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In this paper, we deal with a fleet of autonomous vehicles which is required to perform internal logistics tasks inside some protected areas. This fleet is supposed to be ruled by a hierarchical supervision architecture which, at the top level, distributes and schedules Pick up and Delivery tasks, and, at the lowest level, ensures safety at the crossroads and controls the trajectories. We focus here on the top level and deals with the problem which consist in inserting an additional vehicle into the current fleet and routing it while introducing a time dependent estimation of the risk induced by the traversal of any arc at a given time. We propose a model and design a bi-level heuristic and an A*-like heuristic which both rely on a reinforcement learning scheme in order to route and schedule this vehicles according to a well-fitted compromise between speed and risk.

INTRODUCTION

In an empty warehouse, an autonomous vehicle may travel at full speed toward its destination. However, if other autonomous vehicles are already working, travelling inside the warehouse implies avoiding congestion and costly accidents.

Monitoring a fleet involving autonomous vehicles usually relies on hierarchical supervision. The trend is to use three levels. At the low level, or embedded level, robotic related problems are tackled for specific autonomous vehicles like path following problems or object retrieving procedures [START_REF] Martínez-Barberá | Autonomous navigation of an automated guided vehicle in industrial environments[END_REF]. At the middle level, or local level, local supervisors manage priorities among autonomous vehicles and resolve conflicts in a restricted area [START_REF] Chen | Cooperative Intersection Management: A Survey[END_REF] who worked on crossroad strategies. Then, at the top level, or global level, global supervisors assign tasks to the fleet and compute paths. This level must take lower levels into account in order to compute its own solution. For example, [START_REF] Wurman | Coordinating hundreds of cooperative, autonomous vehicles in warehouses[END_REF] compute the shortest path thanks to the A* algorithm, but assign each task to the fleet of autonomous vehicles using a multi-agent artificial intelligence in order to avoid conflict in arcs as much as possible.

Redirecting autonomous vehicles to non-shortest path may seem to increase the total travel time at first but [START_REF] Mo | Routing strategies in large-scale automatic storage and retrieval systems[END_REF] showed that, in an airport, it actually decreased the total travel time and the congestion time. With the same idea, several authors com-puted the shortest path thanks to the A* algorithm, first published by [START_REF] Hart | A Formal Basis for the Heuristic Determination of Minimum Cost Paths[END_REF] in 1968. Then, if any conflict is detected, an avoidance strategy is applied [START_REF] Chen | On the shortest and conflict-free path planning of multiagv systembased on dijkstra algorithm and the dynamic time-window method[END_REF].

This study puts the focus on a global level: routing and giving instructions to an autonomous vehicle in a fleet. An autonomous vehicle, idle until now, is chosen to carry out a new task. It must travel fast but it must not take too many risks. Many articles propose techniques to solve constrained shortest path problems, see [START_REF] Lozano | On an exact method for the constrained shortest path problem[END_REF] for an example. In 2020, [START_REF] Ryan | Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles[END_REF]) used a weighted sum of time and risks in Munster's roads in Ireland to compute a safe shortest path using an A* algorithm. In their case, risk is a measure of dangerous steering or braking events on roads. But these techniques mostly cannot be applied here because the risk, in our case, is time-dependent. One can search for the optimal solution in a time-expanded network as did [START_REF] Krumke | Relocation in carsharing systems using flows in time-expanded networks[END_REF]. A connection between two nodes in this network represents the crossing of an arc in the static network at a given time. Those kind of networks are used, among other applications, for evacuation routing problems as did [START_REF] Park | Time-Dependent Optimal Routing in Micro-scale Emergency Situation[END_REF]. This paper does not intend to study risks in a warehouse. Therefore, we assume that we are provided with a procedure which computes an expected value of the risk of any arc at any time. This article aims to answer the problem of finding a safe shortest path while considering a warehouse structure, paths followed by already working autonomous vehicles and a risk estimation procedure. First, a precise description of the problem is presented. Then, how to compute speed in a given path. Followed by two heuristics that we designed to answer the problem. The paper ends with numeric experiments and conclusions.

DETAILED PROBLEM

A Warehouse and the Risk Induced by Current Activity

A warehouse is represented as a planar connected graph G = (N, A) where the set of nodes N represents crossroads and the set of arcs A represents aisles.

For any arc a ∈ A, d a represent the minimal travel time for an autonomous vehicle to go through aisle a.

Moreover, two aisles may be the same length but one may stock fragile objects so that vehicles have to slow down. This implies many different speeds among aisles, thus many different minimal travel times. Also, risk functions R a : t → R a (t), generated from activities of aisle a, are computed using the risk estimation procedure we are provided with. Also, it is important to note that the risk is not continuous. Indeed, there is, in an aisle, a finite number of possible configurations: empty, two vehicles in opposite direction, etc. (see Figure 1). Each configuration is, then, associated with an expected cost of repairs in the event of accidents. Therefore, they are staircase functions evaluated in a currency (euro, dollars, etc.). Figure 2 shows an example of a risk function of an aisle. From a risk function, we can estimate the risk an autonomous vehicle takes in an aisle a between two times t 1 and t 2 with v : t → v(t) as its speed function with Equation 1.

risk(t 1 ,t 2 , v) = H(v) t 2 t 1 R a (t) dt (1) 
We impose function H to be such that H(v) v v max in order to model the fact that a decrease of the speed implies a decrease of the risk. In further discussion,

H is set to H : v → v v max 2 .

Our Problem: Searching for a Safe

Shortest Path Inside the Warehouse

An idle autonomous vehicle must now carry out a new task inside the warehouse. Its task is to go from an origin node o to a destination node p. We must determine its path and its speed in each aisle of its path while being provided with:

• The warehouse structure: G = (N, A) a planar connected graph.

• The minimum travel time d a of every arc a.

• The estimated risk R a : t → R a (t) of every arc a.

• The origin node o and the destination node p.

Then, we want to compute:

• Γ the path from o to p that will be followed by the vehicle, along with entry time t a and leaving time t a+1 of every arc a of Γ. If arc a is followed by arc b, t a+1 = t b

• v : t ∈ [t a ;t a+1 ] → v a (t) the speed to apply when the vehicle is located inside every arc a of Γ.

Furthermore, a maximum risk value condition is added. The warehouse manager will impose a maximum value of risk R max (quantified in currency, it can correspond to the cost of replacing a vehicle in the event of an accident) that an autonomous vehicle can take for a task. Finally, we want the program to be responsive and interactive for managers of warehouses. Then, the objective is to determine quickly: SSPP: Safe Shortest Path Problem Compute path Γ together with entry times t a , leaving times t a+1 and speeds functions v a such that: Global time: the arrival time in p is minimal.

Global risk:

∑ a∈Γ risk (t a ,t a+1 , v a ) ≤ R max
As determining a whole speed function without prior knowledge is complicated, we add a strong simplification: We will only compute the average speed in an arc. A consequence is that all speed functions used will be constant. At lower decision levels, supervisors will then have to choose real speed functions respecting the average speed demanded (a consequence is that travel time will be the same but risk will decrease). However this simplification creates anomalies: it may happen that, in a specific aisle configuration, slowing increases the risk taken instead of decreasing it. For example, an autonomous vehicle wants to go through an arc of minimal travel time 5 units. In this arc, the estimated risk is null at its entry time for 5 units and is equal to 2 afterwards. Going at maximum authorised speed will lead to a null risk but going at half that speed will lead to a non-zero taken risk.

As determining the average speed is equivalent to determining the exit time knowing the entry time, we want to compute: • Γ the path from o to p that will be followed by the vehicle.

• t i the exit time of the i th arc of Γ.

With t 0 the entry time of the first arc of Γ and average speed v i in the i th arc is fixed to

v i = d i t i -t i-1 v max .

Why the Problem is Difficult in Practice

To answer the problem with R max , a greedy heuristic can be as follows:

• The chosen path is the shortest path (in terms of minimal travel time)

• Every exit time is the first time such that the risk taken r i in the i th arc verify Equation 2i

∑ k=1 r k R max ≤ i ∑ k=1 d k D (2) 
where

D = ∑ a∈Γ d a .
That way, every distance's percentage travelled takes less or exactly one risk's percentage. It ensures the risk will stay below R max at the end of the path. However, let us take this example: • the warehouse is made up of only 2 aisles of length 5 and 5 respectively,

• there is a risk of 1 and 8 at all times on each aisle respectively,

• both aisles must be traveled,

• R max is equal to 10.

The optimal solution goes at 0.5V max on the first aisle (risk taken is 0.5 2 × (5/0.5) × 1 = 2.5), then goes at 3 16 V max on the second aisle (risk taken is

( 3 16 ) 2 × (5/ 3 16 ) × 8 = 7.5).
The global travel time is 10 + 26.6 = 36.6 (rounded to the nearest 0.1) and the risk is equal to R max .

The greedy solution goes at full speed on the first aisle (risk taken is 1 2 × (5/1) × 1 = 5), then goes at 1 8 V max on the second aisle (risk taken is

( 1 8 ) 2 × (5/ 1 8 ) × 8 = 5).
The global travel time is 5 + 40 = 45 and the risk is equal to R max .

There is a gap of almost 23% from the optimal solution. And this gap widens each time the path gets longer.

SOLVING THE SSPP WHEN THE PATH IS FIXED

As the wanted output is made of two parts and the second depends on the first, a sub-problem can be generated: if a path Γ, composed of n arcs, is chosen, what is the optimal exit time of each arc that answers the problem? Let us denote by t i , i = 1 . . . n the time when the vehicle finishes the crossing of the i th arc of Γ. Then, Γ being fixed, subproblem SSP(Γ) comes as follows:

SSP(Γ) Subproblem

Compute exit times t 1 , . . . ,t n of Γ's arcs (and t n is the arrival time in p). such that: Global time: the exit time t n is minimal.

Global risk:

n-1 ∑ i=0 risk (t i ,t i+1 , v i ) ≤ R max
A Dynamic Programming scheme simplifies a decision by breaking it down into a sequence of decision steps over time in a time space. As the exit time of the i th arc depends on the exit of (i -1) th arc, a Dynamic Programming forward scheme is well fitted because its time space is the set of nodes that we are visiting one after another. The scheme we used is explained in Figure 3.

With a very fine discretisation of the time, this Dynamic Programming scheme will find a good approximation of the optimal solution. It will, however, take a very long time. As we want the result quickly, we will work on two aspects: 

v i+1 = d i+1 δ-t v max ). Transition space (i, s) δ - → (i + 1, s ) Transition from (t, r) to (δ, r + risk (t, δ, v i+1 )) Bellman Principle At node i + 1
Only non-dominated feasible states are kept: a restricted number between nodes? Those questions lead to two different problems yet, we will answer them both using a single function that we call "state evaluation function". In fact, if there is a way to evaluate and sort a set of states, decisions leading to those states can be sorted with the same order. Then, decisions will be taken among the first ones of the ordered set of decisions (see subsection 3.2 and 3.3). Afterwards, all generated states will be filtered knowing their value (see subsection 3.4).

∀(t 1 , r 1 ), (t 2 , r 2 ) ∈ S, if t 1 ≤ t 2 and r 1 ≤ r 2 , (t 2 , r 2 ) is dominated. Search Strategy

A State Evaluation Function

States are defined by the current time and risk taken to travel to node i. The value of a state, given by a state evaluation function, must be small for fast and safe states (meaning states with small time and risk value) and must be high for slow or risky states (meaning states with high time or risk value). We propose a function using a weighted sum:

f λ : s = (t, r) → r + λt
Where, λ represents the ratio between 1 time unit and 1 risk unit. Of course, the ratio of the solution is unknown. But searching for the optimal solution contains searching for that ratio.

To approximate it, we propose to use a reinforcement learning scheme applied to three values: λ in f , λ midst and λ sup respectively a low, medium and high estimation of λ opt . Therefore, at each node, after the generation of new states, all λ values will be slightly modified thanks to the previously generated states (see subsection 3.5).

Another advantage of the reinforcement learned λ values is that it can adapt itself in the middle of the path: if a lot of too risky states are generated, λ values will decrease to lower the value of slow states.

Generating Decisions Thanks to the State Evaluation Function

Starting from state s = (t i-1 , r i-1 ), a lot of new states can be generated. But most of them are useless or not promising enough to be considered (too slow, too risky, slower and riskier than another state, etc.). Thanks to the state evaluation function, we have a way to evaluate quickly the state value of a decision for a specific λ value (i.e. the value of the state if the autonomous vehicle exits arc i at time t).

Because it is a function of one variable (t) and is in the shape of a bowl (but sometimes not convex because of the anomalies discussed at the end of subsection 2.2), a dichotomy (using the left derivative) on the value of t is used in order to find the global minimum of f λ . This method gives the best decision possible for a specific λ. But the value of λ opt is still unknown. We propose to generate decisions by searching states minimising f λ for a few λ values between the low and high estimations of λ opt : λ in f and λ sup . Those values will be distributed between λ in f and λ max and led by λ midst (half of them uniformly distributed between λ in f and λ midst and half of them between λ midst and λ sup for example).

A Better exploration of the Decision Space

However, the decisions generated that way only take the current arc into account. But it is not rare that the optimal solution is faster and riskier in some arcs in order to begin the next one before a high risk period. Sometimes, given an optimal decision δ, it is not possible to associate δ with a λ parameter value such that δ derive from the minimisation of function f λ .

In other words, decisions generated that way are not enough to explore efficiently the decision space. Therefore, other decisions must be generated that are not a minimum of function f λ . However, the computed minima can be used to lead those new decisions.

For example, the latter can be generated a few time units before and after the former.

Filtering New States Knowing Their Value

Now that, from every state of node i -1, new states are generated, they are put together in an ordered set (λ midst is used to order the set). Let us call this set S i . The Bellman principle and the logical filter are first applied: remove dominated states (states that are slower and riskier than another one) and those which finish after the computed upper bound. However, the number of generated states is still exponential. To keep a quick algorithm, the number of states in S i will be bounded to S max . If #S i > S max , which states must be removed? If the λ midst value is very close to λ opt , the S max lowest value states are kept and all others are removed from S i . However, if it is not, a high state can be better than the lowest state. Therefore, a method to determine whether λ midst is a good approximation must be used. We propose to compute the deviation of the state's risks of S i from travelled percentage of the path (TravPer) as in Equation 3.

∆ = ∑ (t,r)∈S i ( r R max -TravPer) #S i (3) 
If ∆'s absolute value is high, generated states take, on average, too much risk or too little (meaning they can go faster).

States are, then, removed depending on ∆'s value:

• If |∆| is "high" (close to 1), λ midst is supposed a bad approximation:

#S i -S max 3
states are removed from each third of S i independently.

• If |∆| is "medium": #S i -S max 2 states are removed from the union of the 1st and 2nd third of S i and the 3rd third of S i independently.

• If |∆| is "small" (close to 0), λ midst is supposed a good approximation: the first S max states are kept and all others are removed.

Learning Lambdas Value

Because ∆ is the information about whether generated states took, on average, too much, too little, or just enough risk, it is also used to learn from the generated set. All lambdas are then moved according to the sign and value of ∆, thanks to a descent algorithm, for example. After experimenting, we chose the learning equation to be Equation 4because it gave us the best results.

λ = λ × (1 -0.2∆) (4)
More precisely, we need to compute the deviation ∆ of states generated by every λ independently. Because we do not want to move a λ for "mistakes" of another one. In other words, a λ value will be modified using the deviation of the set of states generated by this λ alone.

In the rest of the document, we used the above method but below is another example of a learning process for λ in f and λ sup . Instead of considering the lambda values independently, λ in f and λ sup can be seen as the bounds of an interval and the learning process will be applied over the width of this interval. Equation 4will continue to be applied on λ midst but another method must be used to determine if the interval is wide enough. For example, counting the number of states coming from λ in f (respectively λ sup ) kept after the filtering process. If there are a lot of them, λ in f (respectively λ sup ) is too close to λ midst . Then, a coefficient can be applied to widen λ midst -λ in f (respectively λ sup -λ midst ) (1.1 for example).

Before this learning process, however, starting λ values must be discussed. If our algorithms have already been used in the warehouse, their λ values will be kept as computed paths can overlap and will then be already learned for the next execution. However if it is not the case, several other methods can be used to compute starting values. We chose to apply preprocessing on the warehouse by generating random paths solved by a greedy algorithm that use Equation 4to generate one exit time and learn from all those decisions. The generation of random paths can end after a fixed number of generations or when the λ values seem to stabilise themselves.

SOLVING THE SSPP -PROPOSED ALGORITHMS

Then, two algorithms can be created as follows:

• A decoupled method Algorithm 1: choose a path, choose speed values on it, modify the path locally, choose speed values again, keep the best, repeat.

• An A*-like method Algorithm 2: choose a node, expand it by one arc, choose speed value on the new arc, push the new arrival node with the other unvisited nodes, repeat.

The A* algorithm is commonly used to search for the shortest path in a very large graph because a lower bound of expected value is associated with every unvisited node. In so doing, the most promising nodes will be visited first and all nodes having a greater lower bound than an existing solution will not be used at all. To solve the problem exactly, the A* algorithm applied in the time expanded network of the warehouse is enough but is very slow and does not fit our requirements.

First, we introduce the decoupled heuristic to solve the SSPP:

Algorithm 1: SSPP -Decoupled method Require: o and p, the origin and destination node. Require: S max the maximum number of state to keep in the Dynamic Programming scheme. Require: Γ an initial path between o and p. END = False While not END Do END = True Generate V : neighborhood of Γ For all neighbor ∈ V Do Compute exit times of neighbor with the Dynamic Programming scheme.

If neighbor finish earlier than Γ Then Γ = neighbor END = False End If End For End While Return Γ.

With no generation limit and no additional filter than those of the Dynamic Programming scheme, this heuristic can become an exact algorithm if the generated neighbourhood is large enough (modulo the time units precision). The generation method used is: for every couple of nodes that are less or equal than two arcs away, precompute a path between them, other than the shortest one. The neighbour of a path is made by using the pre-computed non-shortest path of a portion of that path. The neighbourhood is then made of every possible neighbour of the path.

Finally, we introduce the heuristic based on A* algorithm.

As the A* heuristic needs a function to estimate the value of the remaining path, we propose the function:

b λ : x|(t, r, Γ) → sp(x) f λ (t,r) length of Γ .
This function uses the value of the current path to estimate the value of the shortest path from the current node to the destination. A downside of this estimation is if the start of the path is very risky, the function will estimate the rest of the path to be very risky as well. That way, the A* like heuristic will abandon this state even if it is not true.

Algorithm 2: SSPP -A* like method Require: o and p, the origin and destination node. Require: S max the maximum number of states to keep in the Dynamic Programming scheme. Let sp : x → sp(x) be the length of the shortest path from x to p. Let b λ : x|(t, r, Γ) → sp(x) f λ (t,r) length of Γ be an estimation of the remaining value to p. Let Dict be a dictionary indexed by nodes of priority queues which are ordered by f λ (x) + b λ (x) in ascending order. push node = o|(t = 0, r = 0, Γ = []) in Dict. With no generation limit and no priority queue filter, this heuristic becomes an exact algorithm (modulo the time units precision).

Because this heuristic was too slow, another filter was added: Each node is to be visited 2S max times at most. However, short arcs are then privileged and R max is reached before the end of the path. Thankfully, a small change in the ordering of priority queues was enough to compensate. Priority queues are now separated in two halves: states {x|(t, r, Γ)} that respect r < R max * t t+sp(x) first. Each ordered by f λ (x) + b λ (x) in ascending order.

By those experiments, we want to compare the results of the different algorithms presented before, along with computation time. More precisely, a statistical study of the parameters of proposed algorithms will be presented first, then time and risk deviations from the optimal solution will be compared.

We chose to implement all algorithms in Python3 Jupyter notebooks despite the speed requirement because we mostly want to compare the speed of the different algorithms and because of its simplicity. All notebooks have been launched from a Docker image on an Intel Core i5-9500 CPU at 3GHz.

Creation of Random Instances

In Table 2, instance parameters are summarised: Instances ("Name" column 1) are generated by creating a square grid n × n ("n" column 2) with random minimum travel time (uniform distribution between 5 and 20). Because storage size may differ and aisles may not form a perfect grid, a percentage of arcs are dropped ("Drop" column 3). Then, on every arc, estimated risks are randomly generated (uniform distribution between 0 and 4) independently from each other but arcs in the same instance are similarly active. They are generated based on the average number of configuration changes when passing through the aisle at maximum speed ("Freq" column 4). Finally, we choose the maximum risk accepted ("Max risk" column 5) as half of the risk taken if travelling at maximum authorised speed on the shortest path (length in arcs, "SP len" column 6).

Statistical Study of Algorithms' Parameters Value

Critical parameters will be studied below, but some will not:

• The number of new states to generate from a previous one. As only the "best" states are generated, it is not necessary to generate a lot a them. We set this parameter to 5.

• The 3 discriminating values of ∆ to determine if the value function is a "good" approximation or not. As 0 ≤ |∆| ≤ 1, "small" values are below 0.2, the "medium" value are between 0.2 and 0.5 and the "high" values are above 0.5.

We will then study R max and S max values. To do so, both algorithms will be used on 10 instances of every group of parameters (100 instances in total). The average objective values will be discussed below.

As a reminder, R max is the maximum risk accepted and S max is the maximum number of states to keep at each node of both algorithms. Temporarily, λ in f , λ midst and λ sup are set to 0.2, 0.5 and 0.8. Both algorithms along with the greedy one are used on 10 instances of every group presented above. The average objective values depending on R max for S max = 11 are presented in Figure 4. Then, average objective values depending on S max for R max = 50% of the risk taken at full speed on the shortest path are presented Figure 5. Using those two figures, we choose R max andS max such that both algorithms compute nearly the same solutions. Hence, in the rest of the paper, R max = 50% and S max = 11 will be used. 

Time and Risk Deviation From Optimal

To compute the optimal solution we used a decoupled strategy: for all paths from s to p, compute exit dates with the Dynamic Programming scheme with no generation limit and no filter other than logical filters, always keeping the best. Optimal solutions and results of proposed algorithms are presented in Table 1.

Rows named "Decoupled" show the results of the decoupled heuristic. Row "A*-like" shows results of the A*-like heuristic. Row "Greedy" shows results of the greedy heuristic. Row "Optimal" shows optimal solutions. 

CONCLUSION

This Safe Shortest Path Problem in warehouses is a very complex research subject and cannot be summarised easily. In this paper, a very reductive hypothesis has been taken: a path for an autonomous vehicle is computed with average speeds only (i.e. considering entering and leaving aisles dates only). This hypothesis leads us to create two heuristics: by decoupling path/phase resolution and resolving both at the same time in an A* algorithm way. Experiments show that the A*-like heuristic combined with reinforcement learning performs fairly behind the decoupled heuristic for some instances.

This study will be extended for several vehicles and several tasks.
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 1 Figure 1: At time t, 3 aisles have 1 vehicle each. At the next time , Blue and Purple join in the same aisle. One time after, all 3 vehicles join, generating high risks in this aisle.
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 2 Figure 2: Risk function of an aisle.

  Scanning time I forwardly and construct the feasible State space accordingly. Logical filtering The Greedy algorithm provides us with an upper bound of the optimal value.
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 3 Figure 3: Dynamic Programming scheme used.
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 4 Figure 4: average objective values on R max for S max = 11

  Time space I I = {0, . . . , n}The ordered set of nodes of the path. Do not mistake time with the dynamic programming time space. The latter will be called "nodes" from now on. State space S s = (t, r) ∈ S At node i, t (resp. r) is a feasible time (resp. risk) at node i. Decision space δ ∈ DEC(i, s) DEC(i,s) At node i, δ is a feasible exit time of the arc (i, i + 1). It means that δt ≥ d i+1 and r + risk (t, δ, v i+1 ) ≤ R max (where

	1. How to generate only a few decisions among the
	best from a state?

2. How to compare two states and filter them to keep

  At all times, Best Dict denotes the smallest value's state among heads of priority queues of Dict. While node of Best Dict isn't p Do current = Best Dict = x i-1 |(t i-1 , r i-1 , Γ i-1 ). Pop Best Dict from corresponding priority queue. Generate elongations (x i |t i , r i , Γ i-1 + [x i-1 ]) i from current.

	Push all elongations in their priority queues of D.
	For all priority queue PQ ∈ Dict
	If #PQ > S max Then
	Filter PQ.
	End If
	End For
	End While
	Return Γ of Best Dict .

Table 1 :

 1 Experimental results. Optimal 10.98 79.75 68.27 72.12 176.98 215.83 33.90 23.20 91.54 90.11 Decoupled 10.50 78.24 67.30 57.62 176.75 216.48 34.27 26.26 91.72 94.79 A* like 10.50 80.01 68.35 58.07 176.50 216.15 34.08 21.02 90.50 94.15 greedy 11.50 74.80 68.60 56.50 177.80 216.80 32.80 26.00 91.20 94.30

	CPU time	01	02	03	04	05	06	07	08	09	10
	Decoupled 0.03s 0.36s 0.67s 0.73s	4.56s	3.12s	0.06s 0.03s 0.70s 1.10s
	A*-like 0.02s 0.21s 1.42s 0.17s	2.53s	3.68s	0.01s 0.03s 2.55s 0.98s
	greedy 0.01s 0.01s 0.03s 0.02s	0.06s	0.06s	0.01s 0.01s 0.04s 0.04s
	t										
	Optimal	38	83	165	63	189	220	31	41	165	118
	Decoupled	39	97	169	65	190	241	32	52	172	128
	A* like	39	97	177	66	196	264	33	54	186	121
	greedy	103	108	190	69	223	267	35	54	208	134
	risk										

Table 2 :

 2 Instance parameters table

	Name	n Drop Freq Max risk SP len
	01	4	10	3	11.5	3
	02	4	25	3	80.5	7
	03	7	10	3	69.0	9
	04	7	25	3	78.0	9
	05 10	10	3	178.0	15
	06 10	25	3	217.0	19
	07	4	10	9	34.5	3
	08	4	25	9	26.5	3
	09	7	10	9	92.0	11
	10	7	25	9	95.5	9
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