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Abstract—It is estimated that around 80% of the world’s
population live in areas susceptible to at-least one major vector
borne disease, and approximately 20% of global communicable
diseases are spread by mosquitoes. Furthermore, the outbreaks
of such diseases are becoming more common and widespread,
with much of this driven in recent years by socio-demographic
and climatic factors. These trends are causing significant worry
to global health organisations, including the CDC and WHO,
and-so an important question is the role that technology can
play in addressing them. In this work we describe the integra-
tion of an epidemiology model, which simulates the spread of
mosquito-borne diseases, with the VESTEC urgent computing
ecosystem. The intention of this work is to empower human
health professionals to exploit this model and more easily explore
the progression of mosquito-borne diseases. Traditionally in the
domain of the few research scientists, by leveraging state of
the art visualisation and analytics techniques, all supported by
running the computational workloads on HPC machines in a
seamless fashion, we demonstrate the significant advantages that
such an integration can provide. Furthermore we demonstrate the
benefits of using an ecosystem such as VESTEC, which provides a
framework for urgent computing, in supporting the easy adoption
of these technologies by the epidemiologists and disaster response
professionals more widely.

Index Terms—Mosquito-borne diseases, urgent computing,
HPC, disease simulation, epidemiology

I. INTRODUCTION

The spread of diseases driven by mosquitoes as carriers,
or vectors, between an infected individual and the as-yet
uninfected healthy population accounts for around 20% of the
global burden of communicable diseases [1]. The two major

outbreaks of Chikungunya virus in Italy in 2007 and 2017,
with the Aedes Albopictus mosquito as the vector, demonstrate
that whilst one naturally associates such challenges with tropi-
cal climates, mosquito-borne diseases also effect other regions
of the world including Europe and the US. The outbreak of
Zika fever in 2016 in Brazil is another example where, by the
end of the year it had spread, largely driven by mosquitoes,
to over 48 countries.

The human infection that results from mosquito-borne dis-
eases not only results in human health emergencies, but can
have other knock on impacts too including the dwindling
supply of blood, as donations have to be suspended due to
infection risk. Currently there is significant concern in Europe
because of the recolonisation of the Aedes Aegypti mosquito
in Turkey, parts of the black sea and around the Mediterranean.
This single insect is a vector for a wide variety of serious
diseases, which include Dengue fever, Chikungunya virus,
Zika fever, Mayaro and Yellow fever. Furthermore, the World
Health Organisation (WHO), who have a specific agenda on
global vector response, estimate that approximately 80% of the
world’s population inhabit an area which is at risk of at-least
one major vector borne disease.

Consequently, by understanding in more detail the dynam-
ics of mosquito abundance over time, one then possesses a
crucial ingredient in assessing the risk of vector borne disease
outbreaks, as well as being able to investigate their temporal
patterns. To enable this we must generate highly accurate high
dimensional output that estimates the risk of transmission for
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different diseases, which is able to be rapidly elaborated with
updated input data, and whose complex and large outputs can
be navigated with ease.

The main goal of this work is to integrate an epidemi-
ological ensemble model with data analytics processes and
visualization tools to support public health officials in making
accurate data driven decisions. Such a tool can then be used
to assess the risk associated with existing local outbreaks,
identify those areas at increase risk of future outbreaks, and
identify the optimal time for specific control measures to
be applied. The rest of this paper is structured as follows;
In Section II we briefly describe the intrinsic features of a
mosquito-borne disease simulator that forms the foundation
of this work before describing in Section III the VESTEC
urgent computing ecosystem that we are looking to integrate
with. We then explore details of this integration in Section IV,
before illustrating how the human health professionals interact
with the system and explore results in Section V. We then
discuss the trickling of simulation results back to the user by
running a mixture of shorter coarse-grained simulations and
longer more accurate fine grained configurations in Section
VI, before drawing conclusions and describing further work
in Section VII.

II. MODELLING OF MOSQUITO-BORNE DISEASES

The risk associated with vector borne diseases largely
depends on the abundance of competent vectors, the density
of mosquitoes in our case, for transmission of the infection.
The Centre for Disease Control (CDC) Epidemic Prediction
Initiative stresses that estimates of the potential vector density
is a crucial issue for the public health decision makers.
However traditional computational models are not able to es-
timate the absolute abundance of different mosquitoes species
at high resolution over large spatial scales, nor to update
these estimates in near real-time for reflecting changes in the
meteorological or epidemiological conditions.

Risks associated with mosquito-borne diseases are com-
puted by considering a model which, when calibrated with
a large set of entomological data collected on adult mosquito
captures, enables high resolution estimates of mosquito pop-
ulations across large regions. This approach extends a pre-
viously published method used to model the spread of Zika
fever across the Americas in 2016 [2]. The accuracy delivered
by this model is based on two factors, firstly that the overall
abundance of the mosquitoes is driven by a variety of socio-
demographic and climatic factors, including gross domestic
product (GDP), human density, temperature, and precipitation.
The second underlying idea of the model is that an increase
in the abundance of adult mosquitoes occurs mainly because
of persisting favourable temperature conditions over a certain
period.

It is possible to work at the city, regional, country, or even
continental scale when modelling the growth of a mosquito
population, with the model operating at a spatial resolution of
250m regardless of the size of region of interest. The model
works in two stages, firstly it is calibrated across different

species of mosquito based upon the input temperature, precip-
itation records, human density, GDP, and detailed mosquito
capture data. The last argument, the capture data, is expressed
as the likelihood of observing a specific number of captured
female adult mosquitoes over time, across different years and
geographical locations. Once calibrated, the model is then able
to produce estimates on the absolute abundance of selected
mosquito species and the consequent risk of transmission for
different diseases for each day of the year based upon varying
the temperature, precipitation, human density, and GDP.

The computational model is currently very specialist and
requires significant knowledge on behalf of the research sci-
entist to correctly configure the inputs and then analyse and
interpret the resulting outputs. Instead, the objective is for this
to be viewed far more as a black box, where public health
professionals who are likely not research science experts,
are able to drive the simulation using a much more easy to
understand high level view of the scenario and consume the
data in a more abstracted form. Furthermore, the model is more
computationally intensive than previous generation simulation
approaches, meaning that current runs on workstations rather
than HPC machines are limited to a smaller geographic area.

III. VESTEC: AN ECOSYSTEM FOR URGENT COMPUTING

There were two major challenges identified with the epi-
demiological model in Section II; lowering the barrier of entry
for public health professionals to configure the model and to
consume the vast amount of output data, and the ability to
accelerate the model via HPC. The Visual Exploration and
Sampling Toolkit for Extreme Computing (VESTEC) system
provides a technological solution to both these challenges,
and Figure 1 illustrates the overall vision of the VESTEC
system which is designed to be a general purpose one stop
shop for supporting the execution of urgent workloads. This
is illustrated in the top of Figure 1 in green with a variety
of urgent decision makers across numerous domains relying
on the system. These users interact via a number of different
platforms, from domain specific web-interfaces, to the popular
ParaView [3] application, and CosmoScout VR [4], to drive
disaster scenario simulations and consume results. Regardless
of the specific user interface in use, they are able to present
a mixture of real-time data reported from the field, such as
temperature or precipitation, and the results of specific simu-
lations scenario runs that the decision maker has undertaken.
By using these interfaces the decision maker is manipulating
the virtual environment, with HPC simulations then being
executed transparently as required to enable users to explore
possibilities and the impacts of mitigation activities.

Whilst the computational power provided by supercom-
puters is key in enabling the timely simulations required
for urgent workloads [5], such machines are often optimised
for throughput rather than minimising the latency of indi-
vidual jobs. This unbounded nature of the wait time in the
queue means that in the past HPC machines are generally
acknowledged as being less suited to running urgent workloads
within specific time constraints. Whilst there has been previous



work looking to address this, for instance SPRUCE [6] in
the 2000s, much of this relied upon a manual approach
of special access tokens that would provide queue priority.
By contrast, the dynamic nature of disasters means that, to
be driven most effectively by front-line responders in near
real-time working interactively and driven by data arriving
from the field, then exactly when simulations need to be
run can be highly unpredictable and could potentially involve
numerous components coupled together. As disasters unfold
such workloads can change dramatically, for instance driven
by conditions in the field.

Consequently the VESTEC system follows the different
approach of federating over multiple HPC machines. These
machines can be physically located across a wide area, for
instance the tier-0 supercomputers of Europe, where the
VESTEC system will identify the most appropriate machine
to run on given details of the simulation, queue status of the
machine, and location of existing artefacts such as datasets.
Based on this it aims to make intelligent decisions about
what to run where in order to generate results most quickly.
Furthermore this provides resilience against the failure of a
specific HPC machine, as such workloads are re-run elsewhere
in such cases. All these concerns are entirely abstracted from
the user and they never need to be aware of where their
simulations are physically running or the specifics of how,
just that they are generating reliable insights.

Fig. 1. Illustration of overall VESTEC system vision and constituent
components

A. Marshalling and control in the VESTEC system

The blue box in Figure 1 contains the marshalling and
control functionality of the VESTEC system, which drive the
execution of workloads across the HPC machine(s). Workflows
are a fundamental aspect [7], which represent the different
stages of progression through a disaster’s lifetime. The stages

comprising a workflow are triggered by some combination of
external stimulus and/or preceding workflow stages. Written
in Python and built upon the RabbitMQ AMQP messaging
technology [8], methods representing workflow stages are
decorated with an annotation and registered with the work-
flow manager against a corresponding queue name. When
a message is pushed to this corresponding queue then the
stage will be activated, with the received message provided
as an argument to the method. To integrate a disaster scenario
such as the simulation of mosquito-borne diseases with the
VESTEC system, one must develop these workflow stages in
Python. Stages can undertake a wide range of functionality
including data transformation, preparation and submission of
job to an HPC machine, and data clean up activities. At any
point during execution, individual stages can send messages
to corresponding queues which will activate other stages.

One way in which a workflow stage is initiated is by the
arrival of data via the External Data Interface (EDI). When
a disaster scenario is activated it will register a number of
handlers in the EDI which can either work in pull mode
(where the system will periodically poll a data source for new
data), or push mode (which listens for data being sent to the
EDI from some source). Regardless of the arrival method, this
data is packaged as a message and sent to the corresponding
workflow manager queue specified upon handler registration.
The VESTEC marshalling and control system itself is not
intended to run on a supercomputer, so whilst workflow stages
can run concurrently across the cores, for data processing of
any level of complexity it is preferred that this is performed via
a job on the HPC machine rather than a stage of the scenario’s
workflow.

Much of the functionality in the blue box of Figure 1 is
infrastructure to support the requirements of the workflows.
For instance, instead of communicating directly with the HPC
machines, workflow developers use the well documented Sim-
ulation Manager (SM) API calls which enable them to prepare
and submit jobs to the systems. There is a considerable amount
of complexity in preparing and submitting a job, all of which is
abstracted from the ultimate user and much from the workflow
developer. This is illustrated in Figure 2, where yellow boxes
represent explicit activities in the workflow and the other
boxes lower levels in the stack and their constituent activities
deciding where a job should run and monitoring it. The job
submission API accepts optional workflow stage callbacks,
which will be activated when the job on the HPC machine
reaches specific states, such as running, job completion, or an
erroneous state.

The purple box of Figure 1 represents the environment on
the HPC machines, where numerous simulation codes and
toolkits can run as part of a disaster scenario. To provide
easy portability across HPC machines requires the ability to
configure the individual simulations and couple them in a
machine agnostic manner. To achieve this level of flexibility
and generality the Common Workflow Language (CWL) [9]
is used on the HPC machines. CWL is a mature standard for
workflow description which has gained popularity in fields



Fig. 2. Illustration of the interactions of VESTEC marshalling and control
system stack involved in job submission on an HPC machine

including bioinformatics. Consequently all workloads to be
actually executed on the HPC machine are described in CWL
and it is this workflow description that is submitted to the batch
queue system, with CWL then deciding which applications to
execute and when [10].

In addition to providing a convenient approach for coupling
application execution, CWL also solves the challenges around
application configuration. This is because skeleton config-
urations can be provided via CWL, with runtime specific
parameters then injected via YAML files. Such parameters
can originate from the VESTEC system to configure each
specific simulation, and furthermore additional sets can be
provided on a machine by machine basis to specialise between
supercomputers in an agnostic manner. Consequently, the
core CWL configuration is machine agnostic, enabling quick
and easy porting of simulation code configurations between
supercomputers, with machine specific specialisation provided
by a single point of truth YAML file.

From the discussion in this section it can be seen that
workflows are a key enabler, not just for driving progres-
sion through the timeline of an incident, but also to en-
able convenient and machine independent configuration of
simulations. The combination of RabbitMQ-based workflows
in the VESTEC system, and CWL workflows on the HPC
machines provide a choice around granularity. By encoding
the entire execution on the VESTEC system side we maximise
flexibility, but this results in overhead as there must be explicit
queue submission for each simulation and communication
between the VESTEC system and HPC machine. By contrast,
the CWL workflows are atomic as far as the VESTEC system
is concerned, with a series of coupled CWL workflow stages
only requiring one queue submission and the completion of
one CWL step automatically chaining to the next. The sweet
spot around granularity depends on the disaster in question
and target metrics.

B. Visualisation

CosmoScout VR [4] is an open source modular virtual
universe environment developed at the German Aerospace
Center (DLR). Based upon virtual reality, it allows users to
explore massive geo-referenced datasets and has been popular
in fields including planetary science and climate change. Such
capabilities are also especially applicable when navigating the
population of mosquitoes. This immersive visualisation can
be automatically augmented with facets including real-time
observational data and results from simulations. CosmoScout
VR has been integrated with the VESTEC system, and there-
fore from within this single virtual reality environment the
urgent decision maker is able to explore their scenario and
drive additional simulations based upon actions undertaken
within the UI, with results then automatically presented when
available. It is also possible to run CosmoScout VR in a more
traditional two-dimensional mode, with results displayed on a
monitor and using the GUI for interaction, and this is the form
that we illustrate in Section V.

A key challenge associated with many computational sim-
ulations is handling the vast amount of output data which
is generated. This is especially acute for disaster response,
where urgent decision makers are often acting under severe
time constraints but must still make the correct decision first
time, every time. Therefore an important question is how the
data can be post-processed to provide an accurate at-a-glance
view of the situation. Topological Data Analysis (TDA) [11]
is one such solution, and this captures the features of interest
in scalar data into concise, yet informative, topological data
signatures. These signatures are typically orders of magnitude
smaller than the data itself and can be used as a proxy to
the data. There are numerous examples of the successful use
of TDA across science and engineering, and an appealing
aspect is the ease it offers for the translation of domain-
specific feature descriptions into topological terms. There are
numerous algorithms that are able to not only extract such
topological features, but furthermore identify and eliminate
unwanted aspects such as noise.

The VESTEC system provides access to the Topology
ToolKit (TTK) [12] [13] which is an open source software
library for TDA. Built upon the VTK/ParaView software
ecosystem an analysis pipeline is developed using TTK mod-
ules in Python which executes these TTK modules for anal-
ysis and transformation. The result of running TTK is the
generation of a series of persistence diagrams [14] which
visually represent the population of points of interest and
their prominence. Available to run in both a post-processing
mode on simulation output files, and also in-situ via the
Catalyst coupler [15], the output of this analysis pipeline can
then be stored to disk in the form of a CINEMA database
which is a SQL-type database of VTK files, or streamed over
the network as appropriate. Another benefit of this approach
is that because persistence diagrams, which are effectively
topological signatures representing the original data, tend to
be far smaller than the raw simulation data, it can reduce



the overall data sizes that need to be transferred or stored.
Whilst the use of topological proxies via TTK has significant
advantages, both in terms of data presentation and data size
storage and transfer, it does increase the overall amount of
computation required.

IV. MOSQUITO VESTEC INTEGRATION

Figure 3 illustrates the workflow that has been developed to
integrate support for mosquito-borne disease modelling into
the VESTEC system. An incident is activated for a specific
geographical region, mosquito type, and virus of interest, with
this action of activation registering handlers in the EDI. These
will listen for the arrival of data, either in the push or pull
mode as described in Section III-A, and activate the workflow
initiation stage once data arrives. The initiation workflow stage
will store such arrived data until all required input data-sets for
a specific scenario are available and once all data is present
the pre-process and run mosquito simulation code stage is
executed. The EDI and workflow is flexible enough such
that this input data can be derived from different sources.
For instance, CosmoScout VR can send through the entire
inputs needed for temperature, precipitation, human density,
and GDP, or alternatively a subset of these can originate from
the GUI and the rest, especially temperature and precipitation,
can be read from external sensors.

Fig. 3. Illustration of workflow developed for the mosquito use-case

The pre-process and run mosquito simulation code com-
bines input data and generates the YAML configuration. Via
the SM API calls (that were mentioned in Section III-A),
the appropriate HPC machine is identified and required inputs
and configurations are transferred to it. Subsequently it will
then instruct the SM to submit the simulation job to the
HPC machine batch queue. As described in Section III-A, this
submission is a CWL script which will inject the run-specific
YAML configuration into a template and execute the contained

steps. In this instance there are three steps undertaken by the
CWL workflow; pre-processing of the data (which would be
too computationally intensive for the VESTEC system itself),
execution of the mosquito simulation, and conversion of the
simulation output into Tag Image File Format (TIFF) files.

The subsequent VESTEC system workflow stage Run mo-
saic image combiner is provided as a callback and will execute
once the HPC machine simulation has run to completion. This
will then schedule the mosaic post-processing of data, which
itself will use the same callback mechanism to execute the Run
topological proxy generation VESTEC system workflow stage
upon completion. This stage invokes the TTK processing of
data on the HPC machine with the Completion workflow stage
executed upon completion. To optimise data size required for
storage and transfer, a lossy topology-preserving compressor
[16] is used to compress the resulting TTK data files.

Figure 3 also contains a Data Manager (DM) component,
with three of the workflow stages interacting with the DM to
register data. The DM is responsible for tracking the location
and status of files of interest, such as outputs that might be
required by the user interface. Whilst it is possible for the DM
to explicitly store files, this is discouraged to avoid excessive
data overhead on the VESTEC marshalling and control system,
and instead its main role is as a data directory. The DM
contains services that will retrieve the data, streaming it back
to the caller from its source location, such as the HPC machine,
where it resides. For the mosquito integration there are three
result data-sets of interest and these are stored in the DM
as they become available. This is the reason for the design
of the distribution of workflow stages between the VESTEC
system and CWL because, as mentioned in Section III-A,
from the VESTEC system side the execution of a specific
CWL workflow is atomic. Therefore by adopting this level
of granularity the VESTEC system is activated when a code
finishes which has generated a dataset of interest, registered
in the DM, and able to make it available to the caller.

V. HUMAN HEALTH PROFESSIONAL INTERACTION

A module was developed for CosmoScout VR which en-
ables the human health professional user to select mosquito
scenario specific parameters such as temperature or human
density, and present results returned from simulations in a
time dependent fashion. They are able to overlay details over
a geographical region, such as heatmaps of the inputs and R0
output and present these within the context of time. Further-
more, it is possible to set up specific filters in CosmoScout VR
for these layers, meaning that the health professionals need
only to focus on specific aspects, and also change the colours
at specific thresholds which will better highlight features of
interest.

Figure 4 illustrates the CosmoScout VR node editor, where
a user has created and configured different nodes, which repre-
sent constituent components, and connected these together to
drive how they are displayed. This configuration is exploring
the spread of the Chikungunya virus via the Aedes Albopictus
mosquito over Rome. Via the appropriate nodes the user can



provide specific configuration parameters, which will then feed
into the processing of preceding data and/or be sent to the
simulations as they are executed.

Fig. 4. Screenshot of CosmoScout VR node editor for mosquito-borne disease
exploration

Figure 5 is a screen shot of the CosmoScout VR display
pane which illustrates the overlaying of simulation results on-
top of the map. This is for the same Chikungunya virus Rome
scenario, and there are two overlays being displayed, firstly the
R0 heatmap and secondly local maxima identified through the
topological persistence diagrams. The R0 heatmap has been
coloured from green to red, indicating areas from low potential
disease spread in green to those in red with high risk. The
vertical bars represent the local maxima and enable users to
undertake a quick scan and identify those most critical and
main infection risk areas.

Fig. 5. Screenshot of CosmoScout VR overlaying the resulting R0 heatmap
and persistence diagrams over Rome

The local maximima bars illustrated in Figure 5 are gen-
erated by TTK on the HPC machine and retrieved by Cos-
moScout VR when available. A brushing and linking approach
was integrated with CosmoScout VR, where users can, via the

node editor, brush data in the diagram and the selected data is
then immediately highlighted in the view of CosmoScout VR.
Due to the simulation resolution of 250m, the raw simulation
output data that these diagrams are generated from is initially
too sparse for use directly. Consequently, following the tech-
nique developed in [17], Gaussian resampling is undertaken
on the sparse output field to generate a more fine grained
piece wise linear scalar field to be used directly as an input
to the topological proxy algorithms. Ultimately we generate a
number of persistence diagrams, each covering a specific time
period such as a day, week, or month, and the algorithms
are configured to extract the extreme maxima of the field.
This extreme maxima represents the areas with the highest
R0 value, and depicts areas with highest risk to experience
a spread of the disease. Furthermore an average of all the
diagrams, known as the Barycentre, is calculated which can
be used to characterise the entire time period of interest. This
is useful as it enables convenient comparison between varying
scenarios, for instance exploring the spread of disease with a
different type of mosquito.

Whilst one might assume that identifying such maxima
could be done via a simpler approach, the challenge is often
that such maximum points in the raw data are typically located
in the same geographical region. Instead, we want the maxima
to be performed in a way that isolates regions of interest rather
than just clustering within a specific region. This is where the
algorithms provided by TTK are highly useful as they enable
such identification and categorisation.

Figure 6 illustrates the full CosmoScout VR GUI for our
mosquito integration, where the health professional is explor-
ing the spread of Chikungunya virus via the Aedes Albopictus
mosquito over Rome in more detail. Via the node editor it
can be seen that they have applied filtering that considers a
wider range of maxima R0 values for the persistence diagrams
compared with the view of Figure 5. Furthermore, using the
controls at the top of the UI they are able to step through
time, enabling users to explore how predicted changes to
disease spread develop as the days and weeks progress. As
the time of interest is changed, CosmoScout VR will retrieve
the appropriate data files and extract the time points required.
The coloured spectrum box contained within the node editor
of Figure 6 illustrates applying threshold colours to a field of
interest, here the R0 heatmap, that will then be displayed to the
user. Such configurations can be predefined, which is useful
in a time critical situation because the health professional can
quickly load known visualisation configuration constants for
most accurately guidance.
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VI. TRICKLING OF PARTIAL SIMULATION RESULTS

Health professionals exploring mosquito-borne disease
spread via CosmoScout VR desire simulation results as soon
as possible to aid them in making timely decisions. There are
two aspects here, firstly the speed at which the simulation
codes can run through to completion, and secondly the time
queued up in the HPC machine batch system before execution
begins on the supercomputer. As described in Section III, jobs
running on HPC machines experience an unbounded queue
time where there is no guarantee about the time frame that
jobs will run in.

Via the VESTEC system, the mosquito disease spread
simulation code, data consumption, and workflows are flexible
enough to support the submission of multiple applications
for a specific scenario. Such submissions can range from
coarse gained short running configurations to more detailed
and longer executing versions. The idea is that the short
running applications will generate results much more quickly,
and although they might not be completely accurate or de-
tailed, they provide a helpful preview while the more detailed
configurations are still executing. Such coarse-grained results
will then be replaced automatically by CosmoScout VR when
the more accurate, longer running configuration results are
available. The mosquito simulation code makes this convenient
because it is running numerous ensembles, and by modifying
this number we can control the granularity.

One might assume that shorter running jobs, requesting
a smaller amount of parallelism and walltime, will progress
faster through the batch queue than larger jobs. However this
is a common but incorrect assumption. The behaviour of a
typical batch queue is illustrated by Figure 7, which shows
the scheduling coefficient matrix for ARCHER, the UK’s
previous national supercomputer running between 2013 and
2020. This matrix represents all the jobs submitted within a
quarter (over three calendar months), with the job size (in
nodes) and runtime of the job (in hours) illustrated on the
axis. For each box, which represents a specific configuration
of job size and runtime, the included number is the number
of jobs that corresponds to this configuration, and the colour
represents the scheduling coefficient. This coefficient is the
ratio of run time to run time plus queue time and, as such,
represents the fraction of the job’s time in the queue that
was spent running. A value of 1 indicates that the job started
instantaneously and a value of 0.5 indicates that the job queued
for the same amount of time that it ran for.

It can be seen from Figure 7 that by far the most popular
type jobs on ARCHER are those requesting small numbers of
nodes and running over a short time frame. However, typically
these do not start immediately, for example jobs requesting 1
node with up to an hour of runtime typically spend longer in
the queue rather than the time that they run for. This means
that if a user was to request a job of one node in size and this
was to run for approximately one hour, then on average the
job would have spent over an hour queuing before execution.
Therefore, whilst it is likely that short jobs will spend a shorter

Fig. 7. Scheduling coefficient matrix for jobs running on ARCHER over a
quarter (three months)

absolute time in the queue than a larger job, this is by no means
instantaneous and on average small, short jobs spend longer
queuing then they do executing.

However there is one situation where submitting short jobs
to an HPC machine can reliably result in faster batch queue
wait time, and that is where the machine provides a short
queue. Short, or debug, queues typically enable small jobs,
for instance those only running over a few nodes and running
for a short amount of time (20 minutes maximum walltime
being common), to be placed in a special high priority queue
that will run quickly compared to the main submission queue.
Consequently for specific HPC machines that provide this
capability, if we are able to partition our simulation run into
a coarse run that will fit into the short queue, and a longer
run that will require the normal queue, then this can be
advantageous.

Number
ensembles

Stage 1
time (sec)

Stage 2
time (sec)

Stage 3
time (sec)

Total
time (sec) Queue

10 16 4 66 86 short
1000 309 4 85 398 short
3000 1710 4 89 1803 normal

TABLE I
RUNTIME OF DIFFERENT MOSQUITO-BORNE DISEASE SPREAD

SIMULATION CONFIGURATIONS ON CIRRUS

Table I illustrates the runtime of different configurations of
the mosquito-spread simulation over a node of Cirrus. Each
Cirrus node contains two Intel Xeon E5-2695 (Broadwell)
CPUs, each with 18 cores, and 256GB RAM. In Table I
we provide the runtime of each of the three jobs submitted
to the HPC machine as described in Section IV and also
the total time. It can be seen that 10 simulation ensembles
involves a total of 86 seconds runtime, and 1000 ensem-
bles 398 seconds. Both of these fit into the short queue,
representing simulation runs that are able to deliver coarse-
grained results after approximately a minute and a half, and
then results of medium accuracy after around six and a half
minutes. The most accurate simulation configuration, with
3000 ensemble members, requires 1803 seconds runtime,
which is approximately thirty minutes, and this no longer
fits into the short queue. Therefore for this more accurate
configuration, in addition to the increased execution time it



must also be submitted to the normal queue and will therefore
likely experience a longer queue time which itself depends
upon how busy the HPC machine is at the time of submission.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have described the integration of an
mosquito-borne disease spread model with urgent comput-
ing. Leveraging the VESTEC system, this has unlocked the
convenient consumption and analysis of epidemiological data
using HPC as the underlying computational powerhouse to
run the required computational codes and undertake necessary
data transformations. We have described in detail how the
integration with the VESTEC system has been undertaken,
and demonstrated the benefits that this ecosystem provides for
making this technology available to human health profession-
als.

Whilst it would be possible to manually integrate such a
model with the HPC machines and constituent visualisation
and analytics technologies, this would be time consuming
and non-trivial. By contrast, the VESTEC system provides a
ecosystem for urgent computing where, by the development
of workflows and any bespoke UI components, one is able
to leverage the underlying lower level functionality including
HPC simulation marshalling and control, the tracking of
data-sets and their transfer, the consumption of results, and
appropriate data analytics to provide higher level quick to
consume information.

Considering further work, we look to integrate in the future
with a weather forecasting model. Currently it is possible to
feed in real-time sensor data and for the user to be able to
manipulate this via the CosmoScout VR user interface. How-
ever this provides limited opportunity to forecast the spread of
these diseases in the coming days and weeks based upon how
the weather might realistically change. In-fact other VESTEC
urgent workloads, such as tracking the progression of forest
fires, have been integrated with the high resolution Meso-NH
model which undertakes high resolution modelling on latest
Global Forecast System (GFS) data. As this weather model has
already been successfully integrated with the VESTEC system
it would likely be an obvious starting point, although this
would require some data manipulation to extract the tempera-
ture and precipitation fields of interest as well as format these
appropriately for the simulation codes. Furthermore we would
like to address continent scale simulations of mosquito-borne
disease spread, and this will require further optimisation at the
individual disease spread modelling code level. Leveraging the
existing visualisation and TTK analysis integrated in this work,
many of the building blocks are already in place to that will
enable us to present and organise the vast amounts of data that
this increased scale will generate.

The result of this work is a significant advancement in
human health capability, enabling these users to exploit ur-
gent computing for predicting, analysing, and mitigating the
spread of mosquito-borne diseases in near real-time. We have
demonstrated the importance and role of urgent computing for
these workloads, and the benefit of integrating with an existing

ecosystem, such as VESTEC, which lowers the barrier to entry
significantly. Consequently, this work also acts as a success
story for the use of urgent computing and HPC machines in
this regard, providing exciting new capabilities that deliver
very significant societal benefits.
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