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Abstract: Among the different types of skin cancer, melanoma is considered to be the deadliest and 
is difficult to treat at advanced stages. Detection of melanoma at earlier stages can lead to reduced 
mortality rates. Desktop-based computer-aided systems have been developed to assist 
dermatologists with early diagnosis. However, there is significant interest in developing portable, 
at-home melanoma diagnostic systems which can assess the risk of cancerous skin lesions. Here, we 
present a smartphone application that combines image capture capabilities with preprocessing and 
segmentation to extract the Asymmetry, Border irregularity, Color variegation, and Diameter 
(ABCD) features of a skin lesion. Using the feature sets, classification of malignancy is achieved 
through support vector machine classifiers. By using adaptive algorithms in the individual data-
processing stages, our approach is made computationally light, user friendly, and reliable in 
discriminating melanoma cases from benign ones. Images of skin lesions are either captured with 
the smartphone camera or imported from public datasets. The entire process from image capture to 
classification runs on an Android smartphone equipped with a detachable 10x lens, and processes 
an image in less than a second. The overall performance metrics are evaluated on a public database 
of 200 images with Synthetic Minority Over-sampling Technique (SMOTE) (80% sensitivity, 90% 
specificity, 88% accuracy, and 0.85 area under curve (AUC)) and without SMOTE (55% sensitivity, 
95% specificity, 90% accuracy, and 0.75 AUC). The evaluated performance metrics and computation 
times are comparable or better than previous methods. This all-inclusive smartphone application is 
designed to be easy-to-download and easy-to-navigate for the end user, which is imperative for the 
eventual democratization of such medical diagnostic systems. 

Keywords: Skin cancer; melanoma; active contours; lesion classifier; smartphone diagnostics; 
computer-aided diagnostic system 

 

1. Introduction 
Skin is the largest organ in the human body and comprises two distinct layers: epidermis and 

dermis. While the epidermis protects the body from harsh exposures (such as ultraviolet radiation, 
infection, injuries, and water loss), the dermis provides nutrition and energy to the epidermis through 
a network of blood vessels [1–3]. As with every organ in the body, the skin is prone to different forms 
of cancer. The two most common skin cancers are the basal cell carcinoma and squamous cell 
carcinoma, which arise from epidermal cells called keratinocytes [4]. A third, deadlier form of skin 
cancer is malignant melanoma, which develops from epidermal cells called melanocytes. Today, 
melanoma is notoriously frequent because of increasingly high rates of incidence that lead to a 
majority of skin cancer deaths [5,6]. 

To some extent, skin cancer is preventable, and regular screening of skin moles, either in the 
clinic or at-home, is beneficial for curtailing the progress of the disease. However, current guidelines 
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for screening skin cancer in the United States are inconsistent across different health organizations 
[7]. For instance, while the American Cancer Society recommends checking for skin cancer during 
periodic self-examinations by primary care physicians, the American Academy of Dermatology 
suggests that patients perform skin self-examination without sufficient clarity on the nature and 
frequency of screening. In a survey involving over 1600 physicians, it was concluded that the most 
effective skin cancer screening resulted when high-risk patients demanded a complete skin 
examination and the physicians also had sufficient medical training [7]. 

As with most cancers, early detection of melanoma can lead to reduced mortality according to 
several survey studies. In one study, 572 melanoma cases were detected over a 10-year timespan [7]. 
In another study, 18,000 patients were checked for melanoma over a 17-year timespan. Both studies 
suggested that the chances of detecting melanoma early on are higher in established patients who 
routinely visit a skin clinic and are educated on the benefits of routine skin examinations [7]. Besides 
routine physical examination by a primary care physician or dermatologist, skin self-examination in 
at-home settings is valuable for the early diagnosis of melanoma. A thorough skin self-examination 
involves a detailed diagnosis of all body parts, including the back of the body and scalp areas. In 
addition, imaging technologies aid in accurate diagnosis at an early stage, leading to better treatment 
and management strategies for melanoma. 

The methods to evaluate skin growth for potential prognosis of melanoma have evolved over 
the past few decades. Before the 1980s, melanomas were generally identified by naked-eye 
observation of changes in gross mole features, such as large size, bleeding, or ulceration [8]. In the 
case of suspicious lesions, biopsy of the lesion was done by removing the lesion for further analysis. 
This invasive method is still the most accurate method for diagnosis of melanoma, but requires the 
use of trained personnel and expensive equipment. During that time period, early prognosis was 
difficult because of the lack of technological advancements in imaging hardware and software tools. 
As time progressed, noninvasive techniques slowly became adopted that entailed less expensive 
equipment with good accuracy. The most commonly used noninvasive technique is dermoscopy or 
epiluminescence microscopy, where the skin lesions are examined. A dermoscope is an optical 
instrument that uses a light source to cancel out skin surface reflections [1,9–12]. This gives access to 
the in-depth structures and colors of the lesion. This device is connected to a computer and captures 
images or videos of the lesion that are later used for diagnosis. A sensitivity of 89% has been reported 
using the dermoscopy method; an improvement over the 70–85% reported for the naked-eye 
inspection approach [3]. However, the cost is prohibitive for general usage as the dermoscope has to 
be coupled to expensive equipment (such as stereo microscopes) to evaluate the malignancy of the 
lesion. 

Attempts to democratize skin diagnostics have been demonstrated that use cheaper alternatives 
to stereo microscopes as an imaging source. A method called named “mobile teledermatology” 
employed mobile phones to take digital images of the lesion but needed coupling with pocket 
dermoscopic devices to compensate for the poor-quality optics in early generation mobile devices. 
The acquired images were transferred to teleconsultants via virtual private networks (VPNs) located 
at remote locations for analysis and evaluation [13,14]. The two areas of improvement involve: (i) 
better hardware to capture high-resolution images and (ii) smarter computer-aided diagnosis (CAD) 
systems to accurately identify melanoma from dermoscopic images. Most of the previously reported 
CAD systems work on desktop personal computers (PCs) or workstations and assist the physicians 
to identify cancerous lesions at an early stage so that the treatment regimen can start right away. 
These CAD systems have generally been tested on dermoscopic or microscopic lesion images, even 
though they could be integrated with smartphones. Today, mobile phones are equipped with high 
processing power, more storage capacity, high-resolution image sensors, and larger memory [15,16]. 
This should enable mobile phones to capture images and run large computational tasks on the image 
directly on the device itself. 

In this work, we developed a smartphone application that functions as an image capture and 
diagnostic tool for at-home testing of skin cancer. The smartphone optics are enhanced by an 
inexpensive, commercially available 10x lens. The flow diagram A flowchart of the steps in the entire 
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process involved is illustrated in Figure 1a. A screenshot of the smartphone application classifying a 
lesion image from a public dataset is shown in Figure 1b. Images of skin lesions are either captured 
with the smartphone camera or imported from the public dataset. Thereafter, four image-processing 
steps are implemented: preprocessing, segmentation, feature extraction, and classification. A 
Gaussian filter reduces the noise, followed by a segmentation algorithm using curve evolution with 
fast level-set approximations to extract the lesion from the image. A linear affine transformation 
aligns the lesion axes with the image axes. From the transformed image, the ABCD (Asymmetry, 
Border irregularity, Color variegation, and Diameter) rule is used to extract features and input them 
into a support vector machine (SVM) classifier to classify the lesion as benign or melanoma. The 
development of such all-inclusive skin diagnostic applications is anticipated to gain momentum in 
coming years, considering the present scenario of health care reforms, expensive costs of hospital 
visits, and the high mortality rates from melanoma. 

 

Figure 1. Overview of our smartphone application for the prognosis of melanoma. (a) Flowchart 
shows the different steps involved in the processing of lesion images: The user selects an imported 
image on the smartphone and selects BEGIN to start the processing stages. The computer-aided 
diagnosis (CAD) system first preprocesses the image using a Gaussian filter and segments the image 
using the geometric curve evolution algorithm. The image is rotated to align with the major axes. 
Asymmetry, Border irregularity, Color variegation, and Diameter (ABCD) features are extracted from 
the rotated image and classified as benign or melanoma using a support vector machine (SVM) 
classifier. (b) A screenshot of the final screen of the smartphone application running on the Android 
Operating System shows a sample lesion classified as melanoma. 

2. Materials and Methods 

Our smartphone application is designed to have relative ease of operation without 
compromising the accuracy in predicting melanoma cases. The application is intended to have a 
minimal number of intervention steps from the user with simplistic graphical representation of the 
classified results. Algorithms should be preferred that can run efficiently on a mobile phone without 
overloading the computing device. The four stages of image processing performed by the 
smartphone application are: preprocessing, segmentation, feature extraction, and classification. 

2.1. Preprocessing 

Typically, a dermoscopic image may contain artefacts, such as hairs, ruler markings, air bubbles, 
and uneven illumination. The first stage towards classifying the malignancy of the skin mole involves 
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preprocessing of the captured image, where the intent is to remove the effects of the abovementioned 
artefacts, reduce noise, and enhance the image contrast in the image. 

In the preprocessing step, color transformation is first performed where the color transformation 
is first performed, where the RGB image is converted to a different color space that separates the 
color (chroma) component from the intensity (luma) component. The commonly used color spaces 
are HSV (where H represents hue, S represents saturation, and V represents value in the cylindrical 
coordinate system), Y'UV (where Y' represents luminance, and U and V represent the chromaticity 
components in the Cartesian system), and LAB (where L represents lightness, and A and B represent 
the chromaticity components in the Cartesian system). We converted the image from the RGB color 
space to the Y'UV color space, which separates the color component from the illumination component 
of the image, and is known to perform better in these respects than other color spaces, such as HSV, 
HIS (where H represents hue, S represents saturation, and I represents intensity in the cylindrical 
coordinate system), and LAB [17]. This conversion enables the smartphone application to perform 
consistently under varied illumination conditions (such as indoor and outdoor lighting) and makes 
the detection of lesion borders less prone to illumination effects. An RGB image is converted to the 
Y'UV color space based on the National Television System Committee (NTSC) standard using the 
following equations [18]: 

 𝑌′ =  0.299 R +  0.587 G +  0.114 B (1) 

 𝑈 = −0.147 R −  0.289 G +  0.436 B (2) 

 𝑉 =  0.615 R −  0.515 G −  0.100 B. (3) 
Next, to reduce the effects of artefacts, several filters are available that help to smoothen the 

image. Commonly used filters are Gaussian [9,19–22], median [16,23,24], and anisotropic diffusion 
filters [25,26]. We used a two-dimensional (2-D) Gaussian filter 𝐺 for a point (𝑥, 𝑦) represented by 
Equation (4) below [27]: 

 𝐺(𝑥, 𝑦) = 12𝜋𝜎ଶ 𝑒ି൬௫మା௬మଶఙమ ൰  

(4) 
where 𝜎௫ and 𝜎௬  are the standard deviations and µ௫ and µ௬ are the means across both dimensions. 
The Gaussian filtering produces a resultant image by performing convolution of the filter with the 
image. The size of the filter is determined by its kernel value. A large kernel value significantly blurs 
the image and weakens the borderline along with noise, whereas a small kernel value does not reduce 
the noise to a desirable extent. We found that a kernel of 𝑘 = 5 and a standard deviation of  𝜎 = 1 
provided the best results. 

2.2. Segmentation 

In the segmentation step, the lesion boundary is identified from the preprocessed image, which 
is then used to extract physical features of the lesion. A number of segmentation algorithms have 
been reported in the literature, such as the edge detection [26,28,29], thresholding [30,31], and active 
contour methods. previous segmentation algorithms were highly sensitive to noise and thus required 
high-contrast images in addition to inputs from the user to adjust the segmented region. Today, active 
contour algorithms have gained popularity, where a deformable curve progresses until it fits the 
boundary of the region of interest (ROI). Active contour algorithms are categorized as parametric or 
geometric based on the curve tracking method. In the parametric active contour model, the 
deformable curve is guided by by energy forces with internal energy controlling the curve’s 
expansion or shrinkage. The image energies (such as image intensities, gradients, edges, and corners) 
are used to guide the curve to the ROI. Although parametric models have worked even when the 
ROI has weak borders, there are challenges in handling ROIs with large curvatures and topological 
changes [10,23]. The geometric active contour model improves upon parametric models by adapting 
to topological changes. One popular geometric active contour model is known as the Chan–Vese 
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model [25,32]. Generally speaking, active contour models involve solving partial differential 
equations (PDEs) for curve evolution, creating a computational burden [33]. 

Our choice of segmentation algorithms was focused around geometric active contour models for 
the reasons mentioned above, but we desired techniques outside the PDE realm that were 
computationally light and could run efficiently on a smartphone. We used a modified Chan–Vese 
model that runs in real-time with fast level-set approximation [34]. In this model, a curve 𝜙(𝑥, 𝑦) denotes a level set function over a grid 𝑢௢ and is expressed by Equation (6) below:  
 ϕ(x, y) =  ⎩⎨

⎧−3,   𝑖𝑓 (𝑥, 𝑦) 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡−1, 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿௜௡1, 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐿௢௨௧3,   𝑖𝑓 (𝑥, 𝑦) 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑜𝑖𝑛𝑡     

(5) 

where (𝑥, 𝑦) represents a point location on the grid. The lists 𝐿௜௡ and 𝐿௢௨௧ contain points inside (𝜙 <0) and outside (𝜙 > 0) of the curve separated by pixels and allow for localization of the curve. The 
‘interior points’ are the points inside 𝐿௜௡ and the ‘exterior points’ are the points outside 𝐿௢௨௧. The 
model updates the curve during each evolution until it fits the boundary of the object of interest. The 
process of curve evolution is composed of a data-dependent cycle and a smoothing cycle. Both cycles 
are repeated for 𝑁௔, 𝑁௦ iterations for each evolution. In the data-dependent cycle, a field speed 𝐹ௗ  
represented by Equation (6) is calculated for all the points in 𝐿௜௡ and 𝐿௢௨௧.  
 𝐹ௗ(𝑥, 𝑦) =  λଶ(|𝑢଴(𝑥, 𝑦) − 𝑐ଶ|ଶ) −  λଵ(|𝑢଴(𝑥, 𝑦) − 𝑐ଵ|ଶ) (6) 

The parameters 𝜆ଵ and 𝜆ଶ are fixed integer values, and 𝑐ଵand 𝑐ଶ are the mean values inside and 
outside the curve. The pixel intensity at a point (𝑥, 𝑦) on the grid is given by 𝑢௢(𝑥, 𝑦). For each point 
in 𝐿௢௨௧, if 𝐹ௗ > 0, the point is switched from 𝐿௢௨௧ to 𝐿௜௡ and redundant points are deleted. Similarly, 
for each point in  𝐿௜௡ , if  𝐹ௗ < 0, the point is switched from 𝐿௜௡ to 𝐿௢௨௧ and redundant points are 
deleted. In the smoothing cycle, a speed 𝐹௜௡௧ represented by Equation (7) is calculated for all the 
points in 𝐿௜௡ and 𝐿௢௨௧.  
 𝐹௜௡௧(𝑥, 𝑦) =  ⎩⎪⎨

⎪⎧ 1, 𝑖𝑓 𝐺 ⊗ 𝐻(−ϕ)(x, y) > 12 ∀ 𝑥 ∈ 𝐿௢௨௧−1, 𝑖𝑓 𝐺 ⊗ 𝐻(−ϕ)(x, y) > 12 ∀ 𝑥 ∈ 𝐿௜௡0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

(7) 

where G and H represent the 2-D Gaussian filter and Heaviside functions, and 𝐻(−ϕ) indicates the 
object region of the curve (ϕ). For each point in the 𝐿௢௨௧, if 𝐹௜௡௧ > 0, the point is switched from 𝐿௢௨௧ to 𝐿௜௡ and redundant points are deleted. Similarly, for each point in 𝐿௜௡, if 𝐹௜௡௧ < 0, the point is switched 
from  𝐿௜௡ to 𝐿௢௨௧ and redundant points are deleted. The stopping condition of this segmentation 
algorithm is defined when the lists (𝐿௜௡, 𝐿௢௨௧) are not updated after the first cycle or a set number of 
iterations is reached. In our case, 𝜆ଵ = 2, 𝜆ଶ = 1 were determined to be the best parameters after 
multiple trial and error tests. 

A cartoon depicting the curve evolution from the initial set curve is shown in Figure 2. In Figure 
2a, the lesion image is shown as a 2-D grid with the object of interest depicted in light red. The initial 
lists (𝐿௜௡, 𝐿௢௨௧) are shown by the light green and dark green colors, respectively, where an initially 
segmented region, based on ϕ, is overlaid on the original image. During each iteration, the points in 
two lists are updated in the direction that minimizes the differences in mean values (𝑐ଵ, 𝑐ଶ). After a 
certain number of iterations, the curve represented by 𝐶 fits to the boundary as shown in Figure 2b.  
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Figure 2. Illustration of the geometric active contour curve evolution process during segmentation to 
identify a lesion. (a) The object of interest is drawn on a two-dimensional (2-D) grid image. The initial 
elliptic curve with the same height as the image and roughly 80% of the image width along with the 
initial contours of L୧୬ and L୭୳୲ are overlaid on the image. The L୧୬, L୭୳୲ contours represent the outer 
and inner curves, respectively, with a one-pixel gap. All of the points in the image are assigned values 
based on the level-set function ϕ. At each iteration, the curves move inward towards the object 
determined by the speeds. (b) The final contours of L୧୬ and L୭୳୲ along with the boundary C of the 
object after a certain number of iterations are shown. 

2.3. Feature Extraction 

In  the  1980s,  a  group at  New  York  University  coined  the  ABCD  acronym  to  
categorize the morphological and clinical features of a skin mole or lesion [35]. This acronym stands 
for Asymmetry, Border irregularity, Color variegation, and Diameter greater than 6 mm [31,36–38]. 
The ABCD rule is best suited to differentiate early, thin tumors from benign, pigmented lesions. 
Besides the ABCD rule, there are other methods and algorithms to detect early melanoma. Pattern 
analysis has been employed with epifluorescence and video microscopy to categorize the type of skin 
lesion based upon its general appearance, surface, pigmented patterns, border, and depigmentation 
[39,40]. Pattern analysis and the ABCD rule are the oldest and most widely adopted methods for 
melanoma detection [41]. The C.A.S.H. algorithm identifies the Color, Architectural disorder, 
Symmetry, and Homogeneity/Heterogeneity of mole structures [42]. The C.A.S.H. algorithm has a 
lower specificity compared to the ABCD rule [8,43]. The Menzies method images the pigmented skin 
lesions using an immersion oil and categorizes the mole based on the symmetry of pattern and one 
color [44]. The Glasgow seven-point checklist performs diagnosis on three major features (change in 
size of lesion,  irregular  pigmentation,  and  irregular  border)  and  four  minor  features  
(inflammation,  itching sensation, diameter greater than 7 mm, and oozing of lesions) [1,3,8,45,46]. 
Because of its inherent complexity, the Glasgow seven-point checklist is less widely adopted and has 
a lower pooled sensitivity compared to the ABCD rule [47]. Another method extends the ABCD rule 
to incorporate the evolution of the lesion (E parameter) by adding the patient’s description of lesion 
change (e.g., enlargement, elevation, and color change) [45,48]. Although the ABCDE rule has been 
validated in clinical practice, no randomized clinical trials have shown that there is an improvement 
in the early detection of melanoma [45]. In addition, image acquisition methods have also been 
developed to differentiate the amount of light absorbed, transmitted, or backscattered by the melanin 
content of the lesion. Examples of such image acquisition methods are hyperspectral imaging, 
reflectance confocal microscopy, and optical coherence tomography [43]. However, these image 
acquisition methods are yet to be standardized to accurately calibrate the absorbance or reflectance 
from the imaging window [43]. Information about the inflammatory process in the skin has also been 
retrieved by the use of ultrasound technology and electrical bioimpedance measurements. However, 
ultrasound images are difficult to interpret and the electrical impedance of the skin can vary greatly 
based on age, gender, and body location [8]. In addition, advanced dermoscopy and photography 
tools are commercially available for these applications (e.g., digital epiluminescence (dermoscopic) 
microscopy (DELM), SIAscopeTM, MIRROR DermaGraphixTM software, DigitalDerm MoleMapCDTM) 
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along with accessory cameras (e.g., MolemaxTM, SolarScanTM, VivaCamTM). These equipment are cost 
prohibitive for at-home diagnostics [49]. 

In our smartphone application, lesion features are extracted following the ABCD rule. Because 
of its simplicity in implementation, the ABCD rule is widely adopted and taught in dermatology 
classes. Furthermore, among all the computerized methods for melanoma detection, the ABCD rule 
is the most popular and most effective algorithm for ruling out melanoma [47]. 

The ‘Asymmetry’ feature stems from the fact that lesion images taken using a dermoscope are 
generally not symmetric with the major x–y axes of the images. However, to judge if there is any 
asymmetry in shape, the lesion axes must be aligned to the major axes of the image. To first 
accomplish this alignment, it is necessary to transform the segmented image (𝑢௢) by finding the 
lesion’s minimum enclosing rectangle and extracting the rectangular matrix from the image. This 
matrix provides the major and minor axes, along with the tilt angle (𝜃) of the rectangle. Next, we 
calculate the rotation matrix (𝑀) from the tilt angle as shown in Equation (9).   
  =  𝑠𝑓 cos(𝜃),  = 𝑠𝑓 sin(𝜃)   (8) 

 𝑀 =  ൤ −
                    (1 − )𝐶௫ − 𝐶௬    𝐶௫ + (1 − )𝐶௬቉   (9) 

The parameters 𝛼 and 𝛽 are calculated from the scale factor and tilt angle as shown in Equation 
(8). The scale factor (𝑠𝑓) determines whether the image should be cropped while rotating or scaling 
the image so that no information is lost. The application automatically adjusts the scale factor based 
on the area and position of the lesion in the image. The values (𝐶௫, 𝐶௬) represent the centroid position 
of the lesion. From the rotation matrix (𝑀), the segmented image is transformed to obtain the rotated 
image (𝑅) as shown in Equation (10) [2]:  

 𝑅(𝑥, 𝑦)  =  𝑢௢(𝑀ଵଵ𝑥 + 𝑀ଵଶ𝑦 + 𝑀ଵଷ, 𝑀ଶଵ𝑥 + 𝑀ଶଶ𝑦 + 𝑀ଶଷ)   (10) 
where 𝑀௜௝ ∀ 𝑖 = 1,2 𝑗 = 1,2,3 represents the corresponding value at the location (𝑖, 𝑗) in the rotation 
matrix.  

The asymmetry score is calculated from a total of eight parameters. The first two parameters, 
vertical and horizontal asymmetry, are calculated by overlapping the binary form of the warped 
segmented image with the mirror images in horizontal and vertical directions. The sum of all the non-
zero pixels in the image is computed and divided by two, assuming that the asymmetrical area will 
be the same across horizontal and vertical axes. The asymmetry level (AS) is calculated as a 
percentage of the non-zero pixels in the overlapped image over the lesion area and is represented by 
Equation (11), 
 𝐴𝑆 =  𝑁𝑂𝑅𝐴  × 100 (11) 

where NOR represents the non-overlapped region (non-zero pixels) and A represents the lesion area 
or the total sum of non-zero pixels in the binary image. The remaining six parameters refer to the 
asymmetry in structure and are calculated as the distance between the lesion centroid and the 
weighted centroids of the color contours (obtained from the Color variegation feature). 

The ‘Border irregularity’ feature is generally defined as the level of deviation from a perfect circle 
and measured by the irregularity index (I) as shown in Equation (12), 
 𝐼 =  𝑃ଶ4𝜋𝐴   (12) 

where P and A are the perimeter and the area of the lesion, respectively [31,50]. The minimum value 
of the irregularity index is the one that corresponds to a perfect circle. As the lesion shape deviates 
from that of a perfect circle, the value of the irregularity index increases. 

The ‘Color variegation’ feature denotes the different number of colors of the lesion from the HSV 
(Hue, Saturation, and Value) image. This is calculated by iterating through each pixel of the lesion, 
extracting its hue value, and grouping all the pixels that have hue values within a specified range. 
Our color set includes the following colors: white, red, light brown, dark brown, blue-gray, and black. 
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The HSV values for these colors are determined by trial and error. In general, a benign mole has one 
or two colors while a melanocytic mole may have more than three colors. 

The ‘Diameter greater than 6 mm’ feature refers to the size of a lesion in the suspicious case of 
melanoma. However, even with lesions having a diameter of less than 6 mm, the mole should be 
analyzed for early risks of melanoma. The diameter of the lesion is calculated as shown in Equation 
(13):  
 𝐷 =  2𝑎𝛾 (13) 

where a is the side length of the minimum area rectangle in pixels, and γ is the conversion factor from 
pixels to millimeters. The γ value is calculated using the parameters of the imaging system, such as 
focal length and the distance from the object to the lens in the system. 

2.4. Classification 

The extracted features are passed to to a classifier that categorizes whether the lesion is 
suspicious of melanoma or benign in nature. To generate an optimum classifier, the ABCD feature 
sets from all of the images are randomly divided into training and test sets. Then, a supervised 
machine learning classification model learns to classify the lesions into different classes based on the 
input training set. This is generally referred to as the training step. The test set, excluding the classes, 
is applied on the generated model to create classes which are compared with the ones in the test set 
to evaluate the model’s performance. 

The classification algorithm for our smartphone application prioritized robustness, supporting 
libraries developed for different platforms (Desktop, smartphones) with better performance and 
faster classification. We chose the SVM classification algorithm because it satisfied all the above 
conditions and has been demonstrated to work better than other classifiers in other studies [51]. 
Besides SVM, different classifiers have been implemented for this purpose, including k-nearest 
neighbor (kNN) [51,52], decision trees [51], and artificial neural networks [53,54] have been 
implemented for this purpose. The SVM algorithm constructs a discrimination plane (hyperplane) in 
high-dimensional space that best separates the input data into different classes. Let the training data 
with  𝑚 samples be labelled  {𝑥௜, 𝑦௜}, where 𝑥௜  ∈ input features (𝑿), 𝑦௜  ∈  input classes (𝒚) . Let the 
separating hyperplane constructed by 𝑥  be defined as 𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏, where 𝑤 is the normal 
distance to the hyperplane, |𝑏| / ||𝑤||  is the perpendicular distance from the origin, and ||𝑤|| is the 
Euclidean norm of 𝑤. The hyperplanes can be formed by 𝑥 that satisfy 𝑓(𝑥) = 0 in such a way that 
the positive samples satisfy 𝑓(𝑥) > 0 and negative samples satisfy 𝑓(𝑥) < 0. Depending on the type 
of data, the following constraints can be formulated [55]: 
 𝑦௜(𝑓(𝑥௜)) − 1 ≥ 0 ∀ 𝑖 = 1, … , 𝑚  (Linearly separable)  (14) 

 𝑦௜(𝑓(𝑥௜)) − 1 ≥ −𝜉௜,  𝜉௜ ≥ 0 ∀ 𝑖 = 1, … , 𝑚 (Linearly non − separable). (15) 
For the linearly non-separable data, the variables 𝜉௜, referred to as slack variables, are added 

such that ∑ 𝜉௜ ௜ sets the upper bound on the total number of errors. An extra cost parameter 𝐶 is 
added to assign a penalty for errors. The algorithm chooses the optimum hyperplane based on the 
largest margin, which is calculated as the sum of the shortest distances from the closest positive and 
negative sample to the hyperplane. The largest margin is obtained by forming two parallel 
hyperplanes 𝐻1 and 𝐻2. The points that satisfy 𝛼௜ > 0 are called support vectors. These parallel 
hyperplanes are obtained by minimizing the ห|𝑤|หଶ subjected to the inequality constraints (Equation 
(14) or Equation (15)) depending on the type of data. This minimization is defined by Lagrangian 
functions for different types of data [55]: 
 𝐿௟௦  =  ෍ 𝛼௜௠௜ୀଵ  − 12 ෍ 𝛼௜𝑦௜𝛼௝𝑦௝𝑥௜ ∙ 𝑥௝௠௜,௝ୀଵ , 𝛼௜ ≥ 0 (16) 

 𝐿௟௡௦   =  ෍ 𝛼௜௠௜ୀଵ  − 12 ෍ 𝛼௜𝑦௜𝛼௝𝑦௝𝑥௜ ∙ 𝑥௝௠௜,௝ୀଵ , 0 ≤   𝛼௜ ≤ C. (17) 
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The function Equation (17) for linearly separable data  (𝐿௟௦) satisfies the conditions  𝑤 =∑ 𝛼௜𝑦௜𝑥௜௠௜ୀଵ  and ∑ 𝛼௜𝑦௜௠௜ୀଵ = 0, where 𝛼௜, 𝑖 = 1, … , 𝑚 are positive Lagrange multipliers for each of the 
constraints Equation (17) for linearly separable data. Equation (17) for linearly non-separable data  (𝐿௟௡௦) is subjected to conditions ∑ 𝛼௜𝑦௜௠௜ୀଵ = 0, 𝑖 = 1, … , 𝑚. 

For nonlinear data, first the samples are mapped to a high-dimensional space  (𝐻)  defined 
as  𝜙: 𝑋 → 𝐻 . A kernel function, defined as 𝐾൫𝑥௜, 𝑥௝൯ = 𝜙(𝑥௜) ∙ 𝜙൫𝑥௝൯, is used to calculate the dot 
product of the samples in the higher dimension. The Lagrangian function is modified as [55]: 
 𝐿௡௟   =  ෍ 𝛼௜௠௜ୀଵ  − 12 ෍ 𝛼௜𝑦௜𝛼௝𝑦௝𝐾(𝑥௜, 𝑥௝), 0 ≤   𝛼௜ ≤ C௠௜,௝ୀଵ .   (18) 

The above Equation (18) satisfies the conditions ∑ 𝛼௜𝑦௜௠௜ୀଵ = 0, where 𝛼௜, 𝑖 = 1, … , 𝑚. The kernel 
function can be set by the user. We tested our smartphone application with three different kernels: 
Linear, Radial basis function (RBF), and a third-degree polynomial function. 

3. Results 

We initially trained and tested our smartphone application on the publicly available PH2 
database [56]. The database has been analyzed by expert dermatologists with added information, 
such as segmented lesions, identified colors, and their clinical diagnosis. The database consists of 200 
dermoscopic images (80 atypical nevi, 80 common nevi, and 40 melanomas) taken by a Mole Analyzer 
system with a 20x magnification. The RGB images are 8-bit with a resolution of 768 × 560 pixels. To 
test the images in the database, our smartphone application uses the computer vision library OpenCV 
for Java. The segmentation algorithm is implemented in C++ and embedded into the smartphone 
application using Android NDK (native development kit). 

Representative images after the preprocessing stage are depicted in Figure 3. In Figure 3a, the 
first two rows show images of melanoma cases and the last two rows show images of benign cases. 
We applied the Gaussian filter and tested the dataset with values of the kernel (𝑘) ranging from 3 to 
11, while maintaining a standard deviation (𝜎) value of 1. We found that 𝑘 = 5 and 𝜎 = 1 gave the 
best results as shown in Figure 3b. A color transformation from the RGB to the YUV color space was 
performed on the images (Figure 3c). 

 

Figure 3. The preprocessing stage involves applying a Gaussian filter and color transformation. (a) 
The column shows the representative images from the publicly available PH2 dataset. The top two 
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rows are images for melanoma cases and the bottom two rows are images for benign cases. (b) The 
column shows the results after applying the Gaussian filter with kernel value of 5 and a standard 
deviation of 1. (c) The column shows the results after converting the color space from RGB to YUV. 
Scale bar = 2 mm. 

Thereafter, the procedure for segmentation is applied to the images in the dataset. The 
algorithmic parameters 𝛼, 𝛽, and 𝛾  are used to specify the importance of the Y, U, and V color 
channels with respect to segmentation and can be adjusted to add more weight to a specific channel, 
if needed. The initial contour was set at 65% of the image’s width and height, and a maximum of 400 
iterations were required to find the final contour. Visuals of the curve evolution during segmentation 
of representative benign and melanoma cases are shown in Figure 4. The first two rows refer to the 
melanoma cases and the next two rows refer to the benign cases. The curve at different iteration 
points (50, 100, 200, and 400) is overlaid on the original image in different colors (red, green, cyan, 
and blue) as shown in Figure 4a, c. It is interesting to observe that the algorithm performs outward 
evolution for melanoma images and inward evolution for benign images as shown in Figure 4a, c. 
The final curve is represented by the blue color. The segmented image based on this final curve for 
these images is shown in Figure 4b, d. If the lambda values (𝜆ଵ, 𝜆ଶ) are set to values (>2), this seems 
to affect the segmentation significantly. It is, however, worth noting that, in melanoma cases, the 
segmentation curve is slightly under-fitted in some cases as shown in Figure 4a, c. In addition, the 
ABCD values are shown for these images. From the figure, it can be inferred that these values are 
higher in the melanoma cases. 

 

Figure 4. The segmentation stage identifies the lesion from the background using the geometric active 
contour algorithm. The top two rows are images for melanoma cases and the bottom two rows are 
images for benign cases. Images in the (a) and (c) columns show the original images overlaid with the 
resulting curve after evolution of 50 iterations (Red), 100 iterations (Green), 200 iterations (Cyan), and 
400 iterations (Blue). The images in the (b) and (d) columns show the corresponding final segmented 
images. The values of the ABCD features are listed. Scale bar = 2 mm. 

Our procedure for calculating the asymmetry in shape is depicted in Figure 5 for two 
representative benign and melanoma cases. The top two rows represent the melanoma cases while 
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the next two rows show the benign cases. Figure 5a, b shows the images after segmenting the lesions 
from the original images and rotating them to align with the image axes. Figure 5c, d shows the 
results of the horizontal and vertical asymmetries, in shape, overlaid with their values. The vertical 
and horizontal asymmetry values, represented by darkened pixels, are higher for melanoma cases 
than for benign cases. 

 

Figure 5. The asymmetry in shape is illustrated on representative lesion images. The top two rows are 
images for melanoma cases and the bottom two rows are images for benign cases. (a) The column 
represents the images obtained after the segmentation stage. (b) The images are warped (rotated) so 
that the lesion axes are aligned with the image axes. (c) Horizontal asymmetry is calculated by 
superimposing the horizontally flipped lesion onto the original lesion and marking the non-
overlapped regions with black pixel values. (d) Vertical asymmetry of the lesion is calculated by 
superimposing the vertically flipped lesion onto the original lesion and marking the non-overlapped 
regions with black pixel values. The values of horizontal and vertical asymmetry (A_H and A_V, 
respectively) are listed within the images. Scale bar = 2 mm. 

The method to estimate the number of colors (for color variegation) that represents color 
variegation is applied to the dataset, and representative images (five melanoma and five benign 
cases) are shown in Figure 6a, c. For most of the benign cases, the number of colors is limited to 2 
(light brown and dark brown). However, in the case of melanoma, there are generally more than two 
colors present. All six color parameters are labelled with different colors: dark brown (red), blue gray 
(green), light brown (yellow), white (cyan), red (blue), and black (black). The original images with 
color contours drawn for both melanoma and benign are illustrated in Figure 6b, d. 
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Figure 6. The color variegation feature is illustrated showing the different color contours on 
representative lesion images. The top two rows represent melanoma cases and the bottom two rows 
represent benign cases. (a, c) The images shown here are the original images from the PH2 dataset. 
(b, d) The original images are overlaid with the different color region borders detected by the 
smartphone application. The colors red, green, yellow, cyan, blue, and black correspond to the dark 
brown, blue gray, light brown, white, red, and black color parameters. Scale bar = 2 mm. 

The ABCD features extracted from all of the images are split into training and testing sets with 
a 70:30 ratio. Because of the low ratio of melanoma to benign cases in the dataset (1:4), we used a 
popular oversampling algorithm called Synthetic Minority Over-sampling Technique SMOTE [57] to 
synthetically generate more samples for melanoma to update the training set. The features in the 
training set are then scaled by subtracting the mean and dividing by the standard deviation for each 
feature independently maintaining zero mean and unit variance. This scaling is also applied to the 
testing set using the same mean and standard deviation values from the training set before testing 
against the classifiers. We evaluated three different kernels for the SVM classifier: Linear, Radial basis 
function (RBF), and Polynomial against evaluation parameters (sensitivity, specificity, accuracy, and 
area under curve (AUC)) on the PH2 dataset. We plotted the receiver operating curves (ROCs) and 
calculated the associated area under the curve (AUC) values (S1). The evaluation metrics for the three 
kernels are shown in Table 1 for the cases of with and without SMOTE. With SMOTE, the RBF kernel 
performed better than the other two alternatives (linear and polynomial) for the four evaluation 
parameters (80% sensitivity, 90% specificity, 88% accuracy, and 0.85 AUC). Without SMOTE, the 
polynomial kernel performed slightly better than the other two kernels for the evaluation parameters 
(55% sensitivity, 95% specificity, 90% accuracy, and 0.75 AUC). For studies on early melanoma 
detection, very high sensitivity is desired. Our calculations indicate that the sensitivity and AUC 
values with SMOTE were better than those without SMOTE, and the RBF kernel provided the best 
results with SMOTE. 

 
 



Symmetry 2019, 11, 790 13 of 19 

 

Table 1. Evaluation parameters (i.e., sensitivity, specificity, accuracy, and area under curve (AUC)) 
were calculated on the PH2 dataset for three SVM kernels (i.e. Linear, Radial basis function (RBF), 
and Polynomial). The RBF kernel provides the best performance compared to the other two kernels. 

SVM Kernel 

With SMOTE Without 
SMOTE 

Sensitivity 

S
p
e
c
if
i
c
it
y 

A
c
c
u
r
a
c
y 

AUC Sensitivity 

S
p
e
c
if
i
c
it
y 

A
c
c
u
r
a
c
y 

A
U
C 

Linear 79 
8
2 

8
0 

0.81 50 
9
2 

8
4 

0.
7
1 

Radial basis function 
(RBF) 80 

9
0 

8
8 

0.85 50 
9
5 

8
6 

0.
7
2 

Polynomial 79 
7
5 

7
6 

0.71 55 
9
5 

9
0 

0.
7
5 

The importance of each ABCD feature was evaluated by training the SVM classifier with the RBF 
kernel. The results are shown in Table 2. When only considering Color variegation, 96% of the 
melanoma cases were correctly identified, though many false positives were present. Similarly, based 
on asymmetry alone, 84% of the benign cases were correctly identified, but the increased frequency 
of false negatives lowered the accuracy and sensitivity values. The diameter feature seemed to have 
better performance when compared to others. A classifier combining all the ABCD features yielded 
improved precision (91%) and sensitivity (80%). The associated ROC curves for Table 2 and for 
multiple SVM kernel parameters are provided in the supplemental file (S1). 

Table 2. For each ABCD feature, the evaluation parameters (i.e. sensitivity, specificity, accuracy, and 
precision) were calculated and compared with results from combining all the features on the PH2 
dataset. 

Features Parameters 
Sensitivity Specificity Accuracy Precision 

Asymmetry 23 84 54 62 
Border 81 63 72 68 
Color 96 42 69 58 

Diameter 90 71 80 75 
Overall 80 90 88 91 

For all images, a comparison of computational times (in milliseconds) was performed for each 
processing stage on a desktop (Intel Xeon-E5 CPU, 32 GB RAM, Windows 10) and an Android Phone 
(Samsung S6). On the desktop, a program was written that runs in Python and makes use of the 
OpenCV library for Python to perform the image analysis. To speed up the computation time, the 
same segmentation program used in the smartphone is wrapped using C++ bindings for Python. The 
results are shown in Table 3. Apart from the segmentation step, the remaining stages take similar 
computation times for both the benign and melanoma cases on a smartphone and desktop. In both 
devices, the segmentation step takes longer in melanoma cases (300–400 iterations) when compared 
to most benign cases (200–250 iterations). The segmentation would normally take longer on a 
smartphone than on a desktop, but due to the nature of the wrapper call and some additional steps 
required by the desktop program to extract the lesion boundary, the segmentation duration is longer 
on the desktop application. 
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Table 3. The computational time of each image-processing stage in our smartphone application is 
listed as it is run on a Desktop (Intel Xeon-E5 CPU, 32 GB RAM, Windows 10) and Android Phone 
(Samsung S6) using the PH2 dataset. 

Stage/Device Benign Melanoma 
Desktop PC Android Phone Desktop PC Android Phone 

Preprocessing 78 ± 10 116 ± 18 68 ± 18 109 ± 6 
Segmentation 283 ± 139 208 ± 106 415 ± 179 288 ± 92 

Feature Extraction 27 ± 7 41 ± 13 31 ± 9 47 ± 14 
Classification 10 ± 2 19 ± 5 10 ± 2 19 ± 5 

Total Time (ms) 398 384 524 463 

The computational time estimated for our smartphone application is lower than those 
previously reported. For instance, Andrea Pennisi et.al. reported that their system took 1.990 s on an 
Intel i3-2370M CPU and 4 GB of RAM desktop system to classify an image as melanoma [28]. Aleem 
et.al. stated that their method took 14.938 s on preprocessed 640 × 480 images using an Android 
smartphone [22]. Majtner et.al. reported that the computation time to extract the features alone was 
around 0.6 to 3.3 s [19]. Oliveira et.al. noted that their CAD system took around 8 s per image to 
classify the lesion on a desktop computer equipped with Intel i5-650 CPU with 8 GB of RAM [25]. Do 
et.al. reported that their smartphone application classified the lesion, taken by a Samsung Galaxy S4 
Zoom smartphone, in less than 5 s after the image is resized with the longer edge at 512 pixels 
maintaining the same aspect ratio [16]. In comparison, our smartphone application takes less than 
one second to completely process and classify an image of dimensions 768 × 560 pixels without 
compromising the accuracy in classification. 

After training and testing the smartphone application on images in the PH2 database, we wanted 
to completely run the developed platform on live images captured using the phone’s in-built 
hardware. The phone is attached with a 10x lens ($11, AMIR camera lens kit, Shenzhen Amier 
Technology) to allow us to take microscopic images of the skin moles. Eight individuals, each having 
different skin tones, volunteered to have images of their moles captured by a smartphone (Figure 7a). 
The operational procedure is as follows. First the ‘Mole Detection’ application is opened, and the 
‘Begin’ button is pressed providing the user with two features (‘Take a photo’ and ‘Get stored 
pictures’). When the ‘Take a Photo’ feature is chosen, the application takes control of the 
smartphone’s camera, allowing it to capture an image at the user’s discretion. The user points the 
smartphone camera towards the lesion and captures an image after it is focused. This happens when 
the lens is roughly 13 mm away from the target lesion. This value is also used to recalculate the pixel 
to a mm conversion factor and update it in the application. While capturing an image, a support 
structure allows us to align the smartphone perpendicularly to the lesion at the optimal focal distance 
(Figure 7a(i)). An example L-shaped glass support structure (L = 75 mm, W = 75 mm, H = 13 mm) is 
shown in Figure 7a(ii) with a sample mole image taken using this support structure (Figure 7a(iii)). 
We have seen that focused images (focal distance = 13 mm) captured under white light or indirect 
sunlight are adequately processed by the smartphone application. Once the image is captured, it is 
resized to 1024 × 768 using bilinear interpolation before storing it. The user is then provided with two 
options (‘Retake’ or ‘Proceed’). If the user is unsatisfied with the image quality, they can retake a new 
image by selecting the ‘Retake’ option. Otherwise, the user can select the ‘Proceed’ option to perform 
the diagnosis of the lesion. The user is presented with the final classified results (i.e., benign or 
suspicious of melanoma) along with values of the ABCD features. Figure 7b shows the original mole 
images overlaid with segmentation contours. It can be observed that the segmentation results are 
more sensitive to borders, showing more irregularity than appears visually. This may be due to the 
high resolution (2988 × 5312 pixels) of the S6 camera, which is not improved after resizing to 1024 × 
576 when using bilinear interpolation and a smoothing filter. Even with this drawback, all images 
were successfully processed and classified as benign. A supplemental file (S2) demonstrates the usage 
of our smartphone application on both the PH2 dataset and live images. In addition, we have tested 
our system on a digital lesion images MED-NODE public dataset [5] and our sensitivity, selectivity, 
and accuracy values are 70%, 80%, and 75%, respectively. Some of the sample-processed mole images 
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from this dataset are included in the supplemental file (S1). The software is available at 
https://github.com/ukalwa/melanoma-detection for the interested readers who want to build upon our 
current prototype. 

 

Figure 7. The smartphone application is used to capture, process, and classify live images of skin 
lesions. (a) The picture shows the setup that includes a support structure (L = 75 mm, W = 75 mm, H 
= 13 mm) to capture a person’s mole with our application (i). The glass support structure (ii) helps to 
align the camera onto the mole to capture the image at the appropriate focal distance (iii). A Macro 
10x lens is attached to a smartphone rear camera and focused on a mole on the hand. Our application 
captures the image and processes it to determine the malignancy of the mole. (b) Representative 
results for moles from eight volunteers are shown here overlaid with segmentation contours. All the 
moles were classified as benign here. Scale bar = 3 mm. 

4. Discussion 

Looking at the reported melanoma cases over the past few years, there are some insightful points 
that can be enumerated. According to the statistics released by the American Cancer Society for the 
year 2018, there are 91,270 new cases (55,150 males; 36,120 females) of melanoma in the United States. 
Out of this population, there have been an estimated 9320 deaths (5990 males; 3330 females). The 
states with the highest number of new melanoma cases in 2018 are California (9830), Florida (7940), 
New York (4920), Texas (4440), and Pennsylvania (4320) [58]. In comparison to the statistics from 
2014, there were 76,100 new cases (43,890 males; 32,210 females) of melanoma within the United 
States, with an estimated 9710 deaths (6470 males; 3240 females) [59]. The above data indicate that, 
in the United States, both the number of new melanoma cases and fatalities have increased in the past 
five years. Furthermore, the states reporting a higher incidence of melanoma correspond with sunny 
regions and larger populations, where it is challenging to screen and educate the masses about skin 
cancer and early diagnosis. It can reasonably be assumed that the statistics on melanoma incidence 
and fatalities would be worse in the developing countries where access to diagnostic/preventive 
medical resources is still sought. More importantly, the statistics indicate that there is still an urgent 
need for portable melanoma screening devices that can be readily adopted. 

Smartphone-based skin cancer recognition remains a challenging area of research, and this has 
slowed the commercialization and general availability of portable melanoma screening devices. Some 
of the technological limitations of the previously reported methods include: (a) the application used 
a non-smartphone-based camera with a dermatoscope to photograph lesions [13,14,19,20,29], (b) the 
application was tested on small image set or different databases, making it difficult to directly 
compare the results [15,16,19,22], (c) the application demonstrated a single feature extraction 
[2,30,60], (d) the application ran only on a desktop and thus was not considered real-time 
[13,19,21,25,54], and (e) the application had average accuracy, sensitivity, or selectivity [22,50,51]. We 
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showed that our smartphone application is able to overcome the above limitations with better or 
comparable computation times and accuracies to those reported earlier. 

The scope of our work can be extended in terms of performance and usage. The performance 
parameters (i.e., accuracy, sensitivity, selectivity, and processing time) could be improved by using 
better thresholding algorithms for boundary detection, testing other color space parameters (shape, 
color, and texture distributions), and running it on a large variety of images. The application runs 
solely on a smartphone, so its usage could entail tracking the progression of specific moles over a 
period of time. To do this, the user would capture and save mole images at different time intervals 
over a two-week period, recording the ABCD parameter values for each image. From these recorded 
values, it would be possible to observe any changes in the shape, size, or color of the mole that may 
then be evaluated by a healthcare professional. The application’s reliability and reproducibility can 
be tested on persons with different skin colors, under different background illumination conditions, 
and with different stages of lesion malignancy. With the sophistication of smartphone optics today, 
it may be possible to directly visualize a lesion’s distribution in the different skin layers leading to 
accurate identification of lesion attributes that may be missed, especially during the early stages of 
melanoma. Due to the challenge of forming collaborative relationships with skin clinics, most 
researchers have relied on public databases for their research. This makes direct comparisons of 
performance metrics across different methods difficult. The present study can be expanded beyond 
the ABCD rule to understand the role of each feature in the eventual classification of melanoma or 
benign lesions. The commonly used discriminators include shape features (e.g., asymmetry, aspect 
ratio, maximum diameter), color features in the color spaces (mean distance, variance, maximum 
distance), and texture features (e.g., grayscale co-occurrence matrix and texture descriptors). While 
all three feature types are equally relevant in accurate discrimination and classification, the color 
features have been shown to perform better than the texture features [21]. 

5. Conclusions 

The current prototype comprises a smartphone application to capture or import images of skin 
lesions, perform feature extraction based on the ABCD rule, and classify their malignancy based on 
the SVM classifier. The application was tested on 200 dermoscopic images from the PH2 database 
and the benign moles of two individuals. The entire process from image capture to classification runs 
entirely on an Android smartphone equipped with a detachable 10x lens, and has a processing time 
within one second per image. Easy-to-use navigation buttons are incorporated at the front-end to 
assist the user through the various processing steps. For the PH2 database, the overall performance 
is better with SMOTE (80% sensitivity, 90% specificity, 88% accuracy, and 0.85 AUC) compared to 
without using SMOTE (55% sensitivity, 95% specificity, 90% accuracy, and 0.75 AUC). Scope for 
improvement lies in training with even larger image datasets, having access to individuals with 
possible melanoma cases, and testing under varied environmental conditions and disease stages. 
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