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Positron emission tomography (PET) is a quantitative imaging modality widely used in oncology, neurology, and pharmacology. The data acquired by a PET scanner correspond to projections of the concentration activity, assumed to follow a Poisson distribution. The reconstruction of images from tomographic projections corrupted by Poisson noise is a challenging ill-posed large-scale inverse problem. Several available solvers use the majorization-minimization (MM) principle, though relying on various construction strategies with a lack of unifying framework. This work fills the gap by introducing the concept of Bregman majorization. This leads to a unified view of MM-based methods for image reconstruction in the presence of Poisson noise. From this general approach, we exhibit three algorithmic solutions and compare their computational efficiency on a problem of dynamic PET image reconstruction, either using GPU or CPU processing.

INTRODUCTION

Positron emission tomography (PET) is a quantitative medical imaging modality providing information on various physiological processes (e.g. tumor uptake in oncology, concentration of receptors, binding constant in pharmacology, etc). During PET acquisition, a radiotracer emits positrons that annihilate in the body of the patient with an electron, resulting in the emission of two back-to-back photons which can then be detected in coincidence by scintillation crystals located around the patient. The measured count data in PET is modeled as a Poisson random variable with mean related to the projection of the activity concentration [START_REF] Vardi | A statistical model for positron emission tomography[END_REF]. Reconstructing images of this activity concentration (or related physiological parameters) is therefore an ill-posed tomographic inverse problem.

Typical PET image reconstruction relies on the minimization of a penalized cost function, gathering a data fidelity term accounting for the Poisson nature of the noise and a regularization term incorporating priors on the sought image. Probably the most commonly used PET reconstruction algorithm in clinical routine is ML-EM (Maximum-Likelihood Expectation Maximization) [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] De Pierro | On the relation between the ISRA and the EM algorithm for positron emission tomography[END_REF] and its accelerated version OSEM (Ordered Subset Expectation Maximization) [START_REF] Hudson | Accelerated image reconstruction using ordered subsets of projection data[END_REF], which simply minimize the Poisson fidelity under positivity constraints. Penalized versions are also available [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF][START_REF] Erdogan | Monotonic algorithms for transmission tomography[END_REF], typically assuming a smoothness prior on the gradients of the image. The extension of these approaches to the case of dynamic PET image reconstruction is explored in [START_REF] Wang | Acceleration of the direct reconstruction of linear parametric images using nested algorithms[END_REF][START_REF] Matthews | Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation maximisation[END_REF][START_REF] Pustelnik | Parallel algorithm and hybrid regularization for dynamic PET reconstruction[END_REF]. More recently, deep learning techniques have also been investigated [START_REF] Mehranian | Model-based deep learning PET image reconstruction using Forward-Backward Splitting Expectation-Maximization[END_REF][START_REF] Gong | Iterative PET image reconstruction using Convolutional Neural Network representation[END_REF][START_REF] Gong | PET image reconstruction using Deep Image Prior[END_REF] with the advantage of a fast running time when using GPU devices. Remarkably, most aforementioned PET reconstruction algorithms rely on the same optimization methodology, namely they are instances of MM (Majorization-Minimization) approaches. The MM paradigm, introduced in [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] relies upon the concept of majorant approximation. It has become very popular because of its ability to yield simple, efficient, and well sounded algorithms, and it is widely used in several fields of data science such as machine learning, image restoration, and signal processing [START_REF] Sun | Majorizationminimization algorithms in signal processing, communications, and machine learning[END_REF].

In this paper, our contribution is twofold. First, we propose a general framework relying on the concept of Bregman majorization, that encompasses famous image MM-based algorithms for reconstruction from Poisson data. This includes a large variety of existing works [START_REF] De Pierro | On the relation between the ISRA and the EM algorithm for positron emission tomography[END_REF][START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF][START_REF] Erdogan | Monotonic algorithms for transmission tomography[END_REF][START_REF] Mehranian | Model-based deep learning PET image reconstruction using Forward-Backward Splitting Expectation-Maximization[END_REF], and even yields new resolution schemes. Second, we select three possible choices for Bregman majorants and perform an extensive comparative analysis of the three associated algorithms in terms of computational efficiency. Namely, we present time execution comparisons on a problem of dynamic 2D PET image reconstruction. We evaluate both CPU and GPU implementations.

The paper is organized as follows. We present the PET image reconstruction inverse problem and the required mathematical background in Section 2. We then introduce in Section 3 our novel Bregman majorization framework and illustrate its applicability through three examples of interest. Section 4 evaluates these three solutions on the regularized reconstruction of a spatio-temporal PET sequence, and Section 5 provides some concluding remarks.

NOTATION AND BACKGROUND

Problem formulation

We consider the reconstruction of an image denoted by x ∈ [0, +∞) N , from an observed noisy sinogram y ∈ [0, +∞) M given by y = P(Hx + b),

where H ∈ [0, +∞) M ×N is the projection matrix modelling the geometry of the acquisition system [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF], b ∈ (0, +∞) M is a strictly positive background term (assumed to be known) [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] and P(•) models a Poisson noise corruption process. An efficient strategy to tackle the inverse problem of reconstructing x given y, b, and H, resorts to performing a maximum a posteriori estimate of x [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF]. This amounts to solving the constrained optimization problem:

minimize x∈[0,+∞) N (f (x) = L(x) + R(x)). (2) 
Herabove, L : R N → (-∞, +∞] is the neg-log-likelihood function expressed as

(∀x ∈ R N ) L(x) = KL(Hx + b, y), (3) 
where KL is the Kullback-Leibler divergence defined, for every

(u, v) ∈ R 2 , as KL(u, v) =      -v log u + u if u > 0 and v > 0, u if u ≥ 0 and v = 0, +∞ otherwise. (4) 
Moreover, R : R N → (-∞, +∞] is a regularization term that incorporates prior knowledge on the sought image.

Majorization-Minimization

Various methods have been proposed in the literature to solve Problem (2) [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF][START_REF] Hudson | Accelerated image reconstruction using ordered subsets of projection data[END_REF][START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF][START_REF] Mehranian | Model-based deep learning PET image reconstruction using Forward-Backward Splitting Expectation-Maximization[END_REF]. Most of them belongs to the class of majorization-minimization (MM) approaches [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF][START_REF] Hunter | A tutorial on MM algorithms[END_REF]. MM approaches are efficient iterative methods that minimize an objective function f through the minimization of a sequence of more tractable surrogates satisfying a majorizing condition. A function

qz is a tangent majorant of f at z ∈ R N if, for every x ∈ R N , f (x) ≤ qz(x) and f (z) = qz(z).
At each iteration k ∈ N of an MM algorithm, the new iterate x k+1 is the minimizer of the tangent majorant of f at the current iterate x k . The MM algorithm then reads

(∀k ∈ N) x k+1 ∈ argmin x∈R N q x k (x), (5) 
with x 0 an initial vector belonging to the domain of the majorant function. Various algorithms can be built from this generic idea, depending on the structure of the majorant function [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF]. This work brings a novel perspective on MM methods for PET reconstruction, recasting them within a Bregmanian framework.

Bregman divergences

A key mathematical tool in our approach is the Bregman divergence.

Let us recall the definition of Bregman divergence, introduced in 1967 in [START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF]. Let ϕ : R N → (-∞, +∞] be a strictly convex function, which is twice differentiable on the interior int dom ϕ of its domain. The Bregman divergence associated with ϕ is defined, for every (x, z) ∈ (int dom ϕ) 2 , as

D ϕ (x, z) = ϕ(x) -ϕ(z) -∇ϕ(z) ⊤ (x -z). (6) 
In a nutshell, the quantity D ϕ (x, z) compares the gap between the function ϕ at x ∈ R N , and its linear approximation around x evaluated at z ∈ R N .

PROPOSED APPROACH

In this section, we present the main methodological contribution of this paper. We show in Section 3.1 how Bregman divergences offer a both powerful and elegant framework for building tangent majorants for the objective function f involved in Problem (2), and then we derive in Section 3.2 a versatile MM algorithm to tackle this problem, so generalizing existing MM solvers from [START_REF] Mehranian | Model-based deep learning PET image reconstruction using Forward-Backward Splitting Expectation-Maximization[END_REF][START_REF] Erdogan | Monotonic algorithms for transmission tomography[END_REF].

A unifying Bregman majorization framework

Let us start by introducing the key notion of Bregman tangent majorant. 

(∀x ∈ D) qz(x) = g(z) + ∇g(z) ⊤ (x -z) + DE z (x, z) g(x) ≤ qz(x). (7) 
This definition generalizes previous concepts used for instance in [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]. The main novelty here is that we allow the so-called Bregman metric DE z to vary with the reference point z. Up to the best of our knowledge, this has never been considered in the literature so far.

Starting from the above definition, we aim at building Bregman majorant functions of f in (2). Since f reads as the sum of two terms, we rely on the following useful additivity property.

Lemma 1. Let g1 and g2 be differentiable functions on an open set D ⊂ R N and let z ∈ D. Let E1,z (resp. E2,z) be strictly convex functions, which are differentiable on D, from which a Bregman tangent majorant of g1 (resp. g2) can be built. Let (α1, α2) ∈ [0, +∞) 2 , let θ ∈ R N , and let η ∈ R. Then a Bregman tangent majorant of x → α1g1(x) + α2g2(x) + θ ⊤ x + η is associated with α1E1,z + α2E2,z.

It is therefore possible to construct a Bregman tangent majorant of our cost function f , by simple affine combination of a Bregman majorant of the data fidelity term L and the regularization term R. In the following, we present three examples of strategies for building a Bregman majorant function for L.

Bregman majorant functions for Poisson data fidelity

Let us first focus on the majorization of function L defined in [START_REF] De Pierro | On the relation between the ISRA and the EM algorithm for positron emission tomography[END_REF]. For every m ∈ {1, . . . , M }, and x ∈ R N , let us define ℓm(x) = h ⊤ m x + bm > 0, with hm ∈ R N the m-th row of H. Then, on the positive orthant, Function (3) takes a finite value, namely it can be rewritten as

(∀x ∈ [0, +∞) N ) L(x) = M m=1 -ym log(ℓm(x)) + ℓm(x). (8)
We first show how judicious choices for the underlying Bregman divergence allows us to derive suitable majorants leading to simple MM updates. 

Then, it can be shown that the Bregman tangent majorant of L for z ∈ (0, +∞) N , which is associated to E1,z is 

(∀x = (xn) 1≤n≤N ∈ (0, +∞) N ) q1,z(x) =
We recover the separable majorant for L which was used to derive the recent FBSEM (Forward-Backward Splitting Expectation Maximisation) algorithm [START_REF] Mehranian | Model-based deep learning PET image reconstruction using Forward-Backward Splitting Expectation-Maximization[END_REF]. This algorithm is a regularised version of the MLEM algorithm from [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF]. FBSEM is an MM algorithm whose majorant is built following a strategy initially introduced in [START_REF] De Pierro | On the relation between the ISRA and the EM algorithm for positron emission tomography[END_REF].

Example 2. For every z ∈ (0, +∞) N , let

(∀x ∈ [0, +∞) N ) E2,z(x) = N n=1 a2,n(z) x 2 n 2 , (12) 
where, for every n ∈ {1, . . . , N },

a2,n(z) = M m=1 ym hm,n(zn + ζmbm) ℓm(z) c(zn, ρ). (13) 
Hereabove, hm,n stands for the (m, n)-th entry of matrix H, and we set 

c(zn, ρ) =      1 ρ 2 if zn = 0 - 2 zn 
1 zn log ρ zn + ρ + 1 zn + ρ otherwise, (14) 
The quantity N n=1 hm,n is assumed to be positive without loss of generality on H.

After some calculations, it can be proved that the Bregman tangent majorant of L at z associated to E2,z is

(∀x ∈ (0, +∞) N ) q2,z(x) = L(z) + ∇L(z) ⊤ (x -z) + N n=1 θn(z) 2 (xn -zn) 2 , (16) 
where, for every n ∈ {1, . . . , N },

(∀z ∈ (0, +∞) N ) θn(z) = M m=1 c(zn, ρ) hm,n(zn + ζmbm) ℓm(z) , (17) 
This quadratic separable majorant function can be obtained in a more classical manner by a clever combination of the majorant construction from [START_REF] Erdogan | Monotonic algorithms for transmission tomography[END_REF] and Jensen's inequality.

The two previous examples have illustrated that majorants used in popular MM algorithms for image reconstruction under Poisson noise are instances of the proposed Bregman framework. It is also possible to construct new majorants, as shown hereafter.

Example 3. Let us construct a variant of [START_REF] Gong | Iterative PET image reconstruction using Convolutional Neural Network representation[END_REF]. For every z ∈ (0, +∞) N , set

(∀x ∈ (0, +∞) N ) E3,z(x) = - N n=1 a3,n(z) log(xn + ρ) (18)
where, for every n ∈ {1, . . . , N },

a3,n(z) = M m=1 ym hm,n(zn + ζmbm) ℓm(z) , (19) 
The same constants ρ and (ζm) 1≤m≤M as in the previous examples are used. The Bregman tangent majorant of L at z then reads

(∀x ∈ (0, +∞) N ) q3,z(x) = L(z) + ∇L(z) ⊤ (x -z) + DE 3,z (x, z). ( 20 
)
Remark 1. The majorant in the first example involves log terms and is thus valid only on (0, +∞) N . In turn, in the second and third examples, it is possible to extend the majorizing property to every (x, z) ∈ [0, +∞) N by continuity arguments.

Bregman majorant of the complete loss function

We derived in the previous section three constructions of Bregman majorant functions for L. In general, we can now assume that L possesses a Bregman tangent majorant associated with some Ez and a domain of validity D. There remains to majorize the regularization term R. Let us assume that R is differentiable on R N with a β-Lipschitzian gradient, that is there exists β > 0 such that for every (x, z) ∈ (R N ) 2 , ∥∇R(x) -∇R(z)∥ ≤ β∥x -z∥. It follows from the descent lemma [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] that a Bregman tangent majorant of R at every z ∈ R N is associated to β∥ • ∥ 2 /2. Therefore, by Lemma 1, a Bregman tangent majorant of the loss function f in Problem (2) at z ∈ D is associated with Ez = Ez + β∥ • ∥ 2 /2. In the following, we will denote qz such a majorant.

One MM algorithm to rule them all

We are now ready to state our general Bregman MM algorithm to solve Problem (2). First, let us point out that all the three constructions presented in Sec. 3.1 can be recast in a single framework. More precisely, for every (x, z) ∈ D 2 , f (x) ≤ qz(x). The k-th iteration of the MM algorithm reads as the minimizer of qz on D. In all our constructions, qz is a strictly convex separable function. Moreover, the components ( xn(z)) 1≤n≤N of its unique minimizer x(z) satisfy, for each n ∈ {1, . . . , N }, -a

n (z) xn(z) + ρ + (a (1) n (z) + β) xn(z) + dn(z) = 0, (0) 
with dn(z) = a (0)

n (z) zn + ρ -(a (1) n (z) + β)zn + [∇R(z)]n + M m=1 hm,n 1 - ym h ⊤ m z + bm , (22) 
where (a

(0) n (z), a (1) 
n (z), ρ) are some non-negative values depending on the selected majorant. The N problems in [START_REF] Zubal | Computerized three-dimensional segmented human anatomy[END_REF] have closed form solutions, each of them being the root of second-order polynomial equation. The final algorithm then reads

x k+1 = max{ xn(x k ), 0} 1≤n≤N , (23) 
initialized with x 0 ∈ (0, +∞) N . It is remarkable that, when R = 0 and the majorant from Example 1 is chosen, we retrieve the famous MLEM algorithm. If R ̸ = 0 and the same majorant is employed, the FBSEM method can be retrieved for a specific choice of its step-size.

EXPERIMENTAL RESULTS

In this section, we compare the three MM strategies derived previously, in a 2D+t simulation scenario of dynamic PET brain imaging.

Settings and dataset

We simulated a 2D 1 hour 18 F-FDG dynamical PET exam on a Biograph 6 TruePoint TrueV PET system (Siemens Healthcare, Erlangen, Germany), using a slice of the Zubal phantom [START_REF] Zubal | Computerized three-dimensional segmented human anatomy[END_REF]. We followed the set up of [START_REF] Chalampalakis | Use of dynamic reconstruction for parametric Patlak imaging in dynamic whole body PET[END_REF] to generate dynamic realistic projection data with an analytical simulator [START_REF] Stute | Analytical simulations of dynamic PET scans with realistic count rates properties[END_REF]. Generic projector and backprojector based on Joseph's method [START_REF] Joseph | An improved algorithm for reprojecting rays through pixel images[END_REF] were defined as operators for PyTorch and Tensorflow, using C++ and Cuda for the GPU version / C++ with OpenMP parallelization for multithreaded CPU. Each projection was only defined by the position of the two crystals involved, without assumption on a specific geometry (e.g. cylindrical system).

For reconstruction, we used a mixed regularization term consisting of smoothed spatial TV and temporal Tikhonov regularisation, as in [START_REF] Cadoni | A block parallel majorize-minimize memory gradient algorithm[END_REF], which has indeed a Lipschitzian gradient. The dynamic exam was subdivided into 24 time frames reconstructed simultaneously with a voxel size of 2.2 mm × 2.2 mm, and took into account all corrections as in [START_REF] Chalampalakis | Use of dynamic reconstruction for parametric Patlak imaging in dynamic whole body PET[END_REF].

The GPU solution was run on a 32 GB NVIDIA Tesla V100-SXM2, with block size optimized to reduce computation time. A comparison was made with a multi-threaded CPU implementation using OpenMP and 52 threads run on 52 distinct 2.10GHz Intel(R) Xeon(R) Gold 6230R cores.

Numerical results

Algorithms 1-3 correspond to MM algorithm [START_REF] Stute | Analytical simulations of dynamic PET scans with realistic count rates properties[END_REF] based on the majorants (11), ( 16), [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], respectively. We show, in Fig. 1, the convergence speed of the algorithms in terms of the relative distance between the outer iterate (corresponding to x k ) and the limit point x∞, approximated for each method by performing 10,000 iterations. One can observe that Algorithm 1 outperforms the two others in terms of convergence speed. Fig. 2 provides a visual translation of these differences in convergence speeds. These results can be explained by considering the number of projections or backprojections needed to minimize each surrogate. It turns out that the computational cost of each iteration is dominated by the time needed to perform a backprojection (0.98s for a GPU-based implementation versus only 0.0016s for a projection). One iteration of Algorithm 1 requires only one backprojection against two for Algorithm 3 and three for Algorithm 2. This is also reflected by Tab. 1 where Algorithm 2 appears to be more than 2.5 times slower than Algorithm 1. This table also shows that our GPU implementation leads to a reduction of computation time by a factor larger than 10 compared to the use of the multithreaded CPU with 52 cores. We have focused on the PyTorch implementation, but similar results have also been obtained with Tensorflow. 

CONCLUSION

In this paper, we have proposed a new Bregman majorization framework which unifies MM approaches used for PET image reconstruction. In our PET simulations, three MM algorithms derived from specific choices of Bregman majorants have been compared in terms of convergence speed. We have also evaluated the gain in computation time resulting from a GPU implementation instead of a multithreaded CPU implementation. It is worthy to note that the proposed framework is quite general and also applies to many other inverse problems involving Poisson data. This work also opens perspectives in terms of optimization of the algorithm parameters through differential programming techniques on GPUs [START_REF] Mehranian | Model-based deep learning PET image reconstruction using Forward-Backward Splitting Expectation-Maximization[END_REF]. 
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 1 Fig.1. Relative distance between the outer iterate and the limit point as a function of computational time, for GPU-based implementations.
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  Definition 1. Let g be a differentiable function on an open set D ⊂ R N and let z ∈ D. Let Ez be a strictly convex function which is differentiable on D. Let DE z be the Bregman divergence associated with Ez. qz : D → R is the Bregman tangent majorant of g at z associated with Ez if

Table 1 .

 1 Algorithm 1 Algorithm 2 Algorithm 3 Comparisons of execution time for CPU-based and GPUbased implementations, for 100 iterations, in seconds.

	PyTorch CPU	1351	3536	2246
	PyTorch GPU	87	255	162