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. Finally, as a model case including a sign change of the convection term, the occurrence of blow up is investigated for the one-dimensional equation ∂tu = ∂ 2

x u -u∂xu + u p .

Introduction

This contribution is devoted to the occurrence of blow up of solutions of nonlinear parabolic problems of the form    ∂ t u = div(a(x)∇u) + f (x, t, u, ∇u) in Ω for t > 0, B σ (u) := σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C(Ω), [START_REF] Bandle | A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent advances in elliptic and parabolic problems[END_REF] in a bounded domain Ω in R n with C 2 -boundary, unless otherwise stated, and with outer normal unit vector field ν : ∂Ω → R n . As a distinctive feature a dynamical boundary condition is imposed on the time lateral boundary, relating the time derivative to the outer normal derivative. Dealing with classical solutions, we always shall assume that

σ ∈ C 1 (∂Ω) (2) 
and the dissipativity condition

σ ≥ 0 on ∂Ω. (3) 
Throughout, a, f and ϕ are supposed to fulfill the conditions a ∈ C 1 (Ω), a > 0, (4)

f ∈ C 1 (Ω × [0, ∞) × R × R n ), (5) 
f (•, •, 0, 0) ≥ 0 in [0, ∞), (6) 
ϕ ∈ C(Ω), ϕ ≥ 0, ϕ = 0. (7) The aim of the present contribution is to generalize the blow up results obtained in [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] for the reaction diffusion case to the present one including a gradient term. In Section 2 the dependence of blow up time of classical solutions on the initial data and the coefficient σ is investigated, while the nonexistence of weak global solutions is shown in Section 3 in the proper superlinear case. Section 4 presents upper bounds for the blow up time for a nonlinearity growing at least as a power of u or bounded from below by an exponential function. The final Section 5 summarizes some results for the one-dimensional model problem with a convection term changing sign,   

∂ t u = ∂ 2 x u -u∂ x u + u p in Ω for t > 0, B σ (u) = σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C(Ω) (8) 
in an interval Ω = (-b, b) and for 1 < p ∈ R. For further references and related topics, especially for local and global existence results, we refer to [START_REF] Bandle | A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent advances in elliptic and parabolic problems[END_REF]- [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF], [START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF][START_REF] Escher | Quasilinear parabolic systems with dynamical boundary conditions[END_REF][START_REF] Mailly | Explosion des solutions de problèmes paraboliques sous conditions au bord dynamiques[END_REF][START_REF] Mailly | Blow up for nonlinear parabolic equations with time degeneracy under dynamical boundary conditions[END_REF].

Comparison of blow up times for classical solutions

Let

u σ ∈ C Ω × [0, T ) ∩ C 2,
1 Ω × (0, T ) denote the maximal classical solution of Problem [START_REF] Bandle | A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent advances in elliptic and parabolic problems[END_REF]. Thus T = T (σ, ϕ) is the blow up time, that is the maximal existence time of u σ with respect to the L ∞ -norm

T (σ, ϕ) = inf s > 0 lim t s sup{|u σ (x, t)| x ∈ Ω} = ∞ .
As for standard boundary conditions, it is well-known that T (σ, ϕ) can be infinite, while some derivatives of u can explode in finite time, see e.g. [START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF]Section 2]. By the flow positivity result in [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF], u σ ≥ 0, and, using the comparison principle l.c., T (σ, ϕ) is seen to decrease with respect to the initial data ϕ.

Theorem 2.1. Suppose ϕ 1 , ϕ 2 ∈ C(Ω). Then 0 ≤ ϕ 1 ≤ ϕ 2 implies T (σ, ϕ 1 ) ≥ T (σ, ϕ 2 ).
In order to show the increasing character of the blow up time with respect to the parameter σ, we impose the constraints

∂ t f (x, t, •, •) ≥ 0, ( 9 
)
ϕ ∈ C 2 (Ω), div(a(x)∇ϕ) + f (x, 0, ϕ, ∇ϕ) ≥ 0 in Ω. ( 10 
)
Lemma 2.2. Under ( 9) -( 10), a solution u

∈ C 2,1 Ω × [0, τ ] of (1) satisfies ∂ t u ≥ 0 in Ω × [0, τ ].
Proof. Classical regularity results in [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF] 

imply that u ∈ C 2,2 Ω × [0, τ ] . Thus, y := ∂ t u ∈ C 2,1 Ω × [0, τ ] is a solution of ∂ t y = div(a(x)∇y)+f t (x, t, u, ∇u)+f u (x, t, u, ∇u)y+f p (x, t, u, ∇u)•∇y
in Ω×[0, τ ] satisfying B σ (y) = 0 on ∂Ω×(0, τ ] and y(x, 0) = div(a(x)∇ϕ)+ f (x, 0, ϕ, ∇ϕ) ≥ 0 in Ω. Then by [START_REF] Escher | Quasilinear parabolic systems with dynamical boundary conditions[END_REF] 

T (0, ϕ) ≤ T (σ, ϕ) ≤ T (∞, ϕ) ≤ T 0 (∞, ψ), where v ∈ C Ω × [0, T (∞, ϕ)) ∩ C 2,1 Ω × (0, T (∞, ϕ)) is the max- imal classical solution of    ∂ t v = div(a(x)∇v) + f (x, t, v, ∇v) in Ω × (0, T (∞, ϕ)), v(•, 0) = ϕ in Ω, v = ϕ on ∂Ω × (0, T (∞, ϕ)),
and

w ∈ C Ω × [0, T 0 (∞, ψ)) ∩ C 2,1 Ω × (0, T 0 (∞, ψ)) is the maxi- mal classical solution of    ∂ t w = div(a(x)∇w) + f (x, t, w, ∇w) in Ω × (0, T 0 (∞, ψ)), w(•, 0) = ψ in Ω, w = 0 on ∂Ω × (0, T 0 (∞, ψ)),
with ψ ∈ C(Ω),ψ = 0 on ∂Ω and ψ ≤ ϕ.

Note that u σ ≥ w holds in the domain of definition of u σ without ( 9)-( 10) by the comparison principle under Dirichlet boundary conditions [START_REF] Walter | Differential and integral inequalities[END_REF]. Under the additional hypothesis

f (x, t, u, 0) ≤ h(u), h ∈ C 1 ([0, ∞); [0, ∞)), (11) 
the maximal solution z ∈ C 1 ([0, t 0 )) of the ordinary IVP

ż = h(z) in [0, t 0 ), z(0) = ϕ ∞ ( 12 
)
yields a lower bound for the blow up time by the comparison principle from [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF]. The solution u of Problem 1 satisfies

0 = ∂ t u -div(a(x)∇u) -f (x, t, u, ∇u) ≤ ż -div(a(x)∇z) -f (x, t, z, 0)
in Ω for t > 0. Thus, Theorem 2.1 permits to conclude the Theorem 2.5. Under Condition [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF], z ≥ u σ for 0 ≤ t < t 0 , and, if in addition h(u) > 0 for u > 0, then

T (σ, ϕ) ≥ t 0 = ∞ ϕ ∞ 1 h(η) dη.
Corollary 2.6. Suppose that either h(u) = u p with 1 < p ∈ R or h(u) = e qu with 1 ≤ q ∈ R. Then, under Condition [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF], the blow up time of Problem (1) satisfies T (σ, ϕ) ≥ T (0, ϕ ∞ ) with

T (0, ϕ ∞ ) = 1 (p -1) ϕ p-1 ∞ or T (0, ϕ ∞ ) = 1 q e -q ϕ ∞ respectively.
Furthermore, the growth order can be determined for f (x, t, u, ∇u) = u p : Corollary 2.7. Suppose that Conditions ( 9)-( 10) are satisfied and that

f (x, t, u, ∇u) = u p , with p > 1. ( 13 
)
Then there exists a positive constant C such that

u σ (•, t) ∞ ≤ C (T (σ, ϕ) -t) 1/p-1 for t ∈ [0, T (σ, ϕ)). Proof. Set u := u σ , ξ ∈ ]0, t 0 2 ] and T = ξ 2 . We first show that ∃δ > 0 : ∂ t u ≥ δu p in Ω × [ξ, T (σ, ϕ)). ( 14 
) Since u(•, T ) ∈ C 2 (Ω), standard regularity results [11] yield u ∈ C 2,2 (Ω × (0, T (σ, ϕ)))
. By applying the strong minimum principle to the solution y :

= ∂ t u ∈ C 2,1 (Ω × (0, T (σ, ϕ))) of    ∂ t y = div(a∇y) + pu p-1 y in Ω × [ T , T (σ, ϕ)), y(•, T ) = ∂ t u(•, T ) ≥ 0 in Ω, B σ (y) = 0 on ∂Ω × [ T , T (σ, ϕ)),
we can conclude that there exists c > 0 such that

y := ∂ t u ≥ c > 0 in Ω × [ξ, T (σ, ϕ)). ( 15 
) Now, define J in Ω × [ξ, T (σ, ϕ)) by J = ∂ t u -δu p , where δ > 0 is sufficiently small such that J(•, ξ) ≥ 0 in Ω thanks to (15). J ∈ C 2,1 Ω × [ξ, T (σ, ϕ)) fulfills ∂ t J -div(a∇J)-pu p-1 J = δp(p-1)u p-2 a ∇u 2 ≥ 0 in Ω×[ξ, T (σ, ϕ))
and J satisfies the boundary condition B σ (J) = 0. Finally, the comparison principle implies

J ≥ 0 in Ω × [ξ, T (σ, ϕ)).
The remaining part of the proof is identical to the proof of [6, Thm. 2.9], but for the reader's convenience we repeat the argument here.

Since u ≤ z, it suffices to estimate u(•, t) ∞ for t ∈ [ t 0 2 , T (σ, ϕ)). For each x ∈ Ω the integral T t ∂ t u(x, s) u p (x, s) ds = u(x,T ) u(x,t)
1 η p dη converges as T T (σ, ϕ). We conclude

u 1-p (x, T (σ, ϕ)) -u 1-p (x, t) 1 -p ≥ δ (T (σ, ϕ) -t) ,
and at a blow up point x, u(x, t) ≤ (p-1)

1 1-p max δ 1 1-p , 2T (σ, ϕ) t 0 -1 1 p-1 1 (T (σ, ϕ) -t) 1/p-1 .

Nonexistence of weak global solutions

In this section we generalize a result on nonexistence from [START_REF] Bandle | Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up[END_REF] to the following convection problem on a bounded domain Ω with Lipschitz boundary ∂Ω:

   ∂ t u = div(a(x)∇u) + m(x, t)f (u) in Ω × (0, T ), B σ (u) := σ∂ t u + ∂ ν u = 0 on ∂Ω × (0, T ), u(•, 0) = ϕ (16)
In addition to (2)- [START_REF] Below | Blow up set and growth order for a nonlinear convection diffusion equation under dynamical boundary conditions[END_REF] we require here that

m ∈ L ∞ (Ω × (0, T )), m ≥ 0 (17) f (s) > 0 for s > 0, f (s), f (s) ≥ 0 for all s ∈ R, (18) 
∞ s 0 dξ f (ξ) < ∞ for some positive s 0 . ( 19 
) Recall that u ∈ B := L 2 ((0, T ), H 1 (Ω)), T > 0, is called a weak solu- tion u of Problem (16) in (0, T ) if ∂ t u ∈ L 2 ((0, T ), L 2 (Ω)), trace ∂ t u ∈ L 2 ((0, T ), L 2 (∂Ω)), f (u(•)) ∈ L 2 ((0, T ), H 1 (Ω)) and τ 0 Ω ∂ t uψ dx + ∂Ω σa∂ t uψ ds + Ω a(∇u, ∇ψ) dx dt = τ 0 Ω mf ψ dx dt
for all τ ∈ (0, T ) and for all ψ ∈ B, and

ϕ ∈ L 2 (Ω) × L 2 (∂Ω) with u(•, t) -ϕ L 2 (Ω) , trace u(•, t) -ϕ L 2 (∂Ω) → 0 as t → 0.
We shall prove that all solutions blow up in finite time if the ODE ż = f (z) has no global solution for positive initial value. For that purpose we first state the following lemma that can be shown exactly in the same way as in [START_REF] Bandle | Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up[END_REF]. Lemma 3.1. Let u be a weak solution of Problem (16) in (0, T ) and h be a weak solution of the homogeneous Problem (16) with f ≡ 0 and h(x, 0) ≤ ϕ(x) a.e. in Ω. Then h ≤ u. Especially, if ϕ ≥ 0 then u ≥ 0. Theorem 3.2. Suppose Ω ϕ dx + ∂Ω σϕ ds > 0 and

t 0 Ω m(x, τ ) dx dτ → ∞ as t → ∞.
Then Problem (16) has no global weak solution.

Proof. Suppose that u ∈ B ∞ := L 2 ((0, ∞), H 1 (Ω)
) is a weak solution of Problem ( 16) in (0, ∞). By [START_REF] Bandle | A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent advances in elliptic and parabolic problems[END_REF], let h ∈ B ∞ denote the unique solution of the homogeneous linear problem Since λ n > 0 for n > 0 we deduce that for all x ∈ Ω lim t→∞ h(x, t) = h 0 .

   ∂ t u = div(a∇u) in Ω × R + , B σ (u) := σ∂ t u + ∂ ν u = 0 on ∂Ω × R + , u(•, 0) = ϕ in Ω ( 
By assumption h 0 > 0. Consequently, using higher regularity properties of h and the strong minimum principle from [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF], for any > 0 there exists t 0 such that u ≥ h 0 -in Ω × (t 0 , ∞) and f (u) > c 0 > 0 for t ≥ t 0 . Let ψ ∈ B be a test function in the weak formulation of (16) on the interval (t 0 , τ ). By Green's formula and the dynamical boundary conditions 

Ω a∆uψ dx = - Ω (∇(
) Ω g(u(τ, x)) dx- Ω g(u(t 0 , x)) dx+ ∂Ω σa g(u(τ, x)) ds- ∂Ω σa g(u(t 0 , x)) ds = τ t 0 Ω a f (u) (f (u)) 2 ∇u 2 dx dt + τ t 0 Ω m dx dt ≥ τ t 0 Ω m dx dt.
But this is impossible since the r.h.s. tends to infinity whereas the l.h.s. remains bounded as τ → ∞.

Upper bounds for the blow up time

In this section, we derive upper bounds for the blow up time by comparing the present convection case with the reaction diffusion case. We assume that the nonlinearity f grows as a power of u or is an exponential function. Note that the latter case has not been considered in [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF]. Let λ denote the minimal eigenvalue of -div(a∇) in H 1 0 (Ω) and ψ ∈ H 1 0 (Ω) the eigenfunction belonging to λ satisfying 0 < ψ ≤ 1 in Ω and 1 ∈ ψ(Ω). Then we can state the following Theorem 4.1. Let α > 0, T > 0 and p > 1 denote real constants and let

u ∈ C Ω × [0, T ) ∩ C 2,1 (Ω × (0, T )) be a maximal solution of    ∂ t u ≥ div(a(x)∇u) + αu p in Ω for t > 0, u ≥ 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C(Ω) (21) If λ α 1 p-1 |Ω| < Ω ϕψ dx then u blows up in finite time T satisfying T ≤ 1 λ(p -1) ln α α -λ|Ω| p-1 ( Ω ϕψ dx) 1-p =: t 1 . Proof. Introduce M (t) = Ω uψ dx. Then Ṁ ≥ Ω div(a∇u)ψ dx + α Ω u p ψ dx.
Green's formula and the behaviour of ψ and ∂ ν ψ on the boundary imply

Ω div(a∇u)ψ dx = - Ω a(∇ψ, ∇u) dx ≥ Ω div(a∇ψ)u dx. Thus Ṁ ≥ Ω div(a∇ψ)u dx + α Ω u p ψ dx = -λM + α Ω u p ψ dx.

Hölder's inequality leads to

Ṁ ≥ -λM + α|Ω| 1-p M p . ( 22 
)
This is the same differential inequality as in the reaction diffusion case, and we can follow the proof of Theorem 4.1 in [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] in order to show that u blows up at T ≤ t 1 .

Corollary 4.2. Suppose the above conditions on p, α and ϕ to be satisfied and, in addition, f (x, t, u, ∇u) ≥ u p for u ≥ 0. Then the maximal solution of Problem 1 blows up in finite time T ≤ t 1 , with t 1 as in Thm. 4.1.

Spectral comparison used in the special case where h grows exponentially yields to a similar upper bound.

Here Ω e u ψ dx plays the same role as the first Fourier coefficient in the above case.

Theorem 4.3. Let u ∈ C Ω × [0, T ) ∩C 2,1 (Ω × (0, T )) be a maximal solution of    ∂ t u ≥ div(a(x)∇u) + αe pu in Ω for t > 0, u ≥ 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C(Ω) (23) If λ α 1 p-1 |Ω| < Ω e ϕ ψ dx, (24) 
then

T ≤ 1 λ(p -1) ln α α -λ|Ω| p-1 Ω e ϕ ψ dx 1-p =: t 2 .
Proof. Set M (t) = Ω e u(•,t) ψ dx. Cor. 7.3 in [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] yields u ≥ 0 in Ω × (0, T ), thus

Ṁ ≥ Ω ψ ∂ t u dx ≥ Ω div(a∇u)ψ dx + α Ω ψ e pu dx.
By following the proof of Thm. 4.1, we obtain

Ṁ ≥ Ω div(a∇ψ)u dx+α Ω e pu ψ dx ≥ -λ Ω e u ψ dx+α Ω (e u ψ) p dx.
Hölder's inequality, Ω (e u ψ) p dx ≥ |Ω| 1-p Ω e u ψ dx p leads to the ODIE (22), that permits to conclude as above. These last results are obviously valid in the case where a ≡ 1. In particular, we deduce an upper bound for the blow up time for Problem (23), which extends the results obtained in [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] to an exponential type nonlinearity. Furthermore, in the case p = 1, i.e. f (x, t, u, ∇u) ≥ e u , all solutions blow up in finite time independently of the size of Ω for positive nonvanishing initial values, see [START_REF] Bandle | Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up[END_REF].

Remark 4.4. The above results can be extended to the case where a depends on x and u with a ∈ C 1,1 (Ω × R), a > 0 and ∂a ∂u ≥ 0, since in this case, div(a∇u) = (∇a, ∇u) + ∂a ∂u |∇u| 2 + a∆u with controllable sign of the quadratic gradient term.

Energy type techniques apply also to the present case. Let us illustrate this in the following classical case. Let E : H 1 (Ω) ∩ L p+1 (Ω) → R be the energy functional defined by

E(u) = 1 2 Ω a ∇u 2 2 dx - 1 p + 1 Ω u p+1 dx
and assume that the initial value ϕ belongs to

H 1 0 (Ω) ∩ C(Ω). Lemma 4.5. If u ∈ C(Ω × [0, τ ]) ∩ C 2,1 (Ω × (0, τ ]) is a solution of    ∂ t u = div(a∇u) + αu p in Ω for t > 0, u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C 0 (Ω), (25) 
then the function t → E(u(•, t)) is decreasing.

An estimation of the L 2 -norm of the solution of the Dirichlet problem (25) yields an upper bound for the blow up time. Furthermore, by comparison principles the next result involving the maximal solution of Problem (1) can be deduced. Since the proofs are quite similar to the ones in [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF], we omit the details here. 

T ≤ p + 1 (p -1) 2 |Ω| p-1 2 φ 1-p 2 -φ -2p ∞ [-E( φ)]|Ω| -1 p + 1 p(p -

A problem including a sign change of the convection term

In this section, we consider the following one-dimensional problem including a sign change of the gradient term

   ∂ t u = ∂ 2 x u -u∂ x u + u p in Ω for t > 0, B σ (u) := σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C(Ω) (26)
with 1 < p ∈ R and Ω = (-b, b) with b > 0. Moreover, we assume that σ > 0 is constant. We present some results on blow up phenomena that depend on the value of p, and on the growth behaviour of the solutions when approaching the blow up time. For more details and results on the blow up set we refer to a forthcoming paper [START_REF] Below | Blow up set and growth order for a nonlinear convection diffusion equation under dynamical boundary conditions[END_REF].

In fact, for 1 < p ≤ 2, the solutions of Problem (26) do not blow up and exist globally. Let the initial value ϕ satisfy 0 < σ ≤ ϕ 2-p ∞ , and let α and A be some positive constants satisfying

A ≥ ϕ ∞ e αa , 1 σ ≥ α ≥ ϕ p-2 ∞ .
Then the function y defined by y(x, t) = Ae α(x+ t σ ) is a globally bounded upper solution of Problem (26) with boundary condition σ∂ t u + ∂ ν u = 0 on ∂Ω × (0, +∞). For p > 2 the situation is different.

Theorem 5.1. For p > 2, the classical solutions u of (26) blow up in finite time if ϕ > 0 in Ω.

Proof. We can follow an idea from [START_REF] Friedman | Blow up of solutions of semilinear parabolic equations[END_REF] as follows. Suppose that u is a classical solution of Problem (26) with maximal existence time T . Introduce a symmetric hump function φ satisfying

φ ∈ H 1 0 ((-l, l)) ∩ C 2 ([-l, l]), ( 27 
) 0 < φ(x) = φ(-x) in [-l, l], (28) φ 
(x) > 0 in [-l, 0), φ (x) < 0 in (0, l] (29) 
∆ φ + φp ≥ 0 in [-l, l] (30) 
where l ∈ (0, b). Let ũ be the maximal classical solution of the Dirichlet problem   

∂ t ũ = ∆ũ + ũp in [-l, l] × (0, ∞), ũ(±l, •) = 0 for t > 0, ũ(•, 0) = φ in [-l, l]. (31) 
Under ( 27), if φ has the non-positive energy

E( φ) = 1 2 l -l φ 2 dx - 1 p + 1 l -l φp+1 dx ≤ 0, (32) 
it is well known by [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] that ũ blows up in finite time T , depending on σ and φ. It is not possible to compare the classical maximal solutions u and ũ by using the classical comparison principle of [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] due to the changing sign of the gradient term. However, we can modify ũ into a subsolution y of Problem (26) defined on a suitable network corresponding to a subdivision of the interval Ω. This subsolution y blows up at the latest as ũ for t = T . Set m(t) = ũ(0, t) = max -l≤x≤l ũ(x, t) for t > 0 and r(t) = t 0 m(τ ) dτ.

Since p > 2, Thm. 2.9 from [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] yields r 0 := r( T ) < ∞. Introduce the sets in R 1 , ũ(x -r(t) + r 0 , t) in R 2 .

R 0 = {0 < x ≤ b 0 < t < T }, R 1 = {r(t) -r 0 < x < 0 0 < t < T },
Clearly, y(•, t) and ∂ x y(•, t) are continuous on ∂R 0 ∩ ∂R 1 and ∂R 1 ∩ ∂R 2 and y satisfies a classical Kirchhoff law. Furthermore, thanks to (28)-(30) we can prove that ∂ t y-∆y+y∂ x y-y p ≤ 0 in R 0 , R 1 and R 2 for 0 < t < T . Then, by applying the comparison principle related to networks from [START_REF] Below | Parabolic network equations[END_REF] or [START_REF] Below | Dynamical interface transition in ramified media with diffusion[END_REF], we can conclude that y ≤ u in R 0 ∪ R 1 ∪ R 2 × (0, T ), which proves that u blows up in finite time T ≤ T .

For p > 3, the growth order of the solutions of Problem (26) amounts to Proof. Suppose ξ ∈ ]0, t 0 2 ] with t 0 = ϕ 1-p ∞ p-1 . Set p and q such that p > q > 3 and p > q + 1 3 (34) and set u := u σ ∈ C 2,1 ([-b, b] × [0, T (σ, ϕ))) the maximal solution of Problem [START_REF] Constantin | Global existence for fully parabolic boundary value problems[END_REF]. Then, we can prove that there exists δ > 0 and 1 < M ∈ R such that ∂ t u ≥ δ exp(-M t)(u p + u q ) in Ω × [ξ, T (σ, ϕ)).

(35)

  20) Lemma 3.1 shows that u ≥ h. By the spectral expansion results [1], [2] h(x, t) = ∞ n=1 e -λnt Ω ϕψ n dx + ∂Ω σϕψ n ds ψ n (x) + h 0 with h 0 := Ω ϕ dx + ∂Ω σϕ ds |Ω| + ∂Ω σ ds , where ψ n and λ n , i ∈ N denote all the eigenfunctions and eigenvalues of the problem -div(a∇ψ) = λψ in Ω, ψ ν = σλψ on ∂Ω.

Corollary 4 . 6 .

 46 Suppose φ ∈ H 1 0 (Ω) ∩ C(Ω), E( φ) ≤ 0 and φ ≤ ϕ and, in addition, f (u) ≥ u p for u ≥ 0. Then the maximal solution u of Problem 1 blows up in finite time T satisfying

R 2 =

 2 {r(t) -r 0 -b ≤ x < r(t) -r 0 0 < t < T }and the function y defined byy(x, t) =    ũ(x, t) in R 0 , m(t)

-1 p- 1 Theorem 5 . 2 .

 152 when t approaches the blow up time, under initial data fulfillingϕ ∈ C 2 ([-b, b]) , ϕ -ϕϕ + ϕ p ≥ 0 in [-b, b].(33) Suppose p > 3 and Condition (33) satisfied, then there exists a positive constant C such thatu σ (•, t) ∞ ≤ C (T (σ, ϕ) -t) 1/p-1 f or t ∈ [0, T (σ, ϕ)).

  ≤ σ 2 implies u σ 1 ≥ u σ 2 in Ω × [0, T (σ 1 , ϕ)) and T (σ 1 , ϕ) ≤ T (σ 2 , ϕ). Proof. By Lemma 2.2 we have ∂ t u σ ≥ 0 and σ 2 ∂ t u σ 1 + ∂ ν u σ 1 ≥ 0.Then the comparison principle from[START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] yields u σ 1 ≥ u σ 2 .

	and [4, Cor. 2.4], y ≥ 0 in
	Ω × [0, τ ].
	Theorem 2.3. Suppose that Conditions (9)-(10) are fulfilled. Then
	0 ≤ σ 1 Using Theorem 2.3 and the comparison principle l.c., we can compare
	solutions under different boundary conditions.
	Theorem 2.4. Suppose that Conditions (9)-(10) are fulfilled. Then
	u 0 ≥ u σ ≥ v ≥ w in the domains of definition of u 0 , u σ and v respec-
	tively, and

  1).

	Remark 4.7. Note that the blow up time under dynamical boundary
	condition with σ > 0 can be strictly greater than the one under the
	Neumann boundary condition, see the example given in [6, 2.10]. An
	example for a finite blow up time under dynamical boundary condition
	with σ > 0 and global existence under Dirichlet boundary condition is
	given in [2, p.63].
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Set T = ξ 2 . In the same way as in Cor. 2.7, we show by the strong minimum principle that there exists a positive constant c such that

Now, set d(t) = exp(-M t) with M > 1 and k(u) = u p + u q and introduce J = ∂ t u -δd(t)k(u), where δ > 0 is sufficiently small such that

in the view to (36). J satisfies the boundary condition

where

In order to show that H(u) ≥ 0, we prove the following inequality

(38) is obvious when |∂ x u| ≤ M . Now, we suppose that |∂ x u| > M . In the case where u 2 ≤ q(q -1)|∂ x u|, (38) is fulfilled because u q |∂ x u| ≤ q(q -1)u q-2 (∂ x u) 2 and u p |∂ x u| ≤ p(p -1)u p-2 (∂ x u) 2 since p > q. If u 2 > q(q -1)|∂ x u|, then we have u > 1 since M > 1 > 1 q(q-1) , and by (34), we are led to (u p + u q )|∂ x u| ≤ u p+2 + u q+2 q(q -1) ≤ 2 q(q -1) u p+q-1 ≤ (p -q)u p+q-1 , which leads to (38). Now, the comparison principle implies J ≥ 0 in [-b, b] × [ξ, T (σ, ϕ)). Finally, the estimate of u when approaching T (σ, ϕ) is shown exactly in the same way as for Cor. 2.7.