkT ) by setting

〈LT (vτT ), η〉L2(H−1),L2(H1
0 ) := (∂tv

τ
T , η)J×Ω + (∇T vτT ,∇η)J×Ω. (42)

The corresponding dual norm is

‖LT (v)‖L2(J ;H−1(Ω)) = sup
η∈L2(J ;H1

0 (Ω))
‖∇η‖J×Ω=1

{
(∂tv, η)J×Ω + (∇T v,∇η)J×Ω

}
.

It is also useful to introduce the data oscillation term

Θf := f −Πτ (f), (43)

where Πτ (f)|In := Π`
n(f |In) for all n ∈ {1:N}, and Π`

n denotes the L2-orthogonal projec-
tion from L2(In;L2(Ω)) onto P`(In;L2(Ω)).

Lemma 6 (Bound on dual error norm). Under the regularity assumption (39), we have

‖LT (Rτ (uτT )− u)‖L2(J ;H−1(Ω))

. (1 + τ−
1
2h)‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 + ‖Θf‖J×Ω.

Proof. Let η ∈ L2(J ;H1
0 (Ω)) with ‖∇η‖J×Ω = 1. Recalling the definition of Θf , we have

〈LT (Rτ (uτT )− u), η〉L2(H−1),L2(H1
0 )

= (∂tR
τ (uτT ), η)J×Ω + (∇T Rτ (uτT ),∇η)J×Ω − (Πτ (f), η)J×Ω − (Θf , η)J×Ω

= (∂tR
τ (uτT ),Πτ (η))J×Ω + (∇T Rτ (uτT ),∇η)J×Ω − (f,Πτ (η))J×Ω − (Θf , η)J×Ω,

where we used the L2-orthogonality properties of Πτ . Let η̂τh ∈ Ũ τh0 be such that

η̂τh|In :=
(
(Π`

nΠk
T (η|T ))T∈Th , (Π

`
nΠk

F (η|F ))F∈Fh
)
∈ P`(In; Ûkh0),

for all n ∈ {1:N}. Invoking the second equation (21) in the discrete problem and recalling
the rewriting (24) of bτ gives

(∂tR
τ (uτT ), ητT )J×Ω + ah(ûτh, η̂

τ
h)− σh(ξ̂τh, η̂

τ
h) = (f, ητT )J×Ω.
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Subtracting this equation from the above expression, recalling that f = ∂tu − ∆u, and
re-arranging the terms leads to

〈LT (Rτ (uτT )− u), η〉L2(H−1),L2(H1
0 ) = A1 +A2 +A3,

with

A1 := (∂t(R
τ (uτT )− u)−∆T (uτT − u),Πτ (η)− ητT )J×Ω,

A2 := (∇T Rτ (uτT ),∇η)J×Ω − ah(ûτh, η̂
τ
h) + (∆T u

τ
T ,Π

τ (η)− ητT )J×Ω,

A3 := σh(ξ̂τh, η̂
τ
h)− (Θf , η)J×Ω.

A straightforward calculation using the definition (10) of the bilinear form ah shows that

A2 = (∇T (Rτ (uτT )− uτT ),∇η)J×Ω +
∑
T∈Th

(uτT − uτ∂T ,∇ητT ·nT )J×∂T ,

since we have

(∇T uτT ,∇η)J×Ω − ah(ûτh, η̂
τ
h)

= (∇T uτT ,∇T (Πτ (η)− ητT ))J×Ω

+
∑
T∈Th

{
(∇uτT ·nT , ητT − ητ∂T )J×∂T + (uτT − uτ∂T ,∇ητT ·nT )J×∂T

}
= (−∆T u

τ
T ,Π

τ (η)− ητT )J×Ω

+
∑
T∈Th

{
(∇uτT ·nT ,Πτ (η)− ητ∂T )J×∂T + (uτT − uτ∂T ,∇ητT ·nT )J×∂T

}
= (−∆T u

τ
T ,Π

τ (η)− ητT )J×Ω +
∑
T∈Th

(uτT − uτ∂T ,∇ητT ·nT )J×∂T ,

where we used that (∇T uτT ,∇(η − Πτ (η)))J×Ω = 0 in the first equality and the fact that
(∇uτT ·nT )|In×∂T ∈ P`(In;Pk(F∂T )) and the definition of ητ∂T in the third equality. It
remains to bound A1, A2, A3.

(i) Bound on A1. This is the most delicate term. We observe that

∂t(R
τ (uτT )− u)−∆T (uτT − u) = ∂tR

τ (uτT − IτT (u))−∆T (uτT − IτT (u))

+ ∂t(R
τ (IτT (u))− u)−∆T (IτT (u)− u).

Recalling the definition (31) of the ‖·‖R-norm, we have

|(∂tRτ (uτT − IτT (u))−∆T (uτT − IτT (u)),Πτ (η)− ητT )J×Ω| . ‖eτT ‖R‖∇η‖J×Ω,

where we used that
‖Πτ (η)− ητT ‖J×Ω . h‖∇η‖J×Ω.

Owing to Lemma 5, we have ‖eτT ‖R . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 . Moreover,

the triangle inequality, the estimate (27), and the above bound on ‖Πτ (η)− ητT ‖J×Ω give

|(∂t(Rτ (IτT (u))− u),Πτ (η)− ητT )J×Ω|
.
(
‖∂τt (Rτ (IτT (u))− IτT (u))‖J×Ω + ‖∂τt (u− IτT (u))‖J×Ω

)
h‖∇η‖J×Ω

.
(
dτ (IτT (u), IτT (u))

1
2 + τ

1
2 ‖∂τt θτT ‖J×Ω

)
τ−

1
2h‖∇η‖J×Ω.



15

Finally, we have

|(∆T (IτT (u)− u),Πτ (η)− ητT )J×Ω| . h‖∆T θτT ‖J×Ω‖∇η‖J×Ω.

Gathering the above estimates gives

|A1| .
(
(1 + τ−

1
2h)‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
‖∇η‖J×Ω.

(ii) Bound on A2. Owing to the Cauchy–Schwarz inequality and (28), we have

|(∇T (Rτ (uτT )− uτT ),∇η)J×Ω| . τ
1
2dτ (uτT , u

τ
T )

1
2 ‖∇η‖J×Ω.

Moreover, using Cauchy–Schwarz and inverse trace inequalities, we have∣∣∣ ∑
T∈Th

(uτT − uτ∂T ,∇ητT ·nT )J×∂T

∣∣∣ . dh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω.

Thus, we have

|A2| .
(
τ

1
2dτ (uτT , u

τ
T )

1
2 + dh(ûτh, û

τ
h)

1
2
)
‖∇η‖J×Ω.

Using τ . 1 and Lemma 5 yields

|A2| . sτh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω .

(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
‖∇η‖J×Ω.

(iii) Bound onA3. Since σh(η̂τh, η̂
τ
h) = ‖∇T ητT ‖2J×Ω+dh(η̂τh, η̂

τ
h), we infer that σh(η̂τh, η̂

τ
h)

1
2 .

‖∇η‖J×Ω. This implies that |σh(ξ̂τh, η̂
τ
h)| . σh(ξ̂τh, ξ̂

τ
h)

1
2σh(η̂τh, η̂

τ
h)

1
2 . σh(ξ̂τh, ξ̂

τ
h)

1
2 ‖∇η‖J×Ω

and σh(ξ̂τh, ξ̂
τ
h)

1
2 is bounded in Lemma 5. Moreover, the bound |(Θf , η)J×Ω| . ‖Θf‖J×Ω‖∇η‖J×Ω

results from the Cauchy–Schwarz inequality combined and the global Poincaré inequality
in Ω. Hence, we have

|A3| .
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 + ‖Θf‖J×Ω

)
‖∇η‖J×Ω.

(iv) Combining the above estimates and recalling that ‖∇η‖J×Ω = 1 gives the expected
bound.

3.6 Main result: error estimate in the target subdomain

We are now ready to derive our main error estimate. The idea of the proof is to combine
the results of Sections 3.4 and 3.5 with the conditional stability estimate from Lemma 1.
We use the target (semi)norm

‖v‖trg := ‖∇T v‖L2(T1,T2;L2(B)),

where T1, T2 and B are defined in Lemma 1. Recall the quantities Cstb > 0 and α ∈ (0, 1]
introduced in Lemma 1. Recall that the ‖·‖#-norm is defined in (38), the data oscillation

term Θf in (43), that θ̂τh is the interpolation error defined in (37), and that the coefficient
c(τ, h) is used to weight the regularization bilinear form tτh defined in (16).
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Theorem 7 (Error estimate in target subdomain). Under the regularity assumption (39),
we have

‖u− uτT ‖trg . Cstb(1 + τ−1h)α(1 + τ−1h+ γ−
1
2 c(τ, h)−1)1−α

×
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2 + ‖Θf‖J×Ω

)
. (44)

Proof. (i) Using an averaging operator in space (see [7, Lemmas 3.2 and 5.3] or [18,
Chap. 22] and the references therein), we can build a piecewise polynomial function ũτT ∈
{vτT ∈ H1(J ;H1(Ω)) | vτT |In×T ∈ P`+1(In;Pk(T )), n ∈ {1:N}, T ∈ Th} such that

‖h−1(ũτT −Rτ (uτT ))‖J×Ω + ‖∇T (ũτT −Rτ (uτT ))‖J×Ω . ‖h−
1
2 [[Rτ (uτT )]]F int

h
‖J×F int

h

. dh(ûτh, û
τ
h)

1
2 , (45)

where the first bound results from the approximation properties in space of the averaging
operator and the second bound from (29) (see Lemma 2). Invoking the triangle inequality
yields

‖u− uτT ‖trg ≤ ‖uτT − ũτT ‖trg + ‖u− ũτT ‖trg,

and we are left with bounding the two terms on the right-hand side.
(ii) Bound on ‖uτT − ũτT ‖trg. We observe that

‖uτT − ũτT ‖trg ≤ ‖∇T (uτT −Rτ (uτT ))‖J×Ω + ‖∇T (ũτT −Rτ (uτT ))‖J×Ω.

The first term on the right-hand side is estimated by invoking (28) (see Lemma 2) and
the second term by invoking (45). Owing to Lemma 5 and since τ . 1, we infer that

‖uτT − ũτT ‖trg ≤ dτ (uτT , u
τ
T )

1
2 + dh(ûτh, û

τ
h)

1
2 . sτh(ûτh, û

τ
h)

1
2

. ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 .

(iii) Bound on ‖u − ũτT ‖trg. Since ũτT − u ∈ H1(J ;H1(Ω)) ⊂ H1(J ;H−1(Ω)) ∩
L2(J ;H1(Ω)), we can invoke the conditional stability estimate from Lemma 1. This gives

‖ũτT − u‖trg . Cstb

(
‖ũτT − u‖J×$ + ‖L(ũτT − u)‖L2(J ;H−1(Ω))

)α
×
(
‖ũτT − u‖J×Ω + ‖L(ũτT − u)‖L2(J ;H−1(Ω))

)1−α
.

It remains to bound ‖ũτT − u‖J×$, ‖ũτT − u‖J×Ω, and ‖L(ũτT − u)‖L2(J ;H−1(Ω)).
(iii.a) Bound on ‖ũτT − u‖J×$. We have

‖ũτT − u‖J×$ ≤ ‖u− IτT (u)‖J×$ + ‖uτT − IτT (u)‖J×$ + ‖uτT − ũτT ‖J×$,

where IτT (u) is defined in Section 3.3. We have

‖u− IτT (u)‖J×$ = ‖θτT ‖J×$ ≤ ‖θτT ‖J×Ω,

‖uτT − IτT (u)‖J×$ = ‖eτT ‖J×$ ≤ |||êτh, ξ̂τh|||.
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Furthermore, the bound (28) (see Lemma 2) and the bound (45) imply that

‖uτT − ũτT ‖J×$ ≤ ‖uτT −Rτ (uτT )‖J×$ + ‖Rτ (uτT )− ũτT ‖J×$
. τ

1
2dτ (uτT , u

τ
T )

1
2 + hdh(ûτh, û

τ
h)

1
2 . sτh(ûτh, û

τ
h)

1
2 ,

where we used the definition (12) of sτh and τ . 1, h . 1. Gathering the above estimates
and using Lemma 5 gives

‖ũτT − u‖J×$ . ‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 .

(iii.b) Bound on ‖ũτT − u‖J×Ω. Using the same decomposition, we have

‖ũτT − u‖J×Ω ≤ ‖u− IτT (u)‖J×Ω + ‖uτT − IτT (u)‖J×Ω + ‖uτT − ũτT ‖J×Ω.

The terms ‖u−IτT (u)‖J×Ω +‖uτT − ũτT ‖J×Ω are estimated by using the same arguments as
in Step (iii.a). The bound on ‖uτT − IτT (u)‖J×Ω uses, however, a different argument since
we can only invoke here the regularization. Recalling the definition (16) of tτh, we have

‖uτT − IτT (u)‖J×Ω = ‖eτT ‖J×Ω = γ−
1
2 c(τ, h)−1tτh(eτT , e

τ
T )

1
2 .

Invoking Lemma 5 gives

‖ũτT − u‖J×Ω . (1 + γ−
1
2 c(τ, h)−1)

(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
.

(iii.c) Bound on ‖L(ũτT − u)‖L2(J ;H−1(Ω)). Recalling that LT denotes the extension of

L to H1(J ;UkT ), the triangle inequality gives

‖L(ũτT − u)‖L2(J ;H−1(Ω)) ≤ ‖LT (ũτT −Rτ (uτT ))‖L2(J ;H−1(Ω))

+ ‖LT (Rτ (uτT )− u)‖L2(J ;H−1(Ω)).

For the second term on the right-hand side, we invoke Lemma 6 to infer

‖LT (Rτ (uτT )− u)‖L2(J ;H−1(Ω)) . (1 + τ−
1
2h)‖θ̂τh‖#

+ ‖δ‖J×$ + tτh(IτT (u), IτT (u))
1
2 + ‖Θf‖J×Ω.

To estimate the first term on the right-hand side, we bound the dual norm by considering
an arbitrary test function η ∈ L2(J ;H1

0 (Ω)) with ‖∇η‖J×Ω = 1. On the one hand, we
have

|(∂t(ũτT −Rτ (uτT )), η)J×Ω| . ‖∂t(ũτT −Rτ (uτT ))‖J×Ω‖η‖J×Ω

. τ−1hdh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω,

where we used an inverse inequality in time, the estimate (45), and a global Poincaré
inequality in Ω for η. On the other hand, using again (45) gives

|(∇T (ũτT −Rτ (uτT )),∇η)J×Ω| . dh(ûτh, û
τ
h)

1
2 ‖∇η‖J×Ω.



18

Combining the last two bounds and invoking Lemma 5, we infer that

‖LT (ũτT −Rτ (uτT ))‖L2(J ;H−1(Ω)) . (1 + τ−1h)dh(ûτh, û
τ
h)

1
2

. (1 + τ−1h)
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)
.

Altogether, this gives

‖L(ũτT − u)‖L2(J ;H−1(Ω))

. (1 + τ−1h)
(
‖θ̂τh‖# + ‖δ‖J×$ + tτh(IτT (u), IτT (u))

1
2
)

+ ‖Θf‖J×Ω.

(iv) Combining the bounds from the above steps proves (44).

3.7 Weighting the regularization

The last step in our error analysis is to identify the weighting coefficient c(τ, h) in the
regularization bilinear form. The interpolation operator defined in Section 3.3 fulfills the
following convergence properties (the proof is outlined in Section 3.8.2).

Lemma 8 (Approximation). The following holds for all n ∈ {1:N}, all T ∈ Th, and all
v ∈ H`+1(In;H2(T )) ∩H1(In;Hk+1(T )),

‖InT (v)− v‖In×T . τ `+1‖v‖H`+1(In;L2(T )) + hk+1‖v‖H1(In;Hk+1(T )), (46)

‖∇(InT (v)− v)‖In×T . τ `+1‖v‖H`+1(In;H1(T )) + hk‖v‖H1(In;Hk+1(T )), (47)

h
1
2 ‖∇(InT (v)− v)‖In×∂T . h

1
2 τ `+1‖v‖H`+1(In;H2(T )) + hk‖v‖H1(In;Hk+1(T )), (48)

h‖∆(InT (v)− v)‖In×T . hτ `+1‖v‖H`+1(In;H2(T )) + hk‖v‖H1(In;Hk+1(T )), (49)

‖∂t(InT (v)− v)‖In×T . τ `‖v‖H`+1(In;L2(T )) + hk+1‖v‖H1(In;Hk+1(T )). (50)

Moreover, we also have for all s ∈ In,

‖(InT (v)− v)(s)‖T . τ `+
1
2 ‖v‖H`+1(In;L2(T )) + hk+1‖v‖H1(In;Hk+1(T )), (51)

‖∇(InT (v)− v)(s)‖T . τ `+
1
2 ‖v‖H`+1(In;H1(T )) + hk‖v‖H1(In;Hk+1(T )). (52)

Finally, we have

h−
1
2 ‖InT (v)− v‖In×∂T + h−

1
2 ‖In∂T (v)− v‖In×∂T

. h−
1
2 τ `+1‖v‖H`+1(In;H1(T )) + hk‖v‖H1(In;Hk+1(T )). (53)

We consider the functional space

U∗ := H`+2(J ;L2(Ω)) ∩H`+1(J ;H2(Ω)) ∩H1(J ;Hk+1(Ω)), (54)

equipped with its natural norm denoted by ‖·‖∗. An important consequence of Lemma 8
is that, under the assumption u ∈ U∗, we have

‖θ̂τh‖# + tτh(IτT (u), IτT (u))
1
2 + ‖Θf‖J×Ω .

(
(1 + h−1τ)

1
2 τ `+

1
2 + hk + γ

1
2 c(τ, h)

)
‖u‖∗, (55)

where we used that τ . 1 and h . 1 to simplify the expression. Notice also that u ∈ U∗
implies that f ∈ H`+1(J ;L2(Ω)).
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Theorem 9 (Decay rates). Assume that u ∈ U∗ and that τ . h, h . τ . Set

c(τ, h) := τ `+
1
2 + hk. (56)

We have the following decay rates on the errors:

|||êτh, ξ̂τh|||+ tτh(uτT , u
τ
T )

1
2 + sτh(ûτh, û

τ
h)

1
2 . (τ `+

1
2 + hk)‖u‖∗ + ‖δ‖J×$, (57)

‖u− uτT ‖trg . Cstb(τ `+
1
2 + hk)α(‖u‖∗ + (τ `+

1
2 + hk)−1‖δ‖J×$). (58)

where the hidden constant scales as max(γ, 1)
1
2 in (57) and max(γ, γα−1)

1
2 in (58).

Proof. Plug (56) into (55) and invoke Lemma 5 for (57) and Theorem 7 for (58).

Remark 3.2. (Choosing discretization parameters) The estimates of Theorem 9 indi-

cate that space and time refinements have to be stopped when (τ `+
1
2 +hk)‖u‖∗ ' ‖δ‖J×$.

Hence, as the noise level diminishes, finer discretizations can be employed.

3.8 Technical proofs

In this section, we outline the proofs of Lemma 2 and Lemma 8. The proofs use standard
arguments from finite element approximation theory.

3.8.1 Proof of Lemma 2

Let v̂τh := (vτT , v
τ
F ) ∈ Ũ τh .

(i) Proof of (27). For all n ∈ {1:N} and all qnT ∈ P`(In;UkT ), we have

(∂t(R
n(vτT )− vnT ), qnT )In×Ω = ([[vτT ]]n−1, qnT (t+n−1))Ω.

Invoking a discrete trace inequality in time implies

‖∂t(Rn(vτT )− vnT )‖In×Ω . τ−
1
2 ‖[[vτT ]]n−1‖Ω. (59)

Summing over n ∈ {1:N} proves (27) since
∑

n∈{1:N} ‖[[vτT ]]n−1‖2Ω ≤ dτ (vτT , v
τ
T ) (recall that

[[·]]0 = 0 by convention).
(ii) Proof of (28). Since we have (Rn(vτT )−vnT )(t−n ) = 0 (see (26)), a Poincaré inequality

in time over In and the bound (59) yield

‖Rn(vτT )− vnT ‖In×Ω . τ‖∂t(Rn(vτT )− vnT )‖In×Ω . τ
1
2 ‖[[vτT ]]n−1‖Ω.

Summing over n ∈ {1:N} proves as above that

‖Rτ (vτT )− vτT ‖J×Ω . τ
1
2dτ (vτT , v

τ
T )

1
2 . (60)

Moreover, (25) shows that the operators Rτ and ∇T commute. Hence, using the same
arguments as above shows that

‖∇T (Rn(vτT )− vnT )‖In×Ω . τ
1
2 ‖[[∇T vτT ]]n−1‖Ω.
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Summing over n ∈ {1:N} and since
∑

n∈{1:N} ‖[[∇T vT ]]n−1‖2Ω ≤ dτ (vτT , v
τ
T ) gives

‖∇T (Rτ (vτT )− vτT )‖2J×Ω . τdτ (vτT , v
τ
T ). (61)

Summing (60) and (61) proves (28).
(iii) Proof of (29). For all F ∈ F int

h , the operators Rτ and [[·]]F commute. In particular,
we have, for all n ∈ {1:N} and all qnF ∈ P`(In;Pk(F )),

(∂t([[R
n(vτT )− vnT ]]F ), qnF )In×F = ([[[[vτT ]]F ]]n−1, qnF (t+n−1))F ,

and [[Rn(vτT )− vnT ]]F (t−n ) = 0. Hence, using the same arguments as above shows that for
all n ∈ {2:N},

‖[[Rn(vτT )− vnT ]]F ‖In×F . τ‖∂t([[Rn(vτT )− vnT ]]F )‖In×F
. τ

1
2 ‖[[[[vτT ]]F ]]n−1‖F . ‖[[vτT ]]F ‖(In−1∪In)×F .

Summing this relation over n ∈ {2:N}, we get

‖h−
1
2 [[Rτ (vτT )− vτT ]]F int

h
‖J×F int

h
. ‖h−

1
2 [[vτT ]]F int

h
‖J×F int

h
.

Finally, (29) follows from

‖h−
1
2 [[Rτ (vτT )]]F int

h
‖J×F int

h
≤ ‖h−

1
2 [[Rτ (vτT )− vτT ]]F int

h
‖J×F int

h
+ ‖h−

1
2 [[vτT ]]F int

h
‖J×F int

h

. ‖h−
1
2 [[vτT ]]F int

h
‖J×F int

h
. dh(v̂τh, v̂

τ
h)

1
2 .

3.8.2 Proof of Lemma 8

Let v ∈ H`+1(In;H2(T )) ∩ H1(In;Hk+1(T )). Recall that InT (v) := Πk
T (Ǐ`n(v)) for all

n ∈ {1:N} and all T ∈ Th (see (35)), where Πk
T is the L2-orthogonal projection onto Pk(T )

and Ǐ`n is the approximation operator defined in (33)-(34). The stability and approximation
properties of Πk

T are classical (see, e.g., [18, Sec. 11.5.3]); those of Ǐ`n are discussed in [19,
Sec. 69.3.2 & Ex. 69.7].

(i) Proof of (46). The triangle inequality gives

‖InT (v)− v‖In×T ≤ ‖Πk
T (Ǐ`n(v))− Ǐ`n(v)‖In×T + ‖Ǐ`n(v)− v‖In×T .

The first term on the right-hand side is bounded as

‖Πk
T (Ǐ`n(v))− Ǐ`n(v)‖In×T . hk+1‖Ǐ`n(v)‖L2(In;Hk+1(T )) . hk+1‖v‖H1(In;Hk+1(T )),

where we used the approximation properties in space of Πk
T in the first estimate and the

H1-stability in time of Ǐ`n in the second estimate. Moreover, the second term on the
right-hand side is bounded as

‖Ǐ`n(v)− v‖In×T . τ `+1‖v‖H`+1(In;L2(T )),

where we used the approximation properties in time of Ǐ`n. Combining these two estimates
proves (46).
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(ii) Proof of (47), (48), (49), and (50). We can use similar arguments to those invoked
in Step (i) since we have

‖∇(InT (v)− v)‖In×T ≤ ‖∇(Πk
T (Ǐ`n(v))− Ǐ`n(v))‖In×T + ‖Ǐ`n(∇v)−∇v‖In×T ,

‖∂t(InT (v)− v)‖In×T ≤ ‖Πk
T (∂tǏ

`
n(v))− ∂tǏ`n(v)‖In×T + ‖∂t(Ǐ`n(v)− v)‖In×T ,

because the operators Ǐ`n and ∇ commute, as well as the operators Πk
T and ∂t. A similar

argument can also be used when replacing ∇ by ∆.
(iii) The proofs of (51), (52), and (53) employ similar arguments.

4 Numerical results

In this section, we present numerical experiments to check the convergence rates estab-
lished in Theorem 9. We also study the influence of the noise in the measurements, and
we illustrate the benefits of using a high-order discretization.

The space domain is Ω := (0, 1)d with d ∈ {1, 2}. All the errors are computed as
the difference between the numerical solution and the L2(J ;L2(Ω))-orthogonal projection
of the exact solution. These errors are measured in the L2(T1, T2;H1(B))-seminorm,
with the subset (T1, T2) × B specified below for each test case. Some noise is added to
the measurements in the following way: (i) the time-space domain is divided in 10d+1

subdomains; (ii) a random noise level δ := a ∗ rand() is assigned to each subdomain, with
a ≥ 0 the noise amplitude and rand() is a C++ function returning a random number in
[−1, 1]. Thus, every subdomain has the same noise during the whole mesh-refinement
process. Moreover, the Tikhonov regularization coefficient is set to γ := 10−3.

All the tests are run with the DiSk++ library [14], and all the linear systems are solved
using the Pardiso solver from the MKL library. During the matrix assembly process, we
compute the value of the coefficients for the first time interval I1 and for its coupling with
the next time interval I2. Then, since the time step is constant, the coefficients associated
with the following time intervals are the same and therefore do not need to be recomputed.

4.1 One-dimensional test cases

In this section, we consider the following one-dimensional setting:

Ω := (0, 1), $ := (0.25, 0.75), Tf := 2, u(t, x) := cos(πt) sin(πx).

All the errors are estimated in the subdomain

(T1, T2)×B := (0.2, 1.8)× (0.125, 0.875).

We consider two settings. First, we address the case with unknown initial data but with
known Dirichlet boundary data on J ×∂Ω. In this situation, the boundary conditions can
be enforced in a strong way on the boundary face degrees of freedom by searching ûτh in

Ũ τh0 and not in Ũ τh . Notice that in this case, we have α = 1 in Lemma 1 (see Theorem 2
from [8]). We then expect the same convergence rates as for a well-posed problem, i.e., k
in space and ` + 1

2 in time. Then, we consider the case where both initial and boundary
data are unknown.
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Figure 1: L2(T1, T2;H1(B))-seminorm errors with respect to the number of dofs for the
1d test case without any noise. Both cases with known or unknown boundary data are
considered. Left: space convergence (M ∈ {16, 32, 64, 128}, N = 128, ` = 3). Right: time
convergence (N ∈ {10, 20, 40, 80}, M = 256, k = 3).

We use a uniform mesh in space and in time (N cells in time and M cells in space).
Four levels of refinement are considered in space (M ∈ {16, 32, 64, 128}) and in time
(N ∈ {10, 20, 40, 80}). We run two convergence studies. At first, for a good precision
in time (N = 128, ` = 3), we study the error for several successive space mesh sizes
M ∈ {16, 32, 64, 128} and several polynomial orders k ∈ {1, 2, 3}. Then, for a good
precision in space (M = 256, k = 3), we study the error for several successive time mesh
sizes N ∈ {10, 20, 40, 80} and several polynomial orders ` ∈ {0, 1, 2}. The results without
any noise are reported in Figure 1. We observe optimal space convergence at rate k for
k ∈ {2, 3}. Instead, we obtain superconvergence at rate 2 for k = 1. Moreover, we observe
time convergence at rate ` + 1, for ` ∈ {1, 2}, which is slightly better than the expected
rate `+ 1

2 from Theorem 9. (Recall that the errors are computed as the difference between
the numerical solution and a projection of the exact solution.) The errors in Figure 1 are
reported as a function of the total number of space-time degrees of freedom (dofs). This
gives a perspective on the efficiency of the method with respect to its cost. In particular,
we see that, for a given number of dofs, we can reach a better precision by employing a
high-order method. We also notice that the errors with known boundary data are always
smaller than those with unknown boundary data. For completeness, the number of dofs is
reported in Table 1. The numbers correspond to the case of known boundary data; those
for unknown boundary data are slightly higher due to the use of additional boundary
unknowns.

Let us now consider some noise in the measurements. In this situation, we obtain the
same results as above until the discrete error becomes small and then the convergence
stops. To illustrate this point, let us focus on the highest polynomial degree (which
generates the lowest error). The results are reported in Figure 2 for ` = 2 and k = 3. As
expected, the higher the noise, the larger the value at which the error stagnates. More
precisely, in the case of unknown boundary data, the error stagnates at about twice the
level of noise (2.10−5 for a = 10−5 and 2.10−3 for a = 10−3), whereas it stagnates at
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M k = 1 k = 2 k = 3 N ` = 0 ` = 1 ` = 2

16 4.8·104 6.5·104 8.1·104 10 2.6·104 5.1·104 7.7·104

32 9.7·104 1.3·105 1.6·105 20 5.1·104 1.0·105 1.5·105

64 2.0·105 2.6·105 3.3·105 40 1.0·105 2.0·105 3.1·105

128 3.9·105 5.2·105 6.5·105 80 2.0·105 4.1·105 6.1·105

Table 1: Number of degrees of freedom (1d test case with known boundary data). Left:
space refinement for ` = 3 and N = 128. Right: time refinement for M = 256 and k = 3.

Figure 2: L2(T1, T2;H1(B))-seminorm errors with respect to the number of dofs for the 1d
test case and various noise levels. Left: space convergence (M ∈ {16, 32, 64, 128}, k = 3,
N = 128, ` = 3). Right: time convergence (N ∈ {10, 20, 40, 80}, ` = 2, M = 256, k = 3).

8.10−5 for a = 10−3 in the case of known boundary data. This means that the test case
with unknown boundary data is more sensitive to the presence of noise.

4.2 Two-dimensional test case

In this section, we consider the following two-dimensional setting:

Ω := (0, 1)2, $ := Ω \ (0, 0.875)× (0.125, 0.875), Tf := 2,

(T1, T2)×B := (0.2, 1.8)× (0.125, 0.875)2, u(t, x, y) := cos(πt) sin(πx) sin(πy).

Notice that B ∩ ∂Ω = ∅ and that $ 6⊂ B. Both cases with and without boundary data
are considered.

The space convergence is studied on a sequence of seven triangulations of increasing
refinement (h ∈ {0.25, 0.18, 0.125, 0.09, 0.0625, 0.045, 0.03125}) and k ∈ {1, 2}. The first,
third, fifth, and seventh triangulations of the sequence are shown in Figure 3 Notice that
all the triangulations are fitted to the sets $ and B. We use N = 40 time intervals and
the time degree ` = 2. The time convergence is studied using N ∈ {5, 10, 15, 20, 25, 30},
` ∈ {0, 1}, and the space discretization using the finest time mesh and k = 2.

The L2(T1, T2;H1(B))-seminorm errors obtained without any noise are reported in
Figure 4 as a function of the total number of space-time dofs. The convergence in space
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Figure 3: First, third, fifth, and seventh triangulations used for the 2d test case; all the
triangulations are fitted to $ and B.

Figure 4: L2(T1, T2;H1(B))-seminorm errors for the 2d test case without any noise. Left:
space convergence (N = 40 except the curve with red bullets for which N = 80, ` = 1).
Right: time convergence (finest mesh, k = 2).

(left panel) indicates that the scheme has a convergence rate of k with and without the
knowledge of boundary data. (Since the number of dofs scales as h−d, the slopes in
the left panel of Figure 4 have to be multiplied by two to get the convergence rate.)
This convergence stops in the case of unknown boundary data when we reach the lowest
error enabled by the time refinement (this error can be extrapolated using the curve
corresponding to ` = 1 on the right panel). When this lowest error is reached, continuing
refining the mesh increases the error. To confirm that the obstruction comes from the
time discretization error, we also report in the left panel of Figure 4 the space convergence
error obtained with a finer time discretization (N = 80). We also notice that, since
the convergence rate for k = 1 is indeed one in the case of known boundary data, we
conjecture that the superconvergence observed in the 1d test case was due to the fact that
the domain was one-dimensional. The convergence in time (right panel of Figure 4) seems
to correspond to a convergence at rate ` + 1

2 , even if the boundary data are not known.
(Recall that for the one-dimensional case, we got ` + 1 for ` ∈ {1, 2}.) An interesting
observation is that, in the case of known boundary data, space refinement has to be finer
since the error stops converging on the right panel for ` = 1 (which indicates a lack of space
refinement), whereas, for unknown boundary data, convergence stops on the left panel for
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h k = 1 k = 2 N ` = 0 ` = 1

2.5·10−1 6.0·104 1.1·105 5 2.6·105 5.2·105

1.8·10−1 1.2·105 2.0·105 10 5.2·105 1.0·106

1.3·10−1 1.9·105 3.3·105 15 7.8·105 1.6·106

9.0·10−2 3.6·105 6.2·105 20 1.0·106 2.1·106

6.3·10−2 5.5·105 9.7·105 25 1.3·106 2.6·106

4.5·10−2 1.3·106 2.2·106 30 1.6·106 3.1·106

3.1·10−2 2.4·106 4.2·106 · · ·

Table 2: Number of degrees of freedom (2d test case with known boundary value). Left:
space refinement for ` = 1 and N = 40. Right: time refinement for h = 0.03125 and k = 2.

k = 2, (which indicates a lack of time refinement). For completeness, the number of dofs
is reported in Table 2. We see that we reach several millions of dofs, which is high for
the use of a direct solver like Pardiso. In fact, these numerical simulations use more than
100GB of RAM.

Figure 5: L2(T1, T2;H1(B))-seminorm errors for the 2d test case with noised data (a ∈
{0, 0.05, 0.1}). Left: space convergence (k = 2 and ` = 1). Right: time convergence (finest
mesh from Figure 3, k = 2 and ` = 1).

Finally, we consider some noise at level a ∈ {0, 0.05, 0.1}. The results are reported in
Figure 5 along with the solution without any noise for k = 2 and ` = 1. In the left panel,
N = 40 (resp. N = 80) is considered for known (resp. unknown) boundary data. We
observe once more that the test case without the knowledge of boundary data is much
more sensitive to the presence of noise. Indeed, the presence of noise changes the result
only in this case.
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