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ABSTRACT

Positron emission tomography (PET) is a quantitative imaging
modality widely used in oncology, neurology, and pharmacology.
The data acquired by a PET scanner correspond to projections of the
concentration activity, assumed to follow a Poisson distribution. The
reconstruction of images from tomographic projections corrupted by
Poisson noise is a challenging ill-posed large-scale inverse problem.
Several available solvers use the majorization-minimization (MM)
principle, though relying on various construction strategies with a
lack of unifying framework. This work fills the gap by introducing
the concept of Bregman majorization. This leads to a unified view
of MM-based methods for image reconstruction in the presence of
Poisson noise. From this general approach, we exhibit three algo-
rithmic solutions and compare their computational efficiency on a
problem of dynamic PET image reconstruction, either using GPU or
CPU processing.

Index Terms— PET image reconstruction, Poisson noise,
Majorization-Minimisation, Bregman divergence, GPU implemen-
tation.

1. INTRODUCTION

Positron emission tomography (PET) is a quantitative medical imag-
ing modality providing information on various physiological pro-
cesses (e.g. tumor uptake in oncology, concentration of receptors,
binding constant in pharmacology, etc). During PET acquisition,
a radiotracer emits positrons that annihilate in the body of the pa-
tient with an electron, resulting in the emission of two back-to-back
photons which can then be detected in coincidence by scintillation
crystals located around the patient. The measured count data in PET
is modeled as a Poisson random variable with mean related to the
projection of the activity concentration [1]. Reconstructing images
of this activity concentration (or related physiological parameters) is
therefore an ill-posed tomographic inverse problem.

Typical PET image reconstruction relies on the minimization of
a penalized cost function, gathering a data fidelity term account-
ing for the Poisson nature of the noise and a regularization term
incorporating priors on the sought image. Probably the most com-
monly used PET reconstruction algorithm in clinical routine is ML-
EM (Maximum-Likelihood Expectation Maximization) [2, 3] and
its accelerated version OSEM (Ordered Subset Expectation Max-
imization) [4], which simply minimize the Poisson fidelity under
positivity constraints. Penalized versions are also available [5, 6],
typically assuming a smoothness prior on the gradients of the im-
age. The extension of these approaches to the case of dynamic PET
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image reconstruction is explored in [7, 8, 9]. More recently, deep
learning techniques have also been investigated [10, 11, 12] with
the advantage of a fast running time when using GPU devices. Re-
markably, most aforementioned PET reconstruction algorithms rely
on the same optimization methodology, namely they are instances of
MM (Majorization-Minimization) approaches. The MM paradigm,
introduced in [13] relies upon the concept of majorant approxima-
tion. It has become very popular because of its ability to yield sim-
ple, efficient, and well sounded algorithms, and it is widely used
in several fields of data science such as machine learning, image
restoration, and signal processing [14].

In this paper, our contribution is twofold. First, we propose a
general framework relying on the concept of Bregman majorization,
that encompasses famous image MM-based algorithms for recon-
struction from Poisson data. This includes a large variety of existing
works [3, 5, 6, 10], and even yields new resolution schemes. Sec-
ond, we select three possible choices for Bregman majorants and
perform an extensive comparative analysis of the three associated
algorithms in terms of computational efficiency. Namely, we present
time execution comparisons on a problem of dynamic 2D PET image
reconstruction. We evaluate both CPU and GPU implementations.

The paper is organized as follows. We present the PET image
reconstruction inverse problem and the required mathematical back-
ground in Section 2. We then introduce in Section 3 our novel Breg-
man majorization framework and illustrate its applicability through
three examples of interest. Section 4 evaluates these three solu-
tions on the regularized reconstruction of a spatio-temporal PET se-
quence, and Section 5 provides some concluding remarks.

2. NOTATION AND BACKGROUND

2.1. Problem formulation

We consider the reconstruction of an image denoted by x ∈
[0,+∞)N , from an observed noisy sinogram y ∈ [0,+∞)M

given by
y = P(Hx+ b), (1)

where H ∈ [0,+∞)M×N is the projection matrix modelling the
geometry of the acquisition system [13], b ∈ (0,+∞)M is a strictly
positive background term (assumed to be known) [13] and P(·)
models a Poisson noise corruption process. An efficient strategy to
tackle the inverse problem of reconstructing x given y, b, and H ,
resorts to performing a maximum a posteriori estimate of x [13].
This amounts to solving the constrained optimization problem:

minimize
x∈[0,+∞)N

(f(x) = L(x) +R(x)). (2)



Herabove, L : RN → (−∞,+∞] is the neg-log-likelihood function
expressed as

(∀x ∈ RN ) L(x) = KL(Hx+ b, y), (3)

where KL is the Kullback-Leibler divergence defined, for every
(u, v) ∈ R2, as

KL(u, v) =


−v log u+ u if u > 0 and v > 0,

u if u ≥ 0 and v = 0,

+∞ otherwise.
(4)

Moreover, R : RN → (−∞,+∞] is a regularization term that
incorporates prior knowledge on the sought image.

2.2. Majorization-Minimization

Various methods have been proposed in the literature to solve Prob-
lem (2) [15, 4, 13, 10]. Most of them belongs to the class of
majorization-minimization (MM) approaches [13, 16]. MM ap-
proaches are efficient iterative methods that minimize an objec-
tive function f through the minimization of a sequence of more
tractable surrogates satisfying a majorizing condition. A function
qz is a tangent majorant of f at z ∈ RN if, for every x ∈ RN ,
f(x) ≤ qz(x) and f(z) = qz(z). At each iteration k ∈ N of an
MM algorithm, the new iterate xk+1 is the minimizer of the tangent
majorant of f at the current iterate xk. The MM algorithm then
reads

(∀k ∈ N) xk+1 ∈ argmin
x∈RN

qxk (x), (5)

with x0 an initial vector belonging to the domain of the majorant
function. Various algorithms can be built from this generic idea,
depending on the structure of the majorant function [17]. This work
brings a novel perspective on MM methods for PET reconstruction,
recasting them within a Bregmanian framework.

2.3. Bregman divergences

A key mathematical tool in our approach is the Bregman divergence.
Let us recall the definition of Bregman divergence, introduced in
1967 in [18]. Let ϕ : RN → (−∞,+∞] be a strictly convex func-
tion, which is twice differentiable on the interior int domϕ of its
domain. The Bregman divergence associated with ϕ is defined, for
every (x, z) ∈ (int domϕ)2, as

Dϕ(x, z) = ϕ(x)− ϕ(z)−∇ϕ(z)⊤(x− z). (6)

In a nutshell, the quantity Dϕ(x, z) compares the gap between the
function ϕ at x ∈ RN , and its linear approximation around x evalu-
ated at z ∈ RN .

3. PROPOSED APPROACH

In this section, we present the main methodological contribution of
this paper. We show in Section 3.1 how Bregman divergences offer a
both powerful and elegant framework for building tangent majorants
for the objective function f involved in Problem (2), and then we de-
rive in Section 3.2 a versatile MM algorithm to tackle this problem,
so generalizing existing MM solvers from [10, 6].

3.1. A unifying Bregman majorization framework

Let us start by introducing the key notion of Bregman tangent majo-
rant.

Definition 1. Let g be a differentiable function on an open set D ⊂
RN and let z ∈ D. Let Ez be a strictly convex function which is
differentiable on D. Let DEz be the Bregman divergence associated
with Ez . qz : D → R is the Bregman tangent majorant of g at z
associated with Ez if

(∀x ∈ D)

{
qz(x) = g(z) +∇g(z)⊤(x− z) +DEz (x, z)

g(x) ≤ qz(x).

(7)

This definition generalizes previous concepts used for instance
in [19]. The main novelty here is that we allow the so-called Breg-
man metric DEz to vary with the reference point z. Up to the best
of our knowledge, this has never been considered in the literature so
far.

Starting from the above definition, we aim at building Bregman
majorant functions of f in (2). Since f reads as the sum of two
terms, we rely on the following useful additivity property.

Lemma 1. Let g1 and g2 be differentiable functions on an open
set D ⊂ RN and let z ∈ D. Let E1,z (resp. E2,z) be strictly
convex functions, which are differentiable on D, from which a Breg-
man tangent majorant of g1 (resp. g2) can be built. Let (α1, α2) ∈
[0,+∞)2, let θ ∈ RN , and let η ∈ R. Then a Bregman tangent
majorant of x 7→ α1g1(x) +α2g2(x) + θ⊤x+ η is associated with
α1E1,z + α2E2,z .

It is therefore possible to construct a Bregman tangent majorant
of our cost function f , by simple affine combination of a Bregman
majorant of the data fidelity term L and the regularization term R. In
the following, we present three examples of strategies for building a
Bregman majorant function for L.

3.1.1. Bregman majorant functions for Poisson data fidelity

Let us first focus on the majorization of function L defined in (3).
For every m ∈ {1, . . . ,M}, and x ∈ RN , let us define ℓm(x) =
h⊤
mx + bm > 0, with hm ∈ RN the m-th row of H . Then, on the

positive orthant, Function (3) takes a finite value, namely it can be
rewritten as

(∀x ∈ [0,+∞)N ) L(x) =

M∑
m=1

−ym log(ℓm(x)) + ℓm(x). (8)

We first show how judicious choices for the underlying Bregman
divergence allows us to derive suitable majorants leading to simple
MM updates.

Example 1. Let us define, for every z ∈ (0,+∞)N , the function

(∀x ∈ (0,+∞)N ) E1,z(x) = −
N∑

n=1

a1,n(z) log xn, (9)

where (∀n ∈ {1, . . . , N}) a1,n(z) =
M∑

m=1

ym
hm,nzn
ℓm(z)

. (10)



Then, it can be shown that the Bregman tangent majorant of L for
z ∈ (0,+∞)N , which is associated to E1,z is

(∀x = (xn)1≤n≤N ∈ (0,+∞)N )

q1,z(x) =

M∑
m=1

bm
ℓm(z)

(ℓm(z)− ym log(ℓm(z)))

+

N∑
n=1

M∑
m=1

hm,nzn
ℓm(z)

(
ℓm(z)xn

zn
− ym log

(
ℓm(z)xn

zn

))
. (11)

We recover the separable majorant for L which was used to derive
the recent FBSEM (Forward-Backward Splitting Expectation Max-
imisation) algorithm [10]. This algorithm is a regularised version of
the MLEM algorithm from [15]. FBSEM is an MM algorithm whose
majorant is built following a strategy initially introduced in [3].

Example 2. For every z ∈ (0,+∞)N , let

(∀x ∈ [0,+∞)N ) E2,z(x) =
N∑

n=1

a2,n(z)
x2
n

2
, (12)

where, for every n ∈ {1, . . . , N},

a2,n(z) =

M∑
m=1

ym
hm,n(zn + ζmbm)

ℓm(z)
c(zn, ρ). (13)

Hereabove, hm,n stands for the (m,n)-th entry of matrix H , and we
set

c(zn, ρ) =


1

ρ2
if zn = 0

− 2

zn

(
1

zn
log

( ρ

zn + ρ

)
+

1

zn + ρ

)
otherwise,

(14)

with

{
ρ = min1≤m≤M ζmbm,

(∀m = {1, . . . ,M}) ζm = 1/
∑N

n=1 hm,n.
(15)

The quantity
∑N

n=1 hm,n is assumed to be positive without loss of
generality on H .

After some calculations, it can be proved that the Bregman tan-
gent majorant of L at z associated to E2,z is

(∀x ∈ (0,+∞)N )

q2,z(x) = L(z) +∇L(z)⊤(x− z) +

N∑
n=1

θn(z)

2
(xn − zn)

2,

(16)

where, for every n ∈ {1, . . . , N},

(∀z ∈ (0,+∞)N ) θn(z) =

M∑
m=1

c(zn, ρ)
hm,n(zn + ζmbm)

ℓm(z)
,

(17)
This quadratic separable majorant function can be obtained in a more
classical manner by a clever combination of the majorant construc-
tion from [6] and Jensen’s inequality.

The two previous examples have illustrated that majorants used
in popular MM algorithms for image reconstruction under Poisson
noise are instances of the proposed Bregman framework. It is also
possible to construct new majorants, as shown hereafter.

Example 3. Let us construct a variant of (11). For every z ∈
(0,+∞)N , set

(∀x ∈ (0,+∞)N ) E3,z(x) = −
N∑

n=1

a3,n(z) log(xn + ρ) (18)

where, for every n ∈ {1, . . . , N},

a3,n(z) =

M∑
m=1

ym
hm,n(zn + ζmbm)

ℓm(z)
, (19)

The same constants ρ and (ζm)1≤m≤M as in the previous examples
are used.

The Bregman tangent majorant of L at z then reads

(∀x ∈ (0,+∞)N )

q3,z(x) = L(z) +∇L(z)⊤(x− z) +DE3,z (x, z). (20)

Remark 1. The majorant in the first example involves log terms
and is thus valid only on (0,+∞)N . In turn, in the second and third
examples, it is possible to extend the majorizing property to every
(x, z) ∈ [0,+∞)N by continuity arguments.

3.1.2. Bregman majorant of the complete loss function

We derived in the previous section three constructions of Bregman
majorant functions for L. In general, we can now assume that L
possesses a Bregman tangent majorant associated with some Ez and
a domain of validity D. There remains to majorize the regularization
term R. Let us assume that R is differentiable on RN with a β-
Lipschitzian gradient, that is there exists β > 0 such that for every
(x, z) ∈ (RN )2, ∥∇R(x)−∇R(z)∥ ≤ β∥x− z∥. It follows from
the descent lemma [20] that a Bregman tangent majorant of R at
every z ∈ RN is associated to β∥ · ∥2/2. Therefore, by Lemma 1,
a Bregman tangent majorant of the loss function f in Problem (2) at
z ∈ D is associated with Ẽz = Ez + β∥ · ∥2/2. In the following,
we will denote q̃z such a majorant.

3.2. One MM algorithm to rule them all

We are now ready to state our general Bregman MM algorithm to
solve Problem (2). First, let us point out that all the three construc-
tions presented in Sec. 3.1 can be recast in a single framework. More
precisely, for every (x, z) ∈ D2, f(x) ≤ q̃z(x). The k-th iteration
of the MM algorithm reads as the minimizer of q̃z on D. In all our
constructions, q̃z is a strictly convex separable function. Moreover,
the components (x̂n(z))1≤n≤N of its unique minimizer x̂(z) satisfy,
for each n ∈ {1, . . . , N},

− a
(0)
n (z)

x̂n(z) + ρ̃
+ (a(1)

n (z) + β)x̂n(z) + dn(z) = 0, (21)

with dn(z) =
a
(0)
n (z)

zn + ρ̃
− (a(1)

n (z) + β)zn + [∇R(z)]n

+

M∑
m=1

hm,n

(
1− ym

h⊤
mz + bm

)
, (22)

where (a(0)
n (z), a

(1)
n (z), ρ̃) are some non-negative values depending

on the selected majorant. The N problems in (21) have closed form



solutions, each of them being the root of second-order polynomial
equation. The final algorithm then reads

xk+1 =
(
max{x̂n(x

k), 0}
)
1≤n≤N

, (23)

initialized with x0 ∈ (0,+∞)N . It is remarkable that, when R = 0
and the majorant from Example 1 is chosen, we retrieve the famous
MLEM algorithm. If R ̸= 0 and the same majorant is employed, the
FBSEM method can be retrieved for a specific choice of its step-size.

4. EXPERIMENTAL RESULTS

In this section, we compare the three MM strategies derived previ-
ously, in a 2D+t simulation scenario of dynamic PET brain imaging.

4.1. Settings and dataset

We simulated a 2D 1 hour 18F-FDG dynamical PET exam on a Bi-
ograph 6 TruePoint TrueV PET system (Siemens Healthcare, Erlan-
gen, Germany), using a slice of the Zubal phantom [21]. We fol-
lowed the set up of [22] to generate dynamic realistic projection data
with an analytical simulator [23]. Generic projector and backpro-
jector based on Joseph’s method [24] were defined as operators for
PyTorch and Tensorflow, using C++ and Cuda for the GPU version /
C++ with OpenMP parallelization for multithreaded CPU. Each pro-
jection was only defined by the position of the two crystals involved,
without assumption on a specific geometry (e.g. cylindrical system).
For reconstruction, we used a mixed regularization term consisting
of smoothed spatial TV and temporal Tikhonov regularisation, as in
[25], which has indeed a Lipschitzian gradient. The dynamic exam
was subdivided into 24 time frames reconstructed simultaneously
with a voxel size of 2.2 mm × 2.2 mm, and took into account all
corrections as in [22].

The GPU solution was run on a 32 GB NVIDIA Tesla V100-
SXM2, with block size optimized to reduce computation time. A
comparison was made with a multi-threaded CPU implementation
using OpenMP and 52 threads run on 52 distinct 2.10GHz Intel(R)
Xeon(R) Gold 6230R cores.

4.2. Numerical results

Algorithms 1-3 correspond to MM algorithm (23) based on the ma-
jorants (11), (16), (20), respectively. We show, in Fig. 1, the con-
vergence speed of the algorithms in terms of the relative distance
between the outer iterate (corresponding to xk) and the limit point
x∞, approximated for each method by performing 10,000 iterations.
One can observe that Algorithm 1 outperforms the two others in
terms of convergence speed. Fig. 2 provides a visual translation of
these differences in convergence speeds. These results can be ex-
plained by considering the number of projections or backprojections
needed to minimize each surrogate. It turns out that the compu-
tational cost of each iteration is dominated by the time needed to
perform a backprojection (0.98s for a GPU-based implementation
versus only 0.0016s for a projection). One iteration of Algorithm 1
requires only one backprojection against two for Algorithm 3 and
three for Algorithm 2. This is also reflected by Tab. 1 where Algo-
rithm 2 appears to be more than 2.5 times slower than Algorithm 1.
This table also shows that our GPU implementation leads to a reduc-
tion of computation time by a factor larger than 10 compared to the
use of the multithreaded CPU with 52 cores. We have focused on the
PyTorch implementation, but similar results have also been obtained
with Tensorflow.

Fig. 1. Relative distance between the outer iterate and the limit point
as a function of computational time, for GPU-based implementa-
tions.

Fig. 2. Reference image (first column) ; Reconstructed images after
100 s (first row) and 1000 s (second row) of GPU computation time,
for Algorithm 1 (second column), Algorithm 2 (third column) and
Algorithm 3 (fourth column).

5. CONCLUSION

In this paper, we have proposed a new Bregman majorization frame-
work which unifies MM approaches used for PET image reconstruc-
tion. In our PET simulations, three MM algorithms derived from
specific choices of Bregman majorants have been compared in terms
of convergence speed. We have also evaluated the gain in computa-
tion time resulting from a GPU implementation instead of a multi-
threaded CPU implementation. It is worthy to note that the proposed
framework is quite general and also applies to many other inverse
problems involving Poisson data. This work also opens perspectives
in terms of optimization of the algorithm parameters through differ-
ential programming techniques on GPUs [10].



Implementation Algorithm 1 Algorithm 2 Algorithm 3
PyTorch CPU 1351 3536 2246
PyTorch GPU 87 255 162

Table 1. Comparisons of execution time for CPU-based and GPU-
based implementations, for 100 iterations, in seconds.
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