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On the global minimum of the energy-
momentum relation for the polaron

Jonas Lampart∗, David Mitrouskas† and Krzysztof Myśliwy‡

June 14, 2023

Abstract

For the Fröhlich model of the large polaron, we prove that the ground state energy

as a function of the total momentum has a unique global minimum at momentum zero.

This implies the non-existence of a ground state of the translation invariant Fröhlich

Hamiltonian and thus excludes the possibility of a localization transition at finite cou-

pling.

1 Introduction

The polaron describes an electron interacting with the quantized optical modes of a polarizable

lattice. It poses a classic problem in solid state physics that was initiated by Landau’s one-page

paper [18] about the possibility of self-trapping of an electron by way of deformation of the

lattice. The existence of self-trapping for the polaron was debated in the physics literature

over many decades, see e.g. [8, 12, 13, 24, 26, 33, 37, 40, 41]. Mathematically it is related

to the existence of a normalizable ground state for the translation invariant Hamiltonian.

While for weak coupling, the non-existence of ground states is almost immediately evident,

the conclusion is less obvious for strong coupling. In fact, for the semi-classical theory, which

is known to be accurate in the limit of strong coupling [5, 22], the translational symmetry is

broken on the level of the ground state [20, 34]. This supported the idea about the existence

of a localization transition at finite coupling.
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In this work, we give a mathematical proof that such a transition does not occur for

the Fröhlich Hamiltonian. This Hamiltonian models the large polaron, where the lattice is

described by a continuous quantum field with constant dispersion relation. We prove that the

translation invariant Hamiltonian does not have a ground state, irrespective of the value of

the coupling. To achieve this, we study the energy-momentum relation, that is, the ground

state energy as a function of the conserved total momentum, and show that it attains its

global unique minimum at momentum zero. The non-existence of ground states is then a

simple consequence of this property. Quoting [6, p. 1575], this solves a physically obvious but

mathematically long-standing conjecture.

Following H. Fröhlich [9, 10] the large polaron is defined on the Hilbert space

H = L2(R3, dx) ⊗F (1.1)

with F =
⊕∞

n=0

⊗n
sym L

2(R3) the bosonic Fock space, and governed by the Hamiltonian

H = −∆x +N + ϕ(vx), (1.2)

where −∆x = (−i∇x)2, x and −i∇x describing the position and momentum of the electron

and N = dΓ(1) denotes the number operator on Fock space (modeling the energy of the

phonon field, whose dispersion relation is constant). The interaction is described by the linear

field operator

ϕ(vx) = a(vx) + a∗(vx) with vx(y) = v(y − x), v(y) =
√
α

1

|y|2
. (1.3)

The bosonic creation and annihilation operators, a∗, a, satisfy the usual canonical commu-

tation relations. After setting ℏ = 1 and the mass of the electron equal to 1/2, the polaron

model depends on a single dimensionless parameter α > 0. In the present work, the choice of

α is not relevant, as our statements shall hold equally for all values of the coupling constant.

An important property of the Fröhlich Hamiltonian H is that it defines a translation-

invariant system, in the sense that it commutes with the total momentum operator

[H,−i∇x + Pf ] = 0 (1.4)

where Pf = dΓ(−i∇) describes the momentum of the phonons. As a consequence, it is possible

to simultaneously diagonalize the total momentum and the energy. This simultaneous diago-

nalization is implemented best by the Lee–Low–Pines transformation [19] S : H →
∫ ⊕
R3 F dP

defined by F ◦eiPfx where F indicates the Fourier transformation w.r.t. x. As is easily revealed
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by a direct computation, S(−i∇x + Pf )S∗ =
∫ ⊕
R3 P dP and SHS∗ =

∫ ⊕
R3 H(P ) dP with

H(P ) = (P − Pf )2 +N + ϕ(v). (1.5)

The fiber operator H(P ) acts on F and describes the system at total momentum P ∈ R3.

Irrespectively of whether we take (1.2) or (1.5) as our starting point, the definition of the

model is somewhat formal, since v /∈ L2. A common way to define the Fröhlich model is to

start from the quadratic form associated with H(P ) (or H) and show that it is an infinitesimal

perturbation of the form associated with the non-interacting operator (α = 0). By the KLMN

Theorem this implies the existence of a unique self-adjoint operator associated with the form

of H(P ) (or H), which we call the fibered Fröhlich Hamiltonian. For convenience of the reader

we give the details in the appendix.

The main topic of this paper is the energy-momentum relation of the polaron, defined as

the lowest possible energy as a function of the total momentum

Eα(P ) := inf σ(H(P )). (1.6)

By rotation invariance of the Fröhlich Hamiltonian, Eα(P ) = Eα(RP ) for all rotations R ∈
O(3) and hence Eα(P ) = Erad,α(|P |). It was shown by L. Gross [15] that Eα(0) ≤ Eα(P )

for all P ∈ R3. As recently pointed out in a paper by Dybalski and Spohn [6], it is further

conjectured that P = 0 is the unique global minimum

Eα(0) < Eα(P ) for all P ̸= 0. (1.7)

While this inequality is not surprising from the physics point of view, its mathematical proof

turns out to be less obvious. In fact already Gross’ proof for showing that P = 0 is a global

minimum requires a considerable amount of work. In a small neighborhood around zero the

strict inequality can be inferred from the finiteness of the effective mass [6] (the effective

mass is defined by (Meff,α)−1 = E
′′

rad,α(P )|P=0). The goal of this paper is to prove (1.7) for all

non-zero P ∈ R3. A proof was proposed in 1991 by Gerlach and Löwen [13]. However, their

argument is not completely rigorous and its validity has been recently debated [6]. Our aim is

to follow the idea suggested by Gerlach and Löwen and turn it into a complete mathematical

proof. To this end we also benefit from results on the Fröhlich Hamiltonian that became

available more recently.

Approaching the problem from a different angle, Dybalski and Spohn provide a proof of

(1.7) under the assumption that a central limit theorem for the polaron path measure with

two-sided pinning holds, see [6, Sec. 5], in particular Theorem 5.3 and Conjecture 5.2 therein.

To our knowledge, this particular version of the central limit theorem, however, has not been

rigorously established so far.
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At the time of finalizing our paper, we were informed by Polzer about his new work [35] that

presents a proof of (1.7) based on a strategy, also in the probabilistic framework, that does not

rely on the validity of the central limit theorem with two-sided pinning. In this new approach

the polaron path measure is represented as a mixture of Gaussian measures and analyzed

with techniques from renewal theory (see also [1, 2, 31]). Among other interesting properties,

[35] shows that Erad,α(|P |) is a monotone increasing function with strict monotonicity below

the essential spectrum, i.e., in particular in a neighborhood around P = 0.

In our proof we follow an operator-theoretic approach that is inspired by [7, 11, 13, 16,

17, 28, 30, 39]. Except for the following lemma, whose proof is based on results from [29] (see

Section 2), our presentation is fully self-contained.1

Lemma 1.1. Let α > 0 and set Eα(P ) = inf σ(H(P )).

(i) σess(H(P )) = [Eα(0) + 1,∞) for all P ∈ R3

(ii) The set of global minima of P 7→ Eα(P ) is non-empty.

Before we continue with our main results, let us give some more remarks on the context

of the problem. For the non-interacting model, i.e. for α = 0, one easily sees that E0(P ) =

min{P 2, 1} with P 2 describing the region where the full momentum is on the electron whereas

in the constant region it is favorable that the total momentum is carried by a single phonon

with the electron at rest. The expectation from physics is that the form of Eα(P ) remains

qualitatively the same also for non-zero α. Lemma 1.1(i), also known as the HVZ Theorem,

confirms this for the essential spectrum, whose threshold corresponds to an electron at rest

and a free phonon. One expects that the shape of Eα(P ) remains essentially a parabola in a

certain region around zero (though with a negative shift Eα(0) and with different curvature

at P = 0) and that it approaches Eα(0) + 1 as |P | → ∞. That the expected parabola gives

in fact an exact upper bound, Eα(P ) ≤ Eα(0) + P 2/(2Meff,α) for all P and α, was shown in

[35]. The mathematical verification of the described picture is particularly interesting in the

strong coupling limit α → ∞, where one can analyze the asymptotic expansion of Eα(P ) and

Meff,α. For results about the strong-coupling limit see [2–5, 21, 22, 27, 38].

As already alluded to at the beginning of the paper, the form of the energy-momentum re-

lation is also related to the existence of a ground state of the translation invariant Hamiltonian

H. For weak coupling the non-existence is physically evident since for α = 0 no eigenstates

exist. For strong coupling, on the other hand, there is a leading-order contribution of the

classical polarization field and hence the interaction cannot be viewed as a perturbation of a

translation-invariant Hamiltonian anymore. In fact, in the limit of strong coupling, the ground

state energy approaches the corresponding semiclassical energy [5, 22, 34] which is known to

1In this regard, let us note that we shall not make use of Gross’ inequality Eα(0) ≤ Eα(P ) [15], which
would evidently imply property (ii).
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possess a manifold of localized ground states [20]. This supported the idea that also for the

full quantum model, the translational symmetry may be broken on the level of the ground

state for sufficiently large coupling, thus resulting in a transition from a delocalized regime

(weak coupling) to a localized one (strong coupling). The existence of a ground state for H,

however, would require that the set of global minima of Eα(P ) is a set of non-zero Lebesgue

measure. As our result implies that the global minimum is unique, this possibility is ruled

out and thus we obtain a rigorous proof (see Corollary 1.3) of the non-existence of such a

localization transition at any finite value of the coupling parameter.

1.1 Main results

The next statement is our main result.

Theorem 1.2. The energy-momentum relation Eα(P ) = inf σ(H(P )) has its unique global

minimum at P = 0, i.e. for every α > 0 and every P ̸= 0, we have the strict inequality

Eα(0) < Eα(P ). (1.8)

As a corollary we obtain that the Fröhlich Hamiltonian H does not possess a ground state,

irrespective of the value of the coupling constant.

Corollary 1.3. There exists no α ∈ (0,∞) such that inf σ(H) is an eigenvalue of H.

Proof. Suppose on the contrary that there exists an α ∈ (0,∞) such that H has a ground

state Ψα ∈ H . By the Lee–Low–Pines transformation (see introduction),

inf σ(H) =

∫
R3 dP ⟨Ψα(P ), H(P )Ψα(P )⟩∫

R3 dP∥Ψα(P )∥2
≥

∫
R3 dP Eα(P )∥Ψα(P )∥2∫

R3 dP∥Ψα(P )∥2
(1.9)

with Ψα(P ) = F [eiPfxΨα](P ) ∈ F where F is the Fourier transform w.r.t x. Note that

∥Ψα(P )∥2 ∈ L1(R3) by Parseval and eiPfxΨα ∈ L2(R3,F). Now by Theorem 1.2 the set

{P ∈ R3 |Eα(P ) = Eα(0)} has Lebesgue measure zero, and hence the right side of (1.9) is

strictly larger than Eα(0). On the other hand, (1.8) together with the fiber decomposition of

H imply that inf σ(H) = Eα(0), which yields a contradiction.

Remark 1.1. Our results do not depend on the precise form of v. The choice of the sign of v in

(1.3) does not matter, as the operator with form factor ṽ(y) = eiθv(y) is unitarily equivalent

to the one with v via Γ(eiθ). Moreover, our proof can easily be generalized to all positive (up

to a global phase) v satisfying v̂(k)(k2 + 1)−s ∈ L2(R3) for some 0 ≤ s < 1/2. For the sake of

conciseness we focus on (1.3)
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2 Proof of Theorem 1.2

To prove Theorem 1.2 we introduce a suitable (non-physical) auxiliary Hamiltonian and an-

alyze the degeneracy of its ground state. On the one hand, it shall be easily seen that the

multiplicity is strictly larger than one if we assume that P 7→ Eα(P ) attains its global mini-

mum for some q ̸= 0. On the other hand, this cannot be the case as it will follow by an abstract

result that the ground state of this auxiliary operator is non-degenerate. As mentioned in the

introduction, this idea goes back to Gerlach and Löwen [13].

By Lemma 1.1 (ii) there exists a q ∈ R3 such that Eα(q) ≤ Eα(P ) for all P ∈ R3 and by

rotational symmetry, we can assume that q = (|q|, 0, 0). For said q we choose ℓ = ℓ(q) > 0

such that q ∈ (2π/ℓ)Z3 and consider the Hilbert space

Hℓ = L2(Λℓ) ⊗F , (2.1)

where Λℓ = [0, ℓ]3 is the three-dimensional cube of side length ℓ with periodic boundary

conditions, and F denotes again the bosonic Fock space over L2(R3). On this space we define

(in the sense of quadratic forms)

hℓ = (−i∇x − Pf )2 +N + ϕ(v) (2.2)

where −i∇x now denotes the gradient on L2(Λℓ). The reason for restricting the variable x to

the torus is that hℓ now has a ground state. Indeed, since x only appears in the gradient, and

since the corresponding momenta are restricted to (2π/ℓ)Z3, one can readily diagonalize

hℓ =
⊕

P∈ 2π
ℓ
Z3

πℓ,P ⊗H(P ) (2.3)

with πℓ,P = |φℓ,P ⟩⟨φℓ,P | the projection onto the normalized plane wave φℓ,P = ℓ−3/2e−iPx ∈
L2(Λℓ) with momentum P . Here it is important to note that the Fock space component

is described by the fiber Hamiltonian H(P ) as defined in (1.5). Also note that since H(P ),

P ∈ R3, is self-adjoint and bounded from below, so is hℓ. By Lemma 1.1 we know that Eα(q) <

inf σess(H(q)), hence there is an eigenfunction ξ(q) ∈ F such that H(q)ξ(q) = Eα(q)ξ(q). Since

Eα(q) ≤ Eα(P ) for all P ∈ R3, the wave function φℓ,q ⊗ ξ(q) ∈ Hℓ is a ground state of hℓ
with eigenvalue Eα(q).

The next lemma, whose proof is postponed to the next section, shows that this ground

state is actually unique.

Proposition 2.1. For all α > 0 and any ℓ > 0 for which inf σ(hℓ) is an eigenvalue (in

particular for the value ℓ(q) chosen above), this eigenvalue has multiplicity one.

With this at hand, we can prove Theorem 1.2 by way of contradiction. To this end assume
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that q ̸= 0. By rotational symmetry Eα(q) = Eα(−q) and, since Eα(−q) < inf σess(H(−q))
by Lemma 1.1, the fiber Hamiltonian H(−q) has an eigenfunction ξ(−q) ∈ F with eigenvalue

Eα(−q). This implies that there is a second ground state of hℓ, given by φℓ,−q ⊗ ξ(−q) ∈ Hℓ,

that is orthogonal to φℓ,q ⊗ ξ(q). Thus we arrive at a contradiction to the statement of

Proposition 2.1, and therefore we can rule out that q is non-zero. This shows that P 7→ Eα(P )

can attain its global minimum only at q = 0, hence the proof of Theorem 1.2 is complete.

In the remainder of this subsection we prove Lemma 1.1. For that purpose we first state

and prove the following general result.

Lemma 2.2. Let An, n ∈ N, be a sequence of self-adjoint operators satisfying σess(An) =

[an, bn] with −∞ ≤ an ≤ bn ≤ ∞. If An
n→∞−−−→ A in norm-resolvent sense for some self-adjoint

operator A, then an
n→∞−−−→ a, bn

n→∞−−−→ b for some −∞ ≤ a ≤ b ≤ ∞ and σess(A) = [a, b].

Proof of Lemma 2.2. First assume that an, bn
n→∞−−−→ a, b for some −∞ ≤ a ≤ b ≤ ∞. Since

σess(An) ̸= ∅, the essential spectrum of A cannot be empty [36, Thm. XIII.23]. Now, for

ε > 0 we choose N(ε) such that [an, bn] ⊂ [a− ε, b+ ε] for all n ≥ N(ε). It follows that σ(An)

is purely discrete in (−∞, a − ε) ∪ (b + ε,∞) for all n ≥ N(ε). By [32, Prop. 11.4.31] this

implies that σ(A) is purely discrete on the same interval and thus, using that ε was arbitrary,

σess(A) ⊂ [a, b]. Since σess(A) ̸= ∅, we get σess(A) = {a} if a = b.

For a < b, let t ∈ (a, b)∩ρ(A). By norm-resolvent convergence we have that if t ∈ ρ(A), then

t ∈ ρ(An) for all n sufficiently large [32, Prop. 10.2.4]. Since ρ(An) ⊂ [an, bn]c
n→∞−−−→ [a, b]c,

this contradicts the assumption t ∈ (a, b). Hence (a, b) ⊂ σ(A), and since the spectrum is

closed, [a, b] ⊂ σ(A). This proves σess(A) = [a, b] also for a < b.

To remove the initial assumption on an, bn, assume there is no a ∈ [−∞,∞] such that

an
n→∞−−−→ a (the same argument applies to bn). Then there are at least two subsequences

of an with limits a, ã ∈ [−∞,∞], a ̸= ã. Applying the argument from above to the two

subsequences (and the associated subsequences of An) separately leads to the contradiction

that [a, b] = σess(A) = [ã, b].

Proof of Lemma 1.1. The proof is based on the results from [29]. Since the latter considers

more regular polaron models with v ∈ L2(R3), we need to introduce the fiber Hamiltonians

with UV cutoff. We define HΛ(P ) as in (1.5) with form factor vΛ defined by v̂Λ = χΛv̂ where

χΛ is the characteristic function k 7→ χ[0,Λ)(|k|). Since vΛ ∈ L2(R3), it is easy to verify that

HΛ(P ) is self-adjoint and bounded from below. Denoting Eα,Λ(P ) = inf σ(HΛ(P )), we can

quote two important results from [29]: For every Λ > 0

(i’) σess(HΛ(P )) = [Eα,Λ(0) + 1,∞),

(ii’) lim|P |→∞ |Eα,Λ(P ) − inf σess(HΛ(P ))| = 0.
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These statements are given in [29, Thm. 2.1. and Thm. 2.4] for the choice ω ≡ 1.

To show (i), note that by Proposition A.2, we also have HΛ(P )
Λ→∞−−−→ H(P ) in norm-

resolvent sense, which implies Eα,Λ(0)
Λ→∞−−−→ Eα(0) = inf σ(H(0)). In fact, by [32, Prop.

10.2.4a] there exists a sequence of elements tΛ ∈ σ(HΛ(0)) converging to Eα(0) as Λ → ∞, in

particular tΛ ≥ Eα,Λ(0) for all Λ, which shows that every accumulation point of the sequence

Eα,Λ(0) is no larger than Eα(0). On the other hand, by [32, Prop. 10.2.4b] Eα,Λ(0) has no

accumulation point below Eα(0), and thus Eα,Λ(0)
Λ→∞−−−→ Eα(0), and hence (i) is a consequence

of (i’) and Lemma 2.2.

To show (ii), we follow the argument from [6, Sec. 4]. First note that by the Lee–Low–

Pines transformation E := infP∈R3 Eα(P ) coincides with inf σ(H) and thus E > −∞. (ii)

states that M = {P ∈ R3 |Eα(P ) = E} is a non-empty set. Assuming the opposite, M = ∅,

implies the existence of a sequence (Pj)j∈N ⊂ R3, |Pj| → ∞, satisfying limj→∞Eα(Pj) = E .

W.l.o.g. we can choose Pj such that |Pj| is monotone increasing and Eα(Pj) ∈ (E , E + 1
4
) for

all j ≥ 1. Further consider f ∈ C∞
c (R) with supp(f) ⊆ (E − 1

2
, E + 1

2
) and f(s) = 1 for all

s ∈ (E − 1
4
, E + 1

4
). By uniform norm-resolvent convergence of HΛ(P ) (see Proposition A.2)

and [36, Thm. VIII.20], we have

0 = lim
Λ→∞

sup
P∈R3

||f(HΛ(P )) − f(H(P ))||

≥ lim
Λ→∞

sup
j≥jΛ

||f(HΛ(Pj)) − f(H(Pj))|| = lim
Λ→∞

sup
j≥jΛ

||f(H(Pj))|| (2.4)

where the last step follows from (i’) and (ii’) if we choose jΛ large enough. In more detail,

for every Λ, we can choose jΛ such that σ(HΛ(Pj)) ∩ (−∞, Eα,Λ(0) + 3
4
) = ∅ for all j ≥

jΛ. Since E ≤ Eα(0) ≤ Eα,Λ(0) + 1
4

(here we use again Eα,Λ(0)
Λ→∞−−−→ Eα(0)), this implies

σ(HΛ(Pj)) ∩ (−∞, E + 1
2
] = ∅ for all j ≥ jΛ, and thus f(HΛ(Pj)) = 0. By assumption,

however, inf σ(H(Pj)) ∈ (E , E + 1
4
) for all j ≥ 1 and thus the right side of (2.4) is one, which

is a contradiction.

2.1 Proof of Proposition 2.1

In this section we show that the resolvent of hℓ is a positivity improving operator w.r.t. a

suitable Hilbert cone using a strategy that was applied to the renormalized Nelson model

in [16]. (Compared to the latter we face the additional difficulty that hℓ is an operator on

the tensor product Hℓ and not only on F). The statement of Proposition 2.1 will then follow

from a Perron-Frobenius type argument due to Faris [7]. Let

C :=
{

Ψ ∈ Hℓ

∣∣∀n ∈ N0 : (−1)nΨ(n)(x, y1, . . . , yn) ≥ 0
}
. (2.5)

This defines a (Hilbert) cone in Hℓ in the sense of [7]. A bounded operator K on Hℓ is called
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• positivity preserving (with respect to C) if Ku ∈ C for any u ∈ C, and

• positivity improving (with respect to C) if ⟨Ku, v⟩ > 0 for any u, v ∈ C \ {0}.

We recall that v(y) =
√
α|y|−2 > 0 and thus

v̂(k) =
√
α(4π|k|)−1. (2.6)

Taking into account the alternating sign in the definition of C, the interaction energy is

negative on C, i.e., ⟨Ψ, a(v)Ψ⟩ ≤ 0 for Ψ ∈ C. Moreover, ϕ(−v) is positivity preserving,

which is the key property to be used in the proof of the positivity-improving property in

Proposition 2.5 below.

Now consider the self-adjoint positive operator

hℓ,0 = (−i∇x − Pf )2 +N + 1 (2.7)

acting on the Hilbert space Hℓ = L2(Λℓ) ⊗F , which is essentially hℓ without the interaction

term ϕ(v).

Lemma 2.3. The resolvent h−1
ℓ,0 is positivity preserving with respect to the cone C. Its restric-

tion to the zero-phonon space L2(Λℓ) is positivity improving with respect to the cone of positive

functions in L2(Λℓ).

Proof. The restriction of h−1
ℓ,0 to L2(Λℓ) is given by the periodization of the resolvent of −∆

on R3, i.e. it has the integral kernel

∑
k∈Z3

e−|x−x′−kℓ|

4π|x− x′ − kℓ|
, (2.8)

which converges due to the exponential decay of the numerator and is strictly positive. Sim-

ilarly, the integral kernel of h−1
ℓ,0 on the n-phonon space F (n) is (as one readily checks using

the Fourier transform)

∑
k∈Z3

e−
√
n+1|x−x′−kℓ|

4π|x− x′ − kℓ|

n∏
j=1

δ(yj − x− y′j + x′ + kℓ), (2.9)

which is a non-negative distribution.

Lemma 2.4. The operator a(v)h−1
ℓ,0 is bounded, and 1 + a(v)h−1

ℓ,0 is invertible, with bounded

inverse given by

(1 + a(v)h−1
ℓ,0)−1 =

∞∑
j=0

(
a(−v)h−1

ℓ,0

)j

,
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where the sum converges in the operator norm.

Proof. For n ∈ N we have using the Fourier transform and Cauchy–Schwarz

∥a(v)h
−1/2
ℓ,0 Ψ(n)∥2L2(Λℓ)⊗F(n−1)

= n
∑

p∈ 2π
ℓ
Z3

∫
R3(n−1)

dk1 · · · dkn−1

∣∣∣∣ ∫ dkn
v̂(kn)Ψ(n)(p, k1, . . . , kn)

((p+ k1 + · · · kn)2 + n+ 1)1/2

∣∣∣∣2
≤ n∥Ψ(n)∥2 sup

k∈R3

∫
R3

dξ
|v̂(ξ)|2

(k + ξ)2 + n+ 1

≤ (n+ 1)1/2∥Ψ(n)∥2 α

(4π)2

∫
R3

dη

η2(η2 + 1)
. (2.10)

where we used (2.6) and performed the change of variables η = ξ/
√
n+ 1 in the last step. We

thus have the inequality

∥a(v)h
−1/2
ℓ,0 Ψ∥ ≤ C∥(N + 1)1/4Ψ∥, (2.11)

which implies that

∥a(v)h−1
ℓ,0Ψ∥ ≤ C∥(N + 1)−1/4Ψ∥ (2.12)

for some constant C that depends on α. For j ∈ N this implies

∥(a(v)h−1
ℓ,0)jΨ∥ ≤ C∥(a(v)h−1

ℓ,0)j−1(N + j)−1/4Ψ∥ ≤ Cj(j!)−1/4∥Ψ∥. (2.13)

Since Cj(j!)−1/4 is summable, the Neumann series converges and one easily checks that the

limit is the inverse of 1 + a(v)h−1
ℓ,0 .

With the operator hℓ,0 we can write the auxiliary operator (2.2) as

hℓ + 1 = (1 + a(v)h−1
ℓ,0)hℓ,0(1 + h−1

ℓ,0a
∗(v))︸ ︷︷ ︸

=:K

−a(v)h−1
ℓ,0a

∗(v)︸ ︷︷ ︸
=:T

= K + T.

Proposition 2.5. Let α > 0. For all λ > − inf σ(hℓ) the resolvent (hℓ + λ)−1 is positivity

improving with respect to C.

Proof. It is sufficient to prove the statement for one λ > − inf σ(hℓ), by analyticity of the

resolvent (see also [29, Lem. A.4]). For sufficiently large λ we shall first prove

(hℓ + 1 + λ)−1 = (K + T + λ)−1
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= (K + λ)−1
(

1 + T (K + λ)−1
)−1

= (K + λ)−1

∞∑
j=0

(
− T (K + λ)−1

)j

. (2.14)

To this end, we show that T is infinitesimally K-bounded. In fact, by (2.11),

∥TΨ∥ ≤ C∥(N + 1)1/2Ψ∥ ≤ ε∥NΨ∥ + Cε∥Ψ∥, (2.15)

for arbitrary ε > 0, and moreover,

∥NΨ∥ ≤ ∥N(1 + h−1
ℓ,0a

∗(v))Ψ∥ + ∥Nh−1
ℓ,0a

∗(v)Ψ∥
≤ ∥hℓ,0(1 + h−1

ℓ,0a
∗(v))Ψ∥ + C∥(N + 1)3/4Ψ∥

≤ ∥(1 + a(v)h−1
ℓ,0)−1∥∥KΨ∥ + 3

4
∥NΨ∥ + (1

4
C4 + 3

4
)∥Ψ∥. (2.16)

Proceeding with (2.14), we use that −T is positivity preserving, since it is the product

of the three positivity preserving operators h−1
ℓ,0 (see Lemma 2.3) and a(−v), a∗(−v) (note

the alternating sign in the definition of C). The claim will thus follow if we can prove that

(K + λ)−1 improves positivity. As K ≥ 1, this holds for all λ > −1 if it holds for λ = 0.

Let 0 ̸= Ψ,Φ ∈ C and let n,m be so that Ψ(n) ̸= 0, Φ(m) ̸= 0. Set ϕ := (a(−v)h−1
ℓ,0)mΦ(m)

and ψ := (a(−v)h−1
ℓ,0)nΨ(n). Since a(−v) and h−1

ℓ,0 are positivity preserving, ϕ, ψ are non-

negative elements of L2(Λℓ). Since v > 0, they do not vanish identically. We thus have

⟨Φ, K−1Ψ⟩ =

〈 ∞∑
j=0

(
a(−v)h−1

ℓ,0

)j
Φ, h−1

ℓ,0

∞∑
k=0

(
a(−v)h−1

ℓ,0

)k
Ψ

〉
≥ ⟨ϕ, h−1

ℓ,0ψ⟩ > 0, (2.17)

since hℓ,0 improves positivity on L2(Λℓ) by Lemma 2.3. This proves the claim.

Proof of Proposition 2.1. The proposition is proved using the positivity-improving property

of hℓ following arguments of [7]. Let H R
ℓ be the subspace of real-valued functions in Hℓ.

Since hℓ is invariant under complex conjugation, it can be restricted to an operator on H R
ℓ .

Moreover, any eigenvalue e of hℓ is also an eigenvalue of this restriction and their multiplicity

is the same, since the R-linear map of multiplication by the imaginary unit is an isomorphism

between the real and imaginary subspaces of ker(hℓ − e).

It is thus sufficient to prove that inf σ(hℓ) is a simple eigenvalue of hℓ|H R
ℓ

. This is equivalent

to proving that, for λ > − inf σ(hℓ), the space of real eigenfunctions of (hℓ+λ)−1 for its largest

eigenvalue e := (inf σ(hℓ) + λ)−1 > 0 has dimension one.

Let Ψ ∈ H R
ℓ be a normalized eigenfunction of (hℓ +λ)−1 with eigenvalue e. We can write

Ψ = Ψ+ − Ψ−, (2.18)
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where

Ψ
(n)
± = (−1)n max{±Ψ(n), 0}, (2.19)

so Ψ± ∈ C and ⟨Ψ+,Ψ−⟩ = 0. We then have

e = ⟨Ψ, (hℓ + λ)−1Ψ⟩
= ⟨Ψ+, (hℓ + λ)−1Ψ+⟩ + ⟨Ψ−, (hℓ + λ)−1Ψ−⟩ − 2 ⟨Ψ−, (hℓ + λ)−1Ψ+⟩︸ ︷︷ ︸

≥0

≤ ⟨(Ψ+ + Ψ−), (hℓ + λ)−1(Ψ+ + Ψ−)⟩ ≤ e, (2.20)

since e is the largest eigenvalue and ∥Ψ+ + Ψ−∥ = ∥Ψ∥ = 1. We must thus have equality

in (2.20), so

⟨Ψ−, (hℓ + λ)−1Ψ+⟩ = 0. (2.21)

Since (hℓ + λ)−1 improves positivity this implies that either Ψ+ or Ψ− are equal to zero, i.e.

Ψ ∈ C or −Ψ ∈ C.

Now assume there exist two orthogonal real eigenfunctions Φ,Ψ ∈ ker((hℓ + λ)−1 − e). By

changing signs if necessary, we may assume that Φ,Ψ ∈ C \ {0}. Then

⟨Φ,Ψ⟩ = e−1⟨Φ, (hℓ + λ)−1Ψ⟩ > 0, (2.22)

a contradiction, so e is a simple eigenvalue.

A Definition of the Fröhlich Hamiltonian

In this section we define the Fröhlich Hamiltonian as a self-adjoint operator following the ideas

of [17]. For a different proof, based on a commutator trick introduced in [22, 23], see [14].

We will give the construction for the fiber operators H(P ), from which H can be obtained

by reversing the Lee–Low–Pines transformation. Consider the quadratic form

QP (Ψ) := ⟨Ψ, (H(P ) + 1)Ψ⟩ =
〈
Ψ, ((P − Pf )2 +N + 1)Ψ

〉
+ 2 Re

〈
Ψ, a(v)Ψ

〉
. (A.1)

Introducing the positive operator H0 := (P − Pf )2 + N + 1, one easily sees that QP is well

defined on D(H
1/2
0 ). Moreover, by inequality (A.4) below, QP is an infinitesimal perturbation

of the form of H0. Consequently, by the KLMN Theorem there exists a unique self-adjoint

12



operator whose form is QP . To make this more explicit, rewrite QP as

QP (Ψ) = ⟨Ψ, (1 + a(v)H−1
0 )H0(1 +H−1

0 a∗(v))Ψ⟩ − ⟨Ψ, a(v)H−1
0 a∗(v)Ψ⟩. (A.2)

From this, we see that QP is associated with the operator

H(P ) + 1 = (1 + a(v)H−1
0 )H0(1 +H−1

0 a∗(v))︸ ︷︷ ︸
=:K(P )

−a(v)H−1
0 a∗(v)︸ ︷︷ ︸

=:T (P )

= K(P ) + T (P ). (A.3)

Proposition A.1. For α > 0 and P ∈ R3 the quadratic form QP is the form of the self-adjoint

operator H(P ) + 1 given by (A.3) with domain

D(H(P )) =
{

Ψ ∈ F
∣∣ (1 +H−1

0 a∗(v))Ψ ∈ D(H0)
}
.

Proof. By the same proof as in (2.11) we have for Ψ ∈ D(N1/4)

∥a(v)H
−1/2
0 Ψ∥ ≤ C∥(N + 1)1/4Ψ∥. (A.4)

Hence, by the proof of Lemma 2.4, the operator 1 + a(v)H−1
0 and its adjoint are boundedly

invertible. This implies that D(H(P )) is dense, since D(H0) is. Moreover, K(P ) is a symmet-

ric, invertible operator and thus self-adjoint. The proof is completed by showing that T (P ) is

infinitesimally K(P )-bounded as in (2.15), (2.16).

In the proof of Lemma 1.1 we used that the operators with cutoff HΛ(P ) converge to

H(P ) in norm-resolvent sense. We give a proof of this fact in the following proposition (see

also [14]).

Proposition A.2. Let v̂Λ(k) = v̂(k)χ[0,Λ)(|k|), then the family of self-adjoint operators

HΛ(P ) = (P − Pf )2 +N + ϕ(vΛ)

with domain D(HΛ(P )) = D(H0) converges to H(P ) in norm-resolvent sense as Λ → ∞
uniformly in P ∈ R3.

Proof. Recall that H0 = (P − Pf )2 + N + 1. The bounds on the difference of the resolvents

will manifestly be independent of P , so we will not emphasize this at every step. Let

KΛ(P ) := (1 + a(vΛ)H−1
0 )H0(1 +H−1

0 a∗(vΛ)) (A.5)

and

TΛ(P ) = −a(vΛ)H−1
0 a∗(vΛ), (A.6)
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so that HΛ(P ) + 1 = KΛ(P ) + TΛ(P ), similarly as in (A.3). Then with z = 1 ± i

(HΛ(P ) + z)−1 − (H(P ) + z)−1 = (KΛ(P ) + TΛ(P ) ± i)−1 − (K(P ) + T (P ) ± i)−1

= (HΛ(P ) + z)−1(a(v − vΛ)H−1
0 H0(1 +H−1

0 a∗(v))(H(P ) + z)−1 (A.7)

+ (HΛ(P ) + z)−1(1 + a(vΛ)H−1
0 )H0(1 +H−1

0 a∗(v − vΛ)))(H(P ) + z)−1 (A.8)

+ (HΛ(P ) + z)−1(T (P ) − TΛ(P ))(H(P ) + z)−1. (A.9)

By an analogous bound to (2.10), we have

∥a(v − vΛ)H
−1/2
0 Ψ∥ ≤

√
α

4π

(∫
|k|>Λ

dk

k2(k2 + 1)

)1/2

∥(N + 1)1/2Ψ∥, (A.10)

whence ∥a(v − vΛ)H−1
0 ∥ tends to zero as Λ → ∞. Since H0(1 + H−1

0 a∗(v))(H(P ) + z)−1 is a

bounded operator by construction of H(P ), this shows that (A.7) tends to zero in norm.

Since |v̂Λ(k)| ≤ |v̂(k)| we have

∥a(vΛ)H
−1/2
0 Ψ∥ ≤ C∥(N + 1)1/4Ψ∥ (A.11)

uniformly in Λ. With this, the bounds from the proof of Proposition A.1 hold for HΛ(P )

uniformly in Λ and (A.8) tends to zero for the same reason as (A.7).

To conclude, note that by (A.10) and (A.11) we have

∥(TΛ(P ) − T (P ))Ψ∥ ≤ CΛ∥(N + 1)3/4Ψ∥ (A.12)

with limΛ→∞CΛ = 0. Then, since N is H(P )-bounded by construction of H(P ), the expres-

sion (A.9) also tends to zero in norm as Λ → ∞, which proves the claim.
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