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Abstract

In this paper, we propose a novel method for representa-
tion and classification of two-person interactions from 3D
skeleton sequences. The key idea of our approach is to use
Gaussian distributions to capture statistics on Rn and those
on the space of symmetric positive definite (SPD) matrices.
The main challenge is how to parametrize those distribu-
tions. Towards this end, we develop methods for embedding
Gaussian distributions in matrix groups based on the the-
ory of Lie groups and Riemannian symmetric spaces. Our
method relies on the Riemannian geometry of the under-
lying manifolds and has the advantage of encoding high-
order statistics from 3D joint positions. We show that the
proposed method achieves competitive results in two-person
interaction recognition on three benchmarks for 3D human
activity understanding.

1. Introduction

3D skeleton-based action recognition has been an active
research topic in recent years with many potential applica-
tions. In this work, we focus on 3D skeleton-based two-
person interaction recognition (3DTPIR). Compared to a
large number of general-purpose methods for 3D skeleton-
based action recognition, methods for 3DTPIR are much
less studied in the literature. Recent works [46, 63] have
shown that state-of-the-art action recognition methods do
not always perform well on human interaction recognition.
This is because they lack an effective mechanism for cap-
turing intra-person and inter-person joint relationships [46].

In two-person interactions, arm and leg movements are
highly correlated. However, these correlations are simply
encoded by distances between joints in most existing works
for 3DTPIR [17, 18, 42, 65]. This motivates us to use high-
order statistics, i.e. covariance matrices to better capture
these interactions. It has been known that n× n covariance
matrices lie on a special type of Riemannian manifolds, i.e.
SPD manifolds (denoted by Sym+

n ). A large body of works

has been developed for classification of SPD-valued data.
Recently, SPD neural networks have demonstrated impres-
sive results [13]. One of the core issues that remains open
is the finding of effective and efficient methods for mod-
eling probability distributions on Sym+

n . Since Gaussian
distributions (abbreviated as Gaussians) on Rn are the most
popular probability distributions used in statistics, existing
works mainly focused on generalizing them to Sym+

n . Such
a generalization was first given in [43] in a more general
context of Riemannian manifolds. However, the asymptotic
formulae of Riemannian Gaussian distributions (abbrevi-
ated as Riemannian Gaussians) proposed in this work make
them hard to evaluate and apply in practice. Some works
aim to address this shortcoming by introducing notions of
Riemannian Gaussians in symmetric spaces [49, 50] and
homogeneous spaces [6]. These have been successfully ap-
plied to classification problems. In this work, we also inter-
ested in Riemannian Gaussians for classification. However,
differently from the above works, we seek methods for em-
bedding Riemannian Gaussians in matrix groups. This al-
lows us to perform classification of Riemannian Gaussians
without having to resort to an exact expression of their prob-
ability density function as in [6, 49, 50].

In summary, the main contributions of this work are:

• We propose an embedding method for Gaussians by
mapping them diffeomorphically to Riemannian sym-
metric spaces.

• We consider representing a 3D skeleton sequence by
a set of SPD matrices that leads us to the study of
statistics on Sym+

n . We show that the product space
of mean and covariance on Sym+

n can be viewed as
a Lie group with an appropriate group product. More-
over, we point out a connection between this space and
the group of lower triangular matrices with positive di-
agonal entries.

• Based on the theory described above, we introduce a
neural network for learning a geometric representation
from a 3D skeleton sequence.



• Experiments on three benchmarks for 3D human ac-
tivity understanding demonstrate the competitiveness
of our method with state-of-the-art methods.

2. Related Works

We will briefly discuss representative works for 3DTPIR
(Section 2.1), embeddings of Gaussians (Section 2.2), and
probability distributions on Sym+

n (Section 2.3).

2.1. Two-person Interaction Recognition from 3D
Skeleton Sequences

A variety of approaches has been proposed for 3D
skeleton-based action recognition. These are based on
hand-crafted features [10, 35, 54, 58, 64, 67] and deep learn-
ing [9, 19, 29, 30, 31, 32, 33, 40, 52, 57, 60, 68]. Recent
works focus on neural networks on manifolds [13, 14, 15,
41] and on graphs [7, 21, 22, 53, 62]. Due to space limit, we
refer the interested reader to [48] for a more comprehensive
survey. Below we focus our discussion on 3DTPIR.

Approaches for 3DTPIR are much less studied. Hand-
crafted feature based methods mainly rely on distances [17,
18, 42, 65] or moving similarity [27] between joints of
two persons. Li and Leung [23] applied a multiple kernel
learning method to an interaction graph constructed from
the relative variance of joint relative distances. Two-stream
RNNs are proposed in [37, 57] where interactions between
two persons are modeled by concatenating the 3D coordi-
nates of their corresponding joints, or by augmenting the
input sequence with distances between their joints. In [46],
Relational Network [51] is extended to automatically infer
intra-person and inter-person joint relationships. The recent
work [63] deals with graph construction in graph convolu-
tional networks for 3DTPIR.

2.2. Embedding of Gaussians

Methods for embedding Gaussians are widely used in
statistics, e.g. for measuring the distance between probabil-
ity distributions. The work of [47] first proposed a distance
function based on the Fisher information as a Riemannian
metric. However, in the general case of multivariate Gaus-
sians, an exact formula for the distance function is difficult
to obtain. In computer vision, one of the most widely used
embedding is derived from [34]. The key idea is to identify
Gaussians with SPD matrices by parametrizing the space
of Gaussians as a Riemannian symmetric space. The work
of [5] shares a similar idea of identifying Gaussians with
SPD matrices. However, it is based on embedding Gaus-
sians into the Siegel group. In [12], a connection is estab-
lished between Gaussians and a subspace of affine matrices.
The method of [24] relies on the Log-Euclidean metrics [1]
for embedding Gaussians in linear spaces.

2.3. Probability Distributions on Sym+
n

Existing works mainly focused on generalizing Gaus-
sians to Sym+

n due to their popularity in statistics. Gen-
eralizations of Gaussians are proposed in Riemannian man-
ifolds [43, 66], symmetric spaces [49, 50], and homoge-
neous spaces [6]. In [2, 4], Riemannian Gaussians are de-
rived from the definition of maximum entropy on exponen-
tial families. Family of Alpha-Divergences and other re-
lated divergences have also been extensively studied [8].

3. Background Theory
3.1. Statistics on Riemannian Manifolds

The theory presented here is based on [43]. In this frame-
work, the structure of a manifoldM is specified by a Rie-
mannian metric. Let x be a point ofM as a local reference
and TxM be the tangent space at x. A Riemannian metric is
a continuous collection of dot products < .|. >x on TxM.
The distance between two points of a connected Rieman-
nian manifold is the minimum length among the smooth
curves joining them. The curves realizing this minimum
for any two points are called geodesics. Let v ∈ TxM be a
tangent vector at x. We define the exponential map at x as
the function that maps v to the point y ∈M that is reached
after a unit time by the geodesic starting at x with this tan-
gent vector. This map is defined in the whole tangent space
TxM but it is generally one-to-one only locally around 0
in the tangent space (i.e. around x in the manifold). Let
−→xy = logx(y) be the inverse of the exponential map that is
the smallest vector as measured by the Riemannian metric
such that y = expx(−→xy). The exponential chart at x can
be seen as the development ofM in the tangent space at a
given point along the geodesics.

The definitions of mean and covariance on a Riemannian
manifold are given below.

Definition 1 Let x be a random point of probability density
function px. Denote by distR(y, x) the distance between
x, y ∈M induced by the Riemannian metric ofM. The set
of expected or mean values is:

E[x] = arg min
y∈M

(∫
M

distR(y, z)2.px(z).dM(z)
)
, (1)

where dM(z) is the volume measure induced by the Rie-
mannian metric of M, and we assume that the integral is
finite for all points y ∈ M (which is true for a density with
a compact support).

Definition 2 Let x be a random point, x̄ be a mean value
that we assume to be unique. The covariance is defined as:

Covx̄(x) = E[
−→̄
xx.
−→̄
xxT ] =

∫
D(x̄)

(
−→̄
xx).(

−→̄
xx)T .px(x).dM(x),

(2)



where D(x̄) is the maximal definition domain for the expo-
nential chart at x̄.

4. Proposed Approach

In what follows, we are interested in matrices over the
field of real numbers, unless otherwise stated.

4.1. Embedding of Gaussians

Let N(n) be the space of n−variate Gaussians, Sym+,1
n

be the space of SPD n × n matrices with determinant 1.
Lemma 1 gives an embedding of Gaussians in N(n).

Lemma 1 We can identify the Gaussian (ΣΣΣ,µµµ) ∈ N(n)
with the following matrix in Sym+,1

n+k:

(detΣΣΣ)−
1

n+k

[
ΣΣΣ + kµµµµµµT µµµ(k)
µµµ(k)T Ik

]
, (3)

where µµµ and ΣΣΣ are the mean and covariance of the Gaus-
sian, Ik is the k× k identity matrix, µµµ(k) is a matrix with k
identical column vectors µµµ.

Proof. See supplementary material.
When k = 1, the embedding in (3) becomes the one in-

troduced in [34]. The natural symmetric Riemannian metric
resulting from the above embedding is given in Lemma 2.

Lemma 2 The Riemannian metric is given by:

< A1,A2 >P=Tr(A1P
−1A2P

−1)−

− 1

n+ k
Tr(A1P

−1)Tr(A2P
−1),

(4)

where A1 and A2 are two tangent vectors at P.
Proof. See supplementary material.
It turns out that the Riemannian metric given in (4)

belongs to the family of affine-invariant metrics proposed
in [44]. Consequently, the exponential map at a point can
be obtained [45] as:

expP(A) = P
1
2 exp

(
P−

1
2AP−

1
2

)
P

1
2 , (5)

where P is a SPD matrix, A is a tangent vector at P, and
exp(.) is the matrix exponential. By inverting the exponen-
tial map, we obtain the logarithmic map:

logP(Q) = P
1
2 log

(
P−

1
2QP−

1
2

)
P

1
2 , (6)

where P and Q are two SPD matrices, and log(.) is the
matrix logarithm.

4.2. Statistics on Sym+
n

Suppose that we are given a set of matrices
P1,P2, . . . ,PL ∈ Sym+

n . From (1), one can define
the empirical or discrete mean value of P1,P2, . . . ,PL as:

Pm = arg min
y∈Sym+

n

( 1

L

L∑
i=1

distR(y,Pi)
2
)
. (7)

The mean can be computed by an iterative procedure
consisting in: (1) projecting the SPD matrices in the tan-
gent space at the current mean; (2) estimating the arithmetic
mean in that space; (3) projecting the mean back in Sym+

n .
These steps are iterated until convergence [39].

Similarly, the empirical covariance of a set of L SPD
matrices of mean Pm is defined using the discrete version
of the expectation operator in (2):

Pc =
1

L− 1

L∑
i=1

−−−→
PmPi ⊗

−−−→
PmPi, (8)

where ⊗ denotes the tensor product.
We propose to learn a transformation of

−−−→
PmPi from

TPmSym+
n to another tangent space so that the covariance

computed in this space is more discriminative for classifica-
tion. The transformation is performed by parallel transport
(PT). We need Lemma 3 for our transformation.

Lemma 3 Let P,Q ∈ Sym+
n . Let the Riemannian metric

be the one given in (4). The PT from Q to P along geodesics
connecting Q and P of a tangent vector A ∈ TQSym+

n is
given by:

TQ,P(A) , (PQ−1)
1
2A
(
(PQ−1)

1
2

)T
. (9)

Proof. See supplementary material.
The formula of PT in (9) is the same as those in [11, 55,

61] which are all based on the Riemannian metric of the
following form:

< A1,A2 >P= Tr(A1P
−1A2P

−1), (10)

where A1 and A2 are two tangent vectors at P.
In [4], the authors also use PT for designing Rieman-

nian batch normalization (RBN) layers. Our method differs
from theirs in three main aspects. First, their method learns
the parameters of RBN layers from the statistics of mini-
batches, while our method deals with the statistics within
each sequence. Note that a RBN layer can also be designed
in our framework and can potentially improve the accuracy
of our network. Second, their formulation of Riemannian
Gaussians involves only a Riemannian mean without notion
of variance. Third, their method does not aim to leverage
the second-order statistics (covariance) on SPD manifolds.



Now suppose that
−−−→
PmPi, i = 1, . . . , L are transported

to another tangent space at P̃ (the target point of PT), then
the covariance can be estimated as:

Pc =
1

L− 1

L∑
i=1

TPm,P̃(
−−−→
PmPi)⊗ TPm,P̃(

−−−→
PmPi). (11)

Let fv(.) be a mapping that vectorizes a symmetric ma-
trix by taking its lower triangular part and applying a

√
2

coefficient on its off-diagonal entries in order to preserve
the norm [45]. Then, the covariance is given by:

Pc =
1

L− 1

L∑
i=1

fv
(
TPm,P̃(

−−−→
PmPi)

)
fv
(
TPm,P̃(

−−−→
PmPi)

)T
.

(12)
If Pc is a matrix of size n′ × n′, then we use a point

(Pm,Pc) that lies on the product manifold Sym+
n×Sym+

n′

to parametrize the distribution of the given set of SPD ma-
trices. Next, we propose an embedding of this point based
on the Lie group theory.

4.3. Embedding of Riemannian Gaussians

We first define an appropriate group product on the prod-
uct manifold Sym+

n × Sym+
n′ .

Definition 3 Let M(n, n′) be the product manifold
Sym+

n × Sym+
n′ . Let (Pm

i ,P
c
i ) ∈ M(n, n′), i = 1, 2

where Pm
i ∈ Sym+

n , Pc
i ∈ Sym

+
n′ , and Pc

i = LiL
T
i be the

Cholesky decomposition of Pc
i . Denote by ϕ : Sym+

n →
Mk′×n′

a smooth bijective mapping with a smooth inverse
where Mk′×n′

is a subset of the set of k′ × n′ matrices.
The group product ? between two elements ofM(n, n′) is
defined as:

? :M(n, n′)×M(n, n′)→M(n, n′)

(Pm
1 ,P

c
1) ? (Pm

2 ,P
c
2)

= (ϕ−1(ϕ(Pm
1 )L2 + ϕ(Pm

2 )), (L1L2)(L1L2)T ).

(13)

Theorem 1 shows thatM(n, n′) forms a Lie group.

Theorem 1 M(n, n′) is a Lie group under product ?.

Proof. See supplementary material.
Based on Theorem 1, we can establish a Lie group iso-

morphism betweenM(n, n′) and a subgroup of a group of
lower triangular matrices with positive diagonal entries.

Theorem 2 Denote by LT+(n′) the group of lower trian-
gular n′×n′ matrices with positive diagonal entries, 0n′×k′

the n′ × k′ matrix with all elements equal to zero. Let

K+(n′ + k′) =

{
KPm,H ,

[
H 0n′×k′

ϕ(Pm) Ik′

]}
, (14)

where H ∈ LT+(n′), and

φ : K+(n′ + k′)→M(n, n′), φ(KPm,L) = (Pm,Pc),
(15)

where Pc = LLT , L ∈ LT+(n′). Then φ is a Lie group
isomorphism.

Proof. See supplementary material.
We now can give the embedding matrix of a point

(Pm,Pc) ∈M(n, n′) where Pc = LLT as follows:

(Pm,Pc) 7→
[

L 0n′×k′

ϕ(Pm) Ik′

]
. (16)

The embedding matrix in (16) depends on the choice of
function ϕ(.). In this work, we set ϕ = (fv ◦ flm)(k′)T

where (fv ◦ flm)(k′)T is the transpose of (fv ◦ flm)(k′),
(fv ◦ flm)(k′) is a matrix with k′ identical column vectors
obtained from fv ◦ flm, and flm(.) is given by:

flm(P) = log(P) = U log(Z)UT , (17)

where P = UZUT is the eigenvalue decomposition of P,
and log(Z) is the diagonal matrix of eigenvalue logarithms.

4.4. A Neural Network for 3DTPIR

We are now ready to introduce a neural network (Ge-
omNet) for 3DTPIR based on the theory developed in the
previous sections. Let N j and Nf be the number of joints
and that of frames in a given sequence, respectively, Let
xin
t,i ∈ R3, t = 1, . . . , Nf , i = 1, . . . , N j be the feature

vector (3D coordinates) of joint i at frame t. Two joints i
and j are neighbors if they are connected by a bone. De-
note by Si the set of neighbors of joint i. Let i1,r, i2,r be
the two joints selected as the roots of the first and second
skeleton, respectively (see Fig. 1). For any two joints i and
ir ∈ {i1,r, i2,r} that belong to the same skeleton, the dis-
tance distJ(i, ir) between them is defined as the number of
bones connecting them (see Fig. 1). The first layer of Ge-
omNet is a convolutional layer written as:

xout
t,i =

t+1∑
t′=t−1

∑
i′∈Si

W̃t′,i′x
in
t′,i′ , (18)

where xout
t,i ∈ Rd is the output feature vector of joint i at

frame t, and W̃t′,i′ is defined as:

W̃t′,i′ =


Wt′+2−t,1, if distJ(i′, ir) = distJ(i, ir)− 1

Wt′+2−t,2, if i′ = i

Wt′+2−t,3, if distJ(i′, ir) = distJ(i, ir) + 1
(19)

Here, the set of weights {Wu,v}, u, v = 1, 2, 3 com-
pletely defines the convolution filters in Eq. (18). Let N j,1

and N j,2 be the numbers of joints belonging to the arms



Figure 1: Illustration of body joints’ positions (only the
first skeleton is shown). The joint at the hip is selected
as the root of the skeleton. The distance between joints 1
and 6 is 4. The joints 22,23,24,25 are not used in the con-
volution operation. The arms then contain the following
joints: 5, 6, 7, 8, 9, 10, 11, 12. The legs contain the follow-
ing joints: 13, 14, 15, 16, 17, 18, 19, 20 (figure reproduced
from [52]).

and legs of two skeletons, respectively (see Fig. 1). Let
Xout,1 and Xout,2 respectively of size N j,1 ×Nf × d and
N j,2 × Nf × d be the data associated with the arms and
legs of two persons. The motivation behind this partition is
that the interaction between two persons often involve those
among their arms and those among their legs. For each
b ∈ {1, 2}, the set of N j,bNf d−dim feature vectors from
Xout,b is partitioned into L subsets using K-means cluster-
ing. Let yb

l,1, . . . ,y
b
l,ibl

be the feature vectors in the lth sub-

set. We assume that yb
l,1, . . . ,y

b
l,ibl

are i.i.d. samples from a

Gaussian (ΣΣΣb
l ,µµµ

b
l ) whose parameters can be estimated as:

µµµb
l =

1

ibl

ibl∑
j=1

yb
l,j , (20)

ΣΣΣb
l =

1

ibl − 1

ibl∑
j=1

(yb
l,j −µµµb

l )(y
b
l,j −µµµb

l )
T . (21)

Based on the theory developed in Section 4.1, the Gaussian
(ΣΣΣb

l ,µµµ
b
l ) can be identified with the following matrix:

Pb
l = (detΣΣΣb

l )
− 1

n+k

[
ΣΣΣb

l + kµµµb
l (µµµ

b
l )

T µµµb
l (k)

(µµµb
l (k))T Ik

]
. (22)

The above computations can be performed by a layer as:

{Pb
l}

b=1,2
l=1,...,L = fgaussemb({Xout,b}b=1,2). (23)

The next layer is designed to compute statistics on SPD
manifolds and can be written by:

{Pb,m,Pb,c}b=1,2 = fspdstats
(
{Pb

l ,W
b
pt}

b=1,2
l=1,...,L

)
,
(24)

where Wb
pt, b = 1, 2 are the parameters corresponding to

the target points of PT (see Section 4.2). Specifically, Pb,m

is the mean of Pb
l , l = 1, . . . , L, and Pb,c is given by:

Pb,c =
1

L− 1

L∑
i=1

fv
(
TPb,m,Wb

pt
(
−−−−−→
Pb,mPi)

)
×

fv
(
TPb,m,Wb

pt
(
−−−−−→
Pb,mPi)

)T
.

(25)

The next layer computes the embeddings of statistics
Pb,m,Pb,c, b = 1, 2 and can be written as:

{Bb}b=1,2 = fspdstatsemb

(
{Pb,m,Pb,c}b=1,2

)
, (26)

where Bb is the embedding matrix of (Pb,m,Pb,c) given
in the right-hand side of (16). The next layer transforms
Bb, b = 1, 2 to some matrices in LT+(n′ + k′) as:

{Db}b=1,2 = ftrilmap

(
{Bb,Wb

lw}b=1,2

)
, (27)

where Db = BbWb
lw, Wb

lw, b = 1, 2 are the parameters
that are required to be in LT+(n′ + k′) so that the outputs
Db are also in LT+(n′ + k′). The network then performs a
projection:

{Eb}b=1,2 = ftriltoeud({Db}b=1,2), (28)

where Eb = flm(Db(Db)T ), b = 1, 2. Finally, a fully-
connected (FC) layer and a softmax layer are used to obtain
class probabilities:

Cout = fprob
(
concat(fv(E1), fv(E2)),Wfc

)
, (29)

where Wfc are the parameters of the FC layer, the operator
concat(V1,V2) concatenates the two column vectors V1

and V2 vertically, and Cout are the output class probabili-
ties. We use the cross-entropy loss for training GeomNet.

4.5. Geometry Aware Constrained Optimization

Some layers of GeomNet rely on the eigenvalue decom-
position. To derive the backpropagation updates for these
layers, we follow the framework of [16] for computation
of the involved partial derivatives. The optimization pro-
cedure for the parameters Wb

pt,W
b
lw, b = 1, 2 is based on

the Adam algorithm in Riemannian manifolds [3]. The Rie-
mannian Adam update rule is given by:

xt+1 = expxt

(
− α m̂t√

v̂t + ε

)
, (30)



where xt and xt+1 are respectively the parameters updated
at timesteps t and t + 1, m̂t = mt/(1 − βt

1), v̂t =
vt/(1 − βt

2), mt = β1τt−1 + (1 − β1)gt is a momentum
term, vt = β2vt−1 + (1 − β2)‖gt‖2xt

is an adaptivity term,
gt is the gradient evaluated at timestep t, α, ε, β1, β2 are
constant values. The squared Riemannian norm ‖gt‖2xt

=<
gt|gt >xt corresponds to the squared gradient value in Rie-
mannian settings. Here, < .|. >xt

is the dot product for
the Riemannian metric of the manifold in consideration, as
discussed in Section 3.1. After updating xt+1 in Eq. (30),
we update τt as the PT of mt along geodesics connecting
xt and xt+1, i.e. τt = Txt,xt+1(mt).

The update rule in Eq. (30) requires the computation of
the exponential map and the PT. For SPD manifolds, these
operations are given in Eqs. (5) and (9). It remains to define
these operations for the update of the parameters Wb

lw, b =
1, 2. To this aim, we rely on the Riemannian geometry of
LT+(n) studied in the recent work [26]. By considering
the following metric:

< U,V >K=
∑
i>j

UijVij +

n∑
j=1

UjjVjjK
−2
jj , (31)

where K ∈ LT+(n), U,V ∈ TKLT
+(n), Uij is the

element on the ith row and jth column of U, Lin has
shown [26] that the space LT+(n) (referred to as Cholesky
space) equipped with the above metric forms a Riemannian
manifold. On this manifold, the exponential map at a point
can be computed as:

expK U = bKc+bUc+D(K) exp(D(U)D(K)−1), (32)

where K ∈ LT+(n), U ∈ TKLT
+(n), bKc is a matrix

of the same size as K whose (i, j) element is Kij if i > j
and is zero otherwise, D(K) is a diagonal matrix whose
(i, i) element is Kii. Also, the PT of a tangent vector U ∈
TKLT

+(n) to a tangent vector at H ∈ LT+(n) is given
by:

TK,H(U) = bUc+ D(H)D(K)−1D(U), (33)

where K,H ∈ LT+(n).

5. Experiments
Our network was implemented with Tensorflow deep

learning framework and the experiments were conducted
using two NVIDIA GeForce GTX 1080 GPUs. We used
GeomStats library [38] for geometric computations. The
dimension d of output vectors at the convolutional layer,
the number of clusters L, and the learning rate were set to
9, 180, and 10−2, respectively. The batch sizes were set re-
spectively to 30 and 256 for the experiments on SBU Inter-
action dataset and those on NTU datasets. The values of the
pair (k, k′) (see (3) and (16)) were set to (2, 3) and (2, 1) for

the experiments on SBU Interaction and NTU datasets, re-
spectively. The values of α, ε, β1, and β2 in the Riemannian
Adam algorithm1 were set to 10−3, 10−8, 0.9, and 0.999,
respectively [20]. In our experiments, GeomNet converged
well after 600 epochs. For more details on our experiments,
we refer the interested reader to the supplementary material.

5.1. Datasets and Experimental Settings

SBU Interaction dataset. This dataset [65] contains 282
sequences in 8 action classes created from 7 subjects. Each
action is performed by two subjects where each subject has
15 joints. The joints 4,21,1,5,6,7,9,10,11,13,14,15,17,18,19
in Fig. 1 correspond respectively to the joints
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 of the first skeleton of
SBU Interaction dataset. We followed the experimental
protocol based on 5-fold cross validation with the provided
training/testing splits [65].

NTU RGB+D 60 dataset. This dataset [52] contains
56,880 sequences created from 40 subjects with three cam-
eras views and categorized into 60 classes. We followed the
two experimental protocols cross-subject (X-subject) and
cross-view (X-view) [52].

NTU RGB+D 120 dataset. This dataset [28] contains
114,480 sequences in 120 action classes, captured by 106
subjects with three cameras views. We followed the two
experimental protocols cross-subject (X-subject) and cross-
setup (X-setup) [28].

5.2. Ablation Study

In this section, we study the impact of different compo-
nents of GeomNet on its accuracy2 on SBU Interaction and
NTU RGB+D 60 datasets.

Embedding dimensions. Here we investigate the im-
pact of the parameters k and k′ (see (3) and (16)). Fig. 2
shows the accuracies of GeomNet on SBU Interaction
dataset with different settings of (k, k′), i.e. k = 0, 1, 2 and
k′ = 0, . . . , 10. Note that when k = 0, the layer fgaussemb

relies only on the covariance information. Also, when
k′ = 0, the outputs Bb, b = 1, 2 of the layer fspdstatsemb

are simply obtained by the Cholesky decomposition of Pb,c,
i.e. Bb(Bb)T = Pb,c. It is interesting to note that Geom-
Net achieves the best accuracy with (k, k′) = (2, 3), i.e.
none of k and k′ is equal to 1. This is opposed to pre-
vious works [12, 25, 41, 59], where n-variate Gaussians
are always identified with SPD (n + 1) × (n + 1) matri-
ces. To the best of our knowledge, this is the first work that
shows the benefits of identifying n-variate Gaussians with
SPD (n+ k)× (n+ k) matrices where k > 1. The results
also reveal that the setting of (k, k′) has a non-negligible
impact on the accuracy of GeomNet. Namely, the perfor-
mance gap between two settings (k, k′) = (1, 1) (94.54%)

1Our code deals with constrained and unconstrained parameters.
2The results of GeomNet are averaged over 3 runs.
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Figure 2: Accuracy of GeomNet on SBU Interaction
dataset with different settings of (k, k′).

Dataset SBU Interaction
NTU RGB+D 60 Dataset
X-Subject X-View

Without PT 71.51 62.18 66.83
PT 96.33 93.62 96.32

Table 1: Effectiveness of PT on SBU Interaction and NTU
RGB+D 60 datasets.

and (k, k′) = (2, 3) (96.33%) is 1.79%. We can also notice
that when k is fixed, GeomNet always performs best with
k′ > 1. This shows the effectiveness of our parameteriza-
tion of Riemannian Gaussians in (16).

To investigate the effectiveness of our proposed embed-
ding of Gaussians outside of our framework, we used it to
improve the state-of-the-art neural network on SPD mani-
folds SPDNet [13]. In [13], the authors performed action
recognition experiments by representing each sequence by
a joint covariance descriptor. The covariance descriptor is
computed from the second order statistics of the 3D coordi-
nates of all body joints in each frame. For SBU Interaction
dataset, the size of the covariance matrix is 90×90 (30 body
joints in each frame). In our experiment, we combined the
covariance matrix and the mean vector using the proposed
embedding of Gaussians to represent each sequence. Each
sequence is then represented by a SPD (90 + k)× (90 + k)
matrix. We used the code of SPDNet3 published by the au-
thors. Fig. 3 shows the accuracies of SPDNet4 on SBU
Interaction dataset with different settings of k. As can be
observed, SPDNet gives the best accuracy with the setting
k = 10. The performance gap between two settings k = 1
(90.5%) and k = 10 (92.38%) is 1.88%. The accuracy of
SPDNet when using only the covariance (k = 0) is 79.48%,
which is significantly worse than its accuracy with the set-
ting k = 10. The results confirm that our proposed embed-
ding of Gaussians is effective in the framework of SPDNet
and that it is advantageous over the one of [34]. This sug-
gests that our method could also be beneficial to previous
works that rely on Gaussians to capture local feature distri-
bution, e.g. [12, 24, 25, 36, 41, 59].

3https://github.com/zhiwu-huang/SPDNet
4The results are averaged over 10 runs.
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Figure 3: Accuracy of SPDNet on SBU Interaction dataset
with different settings of k.

Dataset SBU Interaction
NTU RGB+D 60 Dataset
X-Subject X-View

Without LTML 94.90 92.30 95.05
LTML 96.33 93.62 96.32

Table 2: Effectiveness of lower triangular matrix learning
(LTML) on SBU Interaction and NTU RGB+D 60 datasets.

Parallel transport. Tab. 1 gives the accuracies of Geom-
Net without using PT on SBU Interaction and NTU RGB+D
60 datasets. The accuracies of GeomNet are also shown for
comparison purposes. When PT is not used, the covariance
in Eq. (12) is computed as:

Pc =
1

L− 1

L∑
i=1

fv
(−−−→
PmPi

)
fv
(−−−→
PmPi

)T
. (34)

It can be seen that the use of PT is crucial for obtaining
high accuracy. Specifically, on NTU RGB+D 60 dataset,
computing the covariance without PT results in a loss of
31.44% on X-Subject protocol and a loss of 29.49% on X-
View protocol. On SBU Interaction dataset, a significant
reduction in accuracy (24.82%) can also be observed when
PT is not used. These results highlight the importance of
learning the parameters Wb

pt, b = 1, 2 in GeomNet.
Lower triangular matrix learning. Tab. 2 gives the ac-

curacies of GeomNet without using the layer ftrilmap on
SBU Interaction and NTU RGB+D 60 datasets. Again,
the accuracies of GeomNet are also shown for comparison
purposes. We can note that the introduction of the layer
ftrilmap brings performance improvement, i.e. 1.43% on
SBU Interaction dataset, and 1.32% on X-Subject protocol
and 1.27% on X-View protocol on NTU RGB+D 60 dataset.

5.3. Results on SBU Interaction Dataset

Results of GeomNet and state-of-the-art methods on
SBU Interaction dataset are given in Tab. 3. For SPDNet,
we report its best accuracy using the embedding in (3) with
k = 10. We can remark that the accuracies of most of the
hand-crafted feature based methods [18, 56] are lower than
90%. The state-of-the-art method [9] for skeleton-based ac-
tion recognition only gives a modest accuracy of 80.35%,



Method Accuracy
Lie Group [56] 47.92

Constrast Mining [18] 86.90

Interaction Graph [23] 92.56

Trust Gate LSTM [29] 93.30

Hierarchical RNN [9] 80.35

Deep LSTM+Co-occurence [68] 90.41

SPDNet [13] 92.38

GeomNet 96.33

Table 3: Recognition accuracy (%) of GeomNet and state-
of-the-art methods on SBU Interaction dataset.

Method X-Subject X-View
ST-LSTM [30] 83.0 87.3

ST-GCN [62] 86.75 91.17

AS-GCN [22] 87.08 92.04

LSTM-IRN [46] 90.5 93.5

SPDNet [13] 74.85 76.07

GeomNet 93.62 96.32

Table 4: Recognition accuracy (%) of GeomNet and state-
of-the-art methods on NTU RGB+D 60 dataset.

the second worst accuracy among the competing methods.
GeomNet achieves the best accuracy of 96.33%, which is
16.85% better than that of SPDNet.

5.4. Results on NTU RGB+D 60 Dataset

Tab. 4 shows the results of GeomNet and state-of-the-
art methods on NTU RGB+D 60 dataset. For ST-GCN
and AS-GCN, we used the codes5,6 published by the au-
thors. For SPDNet, we report its best accuracy using the
embedding in (3) with k = 3. We can observe that Geom-
Net gives the best results on this dataset. Since ST-GCN
is based on fixed skeleton graphs which might miss implicit
joint correlations, AS-GCN improves it by learning actional
links to capture the latent dependencies between joints. AS-
GCN also extends the skeleton graphs to represent structural
links. However, AS-GCN does not achieve significant im-
provements over ST-GCN. This indicates that actional and
structural links in AS-GCN are still not able to cope with
complex patterns in 3DTPIR. As can be seen, GeomNet out-
performs ST-GCN and AS-GCN by large margins. We can
also note a large performance gap between GeomNet and
SPDNet. This can probably be explained by the fact that:
(1) GeomNet aims to learn inter-person joint relationships;
(2) GeomNet leverages the covariance information on SPD
manifolds.

5https://github.com/yysijie/st-gcn
6https://github.com/limaosen0/AS-GCN

Method X-Subject X-Setup
ST-LSTM [30] 63.0 66.6

ST-GCN [62] 78.60 79.92

AS-GCN [22] 77.83 79.30

LSTM-IRN [46] 77.7 79.6

ST-GCN-PAM [63] 83.28

SPDNet [13] 60.72 62.08

GeomNet 86.49 87.58

Table 5: Recognition accuracy (%) of GeomNet and state-
of-the-art methods on NTU RGB+D 120 dataset.

5.5. Results on NTU RGB+D 120 Dataset

Results of GeomNet and state-of-the-art methods on
NTU RGB+D 120 dataset are given in Tab. 5. For SPDNet,
we report its best accuracy using the embedding in (3) with
k = 3. As can be observed, GeomNet performs best on
this dataset. Note that LSTM-IRN performs significantly
worse than GeomNet on this most challenging dataset. By
adapting the graph structure in ST-GCN to involve connec-
tions between two skeletons, ST-GCN-PAM achieves sig-
nificant improvements. However, ST-GCN-PAM is still out-
performed by GeomNet by 3.21% on X-Subject protocol7.
The results indicate that: (1) without any prior knowledge,
automatic inference of intra-person and inter-person joint
relationships is difficult; (2) even with prior knowledge,
the state-of-the-art ST-GCN performs worse than GeomNet.
Compared to the results on NTU RGB+D 60 dataset, the
performance gap between GeomNet and SPDNet is more
pronounced on this dataset. Notice that our method is based
only on the assumption that the joints of the arms of two
persons and those of their legs are highly correlated dur-
ing their interaction. Therefore, no explicit assumption in
pairwise joint connections is required for interaction recog-
nition.

6. Conclusion

We have presented GeomNet, a neural network based on
embeddings of Gaussians and Riemannian Gaussians for
3DTPIR. To improve the accuracy of GeomNet, we have
proposed the use of PT and a layer that learns lower triangu-
lar matrices with positive diagonal entries. Finally, we have
provided experimental results on three benchmarks showing
the effectiveness of GeomNet.

Acknowledgments. We thank the authors of NTU
RGB+D datasets for providing access to their datasets.

7The authors did not report its accuracy on X-Setup protocol.
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