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Abstract

We propose a novel framework to study asynchronous federated learning opti-
mization with delays in gradient updates. Our theoretical framework extends
the standard FEDAVG aggregation scheme by introducing stochastic aggregation
weights to represent the variability of the clients update time, due for example
to heterogeneous hardware capabilities. Our formalism applies to the general
federated setting where clients have heterogeneous datasets and perform at least
one step of stochastic gradient descent (SGD). We demonstrate convergence for
such a scheme and provide sufficient conditions for the related minimum to be
the optimum of the federated problem. We show that our general framework ap-
plies to existing optimization schemes including centralized learning, FEDAVG,
asynchronous FEDAVG, and FEDBUFF. The theory here provided allows drawing
meaningful guidelines for designing a federated learning experiment in heteroge-
neous conditions. In particular, we develop in this work FEDFIX, a novel exten-
sion of FEDAVG enabling efficient asynchronous federated training while preserv-
ing the convergence stability of synchronous aggregation. We empirically demon-
strate our theory on a series of experiments showing that asynchronous FEDAVG
leads to fast convergence at the expense of stability, and we finally demonstrate
the improvements of FEDFIX over synchronous and asynchronous FEDAVG.

1 Introduction

Federated learning (FL) is a training paradigm enabling different clients to jointly learn a global
model without sharing their respective data. Federated learning is a generalization of distributed
learning (DL), which was first introduced to optimize a given model in star-shaped networks com-
posed of a server communicating with computing machines (Bertsekas and Tsitsiklis, 1989; Nedic¢
et al., 2001; Zinkevich et al., 2009). In DL, the server owns the dataset and distributes it across
machines. At every optimization round, the machines return the estimated gradients, and the server
aggregates them to perform an SGD step. DL was later extended to account for SGD, and FL ex-
tends DL to enable optimization without sharing data between clients. Typical federated training
schemes are based on the averaging of clients model parameters optimized locally by each client,
such as in FEDAVG (McMabhan et al., 2017), where at every optimization round clients perform a
fixed amount of stochastic gradient descent (SGD) steps initialized with the current global model
parameters, and subsequently return the optimized parameters to the server. The server computes
the new global model as the average of the clients updates weighted by their respective data ratio.



A key methodological difference between the optimization problem solved in FL and the one of DL
lies in the assumption of potentially non independent and identically distributed (iid) data instances
(Kairouz et al., 2019; Yang et al., 2019). Proving convergence in the non-iid setup is more chal-
lenging, and in some settings, FEDAVG has been shown to converge to a sub-optimum, e.g. when
each client performs a different amount of local work (Wang et al., 2020a), or when clients are not
sampled in expectation according to their importance (Cho et al., 2020).

A major drawback of FEDAVG concerns the time needed to complete an optimization round, as
the server must wait for all the clients to perform their local work to synchronize their update and
create a new global model. As a consequence, due to the potential heterogeneity of the hardware
across clients, the time for an optimization round is conditioned to the one of the slowest update,
while the fastest clients stay idle once they have sent their updates to the server. To address these
limitations, asynchronous FL has been proposed to take full advantage of the clients computation
capabilities (Xu et al., 2021; Nguyen et al., 2018; Koloskova et al., 2019; De Sa et al., 2015). In the
asynchronous setting, whenever the server receives a client’s contribution, it creates a new global
model and sends it back to the client. In this way, clients are never idle and always perform local
work on a different version of the global model. While asynchronous FL has been investigated in
the iid case (Stich and Karimireddy, 2020), a unified theoretical and practical investigation in the
non-iid scenario is currently missing.

This work introduces a novel theoretical framework for asynchronous FL based on the generalization
of the aggregation scheme of FEDAVG, where asynchronicity is modeled as a stochastic process af-
fecting clients’ contribution at a given federated aggregation step. More specifically, our framework
is based on a stochastic formulation of FL, where clients are given stochastic aggregation weights
dependent on their effectiveness in returning an update. Based on this formulation, we provide suf-
ficient conditions for asynchronous FL to converge, and we subsequently give sufficient conditions
for convergence to the FL. optimum of the associated synchronous FL problem. Our conditions de-
pend on the clients computation time (which can be eventually estimated by the server), and are
independent from the clients data heterogeneity, which is usually unknown to the server.

With asynchronous FL, the server only waits for one client contribution to create the new global.
As a result, optimization rounds are potentially faster even though the new global improves only
for the participating client at the detriment of the other ones. This aspect may affect the stability of
asynchronous FEDAVG as compared to synchronous FEDAVG and, as we demonstrate in this work,
even diverge in some cases. To tackle this issue, we propose FEDFIX, a robust asynchronous FL
scheme, where new global models are created with all the clients contributions received after a fixed
amount of time. We prove the convergence of FEDFIX and verify experimentally that it outperforms
standard asynchronous FEDAVG in the considered experimental scenarios.

The paper is structured as follows. In Section 2, we introduce our aggregation scheme and the close-
form of its aggregation weights in function of the clients computation capabilities and the considered
FL optimization routine. Based on our aggregation scheme, in Section 3, we provide convergence
guarantees, and we give sufficient conditions for the learning procedure to converge to the optimum
of the FL optimization problem. In Section 4, we apply our theoretical framework to synchronous
and asynchronous FEDAVG, and show that our work extends current state-of-the-art approaches to
asynchronous optimization in FL. Finally, in Section 5, we demonstrate experimentally our theoret-
ical results.

2 Background

We define here the formalism required by the theory that will be introduced in the following sec-
tions. We first introduce in Section 2.1 the FL optimization problem, and we adapt it in section 2.2
to account for delays in client contributions. We then generalize in Section 2.3 the FEDAVG aggre-
gation scheme to account for contributions delays. In Section 2.4, we introduce the notion of virtual
global models as a direct generalization of gradient descent, and introduce in Section 2.5 the final
asynchronous FL optimization problem. Finally, we introduce in Section 2.6 a formalization of the
concept of data heterogeneity across clients.



2.1 Federated Optimization Problem

We have M participants owning n; data points {2y ;},., independently sampled from a fixed un-
known distribution over a sample space {Z;}M . We have zi; = (i, Y ;) for supervised learn-
ing, where xy ; is the input of the statistical model, and ¥y ; its desired target, while we denote
2z, = Ty, for unsupervised learning. Each client optimizes the model’s parameters 6 based on
the estimated local loss [(, z; ;). The aim of FL is solving a distributed optimization problem
associated with the averaged loss across clients
M n;
£O)=E, 2 [10,2)] = —— 3 10, 21,0, M)
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where the expectation is taken with respect to the sample distribution Z across the M participating

clients. We consider a general form of the federated loss of equation (1) where clients local losses
. . n .

are weighted by an associated parameter p; such that ) . | p; = 1, i.e.
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The weight p; can be interpreted as the importance given by the server to client ¢ in the federated
optimization problem. While any combination of {p;} is possible, we note that in typical FL for-
mulations, either (a) every client has equal importance, i.e. p; = 1/M, or (b) every data point is

equally important, i.e. p; = n;/ Zgl ng.

2.2 Asynchronicity in Clients Updates

An optimization round starts at time ¢” with global model 8", finishes at time t"*! with the new
global model 87+, and takes At™ = "1 —¢" time to complete. No assumptions are made on At”,
which can be a random variable, and we set for convenience t° = 0. In this section, we introduce
the random variables needed to develop in Section 2.3 the server aggregation scheme connecting
two consecutive global models ™ and 71!,

We define the random variable 7T; representing the update time needed for client ¢ to perform its
local work and send it to the server for aggregation. 7; depends on the client computation and
communication hardware, and is assumed to be independent from the current optimization round n.
If the server sets the FL round time to At"™ = max; T}, the aggregation is performed by waiting for
the contribution of every client, and we retrieve the standard client-server communication scheme
of synchronous FEDAVG.

With asynchronous FEDAVG, we need to relate T; to the server aggregation time At™. We introduce
pi(n) the index of the most recent global model received by client ¢ at optimization round n and, by

construction, we have 0 < p;(n) < n. We define by
" =T, — (t" — tﬂi(n))
the remaining time at optimization round n needed by client ¢ to complete its local work.

Comparing T* with At"™ indicates whether a client is participating to the optimization round or not,
through the stochastic event I(T* < A¢™). When I(T}* < At™) = 1, the local work of client i is
used to create the new global model 0™t1 while client i does not contribute when (T < At") =
0. With synchronous FEDAVG, we retrieve I(T}* < At™) = I(T; < max; T;) = 1 for every client.

Figure 1 illustrates the notations described in this section in a FL process with M = 2 clients.

2.3 Server Aggregation Scheme

We consider A;(n) the contribution of client i received by the server at optimization round n. In the
rest of this work, we consider that clients perform K steps of SGD on the model they receive from

the server. By calling their trained model 0§”’k> after £ SGD, we can rewrite clients contribution for
FEDAVG as A;(n) == OEn’K) — 0", and the FEDAVG aggregation scheme as

M
0" = 0"+ piA(n). 3)
=1
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Figure 1: Illustration of the time notations introduced in Section 2.2 with M = 2 clients. The
frequency of the updates of Client 1 (C1) is twice the one of Client 2 (C2). If the server (S) creates the
new global model after every fixed waiting time (At"™ = At), C1 contributes at every optimization
round, while C2 contributes once every two rounds. This aggregation policy define the federated
learning strategy FEDFIX (Section 4.4)

With FEDAVG, the server waits for every client to send its contribution A;(n) to create the new
global model. To allow for partial computation within the server aggregation scheme, we introduce
the aggregation weight d;(n) corresponding to the weight given by the server to client ¢ at opti-
mization round n. We can then define the stochastic aggregation weight w;(n) given to client ¢ at
optimization step n as

wi(n) =T < At")d;(n), 4
with w; (n) = d;(n) if client 7 updated its work at optimization round n and w;(n) = 0 otherwise. In
the general setting, client 4 receives 87:("™) and its contribution is A;(p;(n)) = oMK _ gpi(n),

By weighting each delayed contribution A;(p;(n)) with its stochastic aggregatiotll weight w;(n), we
propose the following aggregation scheme

M
0" = 0" 1y Y wi(n)Ai(pi(n)), )

i=1
where 7, is a global learning rate that the server can use to mitigate the disparity in clients contri-
butions (Reddi et al., 2021; Karimireddy et al., 2020; Wang et al., 2020b). Equation (5) generalizes

FedAvg aggregation scheme (3) (1, = 1 and At™ = max; 7}), and the one of Fraboni et al. (2022)
based on client sampling.

We introduce with Algorithm 1 the implementation of the optimization schemes satisfying aggrega-
tion scheme (5) with stochastic aggregation weights satisfying equation (4).

Algorithm 1 Asynchronous Federated Learning based on equation (5)

Require: server learning rate 7y, aggregation weights {d;(n)}, number of SGD K, learning rate 7;,
batch size B, aggregation time policy At™.
1: The server sends to the M clients the learning parameters (X, 77;, B) and the initial global model
0°.
2: forn € {0,...,N — 1} do
Clients in S,, = {i : T"" < At"} send their contribution A;(p;(n)) = 87! — gri(n) 1o

the server.

4: The server creates the new global model 8"+ = 0" +-1, >~ di(n)A;(pi(n)), equation
(5).

5: The global model 871! is sent back to the clients in S,,.

6: end for

2.4 Expressing FL as cumulative GD steps

To obtain the tightest possible convergence bound, we consider a convergence framework similar
to the one of Li et al. (2020b) and Khaled et al. (2020). We introduced the aggregation rule for the



server global models {0™} in Section 2.3, and we generalize it in this section by introducing the
virtual sequence of global models §™*. This sequence corresponds to the virtual global model that
would be obtained with the clients contribution at optimization round n computed on k¥ < K SGD,
ie.

0" —0”+77ng1 ) [0 — g

We retrieve ™0 = @™ and 6% = §"t1.0 = 9"+, The server has not access to §™* when k # 0
or k # K. Hence the name virtual for the model 8™,

The difference between two consecutive global models in our virtual sequence depends on the sum

of the differences between local models Ofi(")’]ﬁl Bp‘(n) AE——_ v (07 (- ¢.), where &; is
a random batch of data samples of client . Hence, we can rewrite the aggregation process as a GD
step with

M

o™ Jk+1 enk _nganwL V,C (9%(”)’“751)

=1

2.5 Asynchronous FL as a Sequence of Optimization Problems

For the rest of this work, we define ¢;(n) := E [w;(n)], the expected aggregation weight of client i at
optimization round n. No assumption is made on ¢;(n) which can vary across optimization rounds.

The expected clients contribution Zi\il ¢i(n)A;(n) help minimizing the optimization problem £

defined as
M
= Z qi(n)Li(0
i=1

We denote by 8™ the optimum of £" and by 8* the optimum of the optimization problem £ defined
in equation (2). Finally, we define by ¢; = % Zg:_ol ¢ (n) the expected importance given to client
i over the N server aggregations during the FL process, and by ¢;(n) the normalized expected
importance ¢;(n) = ¢;(n)/ (Zf\il ¢i(n)). We define by L the associated optimization problem

M 1 N—-1
) =D aili(8) = 5 D L"), ©)
i=1 n=0

and we denote by 6 the associated optimum.

Finally, we introduce the following expected convergence residual, which quantifies the variance at
the optimum in function of the relative clients importance ¢;(n)

o i%‘ Ee, [HV&@&)”Q} :

i=1

The convergence guarantees provided in this work (Section 3) are proportional to the expected con-
vergence residual. 3 is positive and null only when clients have the same loss function and perform
GD steps for local optimization.

2.6 Formalizing Heterogeneity across Clients

We assume the existence of J < M different clients feature spaces Z; and, without loss of generality,
assume that the first J clients feature spaces are different. This formalism allows us to represent the
heterogeneity of data distribution across clients. In DL problems, we have J < M when the same
dataset split is accessible to many clients. When clients share the same distribution, we assume
that their optimization problem is equivalent. In this case, we call F;(0) their loss function with
optimum 67. The federated problem of equation (2) can thus be formalized with respect to the
dlscrepancy between the clients feature spaces Z;. To this end, we define (); the set of clients with
the same feature space of client j, i.e. Q; = {i : Z; = Z;}. Each feature space as thus importance



Client ¢ | Sample distribution j
Importance Di T
Stochastic aggregation weight w;(n) -
Aggregation weight d;(n) -
Expected agg. weight q;(n) sj(n)
Normalized expected agg. weight Gi(n) 55(n)
Expected agg. weight over N rounds q; 5

Table 1: The different weights used to account for the importance of clients or data distributions at
every optimization round and during the full FL process.

r;= Zier pi, and expected importance s;(n) = Zier @;(n) such that

J
L£(9) = erFj(e) and L™(0) = _s;(n)F;(6).

j=1

As for G;(n), we define 3;(n) = s;(n)/ S0, s;(n).

In Table 1, we summarize the different weights used to adapt the federated optimization problem to
account respectively for heterogeneity in clients importance and data distributions across rounds.

3 Convergence of Federated Problem (2)

In this section, we prove the convergence of the optimization based on the stochastic aggregation
scheme defined in equation (5), with implementation given in Algorithm 1. We first introduce in
Section 3.1 the necessary assumptions and then prove with Theorem 1 the convergence of the se-
quence of optimized models (Section 3.2). We show in Section 3.3 the implications of Theorem 1 on
the convergence of the federated problem (2), and propose sufficient conditions for the learnt model
to be the associated optimum. Finally, with two additional assumptions, we propose in Section
3.4 simpler and practical sufficient conditions for FL convergence to the optimum of the federated
problem (2).

3.1 Assumptions

We make the following assumptions regarding the Lipschitz smoothness and convexity of the clients
local loss functions (Assumption 1 and 2), unbiased gradients estimators (Assumption 3), finite
answering time for the clients (Assumption 4), and the clients aggregation weights (Assumption
5). Assumption 3 (Khaled et al., 2020) considers unbiased gradient estimators without assuming
bounded variance, giving in turn more interpretable convergence bounds. Assumption 5 states that
the covariance between two aggregation weights can be expressed as the product of their expected
aggregation weight up to a positive multiplicative factor o. We show in Section 4 that Assumption 5
is not limiting as it is satisfied by all the standard FL optimization schemes considered in this work.

Assumption 1 (Smoothness). Clients local objective functions are L-Lipschitz smooth, that is, Vi €
{L,...,n}, [IVLi(z) = VLi(y)|| < Lz — yl|.

Assumption 2 (Convexity). Clients local objective functions are convex.

Assumption 3 (Unbiased Gradient). Every client stochastic gradient g;(x) = VL;(x, z;) of a
model with parameters x evaluated on batch z; is an unbiased estimator of the local gradient, i.e.
Ez; [9i(®)] = VLi().

Assumption 4 (Finite Answering Time). The server receives a client local work in at most T =
max; ,(n — p;i(n)) optimization steps, which satisfy P(t < oo) = 1.

Assumption 5. There exists o € (0,1) such that E [w;(n)w;(n)] = ag;(n)g;(n).

3.2 Convergence of Algorithm 1

We first prove with Theorem 1 the convergence of Algorithm 1.



Theorem 1. Under Assumptions 1 to 5, with i < 1/48K Lmin (1,1/3p?ny(7 + 1)), we obtain
the following convergence bound:

- K- 1
Z E [£"(0™F)] — £™(0™)] < R({L"}) + €F + €K + €a + €5,
n—=0 k=0
where
, 1= ~ - 0 An2
R({‘C }) = N nZ:O [ﬁn(a) - En(a )} ) €r = KN H@ 0‘

ex = O (nf (K = 1)° [R{L"}) + 21]), ea = O (a [+ 7P K*r?] [R({L"}) + max ¢;(n)X]) ,

e =0 B[+ 7K [RUL"Y) +X]),  dG=ngm, B =max{di(n)—ag(n)},
and O accounts for numerical constants and the loss function Lipschitz smoothness L.

Theorem 1 is proven in Appendix A. The convergence guarantee provided in Theorem 1 is composed
of 5 terms: R({L"}), €r, €k, €qa, €g. In the following, we describe these terms and explain their
origin in a given optimization scheme.

Optimized expected residual R({£"}). The residual R({£"}) quantifies the sensitivity of L£"
between its optimum 6™ and the optimum 6 of the overall expected minimized problem across opti-
mization rounds £. As such, the residual accounts for the heterogeneity in the history of optimized
problems, and is minimized to 0 when the same optimization problem is minimized at every round
n, i.e. L™ = L. This condition is always satisfied when clients have identical data distributions, but
requires for the server to set properly every client aggregation weight d;(n) in function of the server

waiting time policy At™ and the clients hardware capabilities 7)* in the general case (Section 3.3
and 3.4).

Initialization quality ¢ . e only depends of the quality of the initial model 8° through its distance
with respect to the optimum 6 of the overall expected minimized problem across optimization rounds
L. This convergence term can only be minimized by performing as many serial SGD steps K N.

Clients data heterogeneity ¢y . This term accounts for the disparity in the clients updated models,
and is proportional to the clients amount of local work K (quadratically) and to the heterogeneity

of their data distributions Z; through ;. When K = 1, every client perform its SGD on the same
model, which reduces the server aggregation to a traditional centralized SGD. We retrieve e = 0.

Gradient delay 7 through ¢, and 5. Decreasing the server time policy At™ allows faster op-
timization rounds but decreases a client’s participation probability P(T* < A¢™) resulting in an
increased maximum answering time 7. In turn, we note that €, and eg are quadratically proportional
to the maximum amount of serial SGD K 7. This latter terms quantifies the maximum amount of
SGD integrated in the global model 68"

3.3 Sufficient Conditions for Minimizing the Federated Problem (2)

Theorem 1 provides convergence guarantees for the history of optimized models {£™}. Under the
same assumptions of Theorem 1, we can provide convergence guarantees for the original FL problem
L(0) (proof in Appendix B).

Theorem 2. Under the same conditions of Theorem 1, we have

N—-1
fz ZE[IVM”’“H}
O(R({L"})) +PHL"}) +U{L"}) 4+ O (er) + ek + €a + €5,

where

pP{£") =0 Z Xo D 5i(n) [F3(6") — Fi(65)] |,

JEW,



N-1 . K-1
1

u{£"}) r; [E [F;(0™F)] — F;(67)] |,

=2l=

o S0 EWn
Xo = 2 jew, (15 — 3j(n))?/3;(n), and Wy, = {j : s;(n) > 0}.

Theorem 2 provides convergence guarantees for the optimization problem (2). We retrieve the com-
ponents of the convergence bound of Theorem 1. The terms er to e, can be mitigated by choosing
an appropriate local learning rate 7, but the same cannot be said for R({£"}), P({L"}), U({L"}).
Behind these three quantities, Theorem 2 shows that proper expected representation of every dataset
type is needed, i.e. s;(n) = r;. Indeed, if a client is poorly represented, i.e. s;(n) # r;, then
R({£"}) > 0 and P({£"}) > 0, while if a client is not represented at all, i.e. s;(n) = 0, then
U({L™}) > 0. Therefore, we propose, with Corollary 1, sufficient conditions for any FL optimiza-
tion scheme satisfying Algorithm 1 to converge to the optimum of the federated problem (2).

Corollary 1. Under the conditions of Theorem 1, if every client data distribution satisfies §;(n) =
75, the following convergence bound for optimization problem (2) can be obtained

N-1 , K-1
Z Z (0"”“)] —L(6%)] <ep+ex +ea+es.
n=0 " k=0
Proof. Follows directly. 5;(n) = r; implies x2 = 0, W,, = 0, L = ¢(n)L, and 8" = 0*. O

These theoretical results provide relevant insights for different FL scenarios.

iid data distributions, Z;, = Z. Consistently with the extensive literature on synchronous and
asynchronous distributed learning, when clients have data points sampled from the same data dis-
tribution, FL always converges to its optimum (Corollary 1). Indeed, §;(n) = r; = 1 regardless
of which clients are participating, and what importance p; or aggregation weight d;(n) a client is
given.

non-iid data distributions. The convergence of FL to the optimum requires to optimize by con-
sidering every data distribution type fairly at every optimization round, i.e. §;(n) = r; (Corollary
1). This condition is weaker than requiring to treat fairly every client at every optimization round,
i.e. gi(n) = p;. Ideally, only one client per data type needs to have a non-zero participating prob-
ability, i.e. P(T)* < At"™) > 0, and an appropriate d;(n) such that §;(n) = r; is satisfied. In
practice, knowing the clients data distribution is not possible. Therefore, ensuring FL convergence
to its optimum requires at every optimization round g;(n) = p; (Wang et al., 2020a).

We provide in Example 1 an illustration on these results based on quadratic loss functions to show
that considering fairly data distributions is sufficient for an optimization scheme satisfying Algo-
rithm 1 to converge to the optimum of the optimization problem (2), since §;(n) = r; is satisfied at
every optimization round, while §;(n) # p; may not be satisfied.
Example 1. Let us consider four clients with data distributions such that their loss can be expressed
as £;(0) = 3110 — 0:||° with 07 = 03 (Z1), 05 = 05 (Z,), and identical client importance, i.e.
pi = 1/4. Therefore, each data type has identical importance, i.e. v; = 1/2, and the optimum
satisfies 0* = % 5107 + 03]. We consider that clients with odd index participate at odd optimization
rounds while the ones wzth even index at even optimization rounds, i.e. q2"+1 = q§”+1 =" =
=1/2and ¢?" = ¢3" = ¢3" ' = ¢i" ! = 0 which gives 31(n) = 52(n) = 1/2 and G;(n) = 0
0r é]}(n) = 1/2 but not §;(n) = 1/4. With ny = 1, equation (5) can be rewritten as

1 ;
0712 = 0+ (07— 0) + (05— 07)]. ™

Clients update can be rewritten as 07" — 0" = ¢(0; — "), where ¢ = 1 — (1 — ;). Equation
(7) can thus be rewritten as

0n+2 _ 0n+1 + ¢0n _ ¢0* (8)

Solving equation (8) proves FL asymptotic convergence to the optimum 0*.



3.4 Relaxed Sufficient Conditions for Minimizing the Federated Problem (2)

Theorem 2 holds for any client’s update time 7; and optimization scheme satisfying Algorithm 1,
and provides finite convergence guarantees for the optimization problem (2). Corollary 1 shows that
for the asymptotic convergence of FL, data distribution types should be treated fairly in expectation,
i.e. 5;(n) = r;. This sufficient condition is not necessarily realistic, since the server cannot know the
clients data distributions and participation time, and thus needs to give to every client an aggregation
weight d;(n) such that §;(n) = p; without knowing T;.

In Example 1, we note that we have 2 [ n q2”+1] = p;. Therefore, every client is given proper

consideration every two optimization rounds Based on Example 1, in Theorem 3 we provide weaker
sufficient conditions than the ones of Corollary 1. To this end, we assume that clients are considered
with identical importance across W optimization rounds (Assumption 6) and that clients gradients
are bounded (Assumption 7).

Assumption 6 (Window). 3W > 1 such that Vs, &= S0V =1 g,(n) = g,.

With Assumption 6, we assume that over a cycle of W aggregations, the sum of the clients expected
aggregation weights ¢;(n) are constant. By definition of ¢;, Assumption 6 is always satisfied with
W = N. Also, by construction, we have W > 7. We note that Assumption 6 is made on a series of
windows of size W and not for any window of size W.

Assumption 7 (Bounded Gradients). 3B > 0 such that E[|VL;(x)||] < B.

Gradient clipping is a typical operation performed during the optimization of deep learning models
to prevent exploding gradients. A pre-determined gradient threshold B is introduced, and gradients
with norm exceeding this threshold are clipped to the norm B. Therefore, using Assumption 7 and
the subadditivity of the norm, the distance between two consecutive global models can be bounded
by

gfi(”)ﬂ _gri(n)

M
E (o™ —6"[] <uy > aitmE |

which, thanks to the convexity of the clients loss function and to the Cauchy Schwartz inequality,
gives

} < ngmq(n)KB,

E[£;(6""")] —E[L£;(0™)] <E[(VL;(6"), 6" —0™)] < ngmq(n)B*K. ©)

Finally, using equation (9) and Assumption 6, the performance history on the original optimized
problem can be bounded as follows

(s+1)W—-1 K—1 (s+H)W-1K-1
S S GE[Le™)] < Y Y ailw) [E[£07D)] + k(W - 1)B?].
n=sW k=0 n=sW k=0

(10)

Theorem 3. Under the conditions of Theorem 1, Assumptions 6 and 7, and considering that W is a
divider of N, we get the following convergence bound for the optimization problem (6):

N-1
NZ Z L(O™F)] = L(0)] < €:=¢€r+ex +ea+ep+ew,
where ey = O(ngm(W — 1) K). Furthermore, we obtain the following convergence guarantees for

the federated problem (2):

N —

[

1 1= 2
NI {||V£(9n» )| } <e+O(x Zsj
n=0 k=0

J o (r;—5;)2
where x> =37, (85" 5;’) .



Proof.

1 N-1 1 K—-1 B o
N2 [E[£(6™")] - L(6)]
n=0 k=0
1 N—-1 1 K—-1 o
<% > ai(n) [E[£:(6™%)] + 7K (W —1)B*] — L(6)
n=0 k=0
N-1
<R{L"}) + e+ % > L") - L(6) =e,
n=0

where we use equation (10) for the first inequality and Theorem 1 for the second inequality.

Finally, we can obtain convergence guarantees on the optimization problem (2) with Theorem 2 by
considering the minimization of the optimization problem L. Therefore, the bound of Theorem 2
can be simplified noting that L™ = L, 8" = 0, W,, = 0, x2 = x?, and by adding ey, which
completes the proof. O

Theorem 3 shows that the condition s; = r; is sufficient to minimize the optimization problem (2).
In practice, for privacy concerns, clients may not want to share their data distribution with the server,
and thus the relaxed sufficient condition becomes ¢; = p;. This condition is weaker than the one
obtained with Corollary 1, at the detriment of a looser convergence bound including an additional
asymptotic term ey linearly proportional to the window size W. Therefore, for a given learning
application, the maximum local work delay 7 and the window size W need to be considered when
selecting an FL optimization scheme satisfying Algorithm 1. Also, the server needs to properly
allocate clients aggregation weight d;(n) such that Assumption 6 is satisfied while keeping at a
minimum the window size W. We note that W depends of the considered FL optimization scheme
and clients hardware capabilities. Based on the results of Theorem 3, in the following section,
we introduce FEDFIX, a novel asynchronous FL setting based on a waiting policy over fixed time
windows At™.

Finally, the following example illustrates a practical application of the condition ¢; = p;.

Example 2. We consider two clients, i = 1,2, with £;(0) = %6 — 07 ||” where clients have
identical importance, i.e. p1 = ps = 1/2. Client 1 contributes at even optimization rounds and
Client 2 at odd ones, i.e. ¢3" = q1, q%"“ = @9, and qf”“ = 2" = 0. Hence, we have

o" n—00 q10T +q20;
a1+ q2

which converges to the optimum of problem (2) if and only if % [(j?” + (’jf"“] = p; (Theorem 3).

The conditions of Corollary 1 and Theorem 3 are equivalent when W = 1, where we retrieve
eww = 0. They are also equivalent when clients have the same data distributions, and we retrieve
5; = r; = 1 at every optimization round, which also implies that W = 1.

The convergence guarantee proposed in Theorem 3 depends on the window size W, and to the
maximum amount of optimizations needed for a client to update its work 7. We provide sufficient
conditions in Corollary 2 for the parameters W, and 7, such that an optimization scheme satisfying
Algorithm 1 converges to the optimum of the optimization problem (2).

Corollary 2. Let us assume there exists a > 0 and b > 0 such that W = O(N?), 7 = O(N?®), and
m o< N~¢. The convergence bound of Theorem 3 asymptotically converges to 0 if

W =0o(N),7 = o(N), and max(a,b) < c <1
Proof. The bound of Theorem 3 converges to O if the following quantities also do: n; W, ﬁ, ™,
7. We get the following conditions on a, b, and ¢: —¢c+a < 0,c—1<0,b—¢c <0, —c < 0,
which completes the proof. O

By construction and definition of ¢;, Assumption 6 is always satisfied with W = N. However,
Corollary 2 shows that when W = N, no learning rate 75; can be chosen such that the learning
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process converges to 8*. Also, Corollary 2 shows that Assumption 4 can be relaxed. Indeed, As-
sumption 4 implies that 7 = O(1) and Corollary 2 shows that 7 = o(V) is sufficient. We show in
Section 4 that all the considered optimization schemes satisfy 7 = O(1) and W = O(1), and also
depend of the clients hardware capabilities and amount of participating clients M.

4 Applications

In this section, we show that the formalism of Section 2 can be applied to a wide-range of optimiza-
tion schemes, demonstrating the validity of the conclusions of Corollary 1 and Theorem 3 (Section
3). When clients have identical data distributions, the sufficient conditions of Corollary 1 are always
satisfied (Section 3). In the heterogeneous case, these conditions can also (theoretically) be satisfied.
It suffices that every client has a non-null participation probability, i.e. P(7]* < A¢™) > 0 such that
there exists an appropriate d;(n) satisfying ¢;(n) = p;. Yet, in practice clients generally may not
even know their update time distribution P(T7*) making the computation of d;(n) intractable. In
what follows, we thus focus on Theorem 3 to obtain the close-form of €, which only requires from
the server to know the clients time 7;.

Theorem 3 provides a close-form for the convergence bound € of an optimization scheme in function
of the amount of server aggregation rounds N. We first introduce in Section 4.1 our considerations
for the clients hardware and data to instead express € in function of the training time 7". The quan-
tity € also depends on the optimization scheme time policy At™ through «, 5 and 7, and on the
clients data heterogeneity through R({L£"}) and WW. We provide their close-form for synchronous
FEDAVG (Section 4.2), asynchronous FEDAVG (Section 4.3), and FEDFIX (Section 4.4), a novel
asynchronous optimization scheme motivated by Section 3.4. Finally, in Section 4.5, we show that
the conclusions drawn for synchronous/asynchronous FEDAVG and FEDFIX can also be extended
to other distributed optimization schemes with delayed gradients. Of course, similar bounds can
seamlessly be derived for centralized learning and client sampling, which we differ to Appendix C
to focus on asynchronous FL in this section.

4.1 Heterogeneity of clients hardware and data distributions

Clients importance. We restrict our investigation to the case where clients have identical aggre-
gation weights during the learning process, i.e. d;(n) = d;. We also consider identical client
importance p; = 1/M. We can therefore define the averaged optimum residual 3 defined as the
average of the clients SGD evaluated on the global optimum, i.e.

M
1 N 2
D= 3 Ee, [IVL(O.€)IF] -
i=1

When clients have identical data distributions, > can be simplified as ¥ = [E¢ [||V£(0*, €)|I?|. and
Y = 0 when clients perform GD. We note that in the DL and FL literature X is often simplified
by assuming bounded variance of the stochastic gradients, i.e. ¥ < o2, where o2 is the bounded
variance of any client SG.

Clients computation time. In the rest of this work, we consider that clients guarantee reliable
computation and communication, although with heterogeneous hardware capabilities, i.e. I7; €
R, s.t. T; = ;. Without loss of generality, we assume that clients are ordered by increasing 7;, i.e.
7; < Ti4+1, where the unit of 7; is such that 7; is an integer. In what follows, we provide the close form
of d; for all the considered optimization schemes. This derivation still holds for applications where
clients have unreliable hardware capabilities that can be modeled as an exponential distribution, i.e.
T; ~ exp(r; ') which gives E [T}] = ;.

Clients data distributions. Unless stated otherwise, we will consider the FL setting where each
client has its unique data distribution. Therefore, clients have heterogeneous hardware and non-iid
data distributions. The obtained results can be simplified for the DL setting where a dataset is made
available to M processors. In this special case, clients have iid data distributions (Z; = Z;) , and
identical computation times (7; = 7, W = M,and 7 = M — 1).

Learning rates. For sake of clarity, we ignore the server learning rate when expressing the conver-
gence bounds ¢, i.e. n; = 1. Also, we consider a local learning rate 7); inversely proportional to the

11



Sync. FEDAVG Async. FEDAVG FEDFIX

d; = b == i = [/At] p;

N T/ SM T/ T/At

At =max T} =min T} =At

«a 1 0 1

8 0 max d; < T, /7o 0

T 0 Q(M)’ O(MTM/TO) 0, LTm/TOJ

W 1 Q(M), O(M (1ar)™) 1, M [ /70]™
R{L"}) =0 — 17 iy [£i(67) = £i(6)] | < 47 30 [£4(67) — L£:(67)]

Table 2: The different variables used to account for the importance of clients or data distributions at
every optimization round and during the full FL process. For 7 and W, we give two values which
correspond to their respective lower and upper bound.

serial amount of SGD included in the global model, i.e. 7; < 1/v/ K N, consistently with the rest of
the distributed optimization literature.

We propose Table 2 to summarize the close form or bounds of the different parameters used in
Section 3.

4.2 FEDAVG, Synchronous Federated Learning

As described for FEDAVG in Section 2.3, at every optimization round, the server sends to the clients
the current global model to perform K SGD steps on their own data before returning the resulting
model to the server. Once every client performs its local work, the new global model is created as the
weighted average of the clients contribution. The time required for an optimization step is therefore
the one of the slowest client (At" = max;(7}")), and every client is considered (P(T}* < At") =
1). Hence, « = 1, 8 = 0, and setting d; = p; is sufficient to satisfy the conditions of Corollary 1
(and thus the ones of Theorem 3) ensuring that FL converges to its optimum (Wang et al., 2020a).
The term € then reduces to

6% — 6"

1 2 K-1 1 1
= — O ——X% O| —=—=%]. 11
€FEDAVG \/ﬁ’ + ( N )-l- (\/WM) (11)
The second element of equation (11) accounts for the clients update disparity through their amount
of local work K between two server aggregations, and is proportional to the SG variance >. The
third element benefits of the distributed computation by being proportional to 1/M . Equation (11)

is consistent with literature on convex distributed optimization with FEDAVG including Wang et al.
(2020a); Khaled et al. (2020).

4.3 Asynchronous FEDAVG

With FEDAVG, every client waits for the slowest one to perform its local work, and cannot contribute
to the learning process during this waiting time. To remove this bottleneck, with asynchronous
FEDAVG, the server creates a new global model whenever it receives a client contribution before
sending it back to this client. For in depth discussion of Asynchronous FEDAVG, please refer to Xu
et al. (2021).

With asynchronous FEDAVG, clients always compute their local work but each on a different global
model, giving At" = min; T;", o = 0, and § = max; d;. In addition, while the slowest client
updates its local work, other clients performs a fix amount of updates (up to [7as/7;]). By scaling
this amount of updates by the amount of clients sending updates to the server, we have

T=0<TM<M_1)>.

70

We define lem({x;}) the function returning the least common multiplier of the set of integers {x;}.
Hence, after every v := lem({7;}) time, each client has performed v/7; optimization rounds and
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the cycle of clients update repeats itself. Thus, the smallest window W satisfies

M
W = Zl//ﬁ.
i=1

By construction, v > 7 and thus W = Q(M), with W = M when clients have homogeneous

. . M—1
hardware (T5; = 7). In the worse case, every 7; is a prime number, and we have v/7; < (1) s

which gives W = O(M (m37)™ ). In a cycle of W optimization rounds, every client participates
v/T; times to the creation of a new global model. Therefore, we have ¢;(n) = d; for the v/7;
participation of client ¢, and ¢;(n) = 0 otherwise. Hence, the sufficient conditions of Theorem 3 are
satisfied when

1 (k+1)W—1 1 y M 1
4% = ¢(n)=—r———di=pi=di = [ ] TiPi- (12)
4 n:zk:w > iz V/TiTi ; Ti

The client weight calculated in equation (12) is constant and only depends on the client importance
p; (set and thus known by the server), and on the clients computation time 7; (eventually estimated
by the server after some clients updates). The condition on d; can be further simplified by accounting
for the server learning rate n,. Coupling equation (5) with equation (12) gives nyd; o< 7;p;, which
is sufficient to guarantee the convergence of asynchronous FL to its optimum. Finally, by bounding
7;, we also have § = max; d; < 7)7 /70, bounded the hardware computation time heterogeneity.

The disparity between the optimized objectives R({L£"}) at different optimization rounds also slows
down the learning process. Indeed, at every optimization round, only a single client can participate
with probability 1. As such, we have £™ = d;£; which, thanks to the assumption p; = 1/M, yields

1 M
RUL™}) = 57 Z [£:(67) — Li(67)] -

Finally, we simplify the close-form of € (Theorem 3) for asynchronous FEDAVG to get

1 |2 K -1 ™ 1 n
e = 60 = 07|+ 0 (55 2) + 0 (2 m(eny + )

+0 ((20”)3 M2 RL™) + z1> +o(—siv-1). (13)

With equation (13), we can compare synchronous and asynchronous FEDAVG. The first and second
asymptotic terms are identical for the two learning algorithms, while the third asymptotic term
is scaled by the hardware characteristics 7as /7o instead of 1/M in FEDAVG, with the addition
of a non null residual R({£"}) for asynchronous FEDAVG. However, the fourth and fifth term
are unique to asynchronous FEDAVG, and explains why its convergence gets more challenging as
the amount of clients M increases. The impact of the hardware heterogeneity is also identified
through the importance of 7),/7¢ in the third term. With no surprise, for a given optimization
round, synchronous FEDAVG outperforms its asynchronous counterpart. However, in T" time, the
server performs

M
N=> T/x
i=1

aggregations with asynchronous FEDAVG against T'/7y; for synchronous FEDAVG. With asyn-
chronous FEDAVG, the server thus performs at least M times more aggregations than with syn-
chronous FEDAVG. As a result, the first two terms of equation (13), which are proportional to how
good the initial model is ||@y — 6*||, decrease faster with asynchronous FEDAVG at the detriment of
an higher convergence residual coming for the two last terms.

Comparison with asynchronous DL and FEDAVG literature. The convergence rates obtained in
the convex distributed optimization literature relies on additional assumptions to ours, with which we
retrieve their proposed convergence rate. To the best of our knowledge, only Zinkevich et al. (2009)

considers non-iid data distributions for the clients. When assuming W = O(7) and ; < 1/V/ TN,
we retrieve a convergence rate/7/N.
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We also match convergence rates for literature with iid client data distributions and K = 1. With
M = O(V/N), then we have O(1/v/N) (Agarwal and Duchi, 2011; Lian et al., 2015). When
m = O(1/TVKN), we retrieve 7/N + 1/+/N (Stich and Karimireddy, 2020; Stich et al., 2021).

44 FEDFIX

The analysis of asynchronous FEDAVG (Section 4.3) and its comparison with synchronous FEDAVG
(Section 4.2), shows that asynchronous FEDAVG is not scalable to large cohort of clients. We thus
propose FEDFIX combining the strong points of synchronous and asynchronous FEDAVG, where
the server creates the new global model at a fixed time ¢t with the contributions received since
t"=1 Therefore, the server does not wait for every client, contrarily to synchronous FEDAVG,
and considers more than one client per aggregation to have more stable aggregations, contrarily to
asynchronous FEDAVG. We provide in Figure 1 an illustration of FEDFIX with two clients.

With FEDFIX, an iteration time At™ = ¢! — ¢" is decided by the server and is independent from
the clients remaining update time 7. For sake of convenience, we further assume that the time
between optimization rounds is identical, i.e. At™ = At, but the following results can be derived
for other fixed time policies {At™}. Therefore, T;* and Tj” are independent, and so are w; and wj,
which gives « = 1 and 8 = 0.

Every client sends an update to the server in N/ = [T;/At] optimization steps. Contrarily to
asynchronous FEDAVG, we thus have 7 = [7,,/At] = O(1), which is independent from the
amount of participating clients M. In this case, the smallest window W satisfies W = lem({N/}),
and clients update W/N/ times their work to the server during the window W. Therefore, satisfying
the conditions of Theorem 3 requires
T
di = [—] 5 14
AP (14)
With equation (14), we can notice the relationship between FEDFIX and synchronous or asyn-
chronous FEDAVG. When At > 7, client i participates to every optimization round and is thus
considered synchronously, which gives d; = p;. When A; > 7,4, we retrieve synchronous FL
and d; = p; for every client. On the contrary, for asynchronous FL, when At < 7;, we obtain
[1:/At] = 7;/At and we retrieve n,d; = ng [1;/At] p; X T;p;.
Regarding the disparity between the local objectives R{L"}, we know that a client participates to
an optimization round with ¢;(n) = d;. We thus have £ =}, s, diLi, where Sy, is the set of the
participating clients at optimization step n. Considering that £L™(6™) > 3", s, diLi(87), the close
form of FEDFIX is bounded by the one of of asynchronous FEDAVG, i.e.
M
R({L"}) < 57 D [L:(67) — £4(6))].
i=1

Finally, we simplify the close-form of € (Theorem 3) for FEDFIX to get

S \/% E [||00 _ azﬂ Lo (KN_l [R({L™) + 2})
+O (L/;(TV + % [Z’;ﬂ {R({ﬁ”}) + [&] 1\142]> +O <\/[1{7N(W - 1))(.15)

The first two elements of equation (15) are identical for FEDFIX, synchronous and asynchronous
FEDAVG. However, thanks to lower values for the different variables (cf Table 2), the last two
asymptotic terms of the convergence bound are smaller for FEDFIX than for asynchronous FEDAVG,
equation (15). Similarly, these two terms are larger with FEDFIX than with synchronous FEDAVG.
The hardware heterogeneity and the amount of participating clients still impacts the convergence
bound through [75,/At] and W, but can be mitigated with proper selection of At. Therefore,
after NV optimization rounds, synchronous FEDAVG outperforms FEDFIX which outperforms in
turn asynchronous FEDAVG. However, in T time, the server performs N = T'/At aggregations
with FEDFIX against T'/7; for synchronous FEDAVG. With asynchronous FEDAVG, the server
thus performs at least 757 /At times more aggregations than with synchronous FEDAVG. Overall,
At can be considered as the level of asynchronicity given to Algorithm 1, with FEDAVG when
At = 75 and asynchronous FEDAVG when At > 71y;.
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In the DL case, clients have identical computation time (7, = 7,,), and we retrieve the convergence
bound of synchronous FEDAVG.

In addition, we can increase the waiting time for the clients update, since the learning process con-
verges and gets closer to the optimum of optimization problem (2), to reach a behavior similar to the
one of synchronous FL. Indeed, for Theorem 3 to hold, we only need the same optimization time
rounds At over a window W

4.5 Generalization

Coupled with the theoretical method developed in Wang et al. (2020a), the proof of Theorem 1 can
account for FL regularization methods (Li et al., 2020a, 2019; Acar et al., 2021), other SGD solvers
(Kingma and Ba, 2015; Ward et al., 2019; Li and Orabona, 2019; Yu et al., 2019a,b; Haddadpour
et al., 2019), and/or gradient compression/quantization (Reisizadeh et al., 2020; Basu et al., 2019;
Wang et al., 2018; Koloskova* et al., 2020).

We also note that Theorem 3 can be applied to other distributed optimization schemes using different
waiting time policy At". With FEDBUFF (Nguyen et al., 2021), the server waits for m client updates
to create the new global model. The server then communicates to these clients the new global model,
while the other clients keep performing local work on the global model they received.

In this section, the sufficient conditions of Theorem 3 regarding the expected aggregation weights
qi;(n) were applied to obtain proper aggregation weight d;. We keep identical clients local learning
rate 7; and amount of local work K. We could instead get the close-form of a client specific learning
rate 77;(¢) or amount of local work K (¢) using the gradient formalization of Wang et al. (2020a).

S Experiments

In this section, we experimentally demonstrate the theoretical claims of Section 3 and 4. We first
introduce the information needed to understand how the experiments are run in Section 5.1. Finally,
in Section 5.2, we provide our experiments and their interpretation.

5.1 Experimental Setting

We introduce in this subsection the dataset and the predictive models used for federated optimization,
the hardware scenarios proposed to simulate hardware heterogeneity, the clients aggregation weights
strategies, and how the different hyperparameters are set.

Optimization Problems. We consider learning a predictive model for optimization problem (2)
where clients have identical importance (p; = 1/M) based on the following datasets with their
associated learning scenarios.

* MNIST (Lecun et al., 1998) and MNIST-shard. MNIST is a dataset of 28x28 pixel
grayscale images of handwritten single digits between 0 and 9 composed of 60 000 training
and 10 000 testing samples split equally among the clients. We use a logistic regression
to predict the images class. Clients are randomly allocated digits to match their number of
samples. With MNIST-shard, we split instead data samples among clients using a Dirichlet
distribution of parameter 0.1, i.e. Dir(0.1). Therefore, with MNIST and MNIST-shard,
we evaluate our theory on a convex optimization problem.

* CIFAR-10 (Krizhevsky, 2009). The dataset consists of 10 classes of 32x32 images with
three RGB channels. There are 50000 training and 10000 testing examples. The model
architecture was taken from (McMahan et al., 2017) which consists of two convolutional
layers and a linear transformation layer to produce logits. Clients get the same amount
of samples but their percentage for each class vary and is determined with a Dirichlet
distribution of parameter 0.1, i.e. Dir(0.1) (Harry Hsu et al., 2019).

* Shakespeare (Caldas et al., 2018). We study a LSTM model for next character prediction
on the dataset of The Complete Works of William Shakespeare. The model architecture is
composed of a two-layer LSTM classifier containing 100 hidden units with an 8 dimen-
sional embedding layer taken from (Li et al., 2020a). The model takes as an input a se-
quence of 80 characters, embeds each of the characters into a learned 8-dimensional space
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Figure 2: We consider the loss evolution over time of federated problem (2) (FP) and surrogate
problem (6) (SP) for MNIST, MNIST-shard, CIFAR10, and Shakespeare; and the respective standard
deviation of the loss over clients in (b) and (d). We consider M = 10 for a time scenario F'80 with
K=1.

and outputs one character per training sample after 2 LSTM layers and a fully connected
one.

Hardware Scenarios. In the following experimental scenarios, clients computation time are ob-
tained according to the time policy F'X. We consider that clients have fixed update times that can be
up to X% slower than the fastest client. Clients computation time are uniformly distributed from the
upper to the lower bound. Clients have thus identical hardware with £'0. To simulate heterogeneous
clients hardware, we consider the time scenario F'80.

Clients Aggregation Weights. To compare asynchronous FL with and without the close-form of d;
provided in Section 4, we introduce IDENTICAL where d; = 1 for every client regardless of the time
scenario F'X, and TIME-BASED where d; satisfies equation (12) derived in Section 4.

Hyperparameters. Unless specified otherwise, we consider a global learning rate n, = 1. We
finetune the local learning rate 7; with values ranging from 10~° to 1. We consider a batch size
B = 64 for every dataset. We report mean and standard deviation on 5 random seeds. Every
comparison of IDENTICAL with TIME-BASED is done using the same local learning rate. We give an
advantage to IDENTICAL by finetuning the learning rate on this clients aggregation weight scenario.

5.2 Experimental Results

We experimentally show that asynchronous FL has better performances with TIME-BASED than
with IDENTICAL, and thus we demonstrate the correctness of Theorem 3 with Figure 2 in Section
5.2.1. We however show in Figure 3 that TIME-BASED is less stable than IDENTICAL to the change
in amount of local work K. Finally, we compare synchronous FEDAVG and asynchronous FEDAVG
in Figure 4.

5.2.1 Impact of the Clients Aggregation Weights on Asynchronous FEDAVG

Figure 2(a) experimentally shows the interest of coupling asynchronous FL. with TIME-BASED in-
stead of IDENTICAL for different applications (MNIST, MNIST-shard, CIFAR 10, and Shakespeare).
The learnt model with TIME-BASED has better minima on the federated problem (2). In addition,
Figure 2(b) shows that losses across clients are more homogeneous with TIME-BASED, resulting in
generally lower standard deviations.

Focusing on MNIST and MNIST-shard, we see the impact of data heterogeneity on the learnt model
performances. With IDENTICAL, asynchronous FL converges to a suboptimum point and the differ-
ences between the learnt model losses is twice as large for MNIST-shard than for MNIST, Figure
2(a). Figure 2(b) shows a similar result concerning the clients loss heterogeneity. Therefore, data
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Figure 3: Evolution of the loss of optimization problem (2) for CIFARI0 with A/ = 10, time
scenario F'80, ng = 1, 1; = 0.005, and varying amount of local work K ranging from 1 to 25.

heterogeneity degrades the suboptimum loss and cannot be ignored in asynchronous FL applica-
tions. Indeed, IDENTICAL and TIME-BASED curves are significantly different even for the simplest
application on MNIST, where the dataset is uniformly distributed across M = 10 clients. Hence, the
assumption of identical data distributions should generally not be made and the aggregation scheme
TIME-BASED should be used instead for any asynchronous FL (or DL).

With Figure 2(c), we can also appreciate the performances of the learning procedure on the surrogate
problem (6) based on the clients computation times 7;. Due to clients hardware heterogeneity, in
the scenario F'80, clients communicate with the server up to 5 more times than the slowest one.
TIME-BASED balances this amount of updates disparity across clients. As a result, IDENTICAL
has better performances than TIME-BASED on the surrogate problem (6) for MNIST, MNIST-shard,
and CIFARI10, while for Shakespeare, TIME-BASED shows better performances. We attribute this
fact to the depth of the predictive model enabling overfitting. As such, TIME-BASED outperforms
IDENTICAL on the federated problem (2), Figure 2(a), while preventing catastrophic forgetting and
thus leading to better losses on fast clients, Figure 2(c). Finally, Figure 2(d) shows that in addition,
the weighted standard deviation of the surrogate loss is always worse for IDENTICAL.

5.2.2 TImpact of the amount of local work on asynchronous FL convergence

With Figure 3, we consider the impact of the amount of local work on the convergence speed of
Asynchronous FL with CIFAR10, time scenario F'80, and M = 10 clients. For every simulation,
we consider 1; = 0.0005, the optimal local learning rate for ' = 1 with IDENTICAL. The server
aggregates the clients contribution over 7' = 25000 units of time, and we report in Figure 3 mean
and standard deviation over the 5% last server optimization rounds of the loss of the optimization
problem (2).

Figure 3 shows that increasing the amount of local work K first decreases the loss of optimization
problem (2) evaluated on the expected learnt model before increasing it. This point justifies asking
to clients to perform K > 1 SGDs but requires proper finetuning of the amount of local work K.
In particular, we notice that the variance strictly increases with K, which shows that the learning
procedure becomes less stable.

These behaviors of asynchronous FL are due to the disparity between clients contributions induced
by clients data heterogeneity, and can only be mitigated with a smaller global learning rate 14, local
learning rate 7;, and amount of local work K. Figure 3 shows that TIME-BASED is however more
sensitive to an increase in amount of local work K than IDENTICAL. TIME-BASED is associated
with higher variance after K = 8, and higher mean after X = 15, while IDENTICAL has very
similar mean and standard deviation from K = 8 to K = 16.

This difference in convergence behavior is due to the FL aggregation scheme (5), and to the differ-
ence between the clients aggregation weights d; for IDENTICAL and TIME-BASED. We have indeed
d; = 1 for every client with IDENTICAL, while with TIME-BASED fast clients are given lower ag-
gregation weights d; < 1, and slow clients higher weights d; > 1. Therefore, whenever a slow
client contributes, the new global model is more perturbed with TIME-BASED than with IDENTI-
CAL, which makes TIME-BASED convergence speed more sensitive to a small change in the choice
of K and other hyperparameters. This point can also be noticed in Figure 2(a) where IDENTICAL
first converges faster than TIME-BASED. Still, IDENTICAL converges to a suboptimum.
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Figure 4: Evolution of federated problem (2) loss for CIFAR10 and Shakespeare and time scenario
F0 and F'80, with M = 20 (a) and M = 50 (b). We consider n, = 1, K = 10, and At = 0.5 for
FEDFIX.

IDENTICAL outperforms TIME-BASED in Figure 3 because we consider 7; = 0.0005. We note that
considering our time budget 7', doing a grid search for 77; would always provide a learnt model with
better optimization loss for TIME-BASED.

5.2.3 Partial Asynchronicity with FEDFI1X

The theory derived in Section 3 can be applied to asynchronous FL but also synchronous FL, FE-
DAVG, and other asynchronous FL schemes like FEDF1X (Section 4). We show with Figure 4 that
allowing asynchronicity does not necessarily provide faster learning processes, e.g. comparison be-
tween synchronous and asynchronous FEDAVG above, but FEDFIX always outperforms FEDAVG
by balancing convergence speed and stability.

With a small enough learning rate 7;, asynchronous FEDAVG outperforms FEDFIX, which outper-
forms synchronous FL (see Figure 5 and 7 in Appendix D). Indeed, in this case, global models
change slowly and we can consider that the server receives contributions with no gradient delay.
As such, the learning procedure including the most serial contributions in the global model is the
fastest. However, in the other cases, the learning rate 7; does not mitigate the discrepancy between
clients update, which slows down convergence for asynchronous FL, and can even prevent it.

Identifying the fastest optimization scheme must be done by comparing optimization schemes based
on their best local learning rate n; (Figure 4). Synchronous FL always outperforms asynchronous
FL when clients have heterogeneous hardware (F'0). Even with heterogeneous hardware (£'80),
synchronous FL can outperform asynchronous FL (Shakespeare). Indeed, the server needs to reduce
its amount of aggregations to balance convergence speed and convergence stability. We see that
FEDFI1X-0.5 provides this trade-off and outperforms synchronous FL in every scenario.

We note that, even for synchronous FL, FL convergence is not monotonous. Indeed, for synchronous
FL to have a better convergence speed than asynchronous FL, the server needs to consider a high
local learning rate leading to convergence instability. Figure 4 shows this instability for Shakespeare
and ¢ > 4000, and Figure 5 to 7 in Appendix D provides the evolution of this instability as the
learning rate 7); increases.

We note that even when clients have homogeneous hardware (F'0), FEDFIX outperforms syn-
chronous FL. This can be explained by the close-form of FEDFIX weights d;, equation (14), which
accounts for server aggregations where no client participates. As a result, FEDF1x-0.5 behaves as
asynchronous FL but with an higher server learning rate 1, = 2 which provides faster convergence.

6 Discussion

This work introduces equation (5) which generalizes the expression of FEDAVG aggregation scheme
by introducing stochastic aggregation weights w;(n) to account for asynchronous client updates.
With a simple assumption for clients aggregation weights covariance, Assumption 5, we prove the
convergence of FL schemes satisfying equation (5). A similar aggregation scheme has been derived
in Fraboni et al. (2022) for unbiased client sampling, which this work generalizes. In addition, we
show that aggregation scheme (5) and Assumption 5 are satisfied by asynchronous FL, FEDF1X, and
FEDBUFF, Section 4. Finally, we assume fixed clients update time 7; such that we can consider
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d;(n) = d;, and give in Section 4 its close-form to ensure any FL optimization scheme converges to
the optimum of problem (2). Our work remains relevant for applications with d;(n) = d; but we let
the specific derivations to the reader.

This work shows theoretically and experimentally that asynchronous FEDAVG does not always out-
perform its synchronous counterpart. By creating the new global model with the contribution of
only one client, asynchronous FEDAVG convergence speed is very sensitive to the choice of learn-
ing rate and amount of local work K. These two hyperparameters need to be fine-tuned to properly
balance convergence speed and stability. Due to the hardware constraints inherent to the FL setting,
fine-tuning is a challenging step for FL and is not necessarily feasible. Therefore, we proposed
FEDFIX, an FL algorithm where the server, after a fixed amount of time, creates the new global
model with the contribution of all the participating clients. We prove the convergence of FEDFIX
with our theoretical framework, and experimentally demonstrate its improvement over FEDAVG in
all the considered scenarios.

A Proof of Theorem 1

We first provide in Section A.1 the basic inequalities used in our proofs, and in Section A.2 the basic
notations used to provide clearer proofs.

A.1 Basic Inequalities

We provide the following basic inequalities used in our proofs.

Let us consider f a L-Lipschitz smooth and convex function with optimum x*. For any vector x
and y, we have

IVf(@)|* < 2L[f(z) - f(2")], and |V f(2) - VI@)lI* < L* |z - y]”.

Let us consider g a convex function and d vectors {x;} each with importance pj such that
d . . .
> k—1 Pr = 1. With Jensen inequality, we have

d
o3 pi) < Yo
k=1 k=1

Let us consider the random variable X, we have

E||1X -E[X]*] <E[IX]*].

A.2 Additional Notation

In Table 1, we synthesize the different random variables associated to the clients aggregation
weights. In Table 3, we synthesize the remaining random variables.

We introduce the following notations to provide clear and compact proofs. Whenever considering

a function f(n, k), we define f(n) 1/KZkK Olf(n k), and f(N) = 1/NZ7]¥ 01 f(n). Wi
introduce the following quantities

(ZC n, :ZC — K [ Zqz vﬁ opb(n) k) o™ k .’1}>] , Q(n) —F |:H0n+1,0 _ 0n,(]||2:| :

2

R(n qu n)gi( 0’07(”) k) ) Z(h |: gi( 0p7 )HQ] )

Z(nk) = LO"F) — £7(0"),  A(n.k) =B [[|o"* —2]*] - E [[o"* — a|],
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Common Notation Summary (addition to Table 1).

Table 3:
Symbol Description
M Number of clients.
K Number of local SGD.
Tg> M Global/Local learning rate.
n Effective learning rate, 7 = ;7.
o Global model at server iteration n.
BZ."'H Local update of client < on model 8.
0", 0; Optimum of the federated problem (2)/client 4.
k), Ofn’k) Global/Local update after £ SGD on global model 8™.
o Covariance parameter.
B Defined in Theorem 1.
L), Li(+) Federated/local loss function.
gi(+) SG. We have Eg, [g;(-)] = VL;(-) with Assumption 3.
5 Random batch of samples from client ¢ of size B.
Lipschitz smoothness parameter, Assumption 1.
TZ- Computation time of client ¢.
t" Time at aggregation n.
" Remaining computation time of client ¢ at time ¢™.
At” Time elapsed between two server aggregations.
pi(n) Last index at which a client 7 received its global model.
p Highest sum of aggregation weights, i.e. p := max (1, ¢(n))

M
¢(n, k)= G(n)E

i=1

M

=D il

[vea@m.elf].

M
n) = Z Gi(n) E

(n),k _ gn,k H2:|

U

[|VL 6", &) } and Z(n, k) = L"(0™%) — L"(x).

Finally, we define ¢;(y) = VL;(y, &;) the SG of client i evaluated on model parameters y and batch

&;. We will thus write g; 67" instead of VL, 0(’"("), £.pi(n) .
i,k i,k i,k

A.3 Useful Lemmas

Lemma 1. Let us consider n vectors x;, ...,

where 7;(n) = Es, [w?
Proof.
M
Esn Z Wy (n):cl
=1

In addition, we have
M M

PIPBLAC

(n)]

x,, and assume Assumption 5. We have

M M 2
= Z ¥i(n) Z gi(n)x

—aqg?(n) > 0, and v;(n) < Bgi(n) with B == max{d;(n) — ag;(n)}.

2
lz]* + o

2 M M M

= ZEsn Wi )] Naill* + DD Es, [wi(n)w;(n

i=1 j=1
j;ﬁv‘

Nl +3°3 ag(m)

=1 j=1
J#i

@i, z5)

(16)

n)(x;, ;).

-2l

) ll:])* a7)

qu

Zqz

m’Lij

=1 5=1
J#
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Substituting equation (17) in equation (16) completes the first claim.

Considering that Eg, [w?(n)] = Var[w;(n)] + ¢?(n) > ¢?(n) and o < 1, we have v;(n) > 0
which completes the second claim.

Finally, the third claim follows directly from the close-form of the clients aggregation weights,
equation (4).

Remark. We can also provide the following lower bound for equation (17) using Jensen inequality

ZZ gi(n)zi, qj(n)z;) > qu Zqz

=1 j=1
J#i

2 2

max qZ >0

2
Therefore, Eg, ["2%1 w;(n)x; ] is linearly proportional to a.

Lemma 2. Under Assumption 5, the following equation holds for any vector x:

A(n) < =2pD(z,n) + 7*ag?(n)R(n) + 7°Be(n)S(n).

Proof. We consider S, the set of participating clients at optimization round n, i.e. S, = {n : T* <
At"™}. We have
]

]ESn |:||0n,k+1 _ 0*||2:| _ Esn |:H(9n,k+l _ On,k) + (Gnk - 9*)

_ Hen,k — 0" 2 + 2<ES71, [en,k—i-l _ an,k] ’an,k _ 0*>
+Eg, {Hon,k+1 _ en,kHQ} . (18)
By construction, we have @7F+1 — gnk — _j M w;(n)g; (07" "*). Taking the expecta-

tion over 5,,, we can simplify the second term of equation (18) with Eg, [0"*’”1 — 0"7’“]

—7 Zf\il qi(n)g; (67 'i(n)’k). Finally, using Lemma 1, we can bound the third term. Therefore,
we have

42 qu g:(07 ) gn — %)

Es, [[lom+ - o7F] = [l - o°

M
3" ai(n)gi (07

+n22%

Considering v;(n) < Bq;(n), taking the expected value over the iteration random batches £7:("):%,
and finally taking the expected value over the remaining random variables gives

A(n, k) < =2iD(x,n, k) + i7*aq*(n)R(n, k) + 72 Bq(n)S(n, k).

Taking the mean over K completes the proof.

gz sz n)k H +77204

Lemma 3. Under Assumption 3 and 1, and D = 677l2(K —1)2L% < 1/2, we have

6(0) < dan)r 32 Qn — 3) + 4D Hg () Z(m) + 6o ~ 1o ),
s=1

and S(n) < 12q(n)L*1 Z Q(n—s)+12Lg (n)Z(n) + 601(n).
s=1
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Proof. Let us decompose the difference 67 ik gnik ag

k—1 k—1 M
i (Mk _ gk — [0’”(”) —m Zgi(&pi(n)l ] [0” ul quz g:(67° ) )]

=0 =0 =1

Using Jensen inequality, we split the difference between the global models and the one between the
gradients to get

Therefore, by taking the expectations of equation (19) and summing over M gives

M 2
o(n.k) <23 E MG’W —o }

2

M
2
i)k _en,kH <9 Hepim) _ ol (7 Z‘f n)gi (67 H| . (19)

k—1 M 78
~ i(n),l ~ i(n),l
+ 277k Y DG E |||gi (67 =3 di(n)gi(6)
=0 i=1 i=1
M 2 k—1 M 2
<23 ) Meﬂl _ 9" } +202k 30 G(n) E { gi(afi(Tl)’l)H ] . (0)
1=1 =0 =1

where we see that S(n,[) appears in the second term of equation (20). We consider now bounding
S(n, k), and first note that a stochastic gradient can be bounded as follow

E |

When summing equation (21) over M, and considering the clients loss functions Lipschitz smooth-
ness, Assumption 1, we have

zqz E |

We also note the following intermediary results

gi(eé”"(”)’k>HQ] <3E U)vci(ef"(’””iﬁﬁ’;ﬁ”)) - vzi(enhsﬁi"))HQ]

+3E|[[VLi(6™*,&) - VL(0",&)|"] + 3E[|[vLi(07,€)]*] .21

g:(07° )HQ} < 3L2¢(n, k) + 6Lq~ L (n)Z(n, k) + 301 (n). (22)

K—-1 - K—-1k— K-2 K—-1
Zkle ZZ (K-12) ap < (K-1)%) . (23)
k=0 1=0 k=1 =0 k=0 k=0

We substitute equation (22) in equation (20) such that D appears, take the mean over K to introduce
¢(n) on the two sides of the equation, and use equation (23). We have

M 2
n) <23 @) E {HHM”) _o"
i=1

Finally, reminding that D < 1/2, which gives 1 — D > 1/2, and using Assumption 4 to bound
E {HO”’?(") — o ||2} with Jensen inequality completes the first claim for ¢(n), i.e.

] <r>E llo==t —om =] = 3 Q)
s=1 s=1

H(n)Z(n) + 617 (K — 1)%01(n).

} + Do (n) + QD%q_

E [Hef’*”) _g"

Substituting the close-form of ¢(n) in equation (22) completes the claim for S(n, k).

22



Lemma 4. Under Assumption 2 and 3, we have

—2D(z,n) < —2E(n) + 4Lq(n ZQ n —s) +4DZ(n) + 607 (K — 1)%q(n) Loy (n).

Proof. Follows directly from using Lemma 12 in Khaled et al. (2020) on D(x,n, k), taking the
mean over K, and using Lemma 3 to bound ¢(n) completes the proof.

O
Lemma 5. Under Assumption 1 and 3, and considering D < 1/2, we have
R(n) <12L°7 ) Q(n— s) + 24Lg" ' (n)Z(n) + 3Day (n) + 602 (n).
s=1
Proof.
2
R(n,k) < 3E (n) [g:(67°"F) = vLi(07F, €0
2
+3E ) [VLi(0™F, &) — VL (0™F)]
2
+3E qu )VL;(6™F) (24)

We respectively call the three terms of equation (24), a(n, k), b(n, k), and ¢(n, k). Using the local
loss functions Lipschitz smoothness, Assumption 1, and Jensen inequality, we can bound a(n, k) as

a(n, k) <3Zqz [

Using the unblasedness of the gradient estimator, Assumption 3, and the local loss function Lipschitz
smoothness, Assumption 1, we can bound b(n, k) as

g:(00F) v L0 gl } <3L%(n.k).  (25)

b(n, k) = qu?w) E[[[veiomt &) - vei )]
< 3§jq$<n)E NI
< aﬁcﬁw [E[[[Vei(em &) - VLo, +E[|[vLaom.e)|’]]

M
< 12Lmax(di(n)) [£"(0") — £"(8")] +6 3 @) E [||VL(0". &)|’] . @6)

=1

Using the Lipschitz smoothness of the local loss functions, Assumption 1 and Jensen inequality, we
can bound ¢(n, k) as

c(n, k) <3E {Hvin(eﬂxk) — VL6

1 < 6L [E"(an’k) - E”(é")] : (27)

Substituting equation (25), equation (26), and equation (27) in equation (24), considering that
max;(g;(n)) < 1, and summing over K gives

R(n) < 3L%¢(n) + 18Lg~ ' (n)Z(n) + 602(n)
Using Lemma 3 to replace ¢(n), and considering that D < 1/2 < 1 completes the proof.
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Lemma 6. Under Assumption I and 3, considering that v;(n) < Bq;(n), and considering
12p?% [a + B] 2 K?72L? < 1/2, we have

Q(N) < 24p2a+ Bl K?LZ(N) + 6p? [aD + 28] 1 K21 (N) + 120 aii? K*Yo(N).

Proof. Considering the proof of Lemma 2, using the fact that v;(n) < 8¢;(n), and Jensen inequality,
we have

2 2

Q(n) < ¢#(n)ai” E

K-1
ZQ’L Z gz(efl(n) r
k=0

< ¢*(n)an’ K*R(n) + q(n) B> K*S(n)
Using Lemma 5 to bound R(n) and Lemma 3 to bound S(n), we can thus bound QQ(n) with the

previous global model distances to the optimum @(s), where max(0,n —7) < s <n — 1, we thus
have

M
n) Bi’ Z Gi(n) E
i=1

K-1
> (67"
k=0

Q(n) < 12pfa+ B TL? Z Q(n—s)+122a+ B LZ(n)
s=1
+3p[aD + 28] o1(n) + 6paoa(n). (28)
We can thus define A(n) and B(n) such that the bound of of equation (28) can be rewritten as

in equation (29), with its associated implications when taking the mean over N, reordering, and
considering that 7A(n) < 1/2:

piPK?

- N-1 N-1
_ 1 1
Q(n) < A(n) ; Q(n—s)+ B(n) = Q(N) = & ; Q) <25 ; B(n).  (29)
Therefore, considering 12p? [« + 8] 72 K272L? < 1/2 completes the proof.
O

A.4 Proof of Theorem 1
Proof. Using Lemma 2, we have

“A(n) < —2D(@.m) + o () + pBIS(r)

Using Lemma 4 to bound D(xz,n), Lemma 5 to bound R(n), Lemma 3 to bound S(n), and
3pla+ 7L < 1, we get

1 T
5A(n) < —22(n) +8p7L Y Q(n—s) +4DZ(n) + 6pnf (K — 1)* Loy (n)
s=1
+ 12 [2a + B piiLZ(n) + 3p*7 [aD + 28] o1(n) + 6p*afjoz(n).
When considering the following intermediary result
= 2 2 2
> KA@M) =E|[0°Y —a*| 6"~ o|* = ~ [|6° - 2],
n=0
reordering the terms, and taking the mean over IV, we get

2E(N) < E [||a0 - x\ﬂ + 8pL72Q(N) + ADZ(N) + 6pn? (K — 1)Ly (N)

AKN
+12p 20+ B]GLZ(N) + 3p% [aD + 28] 7181 (N) + 6p%aiXe(N).
Using Lemma 6 to bound Q(XV), and with v = 16pL, we have

Z(N) <
2=2(N) < KN
+12p 20+ B] [l + vi? K*7*] LZ(N) + 3p* [aD + 28] [ij + vi’ K*7°] £1(N)
+ 6p%cx [77+ uﬁQKzTQ] 3o (N).

E [||(;v0 - m\ﬂ +ADZ(N) + 6p12(K — 1)L, (N)
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‘We note that when E(N ) < 0, the claim follows directly. Therefore, we consider E(N ) > 0 for the
rest of this proof. We first note that

Z(N) =E(N) + R({£"}), (30)
and consider 7; such that
2—4D —12p[2a+ B] [l + vi? K*7?| L > 1,

which gives

2(N) < E[[6° - || + 4DRU{L™}) + 6pn2 (K — 1)*L1(N)

NKN
+12p 20+ B] [ + v K*7%] LR({L"}) + 3p” [aD + 28] [} + vi’ K*7°] £1(N)
+ 6p%cx [ﬁ + Vﬁ2K2T2] 35(N).
The 5th term can be simplified with the third one. Indeed, we consider a local learning rate such that
3p?nL < 1,48p%72 K272 L? < 1, and we remind that o < 1. We thus have

= 1 0 2 2 2 n
(V) < sy B [[16° = ||*] + 0 (n?(K = 1) [RUL™) + S1(N)])
+0 (a [i+ 7 K] [R({L"}) + B2(N)])
+0 (B [+ 7" K* ] [R({L"}) + 21 (N)]) - 31
With ) ~ ) ~ )
we have
E2(N) < maxq;(n)X1(N) < maxg;(n) 4LR(L"™) + 2X]. (32)
Finally, substituting equation (30) and (32) in equation (31) completes the proof.
O
A.5 Simplifying the constraint on the learning rate
The constraints on the learning rate can be summarized as D = 6n?(K — 1)?L? < 1/2

(Lemma 3), 12p? [a + B]7?K?72L? < 1/2 (Lemma 6), 3p[a+ B]7L < 1 (Theorem 1),
2 — 4D — 12p 20+ fB] [ + v K*72] L > 1 (Theorem 1), 3p*jL < 1 (Theorem 1), and
48372 K?72L? < 1 (Theorem 1).

We note that « < 1, and 5 < 1. We thus propose the following sufficient conditions to satisfy the
conditions above

4807 (K —1)2L% < 1,144p*HL < 1, and 2304p° 7 K272 L% < 1,

which can further be simplified with

1 1
< ——— mi 1, —— ).
"= mKL ™ ( 302, (7 + 1))

B  Proof of Theorem 2

In this proof, we consider £ = ¢~ (n)L".

B.1 Useful Lemma

Lemma 7. The difference between the gradients of L£(0) and L(0) can be bounded as follow

[ve@) - vEn @) <andier©) — X smes o] 40 Y nlei0) - £,06)],

JEWn JEWn

where W, = {j : sj(n) > 0} and x? = ZjeWn (r; —5;(n))?/3;(n).
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Proof. 'We have Z}]:1 sj(n) = vail gi(n) = q(n). Hence, by definition of £(0) and L™(0), we
have

VL(8) — VL (0) = (Tj —5;(n))VL;(6)

Ts s
JSJ ) [5,m)ves( S VL),

JEW, J JGEW

H‘Mg

Applying Jensen and Cauchy-Schwartz inequality gives

2

- 2
VL(0) - VL (0)| <2 ./ n)VL;(0)| +2 VL;(0)
H H jEW /8]7 jgzm;n’fj J
- s 30 i
<2y PENOINAC]
_jGWn J j=1

2 Y | Y VL@l

JEWn JEWn,
Considering the Lipschitz smoothness of the clients loss function, and > jew, T < 1 completes
the proof.
]

B.2 Proof of Theorem 2

Proof. Using Jensen inequality and Lemma 7 gives
2

IVL(B)|? < 2 Hvz(e) B o Hq(ln)vcn(e)

q(n)
L [X . }w"(e) )
=4 T Em
AL (@) — S 5 (n)£5(6))
q(n) o
+4L Y (e L£;(07)]

JEWn

We take the maximum of x2 and g(n), the mean over the KN serial SGD steps, and use Theorem
1 to complete the proof .

O

C Applying Theorem 3

This section extends Section 4, where we apply Theorem 3 to centralized learning (Section C.1) and
synchronous FEDAVG with unbiased and biased client sampling (Section C.2 and C.3 respectively).

C.1 Centralized Learning

In this setting, one client, i.e. M = 1, learns a predictive model on its own data. In this case, we
always have ¢;(n) = 1, and the resulting optimization problem is always proportional to £ = £
which thus gives R({£"}) < R(L) = 0. There is no gradient delay (- = 1), while the clients
always participate at each optimization round (o« = 1 and 8 = 0), while the global learning rate
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is redundant with the local learning rate (1, = 1). The server performs KN SGD steps. All these
considered elements give

€=0 (W) +0 (mEe [IVL@.&)I7]). (33)

With equation (33), we retrieve standard convergence guarantees for centralized ML derived in
Bottou et al. (2016).

C.2 Unbiased client sampling (¢;(n) = p;)

We define by .S,, the set of sampled clients performing their local work at optimization step n.
Setting At" = max;es, 1;, with T; = oo for the clients that are not sampled, and thus not in .S,,,
gives P(T; < At") = P(i € Sy,). S, is independent from the clients hardware capabilities and is
decided by the server. This allows to pre-compute P(7; < At") and to allocate to each client the
aggregation weight d; such that ¢; = p;.

Standard unbiased client sampling schemes include sampling m clients uniformly without replace-
ment (Li et al., 2020b) or sampling m clients according to a Multinomial distribution (Li et al.,
2020a). Fraboni et al. (2022) shows that both Uniform and MD sampling satisfy Assumption 5. In
particular, in those setting, the term o < 1 is proportional to m, the amount of sampled clients,
while 1 > 8 > 0 is inversely proportional to m. We get

1 1
e=0(—— +O< la2>+(9 (K —1)°% + O BY) .
<nngN> NgmoS 7 (m (K =1)°%) + O (ngm )
The second term, proportional to «t/M, is reduced at the expense of the introduction of a fourth
term proportional to . In turn, it still provides faster optimization rounds with At" = max;cs, T;
and N = O (T/ E [max;es, T;]). FedAvg with client sampling generalizes FedAvg with full client
participation (o« = 1 and 8 = 0).

C.3 Biased client sampling (¢;(n) # p;)

The condition ¢;(n) = p; imposes the design of new client sampling based on the clients data
heterogeneity. Nevertheless, we show convergence of biased client samplings where m clients are
selected according to a deterministic criterion, e.g. when selecting the m clients with the highest loss
(Cho et al., 2020), or when selecting the m clients with the most available computation resources
(Nishio and Yonetani, 2019). In this case, P(i € S,;) = 0/1, with 1 if a client satisfies the criterion
and O otherwise. In this case, no weighting scheme can make an optimization round unbiased. We
also have P({i,j} € S,) = P(: € S,)P(j € S,), which gives &« = 1 with § = 0. Without
modification, this client sampling cannot satisfy the relaxed sufficient conditions of Theorem 3 and
thus converges to a suboptimum point. This drawback can be mitigated by allocating a part of
time in the window W to sample clients according to the criterion, and the rest of the window to
consider clients such that ¢; = p; is satisfied over W optimization rounds. By denoting €pgpave the
convergence guarantees (11), we have

€ = €pppave + O (Ugnz(W -1)K). (34

We note that equation (34) provides a looser bound than equation (11) in term of optimization rounds
N. Still, this bound is informative and shows that, with minor changes, biased clients sampling based
on a deterministic criterion can be proven to converge to the FL optimum.

D Additional Experiments
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