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In this work we present an extension of the popular selected configuration interaction (SCI) algorithms to
the Transcorrelated (TC) framework. Although we used in this work the recently introduced one-parameter
correlation factor [E. Giner, J. Chem. Phys., 154, 084119 (2021)], the theory presented here is valid for any
correlation factor. Thanks to the formalization of the non Hermitian TC eigenvalue problem as a search of
stationary points for a specific functional depending both on left- and right-functions, we obtain a general
framework allowing different choices for both the selection criterion in SCI and the second order perturbative
correction to the energy. After numerical investigations on different second-row atomic and molecular systems
in increasingly large basis sets, we found that taking into account the non Hermitian character of the TC
Hamiltonian in the selection criterion is mandatory to obtain a fast convergence of the TC energy. Also,
selection criteria based on either the first order coefficient or the second order energy lead to significantly
different convergence rates, which is typically not the case in the usual Hermitian SCI. Regarding the con-
vergence of the total second order perturbation energy, we find that the quality of the left-function used in
the equations strongly affects the quality of the results. Within the near-optimal algorithm proposed here we
find that the SCI expansion in the TC framework converges faster than the usual SCI both in terms of basis
set and number of Slater determinants.

I. INTRODUCTION

Obtaining an accurate description of the electronic
structure of atomic and molecular systems is the corner-
stone of wave function theory (WFT) which aims at solv-
ing the many-body Schrödinger equation (SE) for atomic
and molecular systems. An interesting feature of WFT
is that the path toward the exact solution of the SE is a
priori known: one has to compute the full configuration
interaction (FCI) in increasingly large one-electron basis
sets until the complete basis set (CBS) limit is reached.
There are nevertheless two major drawbacks in WFT: i)
the computational cost of FCI scales exponentially with
the number of electrons and number of basis functions,
and ii) the convergence of most of the chemically relevant
properties, such as atomization energies or electrical re-
sponses, is slow with the size of the basis set. The mixing
of these two issues is such that the FCI is only applicable
to few electron systems in moderate basis sets. There-
fore, intense efforts have been carried by the quantum
chemistry community to develop new schemes in order
to alleviate these two problems.

The field of the so-called post Hartree Fock (HF) meth-
ods aims at developing efficient approximations to the
FCI wave function and energy within a given basis set
starting from the HF mean-field solution. There are
many different ways of tackling the many-body problem
which can be essentially split into two categories: the
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variational approaches consisting in CI approaches, and
the projective techniques relying on perturbation theory
(PT). One advantage of variational approaches is that
they are conceptually simple: one explicitly builds the
wave function as a linear combination of Slater determi-
nants, whose coefficients and orbitals can be optimized
by minimization of the expectation value of the Hamil-
tonian. The variational principle guarantees an upper
bound to the exact ground state energy which allows to
treat strongly correlated systems without any divergence
caused by near degeneracies and/or strong off diagonal
Hamiltonian matrix elements. The major drawback of
this approach is that the linear parametrization of the
wave function prohibits desirable properties such as size
extensivity unless a complete active space (CAS) is cho-
sen, with a size scaling exponentially with the number
of correlated electrons and orbitals. On the other hand,
the projective methods use two different wave functions
to evaluate the energy without the burden of the usual
expectation value: a reference wave function which is
typically a qualitative representation of the wave func-
tion (such as the HF Slater determinant), and a corre-
lated wave function which is a closer approximation to
the FCI. Thanks to the two-body nature of the Hamil-
tonian, the energy can be obtained by essentially know-
ing the coefficients on the single- and double-particle-hole
excitations with respect to the reference wave function.
Thanks to this simplification, PT can be developed to
produce useful computational tools such as Møller Plesset
at second order1 (MP2) and important theorems2–4 can
be derived which allow the understanding of the product
structure of the wave function. The latter has led to the
coupled cluster5 (CC) exponential ansatz for the wave
function guaranteeing size extensive energies and which
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can be obtained routinely at polynomial costs thanks to
intense developments on both the conceptual and prac-
tical aspects. Despite the tremendous successes of ap-
proximate CC approaches, the drawback of such schemes
are certainly their difficulties to treat the strong correla-
tion regimes where odd behaviours often occur because
of near degeneracies between several Slater determinants.
An alternative path has been proposed with the so-called
selected-CI6–20 (SCI) approaches which can be thought
as a mixing of the variational and projective methods.
While usual CI techniques predetermine the set of Slater
determinants in the wave function, the SCI approaches
aim at iteratively selecting on-the-fly the most relevant
Slater determinants thanks to an importance criterion
based on PT, as initially proposed in the CI perturba-
tively selected iteratively (CIPSI)7 of Malrieu and co-
workers. Thanks to this selection of the Slater determi-
nants, the variational energy of the reference wave func-
tion converges rapidly towards the FCI energy. Although
the seminal works on SCI have been carried essentially
between the seventies and nineties, there exists a quite
recent literature on SCI. Nevertheless, most of these al-
gorithms differ by the importance criterion used to se-
lect Slater determinants (either the first order perturbed
coefficient or second order contribution on the energy),
which leads to very similar convergence rates for the vari-
ational energy. Another class of SCI methods applies a
screening on the two-electron integrals in order to dis-
card negligible excitations, such as in EXSCI21 or in the
heath-bath-CI14 (HCI). On-top of the variational energy
of the reference wave function, one can add a second or-
der perturbative correction on the energy, which allows
to drastically improve the convergence of the SCI algo-
rithm towards the FCI energy. Usually, the PT is carried
with an Epstein-Nesbet22,23 (EN) zeroth order Hamilto-
nian in a multi-reference (MR) framework, although at-
tempts have been proposed to mix with the MP zeroth or-
der Hamiltonian24. Due to the important computational
cost of the multi-reference perturbation theory (MRPT),
different flavours of stochastic and semi-stochastic ver-
sions of the latter were independently proposed in order
to significantly speedup the calculations25,26. This recent
renewal of the SCI techniques have pushed in a signifi-
cant way the boundaries of accessible near FCI energies,
but they can give accurate estimates of the FCI energy
only for systems with a few tens of correlated electrons
in typically two hundreds of orbitals27,28. The reason
for such a limitation is the so-called exponential wall:
even if the linear parametrization is compacted thanks
to efficient selection criteria and further enhanced with
a second order perturbative correction, it cannot com-
pete with the exponentially growing number of determi-
nants in the FCI space. Recent alternatives have been
proposed to cure this problem by an exponential ansatz
using single reference CC with a selection a la CIPSI of
the individual excitation operators29,30.

Except for methods to approximate the FCI wave func-

tion in a given basis set, alternative tools have been pro-
posed in order to temper the slow convergence of the re-
sults of WFT with respect to the one-electron basis set.
The latter was acknowledged in the early years of quan-
tum physics by Hylleraas31 to originate from the diver-
gence of the Coulomb potential at short inter electronic
distances, which, as shown by Kato32, induces a deriva-
tive discontinuity (the so-called electron-electron cusp)
in the exact electron wave function. Based on the lat-
ter results, there are essentially two branches that have
emerged to alleviate the basis set convergence problems
of WFT: pure WFT approaches where one includes ex-
plicitly the inter electronic distances in the wave function,
and hybrid theories based on WFT and range-separated
density functional theory33 (RSDFT). The latter strat-
egy, initially proposed in Ref. 34, exploits the fact that
the Coulomb potential projected onto an incomplete ba-
sis set is non divergent, allowing for a mapping with RS-
DFT through the so-called long-range interaction used
in this framework. This hybrid scheme was success-
fully validated for the calculations of different chemically
relevant properties including light and transition metal
atoms34–41.

Regarding pure WFT schemes dealing with the
electron-electron cusp, the main idea is to introduce a
so-called correlation factor which explicitly introduces
the inter electronic distances and there are mainly three
branches of such methods which differ by the treatment
of the correlation factor. A first approach is variational
Monte Carlo42–44 (VMC), where the wave function is ex-
pressed as the product of a Slater determinant expansion
with a correlation factor. All the parameters of the wave
function are optimized in a non-orthonormal stochastic
framework. The two main advantages of VMC are that
virtually any form of correlation factor can be used as
the 3N -dimensional integrals are computed with a Monte
Carlo (MC) sampling, and also that the determinant ex-
pansion is strongly compacted by the correlation factor
thanks to its non-negligible overlap with the Slater de-
terminant basis. Nonetheless, a major drawback of VMC
originates from the statistical fluctuations of the sampled
quantities needed to optimize the wave function.

In the explicitly correlated methods45–47 (F12), the ef-
fect of the correlation factor is projected outside the N -
electron Hilbert space spanned by the finite one-electron
basis set, but one nevertheless obtains a faster conver-
gence of the energy towards CBS results48. The F12
machinery induces numerous three- and four-electron
integrals49 which constrains the correlation factor to have
a rather simple form. In addition, the presence of the cor-
relation factor does not make the wave function expan-
sion more compact, because the correlation factor is pro-
jected onto the Hilbert space orthogonal to that spanned
by the basis set.

Another related approach consists in the so-called
transcorrelated50–52 (TC) methods where the correlation
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factor is introduced in the Hamiltonian instead of being
introduced in the wave function. The TC methodology
proposed by Boys and Handy51,52 relies on a similarity
transformation of the usual Hamiltonian by the corre-
lation factor, which necessarily leads to a non Hermi-
tian operator but also maintains the orthonormality of
the Slater determinant basis. It can be thought as a
compromise between the F12 and VMC approaches: as
the full effect of the correlation factor is retained in the
TC approach, the cuspless wave function expansion is
compacted53–55, and no more than three-electron inte-
grals are needed in the optimization process. After the
seminal works by Boys and Handy51,52 where both the
orbitals of a single Slater determinant and a rater sophis-
ticated correlation factor were optimized together, Ten-
No56 proposed a significant change of paradigm: using a
rather simple universal correlation factor shaped for va-
lence electrons and giving more flexibility to the Slater
determinant expansion to adapt to the presence of the
correlation factor. This strategy was initially applied to
MP2 in Refs. 56 and 57 and to a linearized coupled cluster
ansatz in later work58. Attempts to remain within a vari-
ational framework despite the non Hermitian nature of
the TC Hamiltonian have been proposed by Umezawa et.
al.59,60 and Luo61,62, and an alternative similarity trans-
formation with an anti Hermitian correlation factor was
proposed by Yanai et. al.63,64. Developments of the TC
method towards the treatment of solid state systems have
been carried by Ochi et. al. including both ground65–68

and excited states66. More recently, Cohen et. al69,70

applied the TC equations with an elaborate correlation
factor and proposed to use the full configuration inter-
action Monte Carlo (FCIQMC) method to obtain the
exact ground state energy and the corresponding right
eigenvector of the TC Hamiltonian in a given basis set.
Their approach, the so-called TC-FCIQMC, originally
used the correlation factors published by Moskowitz et.
al.71 which were optimized in the context of VMC for the
He-Ne neutral series, and which explicitly take into ac-
count electron-electron-nucleus correlation effects. Adap-
tations of the CC equations to the TC framework were
also applied to molecular72 and periodic systems73. Ap-
plications of the similarity transformation for Hubbard
model Hamiltonians with the Gutzwiller Ansatz for the
correlation factor74,75 were carried using FCIQMC53 and
density matrix renormalization group76. Adaptations of
the TC equations to matrix product state methodology
have been also reported72,77.

Recently, one of the present authors54 introduced a
correlation factor which generates, at leading order in
1/r12, an effective potential in the TC Hamiltonian re-
producing the non divergent long range interaction of
RSDFT. The correlation factor only depends on the in-
ter electronic distance, and is tuned by a single parameter
µ which controls both the range and depth of the correla-
tion hole induced in the cuspless wave function. The total
effective potential appearing in the TC Hamiltonian has

a relative simple analytical structure and the two- and
three-electron integrals can be obtained efficiently using
a mixed numerical/analytical scheme. The first applica-
tions on two electron systems in Ref. 54 have shown en-
couraging results on the convergence of the energy and
the compaction of the wave function, and also enabled
a rather systematic way to obtain a reasonable system-
dependent value for the parameter µ depending only on
the HF density. Coupled with the TC-FCIQMC method-
ology, further tests on the Li-Ne neutral and first-cation
series together with second-row molecular systems78 have
shown that such a correlation factor in the context of TC
equations is competitive with the rather complex corre-
lation factors used by Alavi et. al. in Ref. 69.

The present work proposes to adapt the SCI strategy
to the general TC framework in order to benefit from the
compaction of the wave function due to the presence of
the correlation factor and to speed up the convergence
of the results with respect to the basis set. We use here
the µ-dependent correlation factor of Ref. 54, but the
equations derived here are general and applicable to any
correlation factor. Therefore the main goal of the present
approach is more the specificity of the SCI strategy in the
TC context rather than the actual performance of the µ-
dependent correlation factor.

The paper is organized as follows. In Sec. II A we
briefly recall the form of the general TC equations in first-
and second-quantization. Different levels of approxima-
tions for the three-body terms used here are presented in
Sec. II B and the TC equations with the µ-dependent cor-
relation factor used here are briefly exposed in Sec. II C.
Then, in Sec. II D 1 we expose the connection between
non Hermitian eigenvalue problems and the stationary
points of a functional depending on two functions, which
allows us then to expose a perturbative expansion of such
a formulation in Sec. II D 2. Based on these tools, we ex-
tend the SCI problem to non Hermitian Hamiltonians in
Sec. II E 2, and also present in Sec. II E 3 a framework to
solve non Hermitian eigenvalue problems with only Her-
mitian matrices. In Sec. III we present the numerical
results obtained. We investigate on several atomic and
one molecular systems the convergence of the different
flavours of SCI in the TC context in Sec. III B in order
to determine the most efficient way of performing SCI.
Having established a near optimal strategy, in Sec. III C
we investigate the dependency of both total energies and
atomization energies on the level of treatments of the
three-body terms on a set of atomic and molecular sys-
tems. Eventually, we summarize and conclude in Sec. IV.
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II. THEORY

A. General equations and concepts of TC theory

The general form of the transcorrelated Hamiltonian
for a symmetric correlation factor u(r1, r2) is given by

H̃[u] ≡ e−τ̂uĤeτ̂u

= H +
[
H, τ̂u

]
+

1

2

[[
H, τ̂u

]
, τ̂u

]
,

(1)

where τ̂u =
∑
i<j u(ri, rj) and Ĥ = −

∑
i

1
2∇

2
i + v(ri) +∑

i<j 1/rij . Eq. (1) leads to the following transcorrelated
Hamiltonian

H̃[u] = H −
∑
i<j

K̂[u](ri, rj)−
∑
i<j<k

L̂[u](ri, rj , rk),

(2)
where the effective two- and three-body operators
K̂[u](r1, r2) and L̂[u](r1, r2, r3) are defined as

K̂[u](r1, r2) =
1

2

(
∆1u(r1, r2) + ∆2u(r1, r2)

+
(
∇1u(r1, r2)

)2
+
(
∇2u(r1, r2)

)2)
+∇1u(r1, r2) · ∇1 +∇2u(r1, r2) · ∇2,

(3)
and

L̂[u](r1, r2, r3) =∇1u(r1, r2) · ∇1u(r1, r3)

+∇2u(r2, r1) · ∇2u(r2, r3)

+∇3u(r3, r1) · ∇3u(r3, r2).

(4)

In practice, the TC Hamiltonian is projected into a one-
particle basis set B

H̃B[u] = PBH̃[u]PB, (5)

where PB is the projector onto the Ne-electron Hilbert
space spanned by the one-particle basis set B and Ne is
the number of electrons. Using real-valued orthonormal
spatial molecular orbitals (MOs) {φi(r)}, H̃B[u] can be
written in a second-quantized form as

H̃B[u] =
∑
i,j∈B

∑
σ=↑,↓

hija
†
j,σâi,σ

+
1

2

∑
i,j,k,l∈B

∑
σ,λ=↑,↓

(
V klij −Kkl

ij

)
a†k,σa

†
l,λâj,λâi,σ

− 1

6

∑
i,j,m,k,l,n∈B

∑
σ,λ,κ=↑,↓

Lklnijma
†
k,σa

†
l,λa
†
n,κâm,κâj,λâi,σ,

(6)
where hij are the usual one-electron integrals, V klij are the

usual two-electron integrals, Kkl
ij are the two-electron in-

tegrals corresponding to the effective two-body operator

K̂[u](r1, r2)

Kkl
ij =

∫
dr1dr2φk(r1)φl(r2)K̂[u](r1, r2)φi(r1)φj(r2),

(7)
and Lklnijm are the three-electron integrals corresponding

to the effective three-body operator L̂[u](r1, r2, r3)

Lklnijm =

∫
dr1dr2dr3φk(r1)φl(r2)φn(r3)

L̂[u](r1, r2, r3)φi(r1)φj(r2)φm(r3).
(8)

Since H̃B[u] is non Hermitian, a given eigenvalue ẼBi [u]
can be associated with a couple of right- and left-
eigenvectors

H̃B[u]|ΦBi [u]〉 = ẼBi [u]|ΦBi [u]〉(
H̃B[u]

)†|χBi [u]〉 = ẼBi [u]|χBi [u]〉,
(9)

and because of the properties of the similarity transfor-
mation the exact eigenvalue Ei is recovered in the CBS
limit

lim
B→CBS

ẼBi [u] = Ei. (10)

As a part of the correlation effects are taken into ac-
count with the correlation factor, one can expect that
the convergence of ẼBi [u] is more rapid than the usual
WFT-based method.

Since all calculations presented here are performed in
an incomplete basis set B, from hereon we omit the basis
set B symbol for the sake of the simplicity of the nota-
tions.

B. Approximations for three body terms

The computation and storage of the 6-index Lklnijm
tensor corresponding to the three-body operator
L̂[u](r1, r2, r3) rapidly becomes the main computational
bottleneck in the TC calculations. To overcome such
limitations, several approximations to the full treat-
ment of the three-body terms have been proposed in the
literature57,58,72,78. When using methods such as MP2 or
CC approaches for which the needed integrals are known
a priori of the calculations, one can use a resolution of
the identity approximation (RI) as proposed in Ref. 57,
with only N4-storage requirement for intermediate quan-
tities. Nevertheless, the RI would be very costly to be
used in the context of SCI or stochastic approaches such
as FCIQMC as one cannot anticipate which specific in-
tegrals will be involved in matrix elements and it would
therefore imply to recompute the three-electron integrals
whenever they are required in the matrix elements com-
putations.
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In Refs. 58 and 72 the authors proposed to use the
normal-ordering of the three-body term on a reference
determinant in order to obtain effective one- and two-
body operators, which results in a typical N4 computa-
tional scaling but nevertheless introduces a dependence
on the reference determinant chosen for the normal or-
dering. In Ref. 78 the authors introduced the so-called
“5-idx” approximation consisting in simply neglecting all
Lklnijm integrals with six different indices, which results in a

less-favourable N5 scaling but does not introduce an ex-
plicit dependence on the chosen reference determinant.
Nevertheless, the three-body operator being truncated,
it introduces necessarily a dependence on the MO ba-
sis used, but numerical investigations carried in Ref. 78
have shown that this dependency is rather small. Here we
propose to introduce a new approximation which can be
seen as a compromise between the normal-ordering tech-
nique and the 5-idx approximation. Such approximation,
here referred to as 4-idx, consists in treating explicitly
the three-body terms for diagonal and single-excitation
matrix elements (which therefore account for all Lklnijm in-
volving at most four different indices) and using the two-
body sector of the normal order operator with four dif-
ferent indices for the treatment of the double excitations
Hamiltonian matrix elements. The 4-idx approximation
results in a typical N4 computational scaling but as the
explicit treatment of the three-body terms are retained
for the diagonal and single-excitation matrix elements, it
might mitigate the dependence on the reference determi-
nant. The 5-idx approximation is used throughout this
work unless the 4-idx is explicitly mentioned.

C. One-parameter TC Hamiltonian: H̃[µ]

The one-parameter correlation factor u(r12, µ) with
r12 = |r1−r2| used in this work was originally proposed in
Ref. 54 based on a mapping between the r12 ≈ 0 limit of
the TC Hamiltonian and the RSDFT effective Hamilto-
nian. The explicit form of the correlation factor u(r12, µ)
is given by

u(r12, µ) =
1

2
r12

(
1− erf(µr12)

)
− 1

2
√
πµ

e−(r12µ)2 . (11)

Because of the simple analytical expression of u(r12, µ),

the corresponding TC Hamiltonian H̃[µ] defined as

H̃[µ] ≡ e−τ̂µĤeτ̂µ

= H −
∑
i<j

K̂[µ](ri, rj)−
∑
i<j<k

L̂[µ](ri, rj , rk),

(12)

with τ̂µ =
∑
i<j u(rij , µ), has a relatively simple analyti-

cal form with the effective two- and three-body operators

K̂[µ](ri, rj) =
1− erf(µr12)

r12
− µ√

π
e−
(
µr12

)2

+

(
1− erf(µr12)

)2

4
−
(

erf(µr12)− 1

)
∂

∂r12

(13)

and

L̂[µ](ri, rj , rk) =
1− erf(µr12)

2r12
r12 ·

1− erf(µr13)

2r13
r13

+
1− erf(µr21)

2r21
r21 ·

1− erf(µr23)

2r23
r23

+
1− erf(µr31)

2r31
r31 ·

1− erf(µr32)

2r32
r32,

(14)
respectively. The correlation factor u(r12, µ) exactly re-
stores the cusp conditions and the scalar two- and three-
body effective interaction in Eqs. (13) and (14) lead to a

non divergent interaction in H̃[µ] which has then “cusp-
less” eigenvectors as illustrated in Ref 54. As apparent
from the definitions of Eq (13) and Eq. (14), the global

shape of H̃[µ] depends on a unique parameter µ, which
can be seen either as the inverse of the typical range of
the correlation effects, or the typical value of the effective
interaction at r12 = 0. In the µ→ +∞ limit one obtains
the usual Hamiltonian, while in µ→ 0 limit one obtains a
well defined attractive non Hermitian Hamiltonian even
if the correlation factor becomes singular.

D. Non Hermitian eigenvalue problems as stationary
points of functional

The present section describes how non Hermitian
eigenvalue problems can be rewritten in terms of station-
ary points of functionals depending on two functions. We
give the derivations for a general non Hermitian operator
H̃ with real eigenvalues, i.e. a pseudo-Hermitian oper-
ator as introduced in Ref. 79. It is worth noticing that
according to the definition of Mostafazadeh79, any oper-
ator Ô fulfilling

Ô = R̂−1Ô†R̂, (15)

is a pseudo Hermitian operator (i.e. with real eigenval-
ues), which is of course the case of the TC Hamiltonian
as

(H̃[u])† = e+τ̂uĤe−τ̂u , (16)

and therefore

H̃[u] = R̂−1(H̃[u])†R̂, (17)

with R̂ = e2τ̂u .
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1. Functionals and non Hermitian eigenvalue problems

We consider here a non Hermitian operator H̃ with
real eigenvalues. Its left- and right-eigenvectors are real
and not orthonormal

〈Φi|Φj〉 ≡ Srij 6= δij ,

〈χi|χj〉 ≡ Slij 6= δij ,
(18)

but can be rescaled such that they verify a bi-
orthonormality relation

〈χi|Φj〉 = δij . (19)

As a consequence, the usual energy functional

E[Ψ] =
〈Ψ|H̃|Ψ〉
〈Ψ|Ψ〉

, (20)

does not necessarily admit a lower bound. Indeed, as-
suming that 〈Ψ|Ψ〉 = 1, one can expand the function |Ψ〉
on the right-eigenvectors for instance

|Ψ〉 =
∑
i

ci|Φi〉, ci ∈ R, (21)

then E[Ψ] can be expressed as

E[Ψ] =
∑
i,j

cicjEiS
r
ij , (22)

which has no reason to be an upper bound to E0 as
Srij 6= δij . Therefore looking for a minimum of the func-
tional E[Φ] is irrelevant due to the loss of the variational
principle.

Computing the functional derivative of Eq. (20)

δE[Ψ]

δΨ
=
〈Ψ|Ψ〉

(
H̃ + H̃†

)
|Ψ〉 − 2〈Ψ|H̃|Ψ〉|Ψ〉

|〈Ψ|Ψ〉|2
, (23)

and looking for a stationary point |Ψ∗〉 normalized to
unity such that

δE[Ψ∗]

δΨ∗
= 0, (24)

yields the following eigenvalue equation

1

2

(
H̃ + H̃†

)
|Ψ∗〉 = λ|Ψ∗〉. (25)

Therefore looking for stationary points of E[Ψ] leads to

eigenvectors of the symmetrized operator H̃+ H̃†, which
are of course different from the eigenvectors of the origi-
nal non Hermitian operator H̃.

In order to obtain a functional whose stationary points
are the eigenvectors of H̃ one needs to define the following
functional

Ẽ[χ,Φ] =
〈χ|H̃|Φ〉
〈χ|Φ〉

, (26)

where the functions χ and Φ are called here the left- and
right-function, respectively. Being a functional of two
functions, Ẽ[χ,Φ] admits two functional derivatives

δẼ[χ,Φ]

δχ
=
H̃|Φ〉〈χ|Φ〉 − 〈χ|H̃|Φ〉|Φ〉

|〈χ|Φ〉|2
, (27)

δẼ[χ,Φ]

δΦ
=
H̃†|χ〉〈χ|Φ〉 − 〈χ|H̃|Φ〉|χ〉

|〈χ|Φ〉|2
. (28)

Therefore, if one searches for a stationary point |Φ∗〉 such
that, for a given |χ〉, the functional derivative vanishes

δẼ[χ,Φ∗]

δχ
= 0, (29)

one obtains

H̃|Φ∗〉 = Ẽ[χ,Φ∗]|Φ∗〉, (30)

and one immediately recognizes the eigenvalue equations
of the TC Hamiltonian for the right-eigenvector (see Eq.
(9)). Therefore, cancelling the left functional deriva-
tive yields an equation for the right-eigenvector |Φi〉 of

H̃, which can seem counter intuitive. This can be un-
derstood by noticing that when the functional Ẽ[χ,Φ]
is evaluated at a right-eigenvector |Φi〉, the functional

Ẽ[χ,Φi] is then insensitive to the function χ

Ẽ[χ,Φi] =
〈χ|H̃|Φi〉
〈χ|Φi〉

= Ẽi ∀χ, (31)

which is the definition of a stationary point with respect
to the left function χ.

Of course, similar equations can be obtained for the
left-eigenvector

δẼ[χ,Φ]

δΦ
= 0⇔ H̃†|χ〉 = Ẽ[χ∗,Φ]|χ〉, (32)

and in the case where |χ〉 = |χi〉 one obtains that

Ẽ[χi,Φ] = Ẽi ∀Φ, (33)

which means that the value of the functional Ẽ[χi,Φ]
becomes insensitive to Φ when evaluated at |χ〉 = |χi〉.

2. Perturbation theory of the functional

Having in mind that finding right- (left-)eigenvectors
is equivalent to find a stationary point of the functional
Ẽ[χ,Φ], one can then Taylor expand such a functional in
order to obtain a perturbative expansion. For the sake of
simplicity of notations, we will omit the index labelling
the state and implicitly focus on the ground state.
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Let the Hamiltonian H̃ be split into

H̃ = H̃0 + λṼ , (34)

and we would like to obtain the ground state energy Ẽ0 as
a Taylor expansion of the functional Ẽ[χ,Φ0] evaluated
at a given |χ〉 with

Ẽ[χ,Φ0] =
〈χ|H̃0 + λṼ |Φ0〉

〈χ|Φ0〉
=

∞∑
k=0

λkẼ(k), (35)

which therefore implies to also Taylor expand the right-
eigenvector in powers of λ

|Φ0〉 =

∞∑
k=0

λk|Φ(k)〉, (36)

which satisfies the eigenvalue equation

(H̃0 + λṼ )|Φ0〉 = Ẽ[χ,Φ0]|Φ0〉, (37)

and we will start the expansion of |Φ0〉 from an eigenvec-

tor of H̃0, called here |Φ(0)〉

H̃0|Φ(0)〉 = ε̃0|Φ(0)〉. (38)

We will assume that the ground state |Φ0〉 can be
expanded on a set of N orthonormal functions S =
{|φi〉, i = 1, N}

|Φ0〉 = |Φ(0)〉+
∑
i

ci|φi〉,

〈φj |φi〉 = δij ,

(39)

which are also orthogonal to |Φ0〉

〈Φ(0)|φi〉 = 0 ∀|φi〉 ∈ S, (40)

and for which H̃0 is diagonal on S

H̃0|φi〉 = ε
(0)
i |φi〉, (41)

implying that

〈Φ(0)|H̃0|φi〉 = 〈φi|H̃0|Φ(0)〉 = 0 ∀|φi〉 ∈ S. (42)

Because we assumed that the functions |φi〉 are orthonor-

mal, the condition Eq. (41) necessarily implies that H̃0

is Hermitian on the set S. We will further assume that
the set of |φi〉 is orthogonal to the vector |χ〉

〈χ|φi〉 = 0 ∀|φi〉 ∈ S, (43)

which implies that

〈χ|Φ0〉 = 〈χ|Φ(0)〉. (44)

Compared to the general case, this restriction consider-
ably simplifies the perturbative expansion, and will actu-
ally be relevant in the SCI framework we are interested

in. The orthonormality condition of Eq. (40) also implies
that

〈Φ(0)|Φ0〉 = 1. (45)

Once the properties of H̃0 are defined on the whole
space, one can replace the expression of |Φ0〉 in Eq. (35)
to obtain the perturbative expansion of the energy. For
the present purpose we stop at second order

Ẽ[χ,Φ0] =Ẽ(0) + λẼ(1) + λ2Ẽ(2),

=
〈χ|H̃0|Φ(0)〉+ λ〈χ|Ṽ |Φ(0)〉+ λ2〈χ|Ṽ |Φ(1)〉

〈χ|Φ(0)〉
(46)

which obviously gives

Ẽ(0) =
〈χ|H̃0|Φ(0)〉
〈χ|Φ(0)〉

,

Ẽ(1) =
〈χ|Ṽ |Φ(0)〉
〈χ|Φ(0)〉

,

Ẽ(2) =
〈χ|Ṽ |Φ(1)〉
〈χ|Φ(0)〉

.

(47)

To obtain the equation for the perturbed wave function
one replaces the expressions of both |Φ0〉 and Ẽ[χ,Φ0] in
Eq. (37)

(
H̃0 + λṼ

)( ∞∑
k=0

λk|Φ(k)〉

)
=

( ∞∑
k=0

λkẼ(k)

)( ∞∑
m=0

λm|Φ(m)〉

)
,

(48)
and for Φ(1) one obtains

H̃0|Φ(1)〉+ Ṽ |Φ(0)〉 = Ẽ(0)|Φ(1)〉+ Ẽ(1)|Φ(0)〉. (49)

By projecting Eq. (49) on a function |φi〉 one obtains

c
(1)
i =

〈φi|Ṽ |Φ(0)〉
Ẽ(0) − εi

, (50)

and therefore one can obtain the second order contribu-
tion to the energy

Ẽ(2) =

N∑
i=1

Ẽ
(2)
i , (51)

where Ẽ
(2)
i is the contribution at second order to the

energy of the function |φi〉

Ẽ
(2)
i =

〈χ|Ṽ |φi〉 c(1)
i

〈χ|Φ(0)〉

=
1

〈χ|Φ(0)〉
〈χ|Ṽ |φi〉〈φi|Ṽ |Φ(0)〉

Ẽ(0) − εi
.

(52)

One should notice in Eq. (52) that the non Hermitian

nature of H̃ manifests in two ways: i) the coefficient is
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computed using 〈φi|Ṽ |Φ(0)〉 which can be different from

〈Φ(0)|Ṽ |φi〉, and ii) the computation of the energy im-
plies, in the general case, the use of another left-function
χ through 〈χ|Ṽ |φi〉.

One can also Taylor expand the left-eigenvector |χ0〉
and obtain an alternative expression for the ground state
eigenvalue for a given function |Φ〉

|χ0〉 =

∞∑
k=0

λk|χ(k)〉

Ẽ0 =

∞∑
k=0

λkĒ(k)

|χ(k)〉 =

N∑
i=1

c̄
(k)
i |φi〉,

(53)

where we assume that |χ(0)〉 is a left eigenvector of H̃0

H̃†0 |χ(0)〉 = ε̃0|χ(0)〉, (54)

and where we indicate with a “bar” to distinguish from
the expansion in terms of the right-eigenvector. Truncat-
ing at second order at most one obtains for the energy

Ē(0) =
〈Φ|H̃†0 |χ(0)〉
〈χ(0)|Φ〉

,

Ē(1) =
〈Φ|Ṽ †|χ(0)〉
〈χ(0)|Φ〉

,

Ē(2) =
〈Φ|Ṽ †|χ(1)〉
〈χ(0)|Φ〉

,

(55)

and the coefficients of the first order perturbed left wave
function are

c̄
(1)
i =

〈φi|(Ṽ )†|χ(0)〉
Ẽ(0) − εi

=
〈χ(0)|Ṽ |φi〉
Ẽ(0) − εi

.

(56)

This yields the second order contribution to the left
expansion of the energy of the function |φi〉

Ē
(2)
i =

〈Φ|(Ṽ )†|φi〉c̄(1)
i

〈χ(0)|Φ〉

=
1

〈χ(0)|Φ〉
〈χ(0)|Ṽ |φi〉〈φi|Ṽ |Φ〉

Ẽ(0) − εi
.

(57)

We see that the in the general case the expansion for
the energy in terms of the left- and right-eigenvectors
are a priori different as the right-expansion depends on
a left-function χ and the left-expansion depends on a
right-function Φ. Nevertheless, if for the expansion in
terms of the right-eigenvector we choose the left-function
|χ〉 to be the left-eigenvector of H̃0 (see Eqs. (46), (47)

and (52)) and similarly for the right-function |Φ〉 to be
|Φ(0)〉 in the left-expansion (see Eqs. (46) and (47)), one
obtains

Ẽ(0) = Ē(0) =
〈χ(0)|H̃0|Φ(0)〉
〈χ(0)|Φ(0)〉

,

Ẽ(1) = Ē(1) =
〈χ(0)|Ṽ |Φ(0)〉
〈χ(0)|Φ(0)〉

,

Ẽ
(2)
i = Ē

(2)
i =

1

〈χ(0)|Φ(0)〉
〈χ(0)|Ṽ |φi〉〈φi|Ṽ |Φ(0)〉

Ẽ(0) − εi
,

(58)

which means that the right- and left-perturbative expan-
sions for the energy coincide up to second order. One
might nevertheless notice that a function |φi〉 has poten-
tially different coefficients at first order in the left- and
right-wave function.

E. Selected CI in a transcorrelated framework

After recalling the basics of Hermitian SCI in
Sec. II E 1, in this section we explain the main ingredients
for the non Hermitian SCI. In Sec. II E 2 we define the dif-
ferent selection criteria based on the previous expressions
for a perturbative expansion of the non Hermitian prob-
lem. Then in Sec. II E 3, we explain an iterative scheme
to obtain the right- and potentially left-eigenvectors of a
given non Hermitian TC Hamiltonian based only on the
usual Hermitian eigensolvers.

1. Hermitian SCI in a nutshell

We consider here an iterative SCI algorithm for an
Hemitian Hamiltonian, in which an iteration n can be
summarized as follows.

1. A zeroth order set of Slater determinants Pn =
{|I〉, i = 1, Ndet} is known and one obtains the
ground state eigenvector of the Hamiltonian within
Pn

|Ψ(0)〉 =
∑

I∈Pn

c
(0)
I |I〉

Ev ≡ E(0) = min
{c(0)I }

〈Ψ(0)|Ĥ|Ψ(0)〉
〈Ψ(0)|Ψ(0)〉

.

(59)

As the Hamiltonian is Hermitian, E(0) is necessarily
variational and will be referred to as Ev by oppo-
sition to E(0) in the case where the Hamiltonian is
non Hermitian.

2. Generate the determinants |φi〉 /∈ Pn which are
connected to |Ψ(0)〉

〈φi|Ĥ|Ψ(0)〉 6= 0, φi /∈ Pn. (60)
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3. For each of these |φi〉, estimate its importance cri-
terion fφi .

4. Select a set of Nφi Slater determinants |φi〉, called
Anf , with the largest |fφi |.

5. Add the set Anf to Pn in order to define the new
set of determinants of the variational space

Pn+1 = Pn ∪ Anf . (61)

6. Go back to step 1) and iterate until a given conver-
gence criterion is reached.

The flavour of SCI essentially changes through the defi-
nition of importance criterion fφi : it can be for instance
the coefficient at first order

fφi ≡ c
(1)
i =

〈φi|Ĥ|Ψ(0)〉
E(0) − 〈φi|Ĥ|φi〉

, (62)

the second order contribution to the energy

fφi ≡ E
(2)
i =

〈Ψ(0)|Ĥ|φi〉2

E(0) − 〈φi|Ĥ|φi〉
, (63)

or some minor modifications corresponding to the diago-
nalization of the Hamiltonian matrix written in the basis
of |Ψ(0)〉 and |φi〉. An alternative approach consists in the
HCI14 which selects directly the two-electron integrals in
the Hamiltonian matrix in order to screen the generation
of the excitation operators which will generate the |φi〉.

Another important quantity used in SCI is the second
order perturbative contribution to the energy E(2) which
can be computed from a set of determinants Pn

E(2) =
∑
φi /∈Pn

E
(2)
φi
. (64)

The FCI ground state energy can be estimated at an
iteration n as

EFCI ≈ Ev + E(2). (65)

In order to measure the efficiency of a given SCI, one can
look at the rate of convergence of the zeroth order energy
Ev and the second order corrected energy Ev+E(2) with
respect to the size of the zeroth order space.

2. Non Hermitian SCI: different flavours

As the right-eigenvector is supposed to converge faster
than the left-eigenvector because of the correlation fac-
tor, it is intuitive to focus on the perturbative expansion
of the right-eigenvector Φ. Nevertheless, as the pertur-
bative expansion of the functional Ẽ[χ,Φ] depends on a
general left function, one has to choose which function χ

is used. One can then distinguish between two flavours of
SCI according to if only the right eigenvector is computed
or if one also computes the left-eigenvector. Therefore,
the first change in the non Hermitian SCI consists in the
step 1 (the variational step):

1. Compute the right-eigenvector of H̃ within Pn

|Φ(0)〉 =
∑

I∈Pn

c̃
(0)
I |I〉

H̃|Φ(0)〉 = E(0)|Φ(0)〉,
(66)

and potentially also the left-eigenvector

|χ(0)〉 =
∑

I∈Pn

c̄
(0)
I |I〉

H̃†|χ(0)〉 = E(0)|χ(0)〉.
(67)

If only the right-eigenvector |Φ(0)〉 is computed, then
χ = Φ(0), and if the left-eigenvector is also computed,
then χ = χ(0). Notice that because of the non-Hermitian
nature, the zeroth-order energy E(0) is not necessarily
variational.

At this stage, one needs to specify the selection crite-
rion fφi used to select the determinants |φi〉 /∈ Pn, and
there are two main approaches: the fφi which only re-
quire the right-eigenvector and those which also require
the left-eigenvector.

Regarding the fφi needing only the right-eigenvector,
one can choose the first order coefficient

f̃ coef
φi ≡ c

(1)
i =

〈φi|H̃|Φ(0)〉
E(0) − 〈φi|Ĥ|φi〉

, (68)

or the symmetric second order energy where one sets
|Φ(0)〉 as the left-function in Eq. (52)

f̃E sym
φi

≡ Ẽ(2)
i =

〈Φ(0)|H̃|φi〉〈φi|H̃|Φ(0)〉
E(0) − 〈φi|Ĥ|φi〉

. (69)

The latter expression for the second order perturbed en-
ergy is similar to the Hermitian case with nevertheless
the difference that 〈Φ(0)|H̃|φi〉 6= 〈φi|H̃|Φ(0)〉. The selec-

tion criteria f̃E sym
φi

in Eq. (69) is called the symmetric

second order energy because it depends only on |Φ(0)〉.

The zeroth order energy obtained with the selection

criteria f̃ coef
φi

and f̃E sym
φi

will be referred to as E
(0)
coef and

E
(0)
sym, respectively. Similarly, the corresponding second

order corrected energies referred to as (E(0) + E(2))coef

and (E(0) + E(2))sym are obtained by adding the sym-

metrized second order energy Ẽ
(2)
i of Eq. (69) to the

zeroth order energy E
(0)
coef and E

(0)
sym, respectively.

We also introduce two Hermitian selection criteria
which are the second order energy with the usual Hamil-
tonian and |Φ(0)〉 as the zeroth order wave function

f̃ regular H
φi

=
〈Φ(0)|Ĥ|φi〉2

〈Φ(0)|Ĥ|Φ(0)〉 − 〈φi|Ĥ|φi〉
, (70)
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and the second order energy based on the symmetrized
operator 1

2 (H̃ + H̃†) and |Φ(0)〉 as the zeroth order wave
function

f̃Hermit
φi =

〈Φ(0)| 12 (H̃ + H̃†)|φi〉2

〈Φ(0)| 12 (H̃ + H̃†)|Φ(0)〉 − 〈φi| 12 (H̃ + H̃†)|φi〉
.

(71)

The zeroth order energy obtained with the f̃ regular H
φi

and

f̃Hermit
φi

will be referred to as E
(0)
regular H and E

(0)
Hermit, re-

spectively. We do not compute any second order cor-
rected energy for these two approaches.

If the left-eigenvector |χ(0)〉 is computed, one can then
compute another selection criterion based on the energy
contribution at second order

f̃E n sym
φi

= Ẽ
(2)
φi

=
1

〈χ(0)|Φ(0)〉
〈χ(0)|Ṽ |φi〉〈φi|Ṽ |Φ(0)〉

Ẽ(0) − εi
.

(72)

The zeroth order energy obtained with the selection cri-

terion f̃E n sym
φi

will be referred to as E
(0)
n sym, and the cor-

responding second order corrected energy is referred to
as (E(0) + E(2))n sym.

3. Obtaining left- and right-eigenvectors with iterative
Hermitian matrix dressing

As pointed in Sec. II E 2, SCI in a TC framework re-
quires the right-eigenvectors and potentially also the left-
eigenvectors of large non Hermitian matrices. This can
be done using a non Hermitian variant of the usual David-
son method (see Ref. 80 and references therein), but
we adopt here an alternative strategy based on an itera-
tive Hermitian dressing of the usual Hamiltonian matrix.
Such an approach was originally proposed in Ref. 81 in
the context of single reference coupled cluster and more
recently applied in the context of multi-reference coupled
cluster82 or quantum Monte Carlo83.

Consider a general non Hermitian operator H̃ which
can be decomposed as

H̃ = Ĥ + Λ̃, (73)

where Ĥ is Hermitian and Λ̃ is non Hermitian. We target
a given right-eigenvector |Φ〉 fulfilling the non Hermitian
eigenvalue equation

H̃|Φ〉 = E|Φ〉, H̃† 6= H̃, (74)

and we would like to rewrite this eigenvalue equation as
an effective Hermitian problem

Ĥeff|Φ〉 = E|Φ〉, Ĥ†eff = Ĥeff. (75)

Let |Φ〉 be decomposed on an orthonormal basis {|I〉}

|Φ〉 =
∑

I

cI|I〉, (76)

and let I0 be the basis function with the largest absolute
coefficient |cI0 |. We project Eq. (74) on a basis function
|I〉 and obtain

cI0〈I|Ĥ|I0〉+
∑
J 6=I0

cJ〈I|Ĥ|J〉+ 〈I|Λ̃|Φ〉 = EcI, (77)

and similarly on |I0〉

cI0〈I|Ĥ|I0〉+
∑
J 6=I0

cJ〈I0|Ĥ|J〉+ 〈I0|Λ̃|Φ〉 = EcI0 . (78)

We can rewrite Eqs. (77) and (78) as

cI0
(
〈I|Ĥ + δ̂|I0〉+

)
+
∑
J 6=I0

cJ〈I|Ĥ + δ̂|J〉 = EcI,

cI0
(
〈I|Ĥ + δ̂|I0〉+

)
+
∑
J 6=I0

cJ〈I0|Ĥ + δ̂|J〉 = EcI0 ,
(79)

where we define the dressing operator δ̂ as the following
Hermitian operator

〈I|δ̂|J〉 =

 αI0 if J = I = I0

αI if (J = I0, I 6= I0) or (I = I0, J 6= I0)
0 otherwise,

(80)
with

αI0 =
〈I0|Λ̃|Φ〉
cI0

−
∑
J 6=I0

cJ
cI0

〈J|Λ̃|Φ〉
cI0

,

αI =
〈I|Λ̃|Φ〉
cI0

.

(81)

With the definitions of Eqs. (79), (80) and (81), one can

then define a non linear effective Hermitian operator Ĥeff

as

Ĥeff = Ĥ + δ̂, (82)

which fulfils Eq. (75). The non linearity of Ĥeff comes
from the fact such an operator depends on the solution
|Φ〉 through the definitions of Eq. (81). Notice that the
non vanishing matrix elements of the Hermitian operator

δ̂ are only on the row and column corresponding to I0.

We can then define an iterative scheme to obtain the
right eigenvector |Φ〉 of the matrix H̃ by the following
procedure. At an iteration n, one assumes that an ap-
proximation

|Φ(n)〉 =
∑

I

c
(n)
I |I〉 (83)
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to the unknown right eigenvector |Φ〉 is known, with the
corresponding energy

E(n) =
〈Φ(n)|H̃|Φ(n)〉
〈Φ(n)|Φ(n)〉

. (84)

From that knowledge, one can then

1. build the dressing operator δ̂(n) by using the coef-

ficients {c(n)
I } in Eqs.(80) and (81),

2. build the Hermitian operator Ĥ
(n+1)
eff = Ĥ + δ̂(n)

and obtain its eigenvectors

Ĥ
(n+1)
eff |Ψ(n+1)

i 〉 = E
(n+1)
i |Ψ(n+1)

i 〉, (85)

3. search for the vector |Ψ(n+1)
i 〉 with the largest over-

lap with |Φ(n)〉 and set it as the new guess |Φ(n+1)〉,

4. iterate until reaching a given convergence criterion
on the energy for instance.

When the matrix H̃ is large, which is the typical case
of selected CI, one can of course use a modified David-

son procedure to obtain the eigenvectors of Ĥ
(n)
eff in 2),

as detailed in Ref 84. For a given macro iteration n in

the procedure described above, one has to apply Ĥ+ δ̂(n)

instead of the usual Hamiltonian Ĥ. The interest of such
an approach is that the storage of the δ̂(n) operator con-
sists only in a vector which has the dimension of the basis
on which |Φ〉 is decomposed, which therefore only adds
a marginal storage and computational cost with respect
to the usual Davidson algorithm. Also, if one wishes to
obtain the left eigenvector, one just has to replace H̃ by
H̃† in Eq. (81).

In the specific case where H̃ is the TC Hamiltonian
matrix written on a given basis of Slater determinants,
we realize the splitting of H̃[u] of Eq. (73) as follows: Ĥ

is the usual Hamiltonian and Λ̂ all the additional terms
arising from the similarity transformation with the cor-
relation factor, i.e.

Λ̂ = −K̂ − L̂. (86)

III. RESULTS

A. Computational details

Thorough this work, all computations were made us-
ing canonical HF MOs. As all electron calculations are
carried, we used the core-valence Dunning atomic orbital
(AO) basis family cc-pCVXZ85. The SCI energies, both
with the usual and TC Hamiltonian, reported in the var-
ious tables were obtained with a zeroth order space large

enough to make the absolute value of the second or-
der perturbation smaller than 0.5 mH. Regarding the
integrals involved in H̃B[µ], the scalar two-body part
is computed analytically while the non-Hermitian and
three-body parts are computed using a mixed analytical-
numerical scheme utilizing a Becke numerical grid86 with
30 radial points and a Lebedev angular grid of 50 grid
points. Numerical tests have shown that these relatively
small number of grid points ensures a sub µHa conver-
gence of the total energies. All along this work, the
value of the parameter µ used in H̃B[µ] is the so-called
RSC+LDA as proposed in Ref. 54 in order to compare
with the near exact results in a given basis set obtained
with the so-called µ-TC-FCIQMC of Ref. 78. All CIPSI
calculations were carried using the Quantum Package19

and the various TC calculations were obtained using a
plugin created for the Quantum Package. The equilib-
rium geometries of the CH2 and FH molecules have been
taken from Ref. 87 while that of H2O have been taken
from Ref. 88. The estimated CBS all-electron results for
atoms are taken from Ref. 89. In the case of molecu-
lar systems, the estimated CBS were obtained from the
two-point X−3 extrapolation of Helgaker et. al. 90 with
X = {Q, 5} of CIPSI energies, except for H2O for which
it was taken from Ref. 88.

B. Convergence of the different variants of SCI

As pointed in Sec. II E 2, there are several flavours
of SCI according to the selection criterion fφi and the
left-function χ chosen. In this section we investigate
the convergence of these different approaches on several
atomic and molecular systems in order to find an opti-
mal scheme for both the selection criterion and the left-
function. The 5-idx approximation was used for all cal-
culations reported in Sec. III B.

We report in Fig. 1, 2 and 3 the convergence of the
zeroth order energy together with the second order cor-
rected energy for the different selection criteria. Compar-
ison with the usual CIPSI algorithm in the same basis are
also reported. Focusing first on the zeroth order energy,
we can observe that i) the non variational character of
the TC SCI is manifest as the zeroth order energy can
be way below the exact value within a basis set which is
estimated by the corresponding µ-TC-FCIQMC energy
in the basis set, ii) the convergence is non monotonic
for all selection criteria, which is also a sign of the non
Hermitian character of the TC Hamiltonian, iii) the ze-
roth order energies obtained with the two selection cri-

teria using only Hermitian quantities (i.e. E
(0)
regular H and

E
(0)
Hermit) converge much slower than those obtained with

the selection criteria using non Hermitian quantities (i.e.

E
(0)
coef, E

(0)
sym and E

(0)
n sym), iv) the zeroth order energies

obtained with the criteria based on the first order coeffi-
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FIG. 1. O, cc-pCVTZ. Convergence of the zeroth order
energy (a), of the corrected energy (b) according to differ-
ent selection criteria. Comparison with the usual Hermitian
CIPSI algorithm in the same basis (c). The exact ground
state eigenvalue of the µ-TC Hamiltonian is taken from Ref.
78 and referred to as µ-TC-FCIQMC.

cient (i.e. E
(0)
coef) converge significantly less rapidly than

those based with second order energy contribution (i.e.

E
(0)
sym and E

(0)
n sym), v) the zeroth order energies obtained

with the criteria E
(0)
sym and E

(0)
n sym converge essentially

in the same way, vi) the zeroth order energy tends to
converge faster than the usual variational energy in the
Hermitian CIPSI algorithm although usual HF orbitals
are used which would favor the usual Hermitian calcula-
tions.
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FIG. 2. Ne, cc-pCVTZ. Convergence of the zeroth order
energy (a), of the corrected energy (b) according to differ-
ent selection criteria. Comparison with the usual Hermitian
CIPSI algorithm in the same basis (c). The exact ground
state eigenvalue of the µ-TC Hamiltonian is taken from Ref.
78 and referred to as µ-TC-FCIQMC.

Turning now on the convergence of the second or-
der corrected energy, we can observe that i) the con-
vergence of (E(0) + E(2))coef and (E(0) + E(2))sym are
non monotonic, ii) the convergence using the criterion
(E(0) +E(2))n sym is much faster and stable than that of

criterion (E(0) + E(2))coef and (E(0) + E(2))sym, iii) the

convergence of (E(0)+E(2))n sym is comparable to that of
the usual second order corrected energy in the Hermitian
CIPSI algorithm, iv) when reaching convergence, the ze-
roth order and second order corrected energies agree very
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FIG. 3. H2O. Convergence of the zeroth order energy and

the corrected energy using the selection criterion E
(0)
n sym and

comparison with the usual Hermitian CIPSI algorithm in the
same basis in the cc-pCVDZ (a) and cc-pCVTZ (b) basis sets.
The estimated exact energy is taken from the extrapolated
DMC energy of Caffarel et. al. (see Ref. 88).

well with the estimated exact µ-TC-FCIQMC of Ref. 78,
which is expected as one reaches the TC-FCI limit. We
can notice that the point ii) illustrates the importance of
having a left function as close as possible from the exact
left-eigenvector of the TC Hamiltonian in the basis.

Based on these results we can conclude that taking into
account the non Hermitian character of H̃[u] is manda-
tory to actually select the important determinants in the
context of the TC Hamiltonian. Selecting on the energy
leads to a significant improvement of the convergence
of the zeroth order energy with respect to the selection
based on the first order coefficient (which is not necessar-
ily the case in the Hermitian case), and having a left func-
tion as close as possible to the left-eigenvector strongly
improves the convergence and stability of the second or-

der corrected energy. Therefore, f̃E n sym
φi

of Eq. (72) is
the best choice for the selection criterion. From thereon,

all SCI in the TC context are done using the f̃E n sym
φi

selection criterion and the |χ(0)〉 as the left-function χ,
which will be referred to as µ-TC-CIPSI.

TABLE I. Total energies (a.u.) for several atomic and molec-
ular systems at different levels of approximations.

cc-pCVDZ cc-pCVTZ cc-pCVQZ
Carbon

CIPSI -37.79798 -37.83003 -37.83962
µ-TC-FCIQMC -37.84888 -37.84793 -37.84617

µ-TC-CIPSI(5-idx) -37.84875 -37.84809
µ-TC-CIPSI(4-idx) -37.84901 -37.84837 -37.84630

Estimated exact
-37.84500

Oxygen
CIPSI -74.95051 -75.03122 -75.05447

µ-TC-FCIQMC -75.07412 -75.06774 -75.06729
µ-TC-CIPSI(5-idx) -75.07420 -75.06759 -75.06750
µ-TC-CIPSI(4-idx) -75.07420 -75.06761 -75.06744

Estimated exact
-75.06730

Fluorine
CIPSI -99.56965 -99.68185 -99.71509

µ-TC-FCIQMC -99.74701 -99.73164 -99.73326
µ-TC-CIPSI(5-idx) -99.74695 -99.73105 -99.73282
µ-TC-CIPSI(4-idx) -99.74725 -99.73172 -99.73345

Estimated exact
-99.73390

Neon
CIPSI -128.72254 -128.86823 -128.91235

µ-TC-FCIQMC -128.96435 -128.93221 -128.93569
µ-TC-CIPSI(5-idx) -128.96437 -128.93180 -128.93570
µ-TC-CIPSI(4-idx) -128.96496 -128.93321 -128.93712

Estimated exact
-128.93760

H2O
CIPSI -76.28287 -76.38993 -76.42156

µ-TC-FCIQMC -76.44338 -76.43700 -
µ-TC-CIPSI(5-idx) -76.44354 -76.43713 -
µ-TC-CIPSI(4-idx) -76.44399 -76.43750 -76.43983

Estimated exact
-76.43894(12)

CH2

CIPSI -39.06130 -39.11232 -39.12689
µ-TC-FCIQMC -39.13076 -39.13614 -

µ-TC-CIPSI(5-idx) -39.13074 -39.13658 -
µ-TC-CIPSI(4-idx) -39.13105 -39.13685 -39.13520

Estimated exact
-39.13425

FH
CIPSI -100.27094 -100.40010 -100.43818

µ-TC-FCIQMC -100.47331 -100.45555 -
µ-TC-CIPSI(5-idx) -100.47334 -100.45528 -
µ-TC-CIPSI(4-idx) -100.47394 -100.45651 -100.45959

Estimated exact
-100.46008

C. Dependence of total energies and energy differences
with the treatment of three-body terms

Having established the best algorithm for non Hermi-
tian SCI, we now focus on the quality of the computed en-
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TABLE II. Atomization energy (a.u.) with different methods.

cc-pCVDZ cc-pCVTZ cc-pCVQZ
H2O

CIPSI 333.80 359.09 367.19
µ-TC-FCIQMC 370.7 369.64 -

µ-TC-CIPSI(5-idx) 370.62 369.92 -
µ-TC-CIPSI(4-idx) 371.23 370.00 372.50

Estimated exact
371.64(12)

CH2

CIPSI 264.77 282.67 287.38
µ-TC-FCIQMC 283.32 288.41 -

µ-TC-CIPSI(5-idx) 283.43 288.87 -
µ-TC-CIPSI(4-idx) 283.48 288.87 289.01

Estimated exact
289.22

FH
CIPSI 202.0 218.48 223.15

µ-TC-FCIQMC 227.02 224.10 -
µ-TC-CIPSI(5-idx) 227.11 224.42 -
µ-TC-CIPSI(4-idx) 227.41 224.98 226.16

Estimated exact
226.18

ergies and how they depend on the treatment of the three-
body terms. We study second-row atomic and molecular
systems as in Ref. 78.

We report in Table I the total energies obtained for sev-
eral atomic and molecular systems using our µ-TC-CIPSI
scheme within the 5-idx and 4-idx treatment of the three
body terms and we compare to the µ-TC-FCIQMC re-
sults of Ref. 78 which correspond to near exact results
within a basis set with full treatment of the three-body
terms. Computation of atomization energies for molecu-
lar systems are reported in Table II.

From Table I and Table II one can notice that both
the total energies and atomization energies obtained us-
ing the µ-TC-CIPSI and µ-TC-FCIQMC are much closer
to the exact non relativistic energy than the usual CIPSI
energies in the same basis set which illustrates the ben-
efit of having a correlation factor. The absolute energy
difference between the total energies with the full treat-
ment of the three body (µ-TC-FCIQMC) and that with
the 5-idx approximation is never larger than 1 mH for
the atomic and molecular systems studied here, and the
absolute difference between the total energies with the
µ-TC-FCIQMC and that with the 4-idx approximation
is slightly larger (the largest difference being of 1.5 mH
in the case of the Neon atom in the cc-pCVQZ basis
set). This difference tends to increase with the nuclear
charge. The 4-idx approximation tends to lead to lower
energies than the µ-TC-FCIQMC or 5-idx energies, and
the absolute difference between the atomization energies
computed with the µ-TC-FCIQMC and that computed
with the 5-idx or 4-idx approximation is never larger that
0.5 mH for all molecular systems studied here.

Based on these results we can conclude that the 5-idx
and 4-idx approximations weakly affect here the results,
which is encouraging considering the considerable saving
in memory storage with respect to the full treatment of
the three-body terms.

IV. CONCLUSION

The present work is dedicated to the extension of the
popular SCI algorithm to the TC Hamiltonian. The main
focus of this work is not to study the quality of the results
with respect to the specific correlation factor used but
rather to investigate what are the new features of SCI in
the TC framework. We therefore use a rather simple one-
parameter correlation factor54,78 (see Sec. II C) which re-
produces most of the features of the TC framework, such
as a faster convergence convergence towards CBS results
and the non Hermitian property. The connection be-
tween non-Hermitian eigenvalue problems and the search
of stationary points of functionals depending on general
left- and right-functions (see Sec. II D) allows us to pro-
pose different choices for both the selection criterion and
the second order perturbation energy, which are central
ingredients in the context of SCI. Based on the numerical
investigations performed here (see Sec. III B), we found
that i) the selection of the important Slater determinants
is strongly affected by the presence of the correlation fac-
tor, ii) taking into account the non Hermitian character of
the TC Hamiltonian is mandatory to obtain a fast conver-
gence of the TC energy, iii) not like in usual SCI, selection
criteria based on the first order coefficient or second order
energy lead to significantly different convergence rates of
the TC energy, iv) within a given determinant space, the
use of both the left- and right-eigenvectors is mandatory
to obtain a smooth convergence of the second order per-
turbed energy. The variational step in SCI transforms
into the TC framework in obtaining both left- and right
eigenvectors of large non symmetric matrices, which re-
quires additional non-Hermitian eigensolver technology.
In the present work the latter aspect is by-passed us-
ing only Hermitian algorithms thanks to the use of a
low-memory footprint self-consistent dressing81–83 of the
usual Hamiltonian. Within the near-optimal set-up pro-
posed here, we found that the TC-SCI expansion con-
verges faster both in terms of number of Slater determi-
nants and basis set size. We also investigated the depen-
dence of the results with the level of treatment of the
three-body terms and introduced a new approximation,
the 4-idx, which has a typical N4 scaling. The numer-
ical results obtained here show that this approximation
weakly affect the quality of the results both for total en-
ergies and energy differences. We believe that this work
opens the way to obtain even more efficient SCI algo-
rithms with smaller basis set truncation errors. The role
of the orbitals used for the SCI expansion was neverthe-
less not investigated here, although it is clear that using
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better adapted MOs will play an important role in im-
proving the convergence of the energy. On-going work
will address this aspect in details, especially regarding
the use of bi-orthonormal basis sets.
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81I. Nebot-Gil, J. Sánchez-Maŕın, J. P. Malrieu, J. L. Heully, and

D. Maynau, J Chem Phys 103, 2576 (1995).
82E. Giner, G. David, A. Scemama, and J. P. Malrieu, J Chem

Phys 144, 064101 (2016).
83A. Ammar, E. Giner, and A. Scemama, “Optimization of large

determinant expansions in quantum monte carlo,” (2022).
84Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P. F. Loos,

J. Chem. Phys. 149, 064103 (2018).
85D. E. Woon and T. H. Dunning, J. Chem. Phys. 103, 4572 (1995).
86A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
87Y. Yao, E. Giner, J. Li, J. Toulouse, and C. J. Umrigar, J. Chem.

Phys. 153, 124117 (2020).
88M. Caffarel, T. Applencourt, E. Giner, and A. Scemama, J.

Chem. Phys. 144, 151103 (2016).
89S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia,

and C. F. p Fischer, Phys. Rev. A 47, 3649 (1993).
90T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys.
106, 9639 (1997).

http://dx.doi.org/ 10.1063/1.1924597
http://dx.doi.org/ 10.1063/1.1924597
http://dx.doi.org/10.1063/1.3505037
http://dx.doi.org/10.1063/1.3607990
http://dx.doi.org/10.1080/01442351003620540
http://dx.doi.org/10.1080/01442351003620540
http://dx.doi.org/10.1063/1.3688225
http://dx.doi.org/ 10.1063/1.3689440
http://dx.doi.org/ 10.1063/1.3689440
http://dx.doi.org/10.1021/ct500485b
http://dx.doi.org/10.1021/ct500485b
http://dx.doi.org/10.1016/j.cplett.2015.01.009
http://dx.doi.org/ 10.1063/1.4943117
http://dx.doi.org/ 10.1063/1.4943117
http://dx.doi.org/ 10.1063/1.5116024
http://dx.doi.org/ 10.1063/5.0055575
http://dx.doi.org/ 10.1063/5.0055575
http://dx.doi.org/10.1063/1.458750
http://dx.doi.org/10.1063/1.458750
http://dx.doi.org/ 10.1063/5.0072495
http://dx.doi.org/ 10.1063/5.0072495
http://dx.doi.org/ 10.1103/PhysRevResearch.3.033072
http://dx.doi.org/ 10.1103/PhysRevResearch.3.033072
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRevB.2.4302
http://dx.doi.org/10.1063/1.5129672
http://dx.doi.org/10.1063/1.5129672
http://dx.doi.org/10.1021/acs.jctc.2c00167
http://dx.doi.org/10.1021/acs.jctc.2c00167
http://dx.doi.org/ 10.1063/5.0088981
http://dx.doi.org/ 10.1063/5.0088981
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1021/ct100111w
http://dx.doi.org/10.1021/ct100111w
http://dx.doi.org/ 10.1063/1.469680
http://dx.doi.org/10.1063/1.4940781
http://dx.doi.org/10.1063/1.4940781
http://dx.doi.org/10.48550/ARXIV.2205.12851
http://dx.doi.org/10.48550/ARXIV.2205.12851
http://dx.doi.org/ 10.1063/1.5044503
http://dx.doi.org/10.1063/1.470645
http://dx.doi.org/10.1063/1.454033
http://dx.doi.org/ 10.1063/5.0018577
http://dx.doi.org/ 10.1063/5.0018577
http://dx.doi.org/10.1063/1.4947093
http://dx.doi.org/10.1063/1.4947093
http://dx.doi.org/10.1103/PhysRevA.47.3649
http://dx.doi.org/ 10.1063/1.473863
http://dx.doi.org/ 10.1063/1.473863

	Extension of selected configuration interaction for transcorrelated methods
	Abstract
	Introduction
	Theory
	General equations and concepts of TC theory
	Approximations for three body terms
	One-parameter TC Hamiltonian: []
	Non Hermitian eigenvalue problems as stationary points of functional
	Functionals and non Hermitian eigenvalue problems
	Perturbation theory of the functional

	Selected CI in a transcorrelated framework
	Hermitian SCI in a nutshell
	Non Hermitian SCI: different flavours
	Obtaining left- and right-eigenvectors with iterative Hermitian matrix dressing 


	Results
	Computational details
	Convergence of the different variants of SCI
	Dependence of total energies and energy differences with the treatment of three-body terms

	Conclusion
	Acknowledgments


