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A MEAN FIELD MODEL FOR THE INTERACTIONS BETWEEN
FIRMS ON THE MARKETS OF THEIR INPUTS

YVES ACHDOU * GUILLAUME CARLIER!, QUENTIN PETIT ¥, AND DANIELA
TONON §

Abstract. We consider an economy made of competing firms which are heterogeneous in their
capital and use several inputs for producing goods. Their consumption policy is fixed rationally
by maximizing a utility and their capital cannot fall below a given threshold (state constraint).
We aim at modeling the interactions between firms on the markets of the different inputs on the
long term. The stationary equlibria are described by a system of coupled non-linear differential
equations: a Hamilton-Jacobi equation describing the optimal control problem of a single atomistic
firm; a continuity equation describing the distribution of the individual state variable (the capital)
in the population of firms; the equilibria on the markets of the production factors. We prove the
existence of equilibria under suitable assumptions.

1. Introduction. We consider an economy made of competing firms which are
heterogeneous in their capital, and use several inputs for producing goods. These
inputs, or factors of production, may include raw materials, energy, manpower, rented
surface, etc... We aim at modeling the interactions of the firms on the markets of the
different inputs on the long term. We make the following general assumptions:
e the economy is reduced to one sector of activity with a large number (in fact
a continuum) of firms competing on the markets of inputs
e the firms choose which amount of their capital is invested into production and
which amount is consumed (for retributing the owners). Their consumption
policy is fixed rationally by maximizing a utility
o the firms are identical in the sense that (1) two different firms with the same
capital and quantities of inputs produce the same amounts of goods (2) they
have the same utility function
o there is a state constraint: the capital of any firm must not fall below a given
threshold, fixed to 0 in the whole paper
e for a given firm, all the others are indistinguishable and the firms interact
only via the prices of the different inputs
e a single firm has a negligible impact on the markets
e equilibrium on the markets is reached when supply matches aggregate de-
mand. Supply is assumed to be a given function of prices.
e closure and creation of firms may happen. This will be modeled in what
follows.
Because we are interested in long term tendencies, we aim at finding stationary
equilibria. The outputs of our model will be
e the distribution of capital
e the optimal investment/consumption policy of the firms given their capital
e the unit prices of the different inputs

Our model falls into the wide class of mean field games. The theory of mean field
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games (MFGs for short), has been introduced and studied in the pioneering works
of J-M. Lasry and P-L. Lions [16, 13, 14, 15], and aims at studying deterministic
or stochastic differential games (Nash equilibria) as the number of agents tends to
infinity. It supposes that the rational agents are indistinguishable and individually
have a negligible influence on the game, and that each individual strategy is influenced
by some averages of quantities depending on the states (or the controls) of the other
agents. The applications of MFGs are numerous, from economics to the study of
crowd motion. For useful reference on mean field games, one can see for example
[11, 9, 2, 1].

Our model will be summarized by a system of coupled non-linear differential
equations: (1) a Hamilton-Jacobi-Bellman equation describing the optimal control
problem of a single atomistic firm; (2) a continuity equation describing the distribu-
tion of the individual state variable (the capital) in the population of firms; (3) the
equilibria on the markets of the production factors.

The present model has some similarities with the time continuous Aiyagari-
Bewley-Huggett models [7, 4, 12] studied in [1, 3]. In particular, they all lead to
a better understanding of the individual accumulation of capital/investment policy.
In the present paper, a key aspect for proving the existence of equilibria is the regu-
larity properties of the individual optimal policies.

The paper is organized as follows: the model, the main results and important
examples are presented in Section 2. The mathematical results concerning the optimal
control problem of a single firm given the prices of inputs are proved in Section 3.
As already mentioned, the stress will be put on regularity properties of the solutions,
which will play an important role in the remaining part of the paper. Then, the
distribution of capital among the firms given the prices of inputs will be studied
in Section 4: in particular, we will prove that under the assumptions made, the
distribution is absolutely continuous with respect to Lebesgue measure. Finally, in
Section 5, we use Brouwer topological degree in order to obtain the existence of
equilibria.

For keeping the length of the paper reasonable, we have chosen not to discuss
the numerical simulations that we have carried out for a model with two factors of
production: the manpower and the surface rented by the firms. We refer to [17] for
a description of these simulations, a discussion of the results and comparisons with
available statistics.

2. The model and the main results. In what follow, we give more details and
write down the different equations which summarize our model. First, in paragraph
2.1, we address the strategy of a single firm given the prices of the inputs. Second,
in paragraph 2.2, we propose a model for the distribution of capital, supposing again
that the prices of the inputs are given. From the two steps above, we can deduce the
aggregate demand for the different production factors. Finally, the model is closed by
matching the aggregate demand with the exogenous supply of production factors. In
the three steps mentioned above, we make some assumptions which allow us to prove
the existence of a mean field equilibrium. In subsection 2.4 below, we give examples
in which these assumptions are satisfied.

In the following, we set Ry = [0, +0).

2.1. The optimal control problem of a single firm given the prices of
inputs. The output of a given firm is F(k,/) € Ry, where k € Ry and ¢ € R4
respectively stand for the capital of the firm and for the quantities of the different
inputs it uses. The function F': R, x R‘i — R, is the production function.
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Let w € (0,+00)¢ be the collection of the unit prices of the different factors of
production: depending on i € {1,...,d}, w; may stand for the unit price of a raw
material, the annual salary of a class of workers, the rental price of a unit of surface.
The benefits of the firm in a unit of time are therefore given by F(k,¢) — w - £ — §k,
where § > 0 is the rate of depreciation of capital.

The dynamics of the capital of a given firm is described by

%(t) = F(k(t), £(t)) —w - £(t) — 6k(t) — c(t), (2.1)
where ¢(t) stands for the consumption at time ¢, for example the share of the ben-
efits that goes to the owners of the firm. The firm has two variables of control, its
consumption c(t) € R} and the quantities of inputs £(t) € RY.

The firms face the problem of how to split their benefits between consumption and
investments that produce growth. A given firm determines its policy by maximizing
the following payoft:

+o0
J Ul(c(t))e "tdt, (2.2)
0

where U : [0,+00) — [—00,+400) is a utility function and p is a positive discount
factor.

It aims at finding the controls ¢ — ¢(¢) € [0, +00) and ¢ +— £(¢) € [0, +00)¢ which max-
imize (2.2), under the constraint that its capital stay nonnegative (state constraint).
The value of the optimal control problem when the firm has a capital kg > 0 is

+00
u(kp,w) = sup f Ulc(t))e Ptdt
c, 4, kJo
subject to
1 ) 1 .Rd 1,1 (2.3)
CELIOC(R+’R+)7 KELIOC(RJ"’R-&-)’ kGVVIOC (R+),

k satisfies (2.1) for a.a. t > 0,
k(0) = ko,
k(t) = 0 for all ¢t.

We will see that under suitable assumptions, namely Assumptions 2.1 and 2.2 below,
u(kg, w) € R for all kg € (0,+00).

We expect that the value function u can be found by solving a Hamilton-Jacobi
equation in (0, +00) with state constraints at k& = 0 (from the dynamic programming
principle). Let the Hamiltonian H : R, x R x (0, +90)% — (—00, +o0] be defined as
follows: for all k € R, and ¢ € R,

H(k,q,w) = Rsupl) y {U(e)+q(F(k,£) —w-£—35k—c)} (2.4)
= sup {U(c) = cq} + fk,w)q, (2.5)

where f: R, x (0,+00)% — R is the net output function:

f(k,w) = sup {F(k,£) —w - £} — dk. (2.6)
LeRY
REMARK 2.1. By contrast with simpler applications of mean field games to price
formation, see e.g. [10], the Hamiltonian of the problem does not involve a quantity
which depends separately/additively on the price vector w and on q.
3



The Hamilton-Jacobi equation then reads:

0
—pulk,w) + H (k (;Z(lmw),w) —0,  in (0,+0). (2.7)
Recall that a function v : R* — R is monotone if and only if for every z, z € R},
i<z = Ya) <yY(3),

where the partial order < on R™ is defined as follows:
z<Zz ifandonlyif 2z <%, Vie{l,...,m}.
We make the following assumptions on U and F":

ASSUMPTION 2.1 (Assumptions on U). The utility U : Ry — [—00,400) has the
following properties:
i) U is C? on (0, +00).
it) U is increasing and strictly concave in (0, +00).
i) Clir& U'(¢) = +o0 and Jim U'(c) =0.

ASSUMPTION 2.2 (Assumptions on F'). The function F is concave and monotone.
For any vector w € (0,4+00)? and for any k € R, the net output f(k,w) defined by
(2.6) is finite and achieved by a unique ¢ = €*(k,w) € R%, and ¢* is a C* function
defined on (0, +00) x (0, +0)?.

Moreover,
1. The function f belongs to C°(Ry x (0, +00)%) n C1((0, +00)4+1)
2. for allw e (0,+0)?, f(-,w): Ry — R has the following properties:
i) f(-,w) is locally of class C*' on (0, +0)
it) f(0,w) =0, k— f(k,w) is strictly concave and limy_, g+ g—i(k:, w) = +©
i) limg_sion (kW) = —6

REMARK 2.2.

o From point 2.4i) in Assumption 2.2, f(-,w) is strictly concave. Hence, %(k, w)
has a limit as k — +o0, which belongs to [—w0, +0). Therefore, point 2.iii)
in Assumption 2.2 is meaningful.

o If§ =0, then the strict concavity of k — f(k,w) implies that it is increasing
in (0,+00). Then, because f(0,w) = 0, f(k,w) > 0 for all k > 0 and has a
limit as k — +0, which belongs to (0, +o0].

o Ifd >0, then limg_, 4o f(k,w) = —c0, and f is negative for k large enough.

REMARK 2.3. It is clear that —f is monotone with respect to w. The optimal
quantity of the input labeled i is
of

* —_

(k,w).

In Section 3 below, we are going to prove the following theorem:

THEOREM 2.1. Under Assumptions 2.1 and 2.2, for all w € (0, +00)?, there exists
a unique classical solution u(-,w) € C1(0,+0) of (2.7) with the following property:
there exists a critical value K*(w) > 0, such that

H, (k, Z:(k,w),w> >0, for0<k<r*(w), (2.8)
H, (kz, Z:(kz,w),w> <0, fork*(w) <k < +o0. (2.9)
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Here H, stands for the partial derivative of H with respect to its second argument.
Moreover k*(w) is characterized by the equation

%(n*,w) = p. (2.10)

The function u(-,w) is strictly concave on (0,+00) and belongs to C%((0,k*(w)) U
(1 (), +20).

Furthermore, u(-,w) is the value function of the optimal control problem (2.3), and
H,(k, Oxu(k, w),w) is the optimal investment policy of a firm with capital k.

REMARK 2.4.

1. The existence of k*(w) > 0 such that the capital of all firms converges towards
k*(w) is known as the golden rule of investment [5, Chapter 7].

2. We will see in Section 4 below that a firm with an initial capital ko £ £*(w)
never reaches this target capital K*(w).

The difficulty in the proof of Theorem 2.1 lies in the fact that the Hamiltonian
H(k,q,w) is defined only for nonnegative values of ¢ (i.e. H(k,q,w) = 40 if ¢ <
0) and may blow up as ¢ — 0. Hence, classical results on viscosity solutions of
Hamilton-Jacobi equations for state constrained optimal control problems cannot be
applied in a straightforward manner. We will use a different strategy: in particular, in
the simplest case in which § = — limy_, %(k, w) = 0, our proof of existence is based
on the fact that the function ¢ — H(k, g, w) is strictly convex, strictly decreasing in
(0, gmin) and strictly increasing in (gmin, +00), where ¢umin = U’(f(k, w)), see Lemma
3.2 below. In this case, our strategy consists in solving two ordinary differential
equations by means of shooting methods: the first (resp. second) one involves the
inverse of the increasing (resp. decreasing) part of ¢ — H (k, g, w).

Note that a different strategy has been studied in [17]; it was inspired by a
method proposed in [18] for studying Ramsey model of optimal growth with non local
externalities. It consists in introducing a relaxed lagrangian version of the original
optimal control problem, then obtaining compactness properties which lead to the
existence of an optimal control and of a solution of the original problem. However,
this approach needs an assumption stronger than Assumption 2.2.

2.2. The distribution of capital given the prices of inputs. The distri-
bution of capital corresponding to the optimal investment policy of the firms is a
bounded positive measure on (0,400). In our model, its density is characterized by
the following continuity equation:

57 (mo, (< Sieww) ) = ntuto) —vmeo). )

which may first be understood in the sense of distributions. The parameter v = 0
is the extinction rate of the firms and the source term 7 stands for the exogenous
creation of firms. Note that the latter term depends on the value u. We make the
following assumption:

ASSUMPTION 2.3 (Assumptions on v and 7). We assume that v is positive
(v > 0), that n is a continuous function on [0,+00) x R, and that there exists a
continuous probability density 71 : Ry — R, with a compact support contained in
(0, +00) and a positive constant ¢ = 1 such that for all k =0 and v € R,

(k) < n(k, v) < énk).
5
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Equation (2.11) is supplemented with the condition

VJ m(k‘,w)dsz n(k, u(k,w))dk. (2.12)
Ry Ry

Since H,(k, ‘;—Z(k, w),w) > 0 for small values of k and H,(k, S—Z(k, w),w) < 0 for large
values of k, see Theorem 2.1, (2.12) is a weak way to say that the flux
m(-, w)Hy(-, 3 (-, w), w) vanishes at k = 0 and as k — +0.

PROPOSITION 2.2. Under Assumptions 2.1, 2.2 and 2.3, the unique solution of
(2.11)-(2.12) is given by

m(k,w) =

k k
b(le)fo n(k, u(k, w)) exp (—J b(;w)dz) dk, if k< k*(w),

K

— (;w) L e u(, ) exp (f: b(:w)dz) e, if k> K*(w),
(2.13)

where, for brevity, b(k,w) stands for the optimal investment when the capital is k:

b(k,w) = H, <k ;k(k w), ) (2.14)

A key step in the proof of Proposition 2.2 consists of showing that the quantities
in the right hand side of (2.13) are well defined. This comes from an 1ntermediate
result which states that, under Assumptions 2.1 and 2.2, ‘H (k, ‘;Z k,w) ! =O(lk—
k*(w)|) for k in a neighborhood of £*(w). The latter information 1mphes that, with
the optimal investment strategy, a firm starting with a capital kg + £*(w) never
reaches k*(w), even though its capital does tend to K (w) as t — o0.

REMARK 2.5. Note that (2.13) implies that SR m(k,w)dk < £ (the two

bounds do not depend on w). Moreover, the support of m( w) s contamed in the
interval

[min (min{k € support(n)}, k*(w)) , max (max{k € support(n)}, c*(w))].

Hence, from the continuity of w — k*(w), for any compact set K < R‘i, there exists
a compact interval of Ry containing the supports of m(-,w) for all w € K.

2.3. Equilibria. The supply of inputs is assumed to be of the form S(w), where
w € RY is the collection of prices.
At the equilibrium, we require that the clearing condition on the markets of inputs
holds, i.e.

S(w) = 0 (k,w) m(k, w)dk. (2.15)

Ry

where £F (k,w) = —%(k, w), and m(-,w) is the solution of (2.11)-(2.12).
We aim at proving the existence of equilibria by using Brouwer degree theory. This
requires additional assumptions:

ASSUMPTION 2.4 (Assumptions on the supply). The function S : R‘i — R% s
of the form S(w) = D, ®(w), where



1. &: Ri — R is C' regular and strictly convex
2. ® is bounded from below (for example by 0)
3. @ is coercive, i.e. lim || P(w) = +00.
REMARK 2.6. The Legendre-Fenchel transform of ®, ®*(S) = SUPepd S W —

®(w) is conver and semi-continuous on RL with values in (—oo, +00]. It can be inter-
preted as a collective cost or disutility associated to the supply of inputs. Concerning
raw materials, it may be linked to their scarsity or to the environmental/social dam-
ages caused by their production. For manpower, the disutility captures negative effects
of labour on the welfare of the workers.

Ezxamples.

1. If, for any ¢ = 1,...,d, the i-th component of the supply function is a non
negative, continuous and increasing function of w;, i.e. S;(w) = S;(w;), then
Assumption 2.4 is satisfied with ®(w) = Zil o Si(t)dt.

2. Given two positive numbers o and wy, if

Siw) = dexp(wi/o)
2j—0 exp(w;/0)
foralli=1,...,d,
then Assumption 2.4 is satisfied with ®(w) = o log (Z?:o exp(wj/cr)). In
the limit ¢ — 0, the price wy can be seen as a reserve price under which the

production factors cannot be acquired.
Set

g(k,w) = f(k,w) + 0k = sup F(k,¢) —w ¢, (2.16)
LeRE

which can be seen as the Legendre-Fenchel transform of ¢ — —F(k, /) evaluated at
—w. From Assumption 2.2, g(k,w) is finite, nonnegative and achieved by the unique
maximizer ¢*(k,w) € R, and ¢£* is C* on (0, +0) x (0, +00)%.

A further technical assumption involving both F' and the fixed measure 7 arising
in Assumption 2.3 will be needed:

ASSUMPTION 2.5. Let 1 € R be defined by 1 = (1,...,1). We assume that there
exists € € (0,1) such that for all A € [0,1], if

+00

O(w) + f g(k, w) ((1 — Ndij(k) + Adm(k, w))

0 (2.17)

+00

<P(1) +J

g(k, ]1)((1 —Ndi(k) + /\dm(k,w))
0

we <e, 1>d (2.18)

REMARK 2.7. The proof that Assumption 2.5 holds for classical examples of
production functions will be given in Section 5.

Section 5 will be devoted to the proof of the following existence result:

THEOREM 2.3 (Existence of equilibria). Under Assumptions 2.1, 2.2, 2.8, 2.4
and 2.5, there exists an equilibrium, i.e. w € (0,+00)? such that the market clear-
ing condition (2.15) holds with m(-,w) and u(-,w) uniquely defined respectively by
Proposition 2.2 and Theorem 2.1.

then



2.4. Classical examples of utility and production functions.

2.4.1. Examples of utility functions. The constant relative risk aversion
(CRRA) utility is a common example of a utility that satisfies Assumption 2.1:

U(c) =1In(c) or Ule) = %cb with b € (0,1)

2.4.2. Examples of production functions.
1. A classical example is the Cobb-Douglas function:

F(k,0) = AE*0P,

where 3 € (0,1)¢, 22‘11 Bi <1, 08 = H?=1 0% and 0 < v < 1 — Z‘j:l B;. Let
us set |B| = 2?:1 B;. In this example, the parameters S and « respectively
stand for the elasticities of the output with respect to the different inputs and
to the capital, and A > 0 is a global factor of productivity. The net output

is given by
\ B\ T
61) ) — k. (2.19)
W

K2

d
F(kw) = (1—18) (Aka I (

i=1

It can be checked that the first order partial derivatives of f with respect to
k and w; are

d N\ B 1%‘5' oo
%(hw) =a <AH <ﬁj> ) KT - 9, (2:20)
wy

and

PN
;5'(k,w)=—<AkaH<§> ) %so. (2.21)

j=1 N

It is easy to see that Assumption 2.2 is satisfied. In particular,
limg s 4 o0 %(k;,w) = —0. The capital x*(w) in (2.10) is given by

K* (w) = (aip>llaﬂw (Ali[l <fé)m>1;ﬁ . (2.22)

2. We now consider a production function with a constant elasticity of substi-
tution:

d Y
F(k,0) = (k:"‘ +>) efi) :
1=1

where a € (0,1), 8 € (0,1)% and « € (0,1). For any (k,w) € R, x (0, 4+000)4,
it can be checked that there exists a unique parameter A(k,w) > 0 such that

B 1—y

d -85
NS <’\BJ> " = 1. (2.23)
j=1

Wy
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The net output is then

Bj vy

o (A w)B\ T 4 Ak w)B\ T
f(k,w) = |k +j2:1 (w]j> —j;wi (w]j> — 5k.

It can be checked that the first order partial derivatives of f with respect to
k and w; are

%(k,w) = aX(k,w)k*1 =4, (2.24)
and
1
of Ak, w)B; \ 7%
=— | ——- . 2.2
Fv (k,w) ( " <0 (2.25)
Assumption 2.2 is satisfied. In particular, limy_, o %(k,w) = —4. The

capital £*(w) in (2.10) is the unique solution of
aA(5*(w), w) (k¥ (w))*t = 8§ + p. (2.26)

3. The optimal control problem of a single firm. In this section, we assume
that w, the prices of the production factors, is a fixed vector in (0, +c0)?. Thus, in
order to alleviate the notation, we everywhere omit the dependency upon w; for
example we write H(k,q) and u(k) instead of H(k,q,w) and w(k,w). Similarly, we

el
set u'(k) = 44 (k,w) and f'(k) = & (k,w).

The proof of Theorem 2.1 is simpler when § = 0 because f is positive on (0, +0).
We will first focus on the latter case, then we will address the other case, i.e. § > 0.

3.1. The particular case where § =0 .

3.1.1. Some properties of the Hamiltonian. LEMMA 3.1. Under Assump-
tion 2.1, for any k > 0, the function q — H (k,q), defined on (0,+00), is strictly
convex and of class C?.

Proof. From Assumption 2.1, the function U’ is one to one on (0,+00). Let c¢*
denote the inverse function, which is decreasing and C! on (0, +00); its derivative is
q— 1/U"(c*(q)). For any g > 0, ¢*(¢q) > 0 is the unique consumption which achieves
the supremum in (2.5), because U'(c*(q)) = ¢q. The derivative of g — H(k,q) is

Hy(k,q) = —c*(q) + f(k). (3.1)

Hence, ¢ — H(k,q) is C? on (0, +0) and Hyy(k,q) = —1/U"(c*(q)) > 0. This implies
the strict convexity of ¢ — H(k,q). O

REMARK 3.1. Note that the consumption achieving the supremum in (2.5) does
not depend on k.

LEMMA 3.2. We make Assumptions 2.1 and 2.2 and suppose furthermore that
d =0, hence limg_, o f'(k) = 0. Then, for any k > 0,

min H (k. 0) = (), 52
arg;ginH(k,q) ={U'(f(k))}. (3.3)

9



Proof. For k > 0, f(k) > 0 by Remark 2.2. From (3.1), Hy(k,q) = 0 if and only
if ¢*(q) = f(k),i.e. ¢ =U'(f(k)). This proves that the infimum of the strictly convex
function ¢ — H(k, ¢) is a minimum, which is achieved by ¢ = U’(f(k)). The minimal
value is U(c*(U'(f(k)))) = U(f(k)). O

REMARK 3.2. From Assumption 2.1, we see that if f(0) =0, then
limg o U'(f(k)) = +00. On the contrary, from Remark 2.2, if f(0) > 0, then U’ o f
remains bounded on bounded subsets of [0, +0).

LeMMA 3.3. Under Assumption 2.1,

i H(kq) = lim U(e)~U'(e) = Tim Ule)e (<0, 4], (34
lim H,(k,q) = —c0. (3.5)
q—0+

Proof. Since ¢* is the inverse of U’ on (0,+o0), Assumption 2.1 implies that
lim,_, ¢*(¢) = +o0. Therefore, from (3.1), lim,_,o Hy(k, q) = —o0.

We know that U is increasing: let us set 1 = lim. 1 U(c) = sup.oUl(c) €
(—00,400]. On the other hand, the function ¢ — U(c) — cU’(e) is increasing in R,
because its derivative is ¢ — —cU"(c); let us set €y = lim. 400 U(c) — cU'(c) €
(—o0, +].

Since H(k,q) ~ U(c*(q)) —c*(q)U’(c*(q)) as ¢ — 0, we see that ;ET%) H(k,q) = {s.

We need to compare ¢1 and #5. It is obvious that £5 < ¢1. We wish to prove that
{5 = {1. We argue by contradiction and assume that o < ¢;. We make out two cases:

1. 41 € R and ¢y < ¢1: we see that cU’(c) tends to 1 — 2 > 0 as ¢ tends to
+00. This implies that U(c) blows up like a logarithm of ¢ as ¢ tends to +o0,
in contradiction with the fact that ¢; < 4+00. Therefore, if ¢; is finite, then
Ly = {s.

2. ¢4 = 40 and £y € R. We see that cU'(¢) = U(c) — lo2 + o(1) where
lim.— 0o(1) = 0. Using Gronwall lemma, we deduce that there exists a real
number x such that U(c) = xc¢+ €2+ o(1). Since U(c) — 40 as ¢ — +©, we
see that x > 0. We deduce that lim._,o U’'(¢) = +o0 in contradiction with
Assumption 2.1.

The proof is complete. O
Lemmas 3.1 and 3.2 above allow us to define the increasing and decreasing parts
of the Hamiltonian:
DEFINITION 3.4. We make Assumptions 2.1 and 2.2 and suppose furthermore
that § = 0.
e Define the sets

" = {(k,q) such that k > 0 and q = U'(f(k))},
o' = {(k,q) such that k > 0 and ¢ < U

e Let H'(-,-) be the restriction of H(-,-) to ©'. The function q — H'(k,q) is
increasing in [U'(f(k)), ).
e Let HY(-,-) be the restriction of H(-,-) to ©%. The function q — H*(k,q) is
decreasing on (0,U'(f(k))].
The graphs of H(k,-), H'(k,-) and H*(k,-) are displayed on Figure 3.1.
10



H(k,q)

U(f(k)) ¢ -

. g
Qmin = U/(f(k))

FIGURE 3.1. The bold line (blue and red) is the graph of the function H(k,-). The blue line is the
graph of HY (k,-). The red line is the graph of H' (k,-). In the present figure, limg—o, H(k,q) = +o0,
but it is also possible that limg—o, H(k,q) € R.

LEMMA 3.5. Under the same assumptions as in Lemma 8.2, H'(-,-) (respectively
H'(,-)) is of class C* on ©' (respectively O).

Proof. We have already seen in the proof of Lemma 3.1 that g — H(k, q) is of class
C?. Moreover, from Assumption 2.2, k — f(k)q is of class C*, so k — H(k,q) is also
of class C'. Hence (k,q) — H*(k,q) is of class C* on ©', and so is (k,q) — H'(k,q)
on ©. O

3.1.2. General orientation. Heuristically, if u is a classical solution of (2.7)
such that u/(k) > 0 for £ > 0 and u” is locally bounded, then, taking the derivative
of (2.7), we get that for k > 0,

(f'(k) = p) (k) = —Hq (k. (k) u” (k).
We deduce that if the optimal investment is 0, i.e. Hy (k, v (k)) = 0, then

f'(k) = p. (3.6)

From Assumption 2.2, (3.6) has a unique solution which we name x* (note that x*
depends on w, see (2.10) in Theorem 2.1).

Moreover, H, (k*,u/(k*)) = 0 implies that v'(k*) = U'(f(k*)) and H(k*,u/(k*)) =
U(f(k*)), see Figure 3.1. Hence, from (2.7), we deduce that u(x*) = U(f(k*))/p.
On the other hand, because of the state constraint, we expect that H, (k,w'(k)) is
positive for small values of k. Hence, we expect that for a classical state constrained
solution u of (2.7),

1 o ; o
H(k,u’(k))={H(Zvu(k)), Fh < K*,

'(k)), if k> ~k*.
Therefore, we are going to look for u as the solution of two ordinary differential

equations in (0, x*) and (k*, 4+00) which respectively involve the inverse functions of
q— H'(k,q) and q — H*'(k,q), with the boundary condition

In order to carry out this program, we need to consider the inverse functions of
q— H'(k,q) and ¢ — H'(k,q):
11



DEFINITION 3.6. We make Assumptions 2.1 and 2.2 and suppose furthermore
that 6 = 0.
e Define the sets

Q' = {(k,v) : ke (0,s*] and pve (U(f(k)), +0)}, (3.7)
o = {(k,v) : ke [k, +0) and pve (U(f(k)), Jim H, q)> } -(3.8)
o Set
Fl(k,v) = (H' (k) (pv),  for (k,v) € Q' (3.9)
Flk,v) = (HY (k") (pv),  for (k,v) € Q. (3.10)
Program. Our program will be as follows:

1. Prove that the following Cauchy problem has a unique solution
ut : [k*, +0) - R:

(k) = Fh(k,u(k)), for k > r*, (3.11)
(k,u*(k)) € Q, for k > k¥, (3.12)
1
W) = U (). (3.13)
2. Prove that the following Cauchy problem has a unique solution u' : (0,k*] —
R:

du e ! *
%(k) = F'(k,u'(k)), for k < k¥, (3.14)
(k,u'(k)) € Q, for 0 < k < K*, (3.15)

1

ul(6%) = SU(F(). (3.16)

3. Prove that the function u which coincides with u' on [0,x*] and u! on
[k*, +00) is the solution of (2.7)-(2.9).

Before starting this program, let us state a useful lemma:

LEMMA 3.7. Under the same assumptions as in Lemma 3.2, F*(-,-) (respectively
F1(-,-)) is of class C* on QY (respectively QT ).

Proof. We skip the proof for brevity and refer to [17], which contains an extended
version of the present paper.
0

3.1.3. The Cauchy problem (3.11)-(3.13). Let us first consider the maximal
solution ¢, of the following Cauchy problem:

\(k) = F*(k, oa(k)), for k > r*, (3.17)
(k, ox(k)) € (3.18)
oA(K*) = A, (3.19)

for A such that (k*,\) € Q! see (3.8). Cauchy-Lipschitz theorem may be applied
because F* is regular enough on Q. After having proved the existence and uniqueness
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of ¢y, we will let A tend to U(f(k*))/p and obtain that the sequence ¢, converges
to a solution of (3.11)-(3.13). One reason for not applying directly the standard
existence results to the Cauchy problem with initial condition A = U(f(x*))/p is
that F!(-,-) is not regular at the boundary of Q'. In particular, v — F(k* v) is
not Lipschitz continuous in the neighborhood of (x*,U(f(k*))/p). Moreover, the
point (x*,U(f(x*))/p) belongs to the boundary of Q; this forbids the direct use of
Cauchy-Peano-Arzela theorem for obtaining the existence of a solution.

ProroSITION 3.8. We make Assumptions 2.1 and 2.2 and suppose furthermore
that 6 = 0. For every X such that (k*,\) € Q, there exists a unique global solution
o of (3.17)-(3.19) in [&*, +0). The function ¢y is increasing and strictly concave.

Proof. Setting O(k) = (k, dx(k)), it is convenient to rewrite (3.17)-(3.19) in the
equivalent form: find k — ©(k) € Q! such that

O'(k) = (1L,F O(k)), k=r* (3.20)
O(k*) = (k*,\). (3.21)

We may apply Cauchy-Lipschitz theorem; indeed, from Lemma, the map
O — (1,74(0)) is C* on Q. Therefore, there exists a unique maximal solution © of

(3.20)-(3.21) in [k*, k). We observe that for k € [k*, k), ¢} (k) = F*(k, dr(k)) > 0, so
lim,_, ;- ¢ (k) exists. Moreover, by taking the derivative,

p— (k)
Hy (k, 05 (k))

Therefore ¢, is strictly concave in [k*, k).

{ (k) = o5 (k) < 0.

If k < oo, then from Cauchy-Lipschitz theorem, plim,_, ;- ¢ (k) must be equal
either to U(f(k)) or to lim, o H(k,q) = lim. 44 U(c) (which does not depend on
k). Let us show by contradiction that both cases are impossible.

1. Assume first that plim,_,z- ¢x(k) = limg0 H(k,q) = lim.—, o U(c); let us
make out two subcases:

(a) If lime— 1o U(c) = 400, then lim,_,z- ¢»(k) = +00, which yields that
limy,_, ;- F¥(k, (k) = 0. From (3.20), we see that lim,_,z— ¢} (k) = 0,
in contradiction with lim,_,z— ¢ (k)) = +oo.

(b) If lim.—, 44 U(c) = £ € R, then it is possible to extend continuously ¢y
to k by setting ¢ (k) = ¢/p. Since H(k,0) = ¢ for all k, we see that

FYk,t/p) =0, forall k > r*. (3.22)

On the other hand, since U'(c*(q)) = ¢, Assumption 2.1 implies that
lim, o ¢*(g) = +co. This implies that
oOF*
%(kz,ﬁ/p) =0, forallk>r™. (3.23)
But (3.22) and (3.23) prevent the state £/p to be reached in finite time by
a solution of (3.17)-(3.18); we have obtained the desired contradiction.
2. Assume that lim,_, ;- ¢x(k) = U(f(k))/p. It is then possible to extend con-
tinuously ¢ to k by setting ¢ (k) = U(f(k))/p, and (3.17) holds in [s*, k].
On the other hand,

j <W> - (1 P TR <o ok e

dk \ p
(3.24)
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from the definition of x* and Assumption 2.2. Thus, k — U(f(k))/p is a
subsolution of the ordinary differential equation satisfied by ¢, which yields
that U(f(k))/p > ¢x(k) for k < k. This is impossible, since (k, ¢y (k)) € Q¢
for k < k.
We have proved that £ = +00. The unique maximal solution of (3.20)-(3.21) is a
global solution. O

Letting A tend to U(f(k*))/p, we shall prove the following result:

PRrROPOSITION 3.9. Under the same assumptions as in Proposition 3.10, the
Cauchy problem (3.11)-(3.13) has a unique solution u* € C*([r*, +0)) nC?(k*, +0).
Moreover u* is strictly concave on (k*,+00).

Proof. Consider a decreasing sequence (A, )nen, such for all n e N, (s*,\,,) € Q*
and lim, o A, = U(f(k*))/p. A direct consequence of Cauchy-Lipschitz theorem is
that ¢z, (k) > ¢a,,, (k) for all k > x*. On the other hand, we know that ¢y, (k) >
U(f(k))/p. This implies that there exists a function ¢ : [s*,+00) — R such that ¢,
converge to ¢ pointwise as n tends to +o0.

Since (@, )nen is a sequence of concave functions locally uniformly bounded, we see
from [8, Theorem 3.3.3] that the convergence is uniform on every compact set, so the
limit ¢ is continuous.

Since F*(-,-) is continuous on the closure of Q', we may pass to the limit in the
integral form of (3.17): for all k > k*,

o(k) = “U(f(+*) + f " P e o)
= K . K, ¢(K))dk.

This implies that ¢ € C1([r*, +o0)) and that ¢ satisfies (3.11) and (3.13). Hence ¢ is

an increasing function.

On the other hand, (3.24) implies that ¢(k) > U(f(k))/p for all k > k*. This shows

that ¢ satisfies (3.12).

Arguing as in the proof of Proposition 3.8, we see that ¢ is C? on (k*,+00) and

strictly concave. We have proved the existence of a solution of (3.11)-(3.13).
Assume that there are two such solutions ¢; and ¢o. If there exists kg > k*

such that ¢1(ko) = ¢2(ko), then ¢; and @2 coincide from Cauchy-Lipschitz theorem.

Hence we may assume that ¢1(k) < ¢o(k) for k > *. Then, using the non increasing

character of F*(k,-), we see that, for every k > x*,

k
0> 61 () — (k) = J Fw, dr(x)) — FH (s, da(s))drc > 0.

We have found a contradiction and achieved the proof of uniqueness. O

3.1.4. The Cauchy problem (3.14)-(3.16). Also in this case, F'(k,-) is not
Lipschitz continuous in the neighborhood of (x*,U(f(k*))/p) and (x*,U(f(k*))/p)
belongs to the boundary of Q'. This prevents us from applying directly standard
existence results to (3.14)-(3.16).

For this reason, we start by considering the Cauchy problem:

?ﬂé,,\(k) = ]:T(k7¢e,/\(k))7 0<k<kK*, (3.25)
(k71/}€,)\(k)) € QT? (326)
we,k(e) = Aa (327)

for (e,\) € QF, see (3.10) (thus 0 < € < x*). As above, Cauchy-Lipschitz theorem
may be applied to (3.25)-(3.27). After having obtained the existence and uniqueness
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of a maximal solution 1. », we will prove that there exists A such that 1), » is a global
solution, i.e. defined on (0,x*], and that ¢ x(k*) = U(f(k*))/p.

LEMMA 3.10. We make Assumptions 2.1 and 2.2 and suppose furthermore that
§ = 0. For every (e,\) € Q" with 0 < ¢ < k*, there exists a unique mazximal

solution of the Cauchy problem (3.25)-(3.27) of the form ((O,E(E,)\))7¢57)\) where

€ < k(e,\) < k*. The function 1. x is strictly concave and increasing in (0,k(e, \)).
Proof. Existence and uniqueness of a maximal solution follow from the Cauchy-
Lipschitz theorem. The strict monotonicity and concavity of .  are obtained as in
Proposition 3.8. Assume by contradiction that the interval in the definition of the
maximal solution is not of the form (0, k(e, \)). This implies that there exists k € (0, ¢)
such that either limy_,x ¥e A (k) = —00 or e (k) = U(f(k))/p. Let us rule out both
situations:
o If limpp e a(k) = —oo, then limg, ¢, (k) = +oo. This implies that
limy— Ye (k) = U(f(k))/p, and we have obtained the desired contradiction.
o If . (k) = U(f(k))/p, then proceeding as in the end of the proof of Propo-
sition 3.8, this implies that . (k) < U(f(k))/p for all k € [k, €], in contra-
diction with 9 x(e) = A > U(f(€))/p.
Therefore the maximal solution is defined in an interval of the form (0, k(e, A)). O
REMARK 3.3. Note that if f(0) = 0, then ¢, (k) blows up when k — 07 indeed,

from (3.1), 0 < Hy(k, ¥\ (k) = F(k) = ¢* (VL\(R)), hence * (v[\(k)) < (k).
Therefore, U’ (c*( b\(k))) > U'(f(k)). Thus, from Assumption 2.1, ¢, \(k) =

U’ (c* ( é/\(k))) > U'(f(k)) tends to +o0 as k — 0.
LEMMA 3.11. Under the same assumptions as in Lemma 3.10, for every € €
(0, k™), the set

Ac={X>U(f(e))/p suchthat k(e,\) = r*} (3.28)

is not empty. B
Proof. Take A > U(f(x*))/p. Assume by contradiction that k(e, \) < k*, where

((0, k(e,\)), @[JG,A) is the maximal solution of the Cauchy problem (3.25)-(3.27), (note

that € < k(e, \)).

Observe first that 1. 5 cannot blow up as k — k(e,A). Indeed v — FT(k,pv) is
Lipschitz continuous on [maxyef,.+] U(f(k)) + 1, +00) with a Lipschitz constant that
does not depend on k € [¢, k*]. This property prevents e  from blowing up in finite
time.

Therefore, the function 1. ) can be extended to k(e, \) by continuity, and

Vealk(e, V) = U(f(k(e, N)))/p, (3.29)

otherwise it would not be the maximal solution. On the other hand, we know that
f is increasing in (0, x*], hence U(f(k*)) > U(f(k)) for all & < x*. In particular,

U(f(k*)) > U(f(k(e, A))). From the monotonicity of 1. x, we obtain that

Vealk(e,N) = denle) = A>U(f(5%))/p > U(f(k(e, N))/p,

which contradicts (3.29).
We have proved that if A > U(f(x*))/p, then the maximal solution is defined on
(0, k*]. Therefore, A, is not empty. O
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PROPOSITION 3.12. For all € < k*, there exists A such that (¢,\) € Q" and a
global solution e x (i.e. defined on (0,k*]) of the Cauchy problem (3.25)-(3.27) such
that e\ (k) = U(f(£%))/p-

Proof. Consider a decreasing sequence (A, )nen in Ac (see (3.28)) such that

lim, 0 A, = A, = infaea, A. It is clear that (i, )nen is a decreasing sequence of
functions defined on (0, x*]. Moreover, since (k, 9. x, (k)) € Q! for k € (0,x*), e,
is bounded from below by the function U o f/p. Hence, there exists a function .
defined on (0, £*] such that lim, 4o e x, (k) = ¥e(k) for all k € (0, k*].
Since (¥e , )nen is a sequence of concave functions locally uniformly bounded, |8,
Theorem 3.3.3] ensures that the convergence is uniform on every compact set, thus .
is continuous on (0, x*]. Extending F'(-,-) by continuity on the set {(k,U(f(k))/p) :
k € (0,x*]}, we may pass to the limit in the integral form of the differential equation
satisfied by 1. x, and get

k
Pelk) = A+ j F (1, 0o ()) s

Hence 1), is a solution of (3.25) on (0, x*), which implies that 1. is C* and increasing
in (0,K*).

We are left with proving that ¢ (k*) = U(f(k*))/p. Tt is already known that 1. (k*) =
U(f(k*))/p. Assume by contradiction that .(k*) > U(f(k*))/p. Then, set

Ye(r*) + U(f(%))/p
2 )

b=

and consider the Cauchy problem on (0, k*]:

&' (k) = F1 (k,€(R)),
(k,&(k)) € Q1
§(*) = b.

It can be proved by contradiction (with the same kind of argument as in the end of the
proof of Proposition 3.8) that the maximal solution of this problem is in fact global,
therefore defined on (0, k*]. Cauchy-Lipschitz theorem implies that {(k) < (k) for
all k € (0,x*]. Therefore, £(€) € A, and £(e) < 1c(e) = A, which contradicts the
definition of A..
Therefore, ¥ (k*) = U(f(k*))/p. The same arguments as in the proof of Proposition
3.8 yield that (k) > U(f(k))/p for all k € (0,x*). Hence ¥ = 1) » . This achieves
the proof. O

ProPOSITION 3.13. Under the same assumptions as in Lemma 3.10, the Cauchy
problem (3.14)-(8.16) has a unique solution u' € C*((0,x*]) n C%(0,x*). Moreover
ul is strictly concave on (0, k*).

Proof. Existence is a consequence of Proposition 3.12. Uniqueness is proved
exactly with the same arguments as in the proof of Proposition 3.9. O

REMARK 3.4. From Remark 3.3, it is possible that limy_,o d{%(k) = +00 and that
limg o u' (k) = —c0.
3.1.5. End of the proof of Theorem 2.1 in the particular case where
0 =0.
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Ezxistence. With u! and u! as in Propositions 3.13 and 3.9, define

) ul(k),  if ke (0,5%],
u(k‘)—{ W(B),  ifke [5*+o0), (3.30)

The properties of u! and u' ensure that u is of class C!, increasing and strictly concave
in (0, +0), and C2 in (0, s*) U (k*, +00). In particular, u'(k*) = ut(k*) = %U(f(n*))
and %(/ﬁ*) = %(/@*) =U'(f(k*)). Moreover,
>0, if ke (0,x™),
H, (k,u/(k)) <0, if k e (K%, +0),
=0 if k= k*.

Hence, u satisfies (2.7)-(2.9).

Uniqueness and characterization by (2.3). Let us now prove that if
u € CY0,+0) n C%((0,x*) U (k*,+o0)) satisfies (2.7)-(2.9), then it is the value
function of problem (2.2). This will yield the uniqueness of a classical solution of
(2.7)-(2.9) as well as the characterization of the value function of (2.2).
Let us set x(-) = c¢*(W/(+)) = f(-) — Hy(-,u/(+)). Assumptions 2.1, 2.2, and Lemma
4.1 below imply that k — H,(-,u/(+)) is locally Lipschitz continuous on (0, +c0). This
property and (2.8)-(2.9) imply that for any kg € (0, +00), there is a unique solution &
of the Cauchy problem

W) = )~ x k@), 10
k(0) = ko,

It is an admissible trajectory for problem (2.2). Therefore u is not greater than the
value function of the optimal control problem (2.3).

On the other hand, consider ¢ € LL (Ry;Ry), £ € LL (Ry;RE), ke W (R,), such
that

dk

E(t) = F(k(t),0(t)) —w- £(t) — 0k(t) — c(t), fora.a. t>0,

k(0) = ko,
k() =0, fora.a.t>0.

Observe that for almost every ¢ = 0,

sup {U(E) + v/ (k(t)) (F(k(t),1) — wl — 0k(t) — ¢) }

20,10

=U(c(t)) + u’(k(t))%(t).

The left hand side coincides with H (k(t), v (k(t))) = pu(k(t)). Hence, U(c(t)) <
—u'(k(t)) % (¢) + pu(k(t)). This implies that § U(c(t))e P'dt < u(ko). Hence, u is
not smaller than the value function of problem (2.3).

We have proved that if u € C1(0, +00) satisfies (2.7)-(2.9), then it is the value function
of problem (2.2).
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3.2. The case where § > 0.
LEMMA 3.14. We make Assumption 2.2 and suppose furthermore that § > 0.
Then there exits a unique ko € (0,400) such that

f(ko) = 0. (3.31)

The function f takes positive values on (0, ko) and negative values on (kg, +o0). More-
over, (ko) < 0 and k* < ko, where £* is the unique positive number such that
f'(&*) = p, see (2.10).

Proof. Since the proof is elementary, we skip it for brevity. O

Proof. | Proof of Theorem 2.1 when § > 0] Lemma 3.14 implies that in the
interval (0, ko) which contains £* and where f is positive, it is possible to repeat the
construction done in paragraphs 3.1.3 and 3.1.4. New arguments will be needed to
construct the solution in [k, +00).

Step 1. In (0, ko), it is possible to repeat the construction made in paragraphs
3.1.3 and 3.1.4: there exists a unique classical solution u; € C1(0, ko) of the following
problem:

—pu1 (k) + H (k,ui(k)) =0, for 0 <k < ko, (3.32)
Hgy (k,uy(k)) >0, for0<k<r*, (3.33)
H, (k,ui(k)) <0, for k* <k < ko. (3.34)

The function u; is strictly concave and increasing in (0, ko).

Since f is continuous and concave and limy, ¢ f/(k) = +00, f'(ko) < 0, there exists k €
(K*, ko) such that f(k) = maxye[o,k,] f(k). Since ui(-) is increasing, limy_, u1 (ko) =
ui(k). On the other hand, pui(k) > U(f(k)) (see paragraph 3.1.3). Since U is in-

creasing, U(f((k)) > limg—x, U(f(k)) = lim.—o U(c) (which may be —c0). Therefore,
pkli)n’;lo uy (ko) > ilir(l) U(c).

With the same kind of arguments as in the proof of Proposition 3.8, it can also be
proved that pui(ko) < lime 4o U(c). This implies that uy(-) can be extended by
continuity to (0, ko] and that

hH(l) Ul(e) < puy(ko) < lir& Ule). (3.35)
The function uf(-) can then be extended by continuity to & = k¢ and (3.32) holds up
to k= ko.

Step 2. We are left with constructing the solution in (kg, +0).

Observe first that, for any k > ko, ¢ — H(k, q) is decreasing from (3.1), and that

1. limg0 H(k, q) = lime—, 4o U(c)

2. Since limg—, 1 ¢*(q) = 0 and U(c) — cq + f(k)g < U(c), we deduce that

qEIJIrlOOH(k, q) < ll—I}(l) Ule).
Hence, for any k > ko, ¢ — H(k,q) maps (0, +00) onto the interval
(lim¢—o U(c), lim.—,+o U(c)) and has a right inverse z — F(k, z):
for any z € (lime—oU(c),lime— 4o U(c)), there is a unique F(k,z) > 0 such that
H(k,F(k,z)) = 2.
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Let € > 0 be small enough so that p(u (ko) — &) > lim._.0 U(c), see (3.35). Set

= {(k,v) 0 ko <k and p(ui(ko) —¢€) < pv < lirfOO U(c)} . (3.36)

Note that (ko,u1(ko)) € Q. It is possible to prove that F(-,-) is of class C* on .

Furthermore, it can be seen that v — F(k,v) is Lipschitz continuous on [u1 (ko) —

g, lim._,o U(c)/p] with a Lipschitz constant which does not depend on k € [kg, +00).
Consider the Cauchy problem

ub (k) = ]—'(k; us(k)), for k > ko, (3.37)
(k,uz(k)) € €, (3.38)
us (ko) = u1 (ko). (3.39)

From Cauchy-Lipchitz theorem, there is a unique maximal solution of (3.37)-(3.39).
The same arguments as in the proof of Proposition 3.8 yield that the solution is indeed
global, i.e. defined on [kg, +0), increasing and strictly concave.

Step 3. Set

ul(k:), if ke (0, k/’o],
Ug(k‘), if ke [ko,-FOO).

From what precedes, u € C'(0,+0), and pu(k) = H(k,u'(k)) for any k € (0, +0o0).
Note that u is also C? in (0, k*) U (k*, +00). Hence, u is a classical solution of (2.7)-
(2.9). The remaining part of the proof (uniqueness and verification result) is exactly
as in paragraph 3.1.5. O

4. The distribution of capital. We still assume that w, the prices of the
production factors, is a fixed vector in (0,+00)%; we keep omitting w everywhere.
The optimal investment policy of a firm with capital k is H,(k,w (k)), where w is the
solution of (2.7)-(2.9). We are interested in finding a weak solution m of the following
problem:

% (mH ( ZZ( )>> =n(,u(-)) —vm(), (4.1)
o [, missas = | athuyan (1)

From (2.8)-(2.9), we see that if (4.1) holds, then the optimal investment strategy has
the effect of pushing m toward x*. It is therefore important to understand whether
m has a singularity at k = x*. For that, the following lemma gives information on
the behavior of u near k*:

LEMMA 4.1. Under Assumptions 2.1 and 2.2, there exist € > 0 and M > 0 such
that

< M(k* — k), if  kelr®—e K], (4.3)
'(k)) <0, if kel[r* K*+e€l (4.4)

Proof. We focus on the proof of (4.3), since the proof of (4.4) is completely
similar.
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Since u € C1(0,4+m), and u is C? in (0,x*) U (k*, +00), it is possible to take the
derivative of (2.7) at k % k™*:

pu' (k) — Hi(r, 0/ (k) = Ho(, u'())u” (k). (4.5)

Let us set
X(k) = ¢ (u'(K)). (4.6)
Note that x(k*) = f(k*). The function x is positive, continuous and increasing in

(0, +00), and C! on (0,x*) U (k*, +0). Recall that
Hy(k,u' (k) = f'(k)u'(k), w'(k) =U'(x(k)), and  Hy(k,u'(r)) = f(k) — x(k).

Then (4.5) can be written as follows:
U'(x(r)(p = f'(1)) = (f (k) = x(5))U" (x(5))x' (%) (4.7)

The inequality on the left hand side of (4.3) is already known since f(k)—x(k) > 0
for k < k*. We are left with proving the other inequality for k sufficiently close to x*.
We first claim that there exist € > 0 and Cy > 0 such that for every k € [k* — €, k*],

X(K5%) = x(k) = f(£*) = x(k) < Ca(k™ — k). (4.8)

Proof of (4.8). For 0 < e small enough, dividing (4.7) by U”(x(x)) and integrating
between k and x* yields

f U'(x(%)
p U'(x()

K

(v f()MH+L (F(5*) — F(m)) (v)dr
(4.9)

Let us deal with the first integral in the left hand side of (4.9). Since f € W%, there

exists eg > 0 and Cp > 0 such that for all k € [* — €, K*],

oc

p—ﬂ@=fwﬂ—ﬂ@=f F(2)dz > —Co(w* — ),
thus

" U (x(k) T U w) o d
T = F s < =Gy | X —nan (420)

Since U’(x(k))/ U”(X(&)) admits a negative limit as kK — £*, there exists C; > 0 such
that for all k € [k* — eg, K*],

FUNE) e < O )
L 07y P~ ()R < Culw™ = k)% (4.11)

Next, integrating by part the second integral in (4.9) yields

[ e = s w—f e \(k))ds



Setting J(k) = S:* f’(ﬁ)%dn, and using that both f and y are increasing,

we obtain
0 < J(k) < f(x*) = f(E).

Hence, there exists €; > 0 and M; > 0 and such that if

0<J(k) < Mi(k* — k), for all k € [k* — €1, k*]. (4.13)
From (4.9), (4.11) and (4.12), one deduces that for e < min(eg, €;),
(e(r%) = x(k))* < 201(K* = k)* + 2(x (%) = x(K))J (k). (4.14)

Elementary algebra yields that for all k € [£* — €, k*],
0 < x(k*) = X(k) < J(k) + (F2(k) + 201 (* — 1)?)
A (4.15)
< (Ml + (M12 + 201) 2) (H* — k),

where the last inequality is a consequence of (4.13). The bound in (4.8) is proved.

Finally, the definition of x* in (2.10) implies that f(k) — x(x*) = f(k) — f(k*) =
—p(k* — k) + o(k* — k). Therefore, from (4.8), there exists ¢ > 0 and M > 0 such
that for all k € [k* — ¢, k*],

0 < Hy(k,o (k) = f(k) — x(k) < M(x* — k),

which achieves the proof of (4.3). O

REMARK 4.1. Note that under the additional assumption that f is locally uni-
formly concave, (i.e. for every compact set K < (0,+00), there exists § > 0 such
that f"(k) < —0 for all k € K ), it can be checked with a similar argument to the one
in the proof of Lemma 4.1 that there exists € > 0 and My > 0 such that for every
ke [k* —e,r* +¢],

|Hy (K, ' (k)| = Mi|s* — k|, (4.16)
Consider k # k* such that |k — k*| < €; by differentiating (2.7) at k, we obtain

ny - WE) (o= ['(F))
B A I

Using estimate (4.16) and the regularity of f, we deduce that there exists a constant
My > 0 independent of k taken in [* — €, k* + €] such that

|u" (k)| < Mau! (k).
This shows that u" € L*(k* — €, k* + €). Finally, u € W2 (0, +0).

loc
Proof. [Proof of Proposition 2.2] For brevity, we use the notation b(k) = Hy(k, v’ (k)).

If m satisfies (2.11) in the sense of distributions and (2.12), then the weak derivative
of bm is n(-,u(-)) — vm, a bounded measure from (2.12) and Assumption 2.3. Hence
bm € BV}, (0, +00). On the other hand, 1/be C1((0,x*) U (k*, +0)). Therefore, the
restriction of m to (0, k*) U (k*, +00) can be written (bm)/b and identified with a func-
tion in BV 6. ((0, x*) U (k*, +00)). The Lebesgue decomposition of m is m = mg.+ms;
the singular part my is supported in {k*}, hence my; = A, with X = 0; the regular
part m,. can be identified with a nonnegative function in L' (0, +c0).

We claim that A = 0. To prove this fact, consider a family (¢¢)e>o such that
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pe € CF(0,+)

supp(pe) © [r* — &,k +¢]

pe(r¥) =1

©e is non decreasing on [0, x*], and non increasing in [£*, +o0)
ol < 2/e

We deduce from (2.11)-(2.12) that for ¢ small enough,

- f ¢g<k>b<k>dm<k>:—uf pe(k)dm(k) + j e (kyn(k, u(k))d.
R4 R4 R

+

For ¢ € (0, k*/2), this leads to

li*+€
—f L (k)b (k) e (k) dk

k¥ —g
k¥ te k¥ te
——v [ eOmacdh s [ ok k)l -,

because b(k*) = 0. The construction of ¢, and (4.3)-(4.4) ensure that
swp el ()b(k)] < 2M.

ke[k* —e,k*+e]
This yields

k* te k¥4e
0<v\<2M Mae(k)dk + J o (k)n(k, u(k))dk.

k*—¢ k¥ —e

Letting € — 0, we obtain that A = 0 by applying Lebesgue dominated convergence
theorem. The claim is proved.

Therefore, m € L*(0, +0), and (4.3) implies that bm € WI})’Cl (0, +00), and that 0 <
m e L0, +m0) n CH((0, %) U (k*, +0)).

Integrating equation (2.11) over the intervals (0, x*) and (k*, +00), we see that

b(k)m(k) =

k ko, koo, . .
L n(k, u(k)) exp (— L b(z)dz> drk + Aexp (— Jﬁ (Z)dz) , i 0 <k < k¥,

—Lwn(l-i,u(ﬁs))exp (J: b(’;)dz> dr + Bexp (L* b(yz)dz) L ifk > RY,

for two real numbers A and B. But, from Lemma 4.1, we see that a necessary

condition for the integrability of m is that A = B = 0. Imposing A = B = 0, we see
K,*

that m is a nonnegative function. It remains to check (2.12). Set I, = §; m(k)dk

and I, = § 7. m(k)dk.

Focusing on I,

*

L = f: ﬁ Lkn(ﬁ,u(li))exp ( Lk b(yz)dz> drdk,
= Lﬁ n(K, , u(k)) J': Wlk) exp <— Lk b(yz)dz> dkdk, (4.17)
_ if* 0, u(k))dr
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The second line in (4.17) is obtained using the non negativity of the integrand and

Tonelli’s theorem. The third line in (4.17) comes from the fact that S dz
which is a consequence of Lemma 4.1.
It can be proved in the same way that
1 +00
I, = fj n(k, u(k))dk.
12 PES
Hence v(I; + I5) SR ))dk, and m given by (2.13) is the unique solution of

(2.11)-(2.12). O
5. Equilibrium. This paragraph is devoted to existence of equilibria.

5.1. Stability results for (2.7)-(2.9). LEMMA 5.1. Under Assumptions 2.1
and 2.2, the value function —u is monotone with respect to w, i.e. for every w,w €
(0, +o0)?,

w < W = u(s,w) = u(-, w).

Proof. Assume w < w and consider an admissible trajectory associated with
the vector of prices w: it satisfies 9%(t) = f(k(t), @) — c(t) with k(0) = ko. The
differential equation also reads: 4¥(t) = f(k(t),w) — (c(t) + f(k(t),w) — f(k(t), D)),
and c(t) + f(k(t),w) — f(k(t),w) = ¢(t) = 0, which can be used as a control. This
yields that

u(ko, w J Ulc (k(t),w) = f(k(t), @) e"*'dt > L U(c(t))e " dt.

Taking the supremum on all admissible trajectories associated with w, we deduce that
for all kg > 0, u(ko,w) = u(ko,w). O
LEMMA 5.2. Under Assumption 2.2, the map (0, +0)¢ 3 w v+ £*(w) € (0, +0)
defined in (2.10) is continuous.
Proof. Consider a sequence (wp)nen, wn € (0,4+000)9, such that w, tends to
€ (0, +m)? as n — +oo.
We first claim that £*(w,) remains in a compact subset of (0, +00). We proceed by
contradiction:
e Assume first that up to the extraction of a subsequence, x*(w,,) tends to +00
as n — +00. Hence, for any k£ > 0, there exists NV > 0 such that if n > N,
then g—i(k,wn) > p. Passing to the limit using the C! regularity of f (see
Assumption 2.2), we get that f(k: w) = p for all k > 0. But k — f(k,w) is
strictly concave: Hence, %(k w) > p for all K > 0. This contradicts point
2.iii in Assumption 2.2 (see also Remark 2.2).
e Assume that up to the extraction of a subsequence, x*(wy) tends to 0 as
n — 400: arguing as above, this implies that %(k, w) < p for all k£ > 0. This
contradicts point 2.ii in Assumption 2.2.
The claim is proved.
Possibly after the extraction of a subsequence, x*(w,,) tends to a positive limit &. It
is easy to deduce from Assumption 2.2 that %(FL, w) = p. Therefore & = k*(w), and
the uniqueness of the cluster point implies that the whole sequence k*(w,,) tends to
k*(w). This achieves the proof. O
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LEMMA 5.3 (Continuity of w ~— u(-,w)). Let (wy)nen, wn € (0,4+0)%, be a
sequence converging to w € (0,+00)? as n — 00. Then, under Assumptions 2.1 and
2.2,

u(s, wy) = u(-,w)

in CY(K) for every compact subset K of (0, +o0).
Proof. We may assume without loss of generality that there exist two vectors
w, W € (0, 4+00)¢ such that, for all n > 0,

w < W, <W.

From Lemma 5.1, the following inequalities hold for all n > 0:

N
N

u(-, W) < ul-,wy,) < ul,w).

Using (2.7) and the coercivity of ¢ — H(k, g, w,) uniform w.r.t. n and k € K, where

K is a compact subset of (0,+00), we see that ‘;—Z(k, wy,) is bounded uniformly in n

and k € K. Moreover, if lim._, 4o U(c) = +0, then 5%(-,w,) is bounded uniformly
away from 0 w.r.t. n and k € K.
Since (u(-,w,))nen is a sequence of concave functions uniformly bounded on ev-
ery compact subset of (0,+0), there exists a continuous and concave function v :
(0, +0) — R such that, after the extraction of a subsequence,
o %(7111”) — o locally uniformly in (0, +00)
U

e St(-,w,) — v almost everywhere in (0, +c0).

On the other hand, from Lemma 5.2, there exist £ > 0 and § > & such that

k< min_£*(w) < max_ k*(w) <E.
WSWKW WSWKW
Take any compact interval [a, b] such that 0 < a < k and & < b.

The functions u(-, w,) are uniformly Lipschitz viscosity solutions (with g—}é( ‘W)
bounded away from 0 if lim., 4, U(c) = +o0) of (2.7) (with w = w,) on (a,b)
with state constrained boundary conditions at a and b. From the continuity of H on
[a,b] x (0,+00)% x (0,+00)¢, the uniform bounds on ‘;—Z(~7wn) stated above and the
uniform convergence of (u(:, wy,))nen towards v on [a, b], stability results on viscosity
solutions, see e.g. [6] can be used and yield that v is a viscosity solution of

pu(k) = H(kv ’U/<k7)7 w),

on (a,b), with state constrained boundary conditions at k = a and k = b. Note that
the eventuality that H(k,q,w) — +o0 as ¢ — 0 does not imply any difficulty, because
in this case, ‘3—}:(, wy,) is uniformly bounded away from 0. From this observation, we
can also use well-known results on the uniqueness of state constrained solutions of the
Hamilton-Jacobi equation, see e.g. [6], and find that v = u(-, w).
In fact, the convergence holds locally in C'. We know that
o u(-,wy,) tends to u(-,w) uniformly in [a, b]
e there exists a measurable subset F of [a,b], such that the Lebesgue measure
of [a,b]\F is zero and that 2—;(', wy,) tends to g—}j(, w) pointwise in E.

Note that after slightly modifying a or b if necessary, we can always assume that a € F
and b € E. A variant of Dini’s first theorem yields that the convergence of %Z(v wy,)
is in fact uniform in [a, b]: for completeness, the proof is given in what follows.
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The function S—Z(, w) is continuous, thus uniformly continuous on [a, b]; hence, given

€ > 0, it is possible to choose § > 0 small enough such that
ou ou

k—K|<d = —(hw)—%

o (K, w) <§, Yk, k' € [a,b].

For such a choice of § > 0, it is possible to define a finite subdivision (;);eqo,....r; of
[a,b] such that

o for every i € {0,...,1}, 0, € E.

o forany i€ {0,...,I —1},0 < 0;41 — 0; < 0.
On the other hand, for any k € [a,b], there exists iy € {0,...I — 1} such that o;, <
k < 05+1. Then the concavity of u with respect to k yields

ou ou ou ou
ok = (k,wn) — %(k‘, w) < ok (Uzoawn) — AL

ou (lu 4 al ou

ak(gzo’wn) ak(gzo’w) + ak(ai(ﬂw) ak(020+1? )
Taking N € N large enough such that for every n > N,
ou €
(316 (Ul,wn) - a—ku(ai7w) <3
yields that
0 0
a—Z(k‘,wn) - a—Zu(k,w) <e, VYnz=N.

A similar argument can be used to bound £ St (kywy,) — g—u(k, w) from below. Finally,
for any € > 0 there exists N > 0 such that

ou

%(kz,w) <e, VYn = N.

ou
sup k,w,) —
kela,b] (7]{3( )

This achieves the proof.
]

5.2. Existence of equilibria. Proof. [Proof of Theorem 2.3] Recall that ® and
g are respectively defined in Assumption 2.4 and formula (2.16). Let € be the constant
appearing in Assumption 2.5. There exist two constants 0 < k < K < 400 such that
for all w € [¢,1/€]?, K < k*(w) < . Hence, m(-,w) is supported in the compact
inteval J = conv ([, %] n support()).

We claim that the map w ~— m(:,w) is continuous from [e,1/€]? to the set of
probability measures supported in .J. Indeed, let (wy, )nen, wn € [€, 1/€]%, be a sequence
converging to w as n — +o0. From Lemma 5.3, u(:,w,) — u(-,w) in C*(K) for any
compact subset K of (0,+00). The probability measures m(-,w,) are all supported
in J. Hence, the sequence m(-, w, ) has a cluster point p in the weak * topology. Let
us prove that p = m(-,w): for any test function ¢(-) € C¥(0, +00),

+00 +o0 +o0
~ [ )ik = [ ok~ [ pkm( )k
0 0 0
where b is given by (2.14).
+o0 +o0
The right-hand side converges to f o(k)n(k)dk — VJ ¢(k)u(k)dk. On the other
0 0
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hand, the C* convergence of u(-,w,) to u(-,w) on every compact subset of (0, +00)
implies the uniform convergence of Hy(-, g—z (-, wn), wy) to Hy (- ak( w),w) in J. We
deduce that

J(b ( k), n) m(k, w,, dk—»f o (k ( gk( )w),u(k)dk.

Therefore p = m(-,w) and the whole sequence m(-, w,) weakly * converges to m(-, w)
as n — 0. The map w > m(-,w) is continuous on [e, 1/¢]<.

For A € [0,1], we then consider the map T defined on [e, 1/¢]¢ by

Ty(w) = arg min {cp(-) + JOO gk, ") ((1 — N di(k) + Adm(k,w))} . (5.1)

0

where the function g has been defined in (2.16), (recall that k& — g(k) is convex).
From the observation made above on m(-, w) and from Assumption 2.4, the function
to be minimized is continuous, strictly convex and coercive on [0, +00)%; hence T (w)
is well defined. Moreover, |Tx(w)]|o is bounded uniformly in w € [e, 1/€]9.

Let w, and ), be two sequences taking their values respectively in [e,1/e]¢ and in
[0, 1]; assume that w,, tends to w and that A, tends to A. The sequence T, (w,,) takes
its values in a compact; hence, up to the extraction of a subsequence, we may assume
that T, (wy,) converges to some w. Since m(-, w,) weakly = converges to m(-,w), it
is easy to check that @ = T)(w) and that the whole sequence T}, (w,) converges.
Hence, the map (A, w) — Tx(w) is continuous.

For A € [0, 1], we consider the equation: find w € [e, 1/¢]¢ such that w—Ty(w) = 0,
which we write x(w,A\) = 0. We now aim at applying Brouwer degree theory to .

First, setting to = argmin {®(-) + Sgo g(k,-)dn(k)} which does not depend on w,
the equation x(w,0) = 0 writes w = tg € (¢, 1/¢)?. Therefore,

deg (x(:,0), (€,1/€)%,0ga) = 1. (5.2)

Second, for all A € [0, 1], we know from Assumption 2.5 that the equation w —
Ty (w) = 0 has no solution on the boundary of [e, 1/¢]<.
From the two observations above, we see that for all A € [0, 1],

deg (x(, A), (e, /€)%, Oga) = 1. (5.3)

We deduce that there exists w* € (e, 1/€)? such that

w* = arg min {<I>(-) + foc g(k, -)dm(k,w*)} .

0

Writing the first order necessary optimality conditions associated with this minimiza-
tion problem, we see that w* satisfies (2.15). O

REMARK 5.1. We have actually proved more than the existence of an equilibrium,
namely that deg(x, (€,1/€)%,0) = 1.

5.3. Assumption 2.5 holds in the examples of Subsection 2.4.
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5.3.1. The Cobb-Douglas production function. PROPOSITION 5.4. As-
sumption 2.5 holds with the Cobb-Douglas production function described in Subsection

2.4 .

Proof. From (2.19), we deduce that for two positive constants ¢; and ¢y

1-18]

g(k,w) = etk G(w) and  K*(w) = ¢ (Gp(w)) =171, (5.4)
where
d —_
Gp(w) = sz mr
i=1
Setting

0 0
My (w) = ()\cljo klaﬁdm(k’,w)—s—(l—)\)Mo) with M0=leo kT diy(k),

(2.17) becomes
O (w) + My (w)Gp(w) < (1) + My (w). (5.5)

Since ®(w) > 0, (5.5) implies that Gg(w) < 1 + ®(1)/Mx(w). On the other hand,
(5.4) yields

1-18]

M) (w) = c;Amin (g, ¢ (Gg(w)) T=a-Ta > o + (1 — X) Moy, (5.6)

where g is the minimal value in the support of 7. Combining the latter two estimates
yields

Gg(w) <1+ (I)(]l)

(5.7)

1-18]

¢1 A min (g, co (Gg(w)) T=a-Ta1 ) R (1= X)My

It is easy to deduce from (5.7) that Gg(w) < ¢s, for a positive constant ¢ independent
of w.
If @ is the maximal value in the support of 7, this implies that

My (w) < c;Amax (6, c2 (Ga(w)) ot ) Ly (1= XN)My

e

< ¢ max <a, c¢§‘1af6> o + (1= A) My (5.8)
= C4,
where ¢4 is a positive constant. We deduce from this and (5.5) that
D(w) < (1) + My(w) < P(1) + ¢4. (5.9)

From the coercivity of @, this yields that max; w; < cs5, for a positive constant cs.
Then Gg(w) < ¢ implies that min; w; > €, where € is a positive constant which can
be obtained from the exponents §; and the constants cs3 and c5. Finally, taking a
smaller value of € if necessary, we get (2.18). O
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5.3.2. Constant elasticity of substitution. PROPOSITION 5.5. Assumption
2.5 holds with the example of the production function with the constant elasticity of
substitution described in Subsection 2.4 .

Proof. Combining (2.23) and (2.26) implies that

8; \ 177
§+p o &M\ T .
v = 222 (e + 3, (2 (s 1))
j=1 N
Since 7 € (0, 1), this yields
‘TTP(H*(w))H*a(H) <. (5.10)

Hence k*(w) is bounded from above by a positive constant independent of w. From

this information and the coercivity of ®, we proceed as for the Cobb-Douglas function

and see that there exists a positive constant ¢; such that (2.17) implies that |w| e < 1.
Next, we claim that

lim 9(0,w) = +00. (5.11)
min;—1,... qw; — 0,
lwleo < €1

Since ¢(-,w) is non decreasing, we deduce from (5.11) that there exists a constant
€ > 0 independent of A such that (2.17) implies min; w; > € and taking a smaller
value of e if necessary, we get (2.18).

We are left with proving (5.11): we know that

N
g(k,w) = g(0,w) = sup (Z éfl) —w- L.

14

%

~ _ b
A competitor can be chosen by taking ¢; = w; " where b = min; 8;/2. Therefore

b

g(k,w) = (X, w;®)" =3, wll "i| The first term tends to +o0 if min; w; — 0, while
the second term is bounded since |w|o < ¢1. O
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