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Andrés Cárdenas† Sergio Pulido‡ Rafael Serrano§
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Abstract

We provide sufficient conditions that guarantee the existence of relaxed optimal
controls in the weak formulation of control problems for stochastic Volterra equations
(SVEs). Our study can be applied to rough processes which arise when the kernel
appearing in the controlled SVE is singular at zero. The proof of existence of relaxed
optimal policies relies on the interaction between integrability hypotheses on the ker-
nel, growth conditions on the running cost functional and on the coefficients of the
controlled SVEs, and certain compactness properties of the class of Young measures
on Suslin metrizable control sets. Under classical convexity assumptions, we also de-
duce the existence of optimal strict controls.

Keywords: stochastic Volterra equations, rough processes, relaxed control, Young
measures, tightness, weak formulation.
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1 Introduction

Interest in stochastic Volterra equations (SVEs) of convolution type has been increasing
rapidly because they provide suitable models for applications that benefit from the memory
and the varying levels of regularity of their dynamics. Such applications include, among
others, turbulence modeling in physics (Barndorff-Nielsen and Schmiegel, 2008; Barndorff-
Nielsen et al., 2011), modeling of energy markets (Barndorff-Nielsen et al., 2013), and
modeling of rough volatility in finance (Gatheral et al., 2018).
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In this paper we consider finite-horizon control problems for SVEs of convolution type
driven by a multidimensional Brownian motion with linear-growth coefficients and control
policies with values on a metrizable topological space of Suslin type. We are particularly
interested in singular kernels, such as fractional kernels proportional to tH−

1
2 with H ∈

(0, 1
2). These kernels are important because they allow modeling trajectories which are

strictly less regular than those of classical Brownian motion. They have been used, for
instance, in financial models with rough volatility which reproduce features of time series
of estimated spot volatility (Gatheral et al., 2018) and implied volatility surfaces (Alòs
et al., 2007; Bayer et al., 2016).

Several studies have investigated optimal control of SVEs. Yong (2006) uses the max-
imum principle method to obtain optimality conditions in terms of an adjoint backward
stochastic Volterra equation. Agram and Øksendal (2015) also use the maximum principle
together with Malliavin calculus to obtain the adjoint equation as a standard backward
SDE. Although the kernel considered in these papers is not restricted to be of convolution
type, the required conditions do not allow singularity of K at zero. Recently, an extended
Bellman equation has been derived in Han and Wong (2019) for the associated controlled
Volterra equation.

The particular case of linear-quadratic control problems for SVEs, with controlled drift
and additive fractional noise with Hurst parameter H > 1/2, has been studied in Kleptsyna
et al. (2003). Similarly, in Duncan and Pasik-Duncan (2013) the authors consider a general
Gaussian noise with an optimal control expressed as the sum of the well-known linear
feedback control for the associated deterministic linear-quadratic control problem and the
prediction of the response of a system to the future noise process. Recently, Wang (2018)
investigated the linear-quadratic problem of stochastic Volterra equations by providing
characterizations of optimal control in terms of a forward-backward system, but leaving
aside its solvability, and under some assumptions on the coefficients that preclude (singular)
fractional kernels of interest.

Abi Jaber et al. (2021b) studied control problems for linear SVEs with quadratic cost
function and kernels that are the Laplace transforms of certain signed matrix measures
which are not necessarily finite. They establish a correspondence between the initial prob-
lem and an infinite dimensional Markovian problem on a certain Banach space. Using a
refined martingale verification argument combined with a completion of squares technique,
they prove that the value function is of linear quadratic form in the new state variables,
with a linear optimal feedback control, depending on nonstandard Banach space-valued
Riccati equations. They also show that the value function of the stochastic Volterra op-
timization problem can be approximated by conventional finite dimensional Markovian
linear-quadratic problems.

We propose to study the existence problem by means of so-called relaxed controls in
a weak probabilistic setting. This approach compactifies the original control system by
embedding it into a framework in which control policies are probability measures on the
control set, and the probability space is also part of the class of admissible controls. Thus,
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in this setting, the unknown is no longer only the control-state process but rather an array
consisting of the stochastic basis and the control-state pair solution to the relaxed version
of the controlled SVE.

In the stochastic case, relaxed control of finite-dimensional stochastic systems goes
back to Fleming and Nisio (1984). Their approach was followed extensively by El Karoui
et al. (1987), Haussmann and Lepeltier (1990), Kurtz and Stockbridge (1998), Mezerdi and
Bahlali (2002) and Dufour and Stockbridge (2012). Relaxed controls have also been used to
study singular control problems (Haussmann and Suo, 1995; Kurtz et al., 2001; Andersson,
2009), mean-field games (Lacker, 2015; Fu and Horst, 2017; Cecchin and Fischer, 2020;
Benazzoli et al., 2020; Bouveret et al., 2020; Barrasso and Touzi, 2020), mean-field control
problems (Bahlali et al., 2017), continuous-time reinforcement learning (Wang et al., 2020;
Wang and Zhou, 2020), and optimal control of piece-wise deterministic Markov processes
(Costa and Dufour, 2010a,b; do Valle Costa and Dufour, 2013; Bäuerle and Rieder, 2009;
Bauerle and Lange, 2018).

The main purpose of this paper is to provide a set of conditions that ensures existence
of optimal relaxed controls, see Theorem 3.1. Our main contribution is that we allow
kernels that are singular at zero, for instance, fractional Kernels proportional to tH−

1
2

with H ∈ (0, 1
2), and coefficients that are not necessarily bounded in the control variable.

Under one additional assumption on the coefficients and cost function, familiar in relaxed
control theory since the work of Filippov (1962), we prove that the optimal relaxed value
is attained by strict policies on the original control set, see Theorem 3.2.

The paper is structured as follows. In Section 2 we establish some preliminary results
on controlled stochastic Volterra equations (CSVEs). In Section 3 we describe the weak
relaxed formulation of the control problem, state our main results, namely Theorems 3.1
and 3.2, and provide some examples. Section 4 contains the proofs of the main results.
In Appendix A we recall an important measurability result needed for the existence of
optimal strict controls. Appendix B contains an overview of the main results on relative
compactness and limit theorems for Young measures that are used in the proofs of the
main theorems.

2 Controlled stochastic Volterra equations (CSVEs)

Let T > 0 and d, d′ ∈ N be fixed. We consider the control problem of minimizing a cost
functional of the form

E
[∫ T

0
h(t,Xt, ut)dt+ g(XT )

]
(1)

subject to X = (Xt)t∈[0,T ] being a Rd-valued solution to the controlled stochastic Volterra
equation (CSVE) of the form

Xt = x0(t) +

∫ t

0
K(t− s)b(s,Xs, us) ds+

∫ t

0
K(t− s)σ(s,Xs, us) dWs, t ∈ [0, T ] (2)
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over a certain class of control processes (ut)t∈[0,T ] taking values in a measurable control

set M. The function K ∈ L2
loc(0, T ;Rd×d) is a given kernel, the initial condition x0 is a

deterministic Rd-valued continuous function on [0, T ], and (Wt)t∈[0,T ] is a d′-dimensional
Brownian motion defined on a probability space (Ω,F ,P) endowed with a filtration F =
(Ft)t≥0, satisfying the usual conditions. In our main existence results, we will consider
solutions to (2) in a weak sense, see Definition 3.2.

Throughout, we will assume the following condition on the kernel K:

Assumption I. There exist r ∈ (2,∞) and γ ∈ (0, 2] such that K ∈ Lrloc(R+;Rd×d) and∫ h

0
|K(t)|2 dt = O(hγ), and

∫ T

0
|K(t+ h)−K(t)|2 dt = O(hγ).

The following are examples of kernels that satisfy Assumption I:

1. Let K be locally Lipschitz. Then K satisfies Assumption I with γ = 1 and for any
r ∈ (2,∞).

2. The fractional kernel K(t) = tH−
1
2 with H ∈ (0, 1

2) satisfies Assumption I with
r ∈ (2, 2

1−2H ) and γ = 2H.

We consider, for now, a control set M which is assumed to be a Hausdorff topological space
endowed with the Borel σ−algebra B(M). We will assume later more specific conditions
on M.

Assumption II. 1. The coefficients b : [0, T ]×Rd×M → Rd and σ : [0, T ]×Rd×M →
Rd×d

′
are continuous in u ∈M, and in (t, x) ∈ [0, T ]×Rd uniformly with respect to

u.

2. There exists a measurable function η1 : [0, T ]×M → [0,+∞] and a constant clin > 0
such that

|b(t, x, u)|+ |σ(t, x, u)| ≤ clin|x|+ η1(t, u), (t, x, u) ∈ [0, T ]×Rd ×M. (3)

The following result extends the a-priori estimates of Lemma 3.1 of Abi Jaber et al.
(2019) to the case of CSVEs.

Theorem 2.1. Suppose that Assumption II holds and that K ∈ Lrloc(R+;Rd×d) for some
r > 2. Let (ut)t∈[0,T ] be a M -valued adapted control process such that

E

∫ T

0
η1(t, ut)

p dt <∞

for some p satisfying 1
p + 1

r <
1
2 . Let X be a Rd-valued solution to the controlled equation

(2) with initial condition x0 ∈ C(0, T ;Rd). Then,

sup
t∈[0,T ]

E [|Xt|m] ≤ c, (4)
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for all m > 2 satisfying 1
m ∈

[
1
p + 1

r ,
1
2

)
, where the constant c depends on m, p, clin, T, CB

1,

|x0|C(0,T ;Rd) , E
∫ T

0 η1(t, ut)
p dt and L2−continuously on K|[0,T ].

Proof. For simplicity, but without loss of generality, we take d = d′ = 1. Let t ∈ [0, T ] be
fixed. Then, for any m > 1 we have

|Xt|m ≤ 3m−1

[
|x0|m +

∣∣∣∣∫ t

0
K(t− s)b(s,Xs, us) ds

∣∣∣∣m +

∣∣∣∣∫ t

0
K(t− s)σ(s,Xs, us) dWs

∣∣∣∣m]
= 3m−1 [|x0|m + I + II] .

Using Burkholder-Davis-Gundy inequality, and Jensen’s inequality with the measure µ(ds) =
K(t− s)2 ds/

∫ t
0 |K(t− τ)|2 dτ, we have

E[II] ≤ CBE

[∣∣∣∣∫ t

0
K(t− s)2σ(s,Xs, us)

2 ds

∣∣∣∣m/2
]

≤ CB ‖K‖m−2
L2

∫ t

0
|σ(s,Xs, us)|m |K(t− s)|2 ds.

By condition (3)

E[II] ≤ CB2m−1cmlin ‖K‖
m−2
L2

(∫ t

0
E |Xs|mK(t− s)2 ds+ c−mlin E

∫ t

0
η1(s, us)

mK(t− s)2 ds

)
= k1

(∫ t

0
E |Xs|m |K(t− s)|2 ds+ k2

)
. (5)

Note that κ2 is finite since by Hölder’s inequality we have

κ2 = c−mlin E
∫ t

0
η1(s, us)

mK(t− s)2 ds ≤ c−mlin T
1−m

p
− 2
r

[
E
∫ T

0
η1(s, us)

p ds

]m/p
‖K‖2Lr .

A similar argument for the first term I yields

E[I] ≤ tm/22m−1cmlin ‖K‖
m−2
L2

(∫ t

0
E |Xs|mK(t− s)2 ds+ c−mlin E

∫ t

0
η1(s, us)

mK(t− s)2 ds

)
= tm/2C−1

B k1

(∫ t

0
E |Xs|m |K(t− s)|2 ds+ k2

)
. (6)

For each n ∈ N set τn = inf {t ≥ 0 : |Xt| ≥ n} ∧ T. By the Corollary of Theorem II.18 in
Protter (2005) we have that,

|Xt|m 1{t<τn} ≤
∣∣∣∣x0 +

∫ t

0
K(t− s)(b(s,Xs1{s<τn}, us) ds) + σ(s,Xs1{s<τn}, us) dWs)

∣∣∣∣m .
1CB is the constant in the Burkholder-Davis-Gundy inequality, see e.g. Section 4, Chapter IV in Protter

(2005).

5



Let fn(t) = E |Xt|m 1{t<τn}. Then, by (6) and (5) we have

fn ≤ k̄k2 + k̄ |K|2 ∗ fn

where k̄ = k1(1 + Tm/2C−1
B ). Using the same argument in the proof of Lemma 3.1 of

Abi Jaber et al. (2019), this yields (4) with a constant that only depends on m, p, clin, CB,
T, |x0|C(0,T ;Rd) and Lm−continuously, on K|[0,T ].

Corollary 2.1. Under the same Assumptions of Theorem 2.1, suppose further Assumption
I also holds with γ satisfying γ > 2/m, where 1

m = 1
p + 1

r . Then X admits a version with

paths in Cα(0, T ;Rd) for any α ∈
[
0, γ2 −

1
m

)
. For this version, denoted again with X, we

have the following:

E
[
|X − x0|mCα(0,T ;Rd)

]
≤ c, (7)

with c depending on m, p, clin, T, CB, |x0|C(0,T ;Rd) ,E
∫ T

0 η1(t, ut)
p dt and L2−continuously

on K|[0,T ].

Proof. Follows directly from the estimate (4) and Lemma 2.4 in Abi Jaber et al. (2019).

In particular, one can prove the following existence result for solutions to the CSVE
(2).

Corollary 2.2. Let u be a M -valued F-predictable process. Assume that K satisfies As-
sumption I, b and σ satisfy Assumption II and they are Lipschitz uniformly with respect to
(t, u) ∈ [0, T ]×M , and

E

∫ T

0
η1(t, ut)

p dt <∞

for some p satisfying 1
p + 1

r <
1
2 . Suppose further that γ > 2

(
1
p + 1

r

)
. Then there exists a

unique continuous solution X to the CSVE (2).

Proof. Using Theorem 2.1 and Corollary 2.1, the proof is completely analogous to the proof
of Theorem 3.3 in Abi Jaber et al. (2019).

We will also frequently use the following result in the proof of the main existence
result of relaxed controls. This alternative formulation of stochastic Volterra equations, by
considering the integrated process

∫ ·
0 Xs ds, is inspired by the martingale problem approach

in Abi Jaber et al. (2021a) and facilitates the justification of convergence arguments that
will be useful in our setting.

Lemma 2.1. Suppose that Assumption II holds, K ∈ L2
loc(R+;Rd×d) and

E
[∫ T

0
η2

1(t, ut)dt

]
<∞.
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Let X be a solution to the CSVE (2) and let Z be the controlled process Zt =
∫ t

0 b(s,Xs, us) ds+∫ t
0 σ(s,Xs, us) dWs. If X has paths in L2

loc then∫ t

0
Xs ds =

∫ t

0
x0(s) ds+

∫ t

0
K(t− s)Zs ds, t ∈ [0, T ]. (8)

Conversely, if X satisfies (8) with paths in L2
loc then it solves the CSVE (2).

Proof. Follows from Lemma 3.2 of Abi Jaber et al. (2021a).

3 Relaxed control formulation

The use of stochastic relaxed controls is inspired by the works of El Karoui et al. (1987) and
Haussmann and Lepeltier (1990). In what follows, P(M) denotes the set of all probability
measures on B(M) endowed with the σ−algebra generated by the projection maps

πC : P(M) 3 q 7→ q(C) ∈ [0, 1], C ∈ B(M).

We associate a relaxed control system to the original control problem (1)-(2) as follows.
First, we extend the definition of coefficients and cost functionals with the convention

F̄ (t, x, q) =

∫
M
F (t, x, u) q(du)

provided that for each t ∈ [0, T ] and x ∈ Rd the map F (t, x, ·) is integrable with respect
to q ∈ P(M).

Definition 3.1. A stochastic process q = (qt)t∈[0,T ] with values in P(M) is called a stochas-
tic relaxed control (or relaxed control process) on M if the map

[0, T ]× Ω 3 (t, ω) 7→ qt(ω, ·) ∈ P(M)

is predictable. In other words, a stochastic relaxed control on M is a predictable process
with values in P(M).

Given a relaxed control process (qt)t∈[0,T ], the associated relaxed controlled equation
now reads

Xt = x0(t) +

∫ t

0
K(t− s)b̄(s,Xs, qs)ds+

∫ t

0
K(t− s)σ̄(s,Xs, qs) dWs, t ∈ [0, T ], (9)

where σ̄ is defined, with a slight abuse of notation, so that the following holds:

σ̄σ̄>(t, x, q) =

∫
M
σσ>(t, x, u) q(du), t ∈ [0, T ], x ∈ Rd, q ∈ P(M).
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For the existence of σ̄ see e.g, Theorem 2.5-a in El Karoui et al. (1987). The relaxed cost
functional is defined as

J(X, q) = E

[∫ T

0
h̄(t,Xt, qt) dt+ g (XT )

]
.

Notice that the original system (1)-(2) controlled by a M -valued process u = (ut)t∈[0,T ]

coincides with the relaxed system controlled by the Dirac measures qt = δut , t ∈ [0, T ].
Moreover, since relaxed controls are just usual (strict) controls with control set P(M), the
results for strict controls in the previous section also hold for relaxed controls, with the
control system defined in terms of the relaxed versions of coefficients, running cost and
η̄1(t, q).

3.1 Weak formulation of optimal control problem

We study the existence of an optimal control for the stochastic relaxed control system in
the following weak formulation.

Definition 3.2. Let T > 0 and x0 ∈ C(0, T ;Rd) be fixed. A weak admissible relaxed control
for (K, b, σ) is a system

π = (Ω,F ,P,F,W,X, q) (10)

such that the following hold:

1. (Ω,F ,P) is a complete probability space endowed with a filtration F = (Ft)t∈[0,T ],
satisfying the usual conditions,

2. W = (Wt)t∈[0,T ] is a m-dimensional Brownian motion with respect to F,

3. q = (qt)t∈[0,T ] is a F-predictable process with values in P(M),

4. X = (Xt)t∈[0,T ] is a F-adapted solution to the relaxed controlled equation (9).

5. The map [0, T ]×Ω 3 (t, ω) 7→ h̄(t,Xt(ω), qt(ω)) ∈ R belongs to L1([0, T ]×Ω;R) and
g(XT ) ∈ L1(Ω;R).

The set of weak admissible relaxed control systems with time horizon [0, T ] and initial
value x0 will be denoted by Ū(x0, T ). Under this weak formulation, the relaxed cost
functional is defined as

J̄(π) = EP

[∫ T

0
h̄(s,Xπ

s , q
π
s ) ds+ g (Xπ

T )

]
, π ∈ Ū(x0, T ). (11)

The relaxed control problem (RCP) consists in minimizing J̄ over Ū(x0, T ). Namely, we
seek π̃ ∈ Ū(x0, T ) such that

J̄(π̃) = inf
π∈Ū(x0,T )

J̄(π). (12)
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3.2 Main existence result

In order to complete the set of assumptions for the main existence result, we need the
following definition.

Definition 3.3. A function η : M → [0,+∞] is called inf-compact if for every R ≥ 0 the
level set {η ≤ R} = {u ∈M : η(u) ≤ R} is compact.

Observe that, since M is Hausdorff, for every inf-compact function η the level sets
{η ≤ R} are closed. Therefore, every inf-compact function is lower semi-continuous and
hence Borel-measurable. If M is compact, the converse holds too, i.e. every lower semi-
continuous function is inf-compact. We will denote by IC(0, T ;M) the class of measurable
functions η : [0, T ]×M → [0,+∞] such that for all t ∈ [0, T ] the map η(t, ·) is inf-compact.

Assumption III. 1. The control set M is a metrizable Suslin space i.e. there exists
a Polish space S and a continuous mapping ϕ : S →M such that ϕ(S) = M .

2. The running cost function h : [0, T ] × Rd × M → (−∞,+∞] is measurable in
t ∈ [0, T ] and lower semi-continuous with respect to (x, u) ∈ Rd ×M .

3. There exist η2 ∈ IC(0, T ;M) and constants C1 ∈ R, C2 > 0 such that h satisfies the
following coercivity condition:

η2(t, u)p ≤ C1 + C2h(t, x, u), (t, x, u) ∈ [0, T ]×Rd ×M (13)

for some p ≥ 1.

4. The final cost function g : Rd → R is continuous.

The following is the main result of this paper.

Theorem 3.1 (Existence of optimal relaxed controls). Let T > 0 and x0 ∈ C(0, T ;Rd) be
fixed. Suppose that Assumptions I, II and III hold with r > 2, γ ∈ (0, 2] and p satisfying
1
p + 1

r <
1
2 and γ > 2

(
1
p + 1

r

)
. Suppose further that η1 ≤ η2 and there exists π ∈ Ū(x0, T )

such that J̄(π) < +∞, then (RCP) admits a weak optimal relaxed control.

Example 3.1 (Fractional kernel). For simplicity, we fix d = d′ = 1, and consider the

fractional kernel K(t) = tH−
1
2 with H ∈

(
1
4 ,

1
2

)
. Suppose the coefficients and running cost

function have the form

b(t, x, u) = b0(t, u) + b1(t, u)x

σ(t, x, u) = σ0(t, u) + σ1(t, u)x

h(t, x, u) = h0(t, u) + h1(x)

with

9



• bi, σi measurable and continuous in u ∈ M, uniformly with respect to t ∈ [0, T ], for
i = 0, 1,

• b1, σ1 uniformly bounded in (t, u),

• h0 ∈ IC(0, T ;M) and h1 LSC and bounded from below.

Suppose further that |f(t, u)|p ≤ Ch0(t, u) for both f = b0, σ0, some constant C > 0 and p
sufficiently large satisfying 1

p < 2H − 1
2 . Then, there exists r > 2 such that

1

2
−H <

1

r
< H − 1

p

so that Assumption I holds for this choice of r and γ = 2H. Assumptions II, III hold with
η1 = η2 = (Ch0)1/p, C1 = −C inf h1 and C2 = C. Then, existence of an optimal relaxed
control follows from Theorem 3.1.

Remark 3.1. Recently, Abi Jaber et al. (2021b) proved an existence result for Linear-
Quadratic control problems for linear Volterra equations, and obtained a linear feedback
characterization of optimal controls. Unlike Abi Jaber et al. (2021b), we do not assume
linearity in the coefficients with respect to the control variable. Our assumptions, however,
do not cover cost functions with ‘quadratic growth’ in the control variable, since we are
forced to choose p strictly larger than 2.

3.3 Existence of strict controls

Our main result on the existence of optimal strict controls requires one additional as-
sumption, familiar in relaxed control theory since the work of Filippov (1962), to ensure
existence of an optimal strict control.

Assumption IV. 1. M is a closed subset of a Euclidean space.

2. For each (t, x) ∈ [0, T ]×Rd, the set

Γ(t, x) =
{(
σσ>(t, x, u), b(t, x, u), z

)
: u ∈M, z ≥ h(t, x, u)

}
(14)

is a convex and closed subset of Sd ×Rd ×R.

Theorem 3.2 (Existence of optimal strict controls). Suppose that Assumption IV holds.
Then, for each π = (Ω,F ,P,F,W,X, q) ∈ Ū(x0, T ) there exists a M -valued F-predictable
control process u = (ut)t∈[0,T ] on the same probability space (Ω,F ,P) such that

1. X satisfies the Volterra equation (2) controlled by the strict control process u =
(ut)t∈[0,T ].
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2.
∫ T

0 h̄(s,Xs, qs) ds ≥
∫ T

0 h(s,Xs, us) ds, P-a.s.

In particular, if the Assumptions of Theorem 3.1 also hold, there exists a weak optimal
strict control for (1)-(2).

Example 3.2. Let M = R or M = [−M̃, M̃ ], with 0 < M̃ < ∞, d = d′ = 1 and

K(t) = tH−
1
2 with H ∈

(
1
4 ,

1
2

)
. Suppose the coefficients have the form

b(t, x, u) = b0(t, x) + b1(t, x)u2

σ(t, x, u) = σ1(t, x)u

h(t, x, u) = h0(t, u2) + h1(x),

where

• bi, σ1 measurable and continuous in x ∈ R, uniformly respect to t ∈ [0, T ], for i = 0, 1,

• b1, σ1 uniformly bounded in (t, x) and |b0(t, x)| ≤ K |x| , with K > 0,

• h0(t, .) is a function convex on R+, for each t ∈ [0, T ], h0 ∈ IC(0, T ;M2) and h1

LSC bounded from below.

Suppose further that |φ(t, u)|p ≤ Ch0(t, u), with φ(t, u) = max{|u|2 , |u|} for all t ∈ [0, T ],
and p satisfying 1

p < 2H− 1
2 . As in the Example 3.1 there exists r > 2 such that Assumptions

II, III hold with η1 = η2 = (Ch0)1/p, C1 = −C inf h1 and C2 = C. By Theorem 3.1 there
is an optimal relaxed control. Let Γ1(t, x) =

{
(ũ, z) : ũ ∈M2, z ≥ h0(t, ũ) + h1(x)

}
. Then

Γ in (14) can be written as an affine transformation of Γ1. More precisely, Γ(t, x) =
b(t, x) + A(t, x)Γ1(t, x) where

b(t, x) =

 0
b0(t, x)

0

 , A(t, x) =

σ2
1(t, x) 0
b1(t, x) 0

0 1

 , (t, x) ∈ [0, T ]×R.

Since h0 is a function convex on R+ the epigraph Γ1 is a convex set, then Γ is a convex
set and by Theorem 3.2 there is an optimal strict control.

Remark 3.2. If σ does not depend on u ∈M , Assumption IV holds if the set
{

(b(t, x, u), z) :
u ∈ M, z ≥ h(t, x, u)

}
is convex and closed in Rd × R. This is the case, for instance, if

the drift coefficient is affine in u, i.e. it has the form b(t, x, u) = b0(t, x) + b1(t, x)u and if
h(t, x, ·) is lower semi-continuous and convex.

11



4 Proofs of the main theorems

4.1 Relaxed controls and Young measures

Definition 4.1. Let Leb(·) denote the Lebesgue measure on [0, T ] and λ be a bounded
non-negative σ−additive measure on B (M × [0, T ]). We say that λ is a Young measure
on M if and only if λ satisfies

λ(M ×D) = Leb(D), D ∈ B([0, T ]), (15)

i.e. the marginal of λ on B([0, T ]) is equal to the Lebesgue measure Leb. We denote by
Y(0, T ;M) the set of Young measures on M. We endow Y(0, T ;M) with the stable topology
defined as the weakest topology for which the mappings

Y(0, T ;M) 3 λ 7→
∫
D

∫
M
f(u)λ(du, dt) ∈ R

are continuous, for every D ∈ B([0, T ]) and f ∈ Cb(M).

The following result connects random Young measures with predictable relaxed controls.
For the proof, see e.g. Section 3.3 of Kushner (2012) or Section 2.4 of Cecchin and Fischer
(2020).

Lemma 4.1 (Predictable disintegration of random Young measures). Let (Ω,F ,P)
be a probability space and let M be a Radon space. Let λ : Ω → Y(0, T ;M) be such that,
for every J ∈ B(M × [0, T ]), the mapping

Ω 3 ω 7→ λ(w)(J) = λ(ω, J) ∈ [0, T ]

is measurable. Then there exists a stochastic relaxed control (qt)t∈[0,T ] on M such that for
P−a.e. ω ∈ Ω we have

λ(ω,C ×D) =

∫
D
qt(ω,C) dt, C ∈ B(M), D ∈ B([0, T ]). (16)

Moreover, if F = (Ft)t∈[0,T ] is a given filtration that satisfies the usual conditions and
λ([0, ·)× C) is F−adapted, for all C ∈ B(M), then q is a F−predictable process.

Remark 4.1. We will denote the disintegration formula (16) by λ(du, dt) = qt(du) dt.
Note that qt(C) can be seen as the time-derivative of λ([0, t) × C) that exists for almost
every t ∈ [0, T ], for all C ∈ B(M).

Remark 4.2. It can be proved (see e.g. Remark 3.20 Crauel (2002)) that if M is a
separable and metrisable topological space, then λ : Ω → Y(0, T ;M) is measurable with
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respect to the Borel σ−algebra generated by the stable topology if and only if for every
J ∈ B(M × [0, T ]) the mapping

Ω 3 ω 7→ λ(w)(J) ∈ [0, T ]

is measurable. This justifies referring to the maps considered in Lemma 4.1 as random
Young measures.

For the two following Lemmas, E denotes a Euclidean space with norm |·|E and inner
product 〈·, ·〉.

Lemma 4.2. Let f : [0, T ]×Rd ×M → E be a Borel-measurable function, continuous in
u ∈ M, and continuous in x ∈ Rd uniformly with respect to u ∈ M , satisfying the growth
condition

|f(t, x, u)|E ≤ clin|x|δ + η(t, u) (17)

with η ∈ IC(0, T ;M), for some δ ≥ 1. For β ≥ 1 fixed, we denote

Yβ(0, T ;M) :=
{
λ ∈ Y(0, T ;M) : η ∈ Lβ(λ)

}
.

Then, for each t ∈ [0, T ], the mapping Σt : C(0, T ;Rd)× Yβ(0, T ;M)→ Rd defined by

Σt(x, λ) =

∫ t

0

∫
M
f(s, x(s), u)λ(du, ds), (18)

is Borel-measurable.

Proof. We fix t ∈ [0, T ]. For each N ∈ N and i ∈ {1, . . . , d} define

φiN (λ) =

∫ t

0

∫
M

min{N, f i(s, x(s), u)}λ(du, ds), λ ∈ Yβ(0, T ;M).

The integrand in the above expression is bounded and continuous with respect to u ∈M .
Therefore, by Lemma B.3 φN is continuous for each N ∈ N, and by dominated convergence,
φiN (λ)→ Σi

t(x, λ) as N →∞ for all λ ∈ Yβ(0, T ;M). Hence, Σt(x, ·) is measurable. Now,
we prove that for λ ∈ Yβ(0, T ;M) fixed, the map Σt(·, λ) is continuous. Let xn → x in
C
(
0, T ;Rd

)
. Then, by assumption we have∣∣f(s, x(s), u)− f(s, xn(s), u)

∣∣
E
→ 0 as n→∞, (s, u) ∈ [0, t]×M.

Moreover, since (xn) converges in C
(
0, T ;Rd

)
, it is bounded and there exists ρ̄ > 0 such

that
sup
s∈[0,T ]

∣∣xn(s)− x(s)
∣∣ < ρ̄, ∀n ∈ N.

13



Therefore by (17), we have∣∣f(s, x(s), u)− f(s, xn(s), u)
∣∣
E
≤ clin

[
(1 + 2δ−1) |x|δC(0,T ;Rd) + 2δ−1ρ̄δ

]
+ 2η(s, u)

As η belongs to L1([0, T ]×M ;λ), so does the right side of the above inequality. Therefore,
by the Lebesgue’s dominated convergence theorem we have

|Σt(x, λ)− Σt(xn, λ)| ≤
∫ t

0

∫
M
|f(s, x(s), u)− f(s, xn(s), u)| λ(du, ds)→ 0

as n → ∞, that is, Σt(·, λ) is continuous. Since Yβ(0, T ;M) is separable and metrisable,
by Lemma 1.2.3 in Castaing et al. (2004) it follows that Σt is jointly measurable.

Recall that φn ⇀ φ weakly in L1([0, T ]× Ω;E) if

E

∫ T

0
〈φn(t), ψ(t)〉 dt→ E

∫ T

0
〈φ(t), ψ(t)〉 dt, ∀ψ ∈ L∞([0, T ]× Ω;E).

We have the following result.

Lemma 4.3. Let f : [0, T ]×Rd ×M → E be a Borel-measurable function, continuous in
x ∈ Rd uniformly with respect to u ∈M , satisfying the growth condition (17) for some δ ≥
1, with η ∈ IC(0, T ;M). Let (Xn)n∈N a sequence of Rd-valued processes, and λn(du, dt) =
qnt (du) dt a sequence of stochastic relaxed controls defined on the same probability space
(Ω,F ,P) such that Xn → X point-wise P-a.s. and in Lβδ(Ω× [0, T ];Rd) for some β > 1,
and λn → λ in the stable topology P-a.s., with λ(du, dt) = qt(du, dt). Suppose further

sup
n∈N

EP

∫ T

0

∫
M
η(t, u)β λn(du, dt) <∞. (19)

For each n ∈ N, set fnt = f̄(t,Xn
t , q

n
t ), f̂nt = f̄(t,Xt, q

n
t ), t ∈ [0, T ]. Then

1. fn − f̂n → 0, (strongly) in L1([0, T ]× Ω;E).

2. f̂n ⇀ f, weakly in L1([0, T ]× Ω;E).

with ft = f̄(t,Xt, qt), t ∈ [0, T ].

Proof. We first prove

fn − f̂n → 0, (strongly) in L1([0, T ]× Ω;E). (20)

By uniform continuity with respect to u ∈M , for each n ∈ N we have

Int =

∫
M

∣∣f(t,Xn
t , u)− f(t,Xt, u)

∣∣
E
qnt (du) ≤ sup

u∈M

∣∣f(t,Xn
t , u)− f(t,Xt, u)

∣∣
E
→ 0

14



as n→∞ for t ∈ [0, T ], P−a.s. From (17) and (19), we get

sup
n∈N

E
∫ T

0
|Int |

β dt < +∞.

Hence, {In}n∈N is uniformly integrable on Ω × [0, T ]. Lemma 4.11 Kallenberg (2002)
implies that

E
∫ T

0

∣∣fnt − f̂nt ∣∣E dt ≤ E
∫ T

0
Int dt→ 0, as n→∞,

and (20) follows. Now, we will prove that

f̂n ⇀ f, weakly in L1([0, T ]× Ω;E). (21)

Let ψ ∈ L∞([0, T ]× Ω;E) be fixed. We denote g(t, u) =
〈
f(t,Xt, u), ψt

〉
. Then,

E
∫ T

0

〈
f̂nt , ψt

〉
dt = E

∫ T

0

〈∫
M
f(t,Xt, u) qnt (du), ψt

〉
dt = E

∫ T

0

∫
M
g(t, u)λn(du, dt)

for each n ∈ N. Let ε ∈ (0, 1) be fixed and take Cε > max{Rε , 1} with R defined as
the supremum in (19), and let Aε =

{
(t, u) ∈ [0, T ]×M : η(t, u)β−1 > Cε

}
. Then, for this

choice of Cε, we have

E
[
λn
(
Aε
)]

= E
∫
Aε
λn(du, dt) ≤ 1

Cε
E
∫
Aε
η(t, u)β−1 λn(du, dt) < ε.

We write

E
∫ T

0

∫
M
g(t, u)λn(du, dt) = E

∫
Ac
ε

g(t, u)λn(du, dt) + E
∫
Aε
g(t, u)λn(du, dt)

and observe first that by Lemma B.3 we have P−a.s.∫
Ac
ε

g(t, u)λn(du, dt)→
∫
Ac
ε

g(t, u)λ(du, dt)

as n→∞ and, by (17),∫
Ac
ε

g(t, u)λn(du, dt) ≤
[
clin |X|δL1(0,T ;Rd) + C1/(β−1)

ε

]
|ψ|L∞(0,T ;E) , P− a.s.

The right side of the last inequality has finite expectation by the hypothesis about ψ and
the Cauchy-Schwarz’ inequality. Thus, using Lebesgue’s dominated convergence theorem
we get

E

∫
Ac
ε

g(t, u)λn(du, dt)→ E

∫
Ac
ε

g(t, u)λ(du, dt)
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as n → ∞. Now, for each n ∈ N, define the measure µn(du, dt, dω) = λn(ω)(du, dt)P(dω)
on B(M)⊗ B([0, T ])⊗ F, so we have

E
∫
Aε

∣∣∣g(t, u)
∣∣∣λn(du, dt) ≤

∫
Ω

∫
Aε
ϕ(t)µn(du, dt, dω) +

∫
Ω

∫
Aε
η(t, u) |ψt|E µn(du, dt, dω)

with ϕ = clin

∣∣X∣∣δ |ψ|E ∈ Lβ([0, T ]×Ω), since
∣∣X∣∣δ ∈ Lβ([0, T ]×Ω) and ψ ∈ L∞([0, T ]×Ω).

Using Hölder’s inequality we get∫
Ω

∫
Aε
ϕ(t)µn(du, dt, dω) ≤

[∫
Ω

∫ T

0

∫
M
ϕ(t)β µn(du, dt, dω)

]1/β

·
(
E
[
λn
(
Aε
)])1−1/β

< ‖ϕ‖Lβ([0,T ]×Ω) ε
1−1/β

and ∫
Ω

∫
Aε
η(t, u) |ψ(t)|E µn(du, dt, dω) ≤‖ψ‖L∞([0,T ]×Ω;E)

∫
Ω

∫
Aε
η(t, u)µn(du, dt, dω)

= ‖ψ‖L∞([0,T ]×Ω;E) E
∫
Aε

η(t, u)β

η(t, u)β−1
λn(du, dt)

≤‖ψ‖L∞([0,T ]×Ω;E)

1

Cε
E
∫
Aε
η(t, u)β λn(du, dt)

≤‖ψ‖L∞([0,T ]×Ω;E)

R

Cε
< ‖ψ‖L∞([0,T ]×Ω;E) ε,

and this holds uniformly with respect to n ∈ N. Since η(t, ·) is lower semi-continuous for
all t ∈ [0, T ], by Lemma B.1 and Fatou’s lemma we have

E
∫ T

0

∫
M
η(t, u)β λ(du, dt) ≤ lim inf

n→∞
E
∫ T

0

∫
M
η(t, u)β λn(du, dt) ≤ R.

Therefore, the same estimates hold for λ, that is,

E
∫
Aε

∣∣g(t, u)
∣∣λ(du, dt) ≤ ‖ϕ‖Lβ([0,T ]×Ω) ε

1−1/β + ‖ψ‖L∞([0,T ]×Ω;E) ε

and since ε ∈ (0, 1) is arbitrary, we conclude that

E
∫ T

0

∫
M
g(t, u)λn(du, dt)→ E

∫ T

0

∫
M
g(t, u)λ(du, dt)

as n→∞, and (21) follows.
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4.2 Proof of Theorem 3.1

Let πn = (Ωn,Fn,Pn,Wn, qn, Xn) , n ∈ N be a minimizing sequence of weak admissible
relaxed controls, that is,

lim
n→∞

J̄(πn) = inf
π∈Ū(x0,T )

J̄(π).

From this and Assumption III it follows that there exists R > 0 such that for all n ∈ N

En
∫ T

0

∫
M
η2(t, u)p qnt (du) dt ≤ C1 + C2E

n

∫ T

0

∫
M
h(t,Xn(t), u) qnt (du) dt ≤ R (22)

where En denotes expectation with respect to Pn. We will divide the proof in several steps.
Step 1. Define m by 1

m = 1
p + 1

r and let α ∈
[
0, γ2 −

1
m

)
be fixed. By Corollary 2.1 and (22)

the processes Xn admit versions, which we also denote with Xn, with paths in Cα(0, T ;Rd)
satisfying

sup
n∈N

En
[
|Xn − x0|mCα(0,T ;Rd)

]
<∞.

Since Cα(0, T ;Rd) is compactly embedded in C(0, T ;Rd), by Chebyshev’s inequality it
follows that the family of laws of {Xn}n∈N is tight in C(0, T ;Rd). Using Lemma 2.1, for
each n ∈ N the process Xn satisfies∫ t

0
Xn
s ds =

∫ t

0
x0(s)ds+

∫ t

0
K(t− s) (ζns +Mn

s ) ds, t ∈ [0, T ],

where

ζnt =

∫ t

0
b̄(s,Xn

s , q
n
s ) ds and Mn

t =

∫ t

0
σ̄(s,Xn

s , q
n
s ) dWn

s .

A similar argument as in the proof of Theorem 2.1 and Corollary 2.1 with K replaced by the
identity matrix of size d ensures that {ζn}n∈N and {Mn}n∈N are also tight in C([0, T ],Rd).
For each n ∈ N we define the random Young measure

λn(du, dt) = qnt (du) dt. (23)

We also claim that the family of laws of {λn}n∈N is tight in Y(0, T ;M). Indeed, for each
ε > 0 define the set

Kε =

{
λ ∈ Y(0, T ;M) :

∫ T

0

∫
M
η2(t, u)p λ(du, dt) ≤ R

ε

}
.

By Theorems B.1 and B.2, Kε is relatively compact in the stable topology of Y(0, T ;M),
and by Chebyshev’s inequality we have

Pn
(
λn ∈ Y(0, T ;M) \ K̄ε

)
≤ Pn (λn ∈ Y(0, T ;M) \Kε) ≤

ε

R
En
∫ T

0

∫
M
η2(t, u)p λn(du, dt) ≤ ε
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and the tightness of the laws of {λn}n∈N follows. We use now Prohorov’s theorem to ensure

existence of a probability measure µ on C
(
[0, T ],Rd

)3 × Y(0, T ;M) and a subsequence of
{Xn, ζn,Mn, λn}n∈N , which we denote using the same index n ∈ N, such that

law (Xn, ζn,Mn, λn)→ µ, n→∞. (24)

Step 2. Dudley’s generalization of the Skorohod representation theorem (see Theorem 4.30
in Kallenberg (2002)) ensures existence of a probability space (Ω̃, F̃ , P̃) and a sequence of
random variables {X̃n, ζ̃n, M̃n, λ̃n}n∈N with values in C([0, T ];Rd)3 × Y(0, T ;M), defined
on (Ω̃, F̃ , P̃), such that

(X̃n, ζ̃n, M̃n, λ̃n)
d
= (Xn, ζn,Mn, λn), n ∈ N, (25)

and, on the same stochastic basis (Ω̃, F̃ , P̃), a random variable
(
X̃, ζ̃, M̃ , λ̃

)
with values in

C([0, T ];Rd)3 × Y(0, T ;M) such that

(X̃n, ζ̃n, M̃n)→ (X̃, ζ̃, M̃), in C([0, T ];Rd)3, P̃− a.s. (26)

and
λ̃n → λ̃, stably in Y(0, T ;M), P̃− a.s. (27)

Step 3. For each t ∈ [0, T ] let ϕt denote the evaluation map C([0, T ];Rd) 3 ζ 7→ ζ(t) ∈ Rd,
and let Γt : C([0, T ];Rd)2 × Yp(0, T ;M)→ Rd be defined as

Γt(x, ζ, λ) = Σt(x, λ)− ϕt(ζ), (x, ζ) ∈ C([0, T ];Rd)2, λ ∈ Yp(0, T ;M)

with Σt as in (18) with f = b. Using Lemma 4.2 with η = η1, it follows that Γt is measurable.
Hence by (25) and the definition of ζn, for each t ∈ [0, T ] and n ∈ N we have

ζ̃nt =

∫ t

0

∫
M
b(s, X̃n

s , u) λ̃n(du, ds)

By Theorem 6.1 in Gripenberg et al. (1990), the map Z 7→
∫ t

0 K(t− s)Zs ds is continuous
from C(0, T ;Rd) to itself. In particular, it is measurable, so we also have∫ t

0
X̃n
s ds =

∫ t

0
x0(s) ds+

∫ t

0
K(t− s)

[
ζ̃ns + M̃n

s

]
ds. (28)

Since M is a Suslin space, it also separable and Radon, see e.g. Ch. II in Schwartz (1973).
In particular, Lemma 4.1 applies, so there exists a relaxed control process (q̃nt )t∈[0,T ] defined

on (Ω̃, F̃ , P̃) such that
λ̃n(du, dt) = q̃nt (du) dt, P̃− a.s.

Now, Mn is a Fn-martingale with quadratic variation

〈Mn〉t =

∫ t

0
(σ̄σ̄>)(s,Xn

s , qs) ds, t ∈ [0, T ]

18



and (Xn, q
n)

d
= (X̃n, q̃

n). Then, using once again Lemma 4.2, now with f = σσ> and
η = η2

1, it follows that M̃n is also a martingale with respect to the filtration

F̃nt = σ
{

(X̃n
s , q̃

n
s ) : s ∈ [0, t]

}
, t ∈ [0, T ]

and quadratic variation
〈
M̃n

〉
t

=
∫ t

0 (σ̄σ̄>)(s, X̃n
s , q̃

n
s ) ds. Again, using continuity of the

map Z 7→
∫ t

0 K(t− s)Zs ds from C(0, T ;Rd) to itself, we obtain∫ t

0
X̃s ds =

∫ t

0
x0(s) ds+

∫ t

0
K(t− s)

[
ζ̃s + M̃s

]
ds.

We use Lemma 4.1 one last time to ensure the existence of a relaxed control process
(q̃t)t∈[0,T ] defined on (Ω̃, F̃ , P̃) such that

λ̃(du, dt) = q̃t(du) dt, P̃− a.s. (29)

The filtration F̃ =
{
F̃t
}
t∈[0,T ]

is defined by

F̃t = σ{(X̃s, q̃s) : s ∈ [0, t]}, t ∈ [0, T ].

We now claim that M̃ is a F̃-martingale. Indeed, From (26) we have

sup
t∈[0,T ]

∣∣X̃n
t − X̃t

∣∣2 → 0, as n→∞, P̃− a.s. (30)

By Theorem 2.1, Corollary 2.1 and (25), it follows that

Ẽ

[
sup
t∈[0,T ]

∣∣X̃t

∣∣m] <∞. (31)

Also by Theorem 2.1, and Chebyshev’s inequality, the random variables in (30) are uni-
formly integrable. Then, by Lemma 4.11 in Kallenberg (2002) we have

Ẽ

[
sup
t∈[0,T ]

∣∣X̃n
t − X̃t

∣∣2]→ 0, as n→∞. (32)

Similarly, we have

Ẽ

[
sup
t∈[0,T ]

∣∣M̃n
t − M̃t

∣∣2]→ 0, as n→∞. (33)

This, in conjunction with the martingale property of M̃n, implies that for all 0 < s < t ≤ T
and for all

φ ∈ Cb
(
C(0, s;Rd)× Y(0, s;M)

)
19



we have that as n→∞

0 = Ẽ
[(
M̃n
t − M̃n

s

)
φ(X̃n, λ̃n)

]
→ Ẽ

[(
M̃t − M̃s

)
φ(X̃, λ̃)

]
,

which implies that M̃ is a F̃−martingale.
Step 4. We now pass to the limit to identify the process (X̃t)t∈[0,T ] as a solution of the

equation controlled by (q̃t)t∈[0,T ]. Using Lemma 4.3 with E = Rd, f = b, β = p > 1, δ = 1,
and η = η1 we obtain

b̃n ⇀ b̃, weakly in L1([0, T ]× Ω̃;Rd) (34)

with b̃t = b̄(t, X̃t, q̃t), t ∈ [0, T ]. We claim that the process M̃ satisfies∫ t

0
X̃sds =

∫ t

0
x0(s)ds+

∫ t

0
K(t− s)

(∫ s

0
b̃τ dτ + M̃s

)
ds. (35)

By (32) and (33), for any ε > 0 there exists an integer m̄ = m̄(ε) ≥ 1 for which

Ẽ

[
sup
t∈[0,T ]

∣∣X̃n
t − X̃t

∣∣+
∣∣M̃n

t − M̃t

∣∣] < ε, ∀n ≥ m̄. (36)

From (34) we have

b̃ ∈ {b̃m̄, b̃m̄+1, . . .}
w
⊂ co{b̃m̄, b̃m̄+1, . . .}

w

where co(·) and ·w denote the convex hull and weak-closure in L1([0, T ] × Ω̃;Rd) respec-
tively. By Mazur’s, see for example Theorem 2.5.16 in Megginson (2012)

co{b̃m̄, b̃m̄+1, . . .}
w

= co{b̃m̄, b̃m̄+1, . . .}.

Therefore, there exist an integer N̄ ≥ 1 and {α1, . . . , αN̄} with αi ≥ 0,
∑N̄

i=1 αi = 1, such
that ∣∣∣∣∣∣ N̄∑

i=1

αib̃
m̄+i − b̃

∣∣∣∣∣∣
L1([0,T ]×Ω̃;Rd)

< ε. (37)

Let t ∈ [0, T ] be fixed. Using the αi’s and (28) we can write

∫ t

0
x0(s)ds =

N̄∑
i=1

αi

{∫ t

0
X̃m̄+i
s ds−

∫ t

0
K(t− s)

(∫ s

0
b̃m̄+i
v dv + M̃ m̄+i

s

)
ds

}
.
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Thus, we have

I =
∣∣∣∫ t

0
x0(s)ds+

∫ t

0
K(t− s)

(∫ s

0
b̃v dv + M̃s

)
ds−

∫ t

0
X̃sds

∣∣∣
=
∣∣∣ N̄∑
i=1

αi

{∫ t

0
X̃m̄+i
s ds−

∫ t

0
K(t− s)

(∫ s

0
b̃m̄+i
v dv + M̃ m̄+i

s

)
ds

}
+

∫ t

0
K(t− s)

(∫ s

0
b̃v dv + M̃s

)
ds−

∫ t

0
X̃sds

∣∣∣
≤
∣∣∣ N̄∑
i=1

αi
∫ t

0
X̃m̄+i
s ds−

∫ t

0
X̃sds

∣∣∣+
∣∣∣ N̄∑
i=1

αi
∫ t

0
K(t− s)M̃ m̄+i

s ds−
∫ t

0
K(t− s)M̃ds

∣∣∣
+
∣∣∣ N̄∑
i=1

αi
∫ t

0
K(t− s)

∫ s

0
b̃m̄+i
v dv ds−

∫ t

0
K(t− s)

∫ s

0
b̃v dv ds

∣∣∣ = II + III + IV.

Then, by (36), we have

Ẽ(II) = Ẽ

∣∣∣ N̄∑
i=1

αi
∫ t

0
X̃m̄+i
s ds−

∫ t

0
X̃sds

∣∣∣
 ≤ N̄∑

i=1

αiẼ

[∣∣∫ t

0
(X̃m̄+i

s − X̃s)ds
∣∣]

≤
N̄∑
i=1

αiẼ

[∫ t

0
sup
s∈[0,T ]

∣∣X̃m̄+i
s − X̃s

∣∣ ds] ≤ εT.
By Fubini’s theorem and (36), it follows

Ẽ(III) = Ẽ

∣∣∣ N̄∑
i=1

αi
∫ t

0
K(t− s)M̃ m̄+i

s ds−
∫ t

0
K(t− s)M̃s ds

∣∣∣


≤
N̄∑
i=1

αiẼ

[∣∣∫ t

0
K(t− s)

(
M̃ m̄+i
s − M̃s

)
ds
∣∣]

≤
N̄∑
i=1

αiẼ

[∣∣∫ t

0
K(t− s)

(
M̃ m̄+i
s − M̃s

)
ds
∣∣] ≤ ε ‖K‖L1(0,T ) .
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Using twice Jensen’s inequality and (37),

Ẽ(IV ) = Ẽ

∣∣∣ N̄∑
i=1

αi
∫ t

0
K(t− s)

∫ s

0
b̃m̄+i
v dv ds−

∫ t

0
K(t− s)

∫ s

0
b̃v dv ds

∣∣∣


= Ẽ

∣∣∣∫ t

0
K(t− s)

∫ s

0

( N̄∑
i=1

αib̃m̄+i
v − b̃v

)
dv ds

∣∣∣


≤ Ẽ

t ∫ t

0
|K(t− s)|

∫ s

0

∣∣∣ N̄∑
i=1

αib̃m̄+i
v − b̃v

∣∣∣ dv ds
 ≤ εT ‖K‖L1(0,T ) .

Then, Ẽ(I) ≤ [T + ‖K‖L1(0,T ) (T + 1)]ε. Since ε > 0 is arbitrary, (35) follows.

Step 5. Set σ̃t = σ̄(t, X̃t, q̃t) and σ̃nt = σ̄(t, X̃n
t , q̃

n
t ) , t ∈ [0, T ]. Using Lemma 4.3 with

E = Sd, f = σσ>, δ = 2, η = η2
1 and β = p/2 > 1, we obtain

σ̃nσ̃n,> ⇀ σ̃σ̃>, weakly in L1([0, T ]× Ω̃;Sd).

Let t ∈ [0, T ] be fixed. By (33) and the Burkholder-Davis-Gundy inequality we have〈
M̃n

〉
t
→
〈
M̃
〉
t

in L2(Ω̃). Then, for any ε > 0 there exists an integer m̄ = m̄(ε) ≥ 1 such
that

Ẽ

[∣∣〈M̃n
〉
t
−
〈
M̃
〉
t
|
]
< ε, ∀n ≥ m̄.

As in the proof of Step 5, there also exists an integer N̄ ≥ 1 and {α1, . . . , αN̄} with αi ≥ 0,∑N̄
i=1 αi = 1, such that

∣∣∣∣∣∣ N̄∑
i=1

αiσ̃
m̄+iσ̃(m̄+i),> − σ̃σ̃>

∣∣∣∣∣∣
L1([0,T ]×Ω̃;Sm)

< ε.

Thus, we have∣∣∣〈M̃〉t − ∫ t

0
σ̃sσ̃

>
s ds

∣∣∣
=
∣∣∣〈M̃〉t − N̄∑

i=1

αi
〈
M̃ m̄+i

〉
t
+

N̄∑
i=1

αi
∫ t

0
σ̃m̄+i
s σ̃(m̄+i),>

s ds−
∫ t

0
σ̃sσ̃

>
s ds

∣∣∣
≤
∣∣∣〈M̃〉t − N̄∑

i=1

αi
〈
M̃ m̄+i

〉
t

∣∣∣+
∣∣∣ N̄∑
i=1

αi
∫ t

0
σ̃m̄+i
s σ̃(m̄+i),>

s ds−
∫ t

0
σ̃sσ̃

>
s ds

∣∣∣.
As in Step 4, we have

Ẽ

[∣∣∣〈M̃〉t − ∫ t

0
σ̃sσ̃

>
s ds

∣∣∣] < (1 + T )ε.
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Since ε > 0 and t ∈ [0, T ] are arbitrary, it follows
〈
M̃
〉
t

=
∫ t

0 σ̃sσ̃
>
s ds P̃-a.s. for all t ∈ [0, T ].

By the martingale representation theorem (see e.g. Theorem 4.2 in Chapter 3.4 Karatzas
and Shreve (1991)) there exist an extension of the probability space (Ω̃, F̃ , P̃), which we
also denote (Ω̃, F̃ , P̃), and a d′-dimensional Brownian motion (W̃t)t≥0 defined on (Ω̃, F̃ , P̃),
such that

M̃t =

∫ t

0
σ̄(s, X̃s, q̃s) dW̃s, P̃− a.s., t ∈ [0, T ],

By (35), it follows that∫ t

0
X̃sds =

∫ t

0
x0(s)ds+

∫ t

0
K(t− s)

(∫ s

0
b̃v dv + M̃s

)
ds, P̃− a.s.

for each t ∈ [0, T ]. By Lemma 2.1 this is equivalent to X̃ being solution to stochastic

Volterra equation controlled by q̃. In other words, π̃ =
(

Ω̃, F̃ , P̃, F̃, W̃ , X̃, q̃
)

is a weak

admissible relaxed control. By the Fiber Product Lemma B.2 we have

δX̃n ⊗ λn → δX̃ ⊗ λ, stably in Y(0, T ;R×M), P̃− a.s.

Since R ×M is also a metrisable Suslin space, using Lemma B.1 and Fatou’s Lemma we
get

Ẽ

∫ T

0

∫
M
h(t, X̃t, u) λ̃(du, dt) ≤ lim inf

n→∞
Ẽ

∫ T

0

∫
M
h(t, X̃n

t , u) λ̃n(du, dt)

and since (X̃n, λ̃n)
d
= (Xn, λn) it follows that

J̄(π̃) = Ẽ

∫ T

0

∫
M
h(t, X̃t, u) λ̃(du, dt) + Ẽg(X̃T )

≤ lim inf
n→∞

En
∫ T

0

∫
M
h(t,Xn

t , u)λn(du, dt) + lim inf
n→∞

Eng(Xn
T )

≤ lim inf
n→∞

[
En
∫ T

0

∫
M
h(t,Xn

t , u)λn(du, dt) + Eng(Xn
T )

]
= inf

π∈U(x0)
J̄(π),

that is, π̃ is a weak optimal relaxed control for (RCP), and this concludes the proof of
Theorem 3.1.

4.3 Proof of Theorem 3.2

Let π = (Ω,F ,P,F, X,W, q) ∈ Ū(x0, T ). Define κ : [0, T ]× Ω→ Rd×d ×Rd ×R as

κ(t, ω) := (σ̄σ̄>, b̄, h̄)(t,Xt(ω), qt(ω)).
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By Assumption IV, we have that κ(t, ω) ∈ Γ(t,Xt(ω)), as defined in (14), for all (t, ω) ∈
[0, T ]× Ω. We also define

c1(t, ω) := (σ̄σ̄>, b̄)(t,Xt(ω), qt(ω)), c2(t, ω) := h̄(t,Xt(ω), qt(ω)).

By Lemma 4.1, c1 and c2 are measurable with respect to the predictable σ-algebra G on
Y = [0, T ]×Ω. Using Theorem A.1 we conclude the existence of a function u : [0, T ]×Ω→
M measurable with respect to G such that

c1(t, ω) = (σσ>, b)(t,Xt(ω), ut(ω)), c2(t, ω) ≥ h(t,Xt(ω), ut(ω)), (t, ω) ∈ Y (38)

and the desired result follows.

A Auxiliary results

Let (Y,G, µ) be a measure space, k,m be natural numbers, and M a closed subset of a
Euclidean space. Let

c1 : Y → Rk, c2 : Y → Rm, φ : Y ×M → Rk, ψ : Y ×M → Rm+ ,

be given measurable functions with u → φ(y, u) continuous and u → ψi(y, u) lower semi-
continuous, for each y ∈ Y and i = 1, 2, ...m. Define

Γ(y,M) =
{

(φ(y, u), z) ∈ Rk ×Rm : u ∈M, zi ≥ ψi(y, u) for i = 1, . . . ,m
}
.

Theorem A.1. If (c1(y), c2(y)) ∈ Γ(y,M) for all y ∈ Y , then there exists a measurable
function u : Y →M such that c1(y) = φ(y, u(y)) and c2

i (y) ≥ ψi(y, u(y)), i = 1, . . . ,m.

Proof. See Theorem A.9 of Haussmann and Lepeltier (1990).

B Relative compactness and limit theorems for Young mea-
sures

Young measures on metrisable Suslin control sets have been studied by Balder (2001) and
de Fitte (2003). We refer to the book by Castaing et al. (2004) for more details.

Proposition B.1. Let M be metrisable (resp. metrisable Suslin). Then the space Y(0, T ;M)
endowed with the stable topology is also metrisable (resp. metrisable Suslin).

Proof. For the metrisability part, see Proposition 2.3.1 in Castaing et al. (2004). For the
Suslin part, see Proposition 2.3.3 in Castaing et al. (2004).

24



The notion of tightness for Young measures that we use was introduced by Valadier
(1990). See also the book by Crauel (2002). Recall that a set-valued function [0, T ] 3 t 7→
Kt ⊂M is said to be measurable if and only if for every open set U ⊂M ,

{t ∈ [0, T ] : Kt ∩ U 6= ∅} ∈ B([0, T ]).

Definition B.1. We say that a set J ⊂ Y(0, T ;M) is flexibly tight if, for each ε > 0,
there exists a measurable set-valued mapping [0, T ] 3 t 7→ Kt ⊂M such that Kt is compact
for all t ∈ [0, T ] and

sup
λ∈J

∫ T

0

∫
M

1Kc
t
(u)λ(du, dt) < ε.

Theorem B.1 (Equivalence theorem for flexible tightness). For any J ⊂ Y(0, T ;M)
the two following conditions are equivalent:

1. J is flexibly tight

2. There exists η ∈ IC([0, T ],M) such that

sup
λ∈J

∫ T

0

∫
M
η(t, u)λ(du, dt) < +∞.

Proof. See e.g. (Balder, 1998, Definition 3.3).

Theorem B.2 (Prohorov criterion for relative compactness). Let M be a metrisable
Suslin space. Then every flexibly tight subset of Y(0, T ;M) is sequentially relatively compact
in the stable topology.

Proof. See (Castaing et al., 2004, Theorem 4.3.5).

Lemma B.1. Let M be a metrisable Suslin space and g ∈ L1(0, T ;R). Let us assume that

h : [0, T ]×M → [−∞,+∞]

is a measurable function such that h(t, ·) is lower semi-continuous for every t ∈ [0, T ] and
satisfies one of the two following conditions:

1. |h(t, u)| ≤ g(t), a.e. t ∈ [0, T ],

2. h ≥ 0.

If λn → λ stably in Y(0, T ;M), then∫ T

0

∫
M
h(t, u)λ(du, dt) ≤ lim inf

n→∞

∫ T

0

∫
M
h(t, u)λn(du, dt).
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Proof. If (1) holds, the result follows from Theorem 2.1.3–Part G in Castaing et al. (2004).
If (2) holds, the result follows from Proposition 2.1.12–Part (d) in Castaing et al. (2004).

It is worth mentioning that these last two results are, in fact, the main reasons why it
suffices for the control set M to be only metrisable and Suslin, in contrast with the existing
literature on stochastic relaxed controls. Indeed, Theorem B.2 is key to obtain tightness of
the laws of random Young measures in the proof of the main existence result, and Lemma
B.1 is used to prove the lower semi-continuity of the relaxed cost functionals as well as
Theorem B.3 below.

Theorem B.3. Let M be a metrisable Suslin space. If λn → λ stably in Y(0, T ;M), then
for every f ∈ L1(0, T ; Cb(M)) we have

lim
n→∞

∫ T

0

∫
M
f(t, u)λn(du, dt) =

∫ T

0

∫
M
f(t, u)λ(dt, du).

Proof. Use Lemma B.1 with f and −f .

We will need the following version of the so-called Fiber Product Lemma. For a mea-
surable map y : [0, T ] → M , we denote by δy(·)(·) the degenerate Young measure defined
as δy(·)(du, dt) = δy(t)(du) dt.

Lemma B.2 (Fiber Product Lemma). Let S and M be separable metric spaces and
let yn : [0, T ] → S be a sequence of measurable mappings which converge pointwise to a
mapping y : [0, T ] → S. Let λn → λ stably in Y(0, T ;M) and consider the following
sequence of Young measures on S ×M :

(δyn ⊗ λn)(dx, du, dt) = δyn(t)(dx)λn(du, dt), n ∈ N,

and
(δy ⊗ λ)(dx, du, dt) = δy(t)(dx)λ(du, dt).

Then δyn ⊗ λn → δy ⊗ λ stably in Y(0, T ;S ×M).

Proof. Proposition 1 in Valadier (1993) implies that δyn → δy stably in Y(0, T ;S), and the
result follows from Corollary 2.2.2 and Theorem 2.3.1 in Castaing and de Fitte (2004).
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