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A MEAN FIELD MODEL FOR THE INTERACTIONS BETWEEN FIRMS ON THE MARKETS OF THEIR INPUTS

We consider an economy made of competing firms which are heterogeneous in their capital and use several inputs for producing goods. Their consumption policy is fixed rationally by maximizing a utility and their capital cannot fall below a given threshold (state constraint). We aim at modeling the interactions between firms on the markets of the different inputs on the long term. The stationary equlibria are described by a system of coupled non-linear differential equations: a Hamilton-Jacobi equation describing the optimal control problem of a single atomistic firm; a continuity equation describing the distribution of the individual state variable (the capital) in the population of firms; the equilibria on the markets of the production factors. We prove the existence of equilibria under suitable assumptions.

1. Introduction. We consider an economy made of competing firms which are heterogeneous in their capital, and use several inputs for producing goods. These inputs, or factors of production, may include raw materials, energy, manpower, rented surface, etc... We aim at modeling the interactions of the firms on the markets of the different inputs on the long term. We make the following general assumptions:

' the economy is reduced to one sector of activity with a large number (in fact a continuum) of firms competing on the markets of inputs ' the firms choose which amount of their capital is invested into production and which amount is consumed (for retributing the owners). Their consumption policy is fixed rationally by maximizing a utility ' the firms are identical in the sense that (1) two different firms with the same capital and quantities of inputs produce the same amounts of goods (2) they have the same utility function ' there is a state constraint: the capital of any firm must not fall below a given threshold, fixed to 0 in the whole paper ' for a given firm, all the others are indistinguishable and the firms interact only via the prices of the different inputs ' a single firm has a negligible impact on the markets ' equilibrium on the markets is reached when supply matches aggregate demand. Supply is assumed to be a given function of prices. ' closure and creation of firms may happen. This will be modeled in what follows. Because we are interested in long term tendencies, we aim at finding stationary equilibria. The outputs of our model will be ' the distribution of capital ' the optimal investment/consumption policy of the firms given their capital ' the unit prices of the different inputs Our model falls into the wide class of mean field games. The theory of mean field ˚Université de Paris Cité and Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, (LJLL), F-75006 Paris, France, achdou@ljll-univ-paris-diderot.fr : CEREMADE, Université Paris Dauphine, PSL, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE and INRIA-Paris, MOKAPLAN, carlier@ceremade.dauphine.fr,

; CEREMADE, Université Paris Dauphine, PSL, and EDF R&D, quentin.petit@edf.fr § Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova, via Trieste 63, 35121 Padova, Italy. tonon@math.unipd.it games (MFGs for short), has been introduced and studied in the pioneering works of J-M. Lasry and P-L. Lions [START_REF] Lions | Cours du Collège de France[END_REF][START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF], and aims at studying deterministic or stochastic differential games (Nash equilibria) as the number of agents tends to infinity. It supposes that the rational agents are indistinguishable and individually have a negligible influence on the game, and that each individual strategy is influenced by some averages of quantities depending on the states (or the controls) of the other agents. The applications of MFGs are numerous, from economics to the study of crowd motion. For useful reference on mean field games, one can see for example [START_REF] Guéant | Mean field games and applications[END_REF][START_REF] Cardaliaguet | Notes on mean field games[END_REF][START_REF] Achdou | Mean field games[END_REF][START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF].

Our model will be summarized by a system of coupled non-linear differential equations: (1) a Hamilton-Jacobi-Bellman equation describing the optimal control problem of a single atomistic firm; (2) a continuity equation describing the distribution of the individual state variable (the capital) in the population of firms; (3) the equilibria on the markets of the production factors.

The present model has some similarities with the time continuous Aiyagari-Bewley-Huggett models [START_REF] Bewley | Stationary Monetary Equilibrium with a Continuum of Independently Fluctuating Consumers[END_REF][START_REF] Aiyagari | Uninsured idiosyncratic risk and aggregate saving[END_REF][START_REF] Huggett | The risk-free rate in heterogeneous-agent incomplete-insurance economies[END_REF] studied in [START_REF] Achdou | Partial differential equation models in macroeconomics[END_REF][START_REF] Achdou | Income and wealth distribution in macroeconomics: a continuous-time approach[END_REF]. In particular, they all lead to a better understanding of the individual accumulation of capital/investment policy. In the present paper, a key aspect for proving the existence of equilibria is the regularity properties of the individual optimal policies.

The paper is organized as follows: the model, the main results and important examples are presented in Section 2. The mathematical results concerning the optimal control problem of a single firm given the prices of inputs are proved in Section 3. As already mentioned, the stress will be put on regularity properties of the solutions, which will play an important role in the remaining part of the paper. Then, the distribution of capital among the firms given the prices of inputs will be studied in Section 4: in particular, we will prove that under the assumptions made, the distribution is absolutely continuous with respect to Lebesgue measure. Finally, in Section 5, we use Brouwer topological degree in order to obtain the existence of equilibria.

For keeping the length of the paper reasonable, we have chosen not to discuss the numerical simulations that we have carried out for a model with two factors of production: the manpower and the surface rented by the firms. We refer to [START_REF] Petit | [END_REF] for a description of these simulations, a discussion of the results and comparisons with available statistics.

The model and the main results.

In what follow, we give more details and write down the different equations which summarize our model. First, in paragraph 2.1, we address the strategy of a single firm given the prices of the inputs. Second, in paragraph 2.2, we propose a model for the distribution of capital, supposing again that the prices of the inputs are given. From the two steps above, we can deduce the aggregate demand for the different production factors. Finally, the model is closed by matching the aggregate demand with the exogenous supply of production factors. In the three steps mentioned above, we make some assumptions which allow us to prove the existence of a mean field equilibrium. In subsection 2.4 below, we give examples in which these assumptions are satisfied.

In the following, we set R `" r0, `8q.

2.1. The optimal control problem of a single firm given the prices of inputs. The output of a given firm is F pk, q P R `, where k P R `and P R d respectively stand for the capital of the firm and for the quantities of the different inputs it uses. The function F : R `ˆR d `Ñ R `is the production function.

Let w P p0, `8q d be the collection of the unit prices of the different factors of production: depending on i P t1, . . . , du, w i may stand for the unit price of a raw material, the annual salary of a class of workers, the rental price of a unit of surface. The benefits of the firm in a unit of time are therefore given by F pk, q ´w ¨ ´δk, where δ ě 0 is the rate of depreciation of capital.

The dynamics of the capital of a given firm is described by dk dt ptq " F pkptq, ptqq ´w ¨ ptq ´δkptq ´cptq,

where cptq stands for the consumption at time t, for example the share of the benefits that goes to the owners of the firm. The firm has two variables of control, its consumption cptq P R `and the quantities of inputs ptq P R d `.

The firms face the problem of how to split their benefits between consumption and investments that produce growth. A given firm determines its policy by maximizing the following payoff:

ż `8 0 U pcptqqe ´ρt dt, (2.2) 
where U : r0, `8q Ñ r´8, `8q is a utility function and ρ is a positive discount factor. It aims at finding the controls t Þ Ñ cptq P r0, `8q and t Þ Ñ ptq P r0, `8q d which maximize (2.2), under the constraint that its capital stay nonnegative (state constraint).

The value of the optimal control problem when the firm has a capital k 0 ě 0 is

upk 0 , wq " sup c, , k ż `8 0 U pcptqqe ´ρt dt subject to $ ' ' & ' ' % c P L 1 loc pR `; R `q, P L 1 loc pR `; R d `q,
k P W 1,1 loc pR `q, k satisfies (2.1) for a.a. t ą 0, kp0q " k 0 , kptq ě 0 for all t.

(2.3)

We will see that under suitable assumptions, namely Assumptions 2.1 and 2.2 below, upk 0 , wq P R for all k 0 P p0, `8q.

We expect that the value function u can be found by solving a Hamilton-Jacobi equation in p0, `8q with state constraints at k " 0 (from the dynamic programming principle). Let the Hamiltonian H : R `ˆR ˆp0, `8q d Ñ p´8, `8s be defined as follows: for all k P R `and q P R, Hpk, q, wq " sup cPR`, PR d `tU pcq `q pF pk, q ´w ¨ ´δk ´cqu

(2.4) " sup cPR`t U pcq ´cqu `f pk, wqq, (2.5) 
where f : R `ˆp0, `8q d Ñ R is the net output function:

f pk, wq " sup PR d
`tF pk, q ´w ¨ u ´δk.

(2.6)

Remark 2.1. By contrast with simpler applications of mean field games to price formation, see e.g. [START_REF] Gomes | A mean-field game approach to price formation[END_REF], the Hamiltonian of the problem does not involve a quantity which depends separately/additively on the price vector w and on q.

The Hamilton-Jacobi equation then reads: 

z ď z ñ ψpzq ď ψpzq,
where the partial order ď on R m is defined as follows:

z ď z if and only if z i ď zi , @i P t1, . . . , mu..

We make the following assumptions on U and F : Assumption 2.1 (Assumptions on U ). The utility U : R `Ñ r´8, `8q has the following properties: i) U is C 2 on p0, `8q. ii) U is increasing and strictly concave in p0, `8q.

iii) lim cÑ0 `U 1 pcq " `8 and lim cÑ`8

U 1 pcq " 0.

Assumption 2.2 (Assumptions on F ). The function F is concave and monotone. For any vector w P p0, `8q d and for any k P R `, the net output f pk, wq defined by (2.6) is finite and achieved by a unique " ˚pk, wq P R d `, and ˚is a C 1 function defined on p0, `8q ˆp0, `8q d . Moreover, 1. The function f belongs to C 0 pR `ˆp0, `8q d q X C 1 pp0, `8q d`1 q 2. for all w P p0, `8q d , f p¨, wq : R `Ñ R has the following properties: i) f p¨, wq is locally of class C 1,1 on p0, `8q ii) f p0, wq ě 0, k Þ Ñ f pk, wq is strictly concave and lim kÑ0 ' From point 2.ii) in Assumption 2.2, f p¨, wq is strictly concave. Hence, Bf Bk pk, wq has a limit as k Ñ `8, which belongs to r´8, `8q. Therefore, point 2.iii) in Assumption 2.2 is meaningful. ' If δ " 0, then the strict concavity of k Þ Ñ f pk, wq implies that it is increasing in p0, `8q. Then, because f p0, wq ě 0, f pk, wq ą 0 for all k ą 0 and has a limit as k Ñ `8, which belongs to p0, `8s. ' If δ ą 0, then lim kÑ`8 f pk, wq " ´8, and f is negative for k large enough.

Remark 2.3. It is clear that ´f is monotone with respect to w. The optimal quantity of the input labeled i is i pk, wq " ´Bf Bw i pk, wq.

In Section 3 below, we are going to prove the following theorem: Theorem 2.1. Under Assumptions 2.1 and 2.2, for all w P p0, `8q d , there exists a unique classical solution up¨, wq P C 1 p0, `8q of (2.7) with the following property: there exists a critical value κ ˚pwq ą 0, such that

H q ˆk, Bu Bk pk, wq, w ˙ą 0, for 0 ă k ă κ ˚pwq, (2.8) 
H q ˆk, Bu Bk pk, wq, w ˙ă 0, for κ ˚pwq ă k ă `8.

(2.9)

Here H q stands for the partial derivative of H with respect to its second argument. Moreover κ ˚pwq is characterized by the equation Bf Bk pκ ˚, wq " ρ.

(2.10)

The function up¨, wq is strictly concave on p0, `8q and belongs to C 2 pp0, κ ˚pwqq Y pκ ˚pwq, `8qq. Furthermore, up¨, wq is the value function of the optimal control problem (2.3), and H q pk, B k upk, wq, wq is the optimal investment policy of a firm with capital k. Remark 2.4.

1. The existence of κ ˚pwq ą 0 such that the capital of all firms converges towards κ ˚pwq is known as the golden rule of investment [START_REF] Allais | Économie & intérêt: présentation nouvelle des problèmes fondamentaux relatifs au rôle économique du taux de l'intérêt et de leurs solutions[END_REF]Chapter 7]. 2. We will see in Section 4 below that a firm with an initial capital k 0 " κ ˚pwq never reaches this target capital κ ˚pwq. The difficulty in the proof of Theorem 2.1 lies in the fact that the Hamiltonian Hpk, q, wq is defined only for nonnegative values of q (i.e. Hpk, q, wq " `8 if q ă 0) and may blow up as q Ñ 0 `. Hence, classical results on viscosity solutions of Hamilton-Jacobi equations for state constrained optimal control problems cannot be applied in a straightforward manner. We will use a different strategy: in particular, in the simplest case in which δ " ´lim kÑ8 Bf Bk pk, wq " 0, our proof of existence is based on the fact that the function q Þ Ñ Hpk, q, wq is strictly convex, strictly decreasing in p0, q min q and strictly increasing in pq min , `8q, where q min " U 1 pf pk, wqq, see Lemma 3.2 below. In this case, our strategy consists in solving two ordinary differential equations by means of shooting methods: the first (resp. second) one involves the inverse of the increasing (resp. decreasing) part of q Þ Ñ Hpk, q, wq.

Note that a different strategy has been studied in [START_REF] Petit | [END_REF]; it was inspired by a method proposed in [START_REF] Santambrogio | Rational expectations equilibria in a Ramsey model of optimal growth with non-local spatial externalities[END_REF] for studying Ramsey model of optimal growth with non local externalities. It consists in introducing a relaxed lagrangian version of the original optimal control problem, then obtaining compactness properties which lead to the existence of an optimal control and of a solution of the original problem. However, this approach needs an assumption stronger than Assumption 2.2.

2.2.

The distribution of capital given the prices of inputs. The distribution of capital corresponding to the optimal investment policy of the firms is a bounded positive measure on p0, `8q. In our model, its density is characterized by the following continuity equation: B Bk ˆmp¨, wqH q ˆ¨, Bu Bk p¨, wq, w ˙˙" ηp¨, up¨, wqq ´νmp¨, wq,

which may first be understood in the sense of distributions. The parameter ν ě 0 is the extinction rate of the firms and the source term η stands for the exogenous creation of firms. Note that the latter term depends on the value u. We make the following assumption: Assumption 2.3 (Assumptions on ν and η). We assume that ν is positive (ν ą 0), that η is a continuous function on r0, `8q ˆR, and that there exists a continuous probability density η : R `Ñ R `with a compact support contained in p0, `8q and a positive constant ĉ ě 1 such that for all k ě 0 and v P R, (2.12)

Since H q pk, Bu Bk pk, wq, wq ą 0 for small values of k and H q pk, Bu Bk pk, wq, wq ă 0 for large values of k, see Theorem 2.1, (2.12) is a weak way to say that the flux mp¨, wqH q p¨, Bu Bk p¨, wq, wq vanishes at k " 0 and as k Ñ ` 

where, for brevity, bpk, wq stands for the optimal investment when the capital is k: bpk, wq " H q ˆk, Bu Bk pk, wq, w ˙.

(

A key step in the proof of Proposition 2.2 consists of showing that the quantities in the right hand side of (2.13) are well defined. This comes from an intermediate result which states that, under Assumptions 2.1 and 2.2, ˇˇH q pk, Bu Bk pk, wq, wq ˇˇ" Op|kκ ˚pwq|q for k in a neighborhood of κ ˚pwq. The latter information implies that, with the optimal investment strategy, a firm starting with a capital k 0 " κ ˚pwq never reaches κ ˚pwq, even though its capital does tend to κ ˚pwq as t Ñ 8.

Remark 2.5. Note that (2.13) implies that 1 νĉ ď ş R`m pk, wqdk ď ĉ ν (the two bounds do not depend on w). Moreover, the support of mp¨, wq is contained in the interval rmin pmintk P supportpηqu, κ ˚pwqq , max pmaxtk P supportpηqu, κ ˚pwqqs .

Hence, from the continuity of w Þ Ñ κ ˚pwq, for any compact set K Ă R d `, there exists a compact interval of R `containing the supports of mp¨, wq for all w P K.

Equilibria.

The supply of inputs is assumed to be of the form Spwq, where w P R d `is the collection of prices. At the equilibrium, we require that the clearing condition on the markets of inputs holds, i.e.

Spwq " ż R` ˚pk, wq mpk, wqdk.

(2.15)

where i pk, wq " ´Bf Bwi pk, wq, and mp¨, wq is the solution of (2.11)-(2.12). We aim at proving the existence of equilibria by using Brouwer degree theory. This requires additional assumptions:

Assumption 2.4 (Assumptions on the supply). The function

S : R d `Ñ R d `is
of the form Spwq " D w Φpwq, where 1. Φ : R d `Ñ R is C 1 regular and strictly convex 2. Φ is bounded from below (for example by 0) 3. Φ is coercive, i.e. lim }w}Ñ8 Φpwq " `8. Remark 2.6. The Legendre-Fenchel transform of Φ, Φ ˚pSq " sup wPR d `S ¨w Φpwq is convex and semi-continuous on R d `with values in p´8, `8s. It can be interpreted as a collective cost or disutility associated to the supply of inputs. Concerning raw materials, it may be linked to their scarsity or to the environmental/social damages caused by their production. For manpower, the disutility captures negative effects of labour on the welfare of the workers.

Examples.

1. If, for any i " 1, . . . , d, the i-th component of the supply function is a non negative, continuous and increasing function of w i , i.e. S i pwq " S i pw i q, then Assumption 2.4 is satisfied with Φpwq "

ř d i"1
ş wi 0 S i ptqdt. 2. Given two positive numbers σ and w 0 , if

S i pwq "
exppw i {σq ř d j"0 exppw j {σq for all i " 1, . . . , d, then Assumption 2.4 is satisfied with Φpwq " σ log ´řd j"0 exppw j {σq ¯. In the limit σ Ñ 0, the price w 0 can be seen as a reserve price under which the production factors cannot be acquired. Set gpk, wq " f pk, wq `δk " sup

PR d `F pk, q ´w ¨ , (2.16) 
which can be seen as the Legendre-Fenchel transform of Þ Ñ ´F pk, q evaluated at ´w. From Assumption 2.2, gpk, wq is finite, nonnegative and achieved by the unique maximizer ˚pk, wq P R d `, and ˚is C 1 on p0, `8q ˆp0, `8q d . A further technical assumption involving both F and the fixed measure η arising in Assumption 2.3 will be needed:

Assumption 2.5. Let 1 P R d be defined by 1 " p1, . . . , 1q. We assume that there exists P p0, 1q such that for all λ P r0, 1s, if

Φpwq

`ż `8 0 gpk, wq ´p1 ´λqdηpkq `λdmpk, wq ďΦp1q `ż `8 0 gpk, 1q ´p1 ´λqdηpkq `λdmpk, wq ¯(2.17)

then w P ˆ , 1 ˙d . (2.18)
Remark 2.7. The proof that Assumption 2.5 holds for classical examples of production functions will be given in Section 5.

Section 5 will be devoted to the proof of the following existence result: Theorem 2.3 (Existence of equilibria). Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, there exists an equilibrium, i.e. w P p0, `8q d such that the market clearing condition (2.15) holds with mp¨, wq and up¨, wq uniquely defined respectively by Proposition 2.2 and Theorem 2.1. F pk, q " Ak α β ,

where β P p0, 1q d , ř d i"1 β i ă 1, β " ś d i"1 βi i , and 0 ă α ă 1 ´řd i"1 β i . Let us set |β| " ř d i"1 β i .
In this example, the parameters β and α respectively stand for the elasticities of the output with respect to the different inputs and to the capital, and A ą 0 is a global factor of productivity. The net output is given by

f pk, wq " p1 ´|β|q ˜Ak α d ź i"1 ˆβi w i ˙βi ¸1 1´|β| ´δk. (2.19)
It can be checked that the first order partial derivatives of f with respect to k and w i are

Bf Bk pk, wq " α ˜A d ź j"1 ˆβj w j ˙βj ¸1 1´|β| k ´1´α´|β| 1´|β| ´δ, (2.20) 
and

Bf Bw i pk, wq " ´˜Ak α d ź j"1 ˆβj w j ˙βj ¸1 1´|β| β i w i ď 0. (2.21)
It is easy to see that Assumption 2.2 is satisfied. In particular, lim kÑ`8

Bf

Bk pk, wq " ´δ. The capital κ ˚pwq in (2.10) is given by

κ ˚pwq " ˆα α `ρ ˙1´|β| 1´α´|β| ˜A d ź j"1 ˆβj w j ˙βj ¸1 1´α´|β| . (2.22) 2.
We now consider a production function with a constant elasticity of substitution:

F pk, q " ˜kα `d ÿ i"1 βi i ¸γ ,
where α P p0, 1q, β P p0, 1q d and γ P p0, 1q. For any pk, wq P R `ˆp0, `8q d , it can be checked that there exists a unique parameter λpk, wq ą 0 such that

λ ¨kα `d ÿ j"1 ˆλβ j w j ˙βj 1´β j '1´γ " γ. (2.23)
The net output is then

f pk, wq " ¨kα `d ÿ j"1 ˆλpk, wqβ j w j ˙βj 1´β j 'γ ´d ÿ j"1 w i ˆλpk, wqβ j w j ˙1 1´β j ´δk.
It can be checked that the first order partial derivatives of f with respect to k and w i are Bf Bk pk, wq " αλpk, wqk α´1 ´δ,

and

Bf Bw i pk, wq " ´ˆλpk, wqβ i w i ˙1 1´β i ă 0. (2.25)
Assumption 2.2 is satisfied. In particular, lim kÑ`8

Bf

Bk pk, wq " ´δ. The capital κ ˚pwq in (2.10) is the unique solution of αλpκ ˚pwq, wqpκ ˚pwqq α´1 " δ `ρ.

(2.26)

3. The optimal control problem of a single firm. In this section, we assume that w, the prices of the production factors, is a fixed vector in p0, `8q d . Thus, in order to alleviate the notation, we everywhere omit the dependency upon w; for example we write Hpk, qq and upkq instead of Hpk, q, wq and upk, wq. Similarly, we set u 1 pkq " Bu Bk pk, wq and f 1 pkq " Bf Bk pk, wq.

The proof of Theorem 2.1 is simpler when δ " 0 because f is positive on p0, `8q. We will first focus on the latter case, then we will address the other case, i.e. δ ą 0.

3.1. The particular case where δ " 0 .

3.1.1. Some properties of the Hamiltonian. Lemma 3.1. Under Assumption 2.1, for any k ą 0, the function q Þ Ñ H pk, qq, defined on p0, `8q, is strictly convex and of class C 2 .

Proof. From Assumption 2.1, the function U 1 is one to one on p0, `8q. Let c denote the inverse function, which is decreasing and C 1 on p0, `8q; its derivative is q Þ Ñ 1{U 2 pc ˚pqqq. For any q ą 0, c ˚pqq ą 0 is the unique consumption which achieves the supremum in (2.5), because U 1 pc ˚pqqq " q. The derivative of q Þ Ñ Hpk, qq is H q pk, qq " ´c˚p qq `f pkq.

(3.1)

Hence, q Þ Ñ Hpk, qq is C 2 on p0, `8q and H qq pk, qq " ´1{U 2 pc ˚pqqq ą 0. This implies the strict convexity of q Þ Ñ Hpk, qq. Remark 3.1. Note that the consumption achieving the supremum in (2.5) does not depend on k.

Lemma 3.2. We make Assumptions 2.1 and 2.2 and suppose furthermore that δ " 0, hence lim kÑ`8 f 1 pkq " 0. Then, for any k ą 0, Proof. For k ą 0, f pkq ą 0 by Remark 2.2. From (3.1), H q pk, qq " 0 if and only if c ˚pqq " f pkq, i.e. q " U 1 pf pkqq. This proves that the infimum of the strictly convex function q Þ Ñ Hpk, qq is a minimum, which is achieved by q " U 1 pf pkqq. The minimal value is U pc ˚pU 1 pf pkqqqq " U pf pkqq.

Remark 3.2. From Assumption 2.1, we see that if f p0q " 0, then lim kÑ0 U 1 pf pkqq " `8. On the contrary, from Remark 2.2, if f p0q ą 0, then U 1 ˝f remains bounded on bounded subsets of r0, `8q.

Lemma Proof. Since c ˚is the inverse of U 1 on p0, `8q, Assumption 2.1 implies that lim qÑ0 c ˚pqq " `8. Therefore, from (3.1), lim qÑ0 H q pk, qq " ´8.

We know that U is increasing: let us set 1 " lim cÑ`8 U pcq " sup cě0 U pcq P p´8, `8s. On the other hand, the function c Þ Ñ U pcq ´cU 1 pcq is increasing in R `, because its derivative is c Þ Ñ ´cU 2 pcq; let us set 2 " lim cÑ`8 U pcq ´cU 1 pcq P p´8, `8s.

Since Hpk, qq " U pc ˚pqqq ´c˚p qqU 1 pc ˚pqqq as q Ñ 0, we see that lim qÑ0 Hpk, qq " 2 .

We need to compare 1 and 2 . It is obvious that 2 ď 1 . We wish to prove that 2 " 1 . We argue by contradiction and assume that 2 ă 1 . We make out two cases: 1. 1 P R and 2 ă 1 : we see that cU 1 pcq tends to 1 ´ 2 ą 0 as c tends to `8. This implies that U pcq blows up like a logarithm of c as c tends to `8, in contradiction with the fact that 1 ă `8. Therefore, if 1 is finite, then 1 " 2 . 2. 1 " `8 and 2 P R. We see that cU 1 pcq " U pcq ´ 2 `op1q where lim cÑ8 op1q " 0. Using Gronwall lemma, we deduce that there exists a real number χ such that U pcq " χc ` 2 `op1q. Since U pcq Ñ `8 as c Ñ `8, we see that χ ą 0. We deduce that lim cÑ8 U 1 pcq " `8 in contradiction with Assumption 2.1. The proof is complete.

Lemmas 3.1 and 3.2 above allow us to define the increasing and decreasing parts of the Hamiltonian: Definition 3.4. We make Assumptions 2.1 and 2.2 and suppose furthermore that δ " 0.

' Define the sets Θ Ò " pk, qq such that k ą 0 and q ě U 1 pf pkqq ( , Θ Ó " pk, qq such that k ą 0 and q ď U 1 pf pkqq ( .

' Let H Ò p¨, ¨q be the restriction of Hp¨, ¨q to Θ Ò . The function q Þ Ñ H Ò pk, qq is increasing in rU 1 pf pkqq, 8q. ' Let H Ó p¨, ¨q be the restriction of Hp¨, ¨q to Θ Ó . The function q Þ Ñ H Ó pk, qq is decreasing on p0, U 1 pf pkqqs. The graphs of Hpk, ¨q, H Ò pk, ¨q and H Ó pk, ¨q are displayed on Figure 3.1. q Hpk, qq

' q min " U 1 pf pkqq ' U pf pkqq Figure 3.1.
The bold line (blue and red) is the graph of the function Hpk, ¨q. The blue line is the graph of H Ó pk, ¨q. The red line is the graph of H Ò pk, ¨q. In the present figure, lim qÑ0 `H pk, qq " `8, but it is also possible that lim qÑ0 `H pk, qq P R. Lemma 3.5. Under the same assumptions as in Lemma 3.2, H Ó p¨, ¨q (respectively

H Ò p¨, ¨q) is of class C 1 on Θ Ó (respectively Θ Ò ).
Proof. We have already seen in the proof of Lemma 3.

1 that q Þ Ñ Hpk, qq is of class C 2 . Moreover, from Assumption 2.2, k Þ Ñ f pkqq is of class C 1 , so k Þ Ñ Hpk, qq is also of class C 1 . Hence pk, qq Þ Ñ H Ó pk, qq is of class C 1 on Θ Ó , and so is pk, qq Þ Ñ H Ò pk, qq on Θ Ò .
3.1.2. General orientation. Heuristically, if u is a classical solution of (2.7) such that u 1 pkq ą 0 for k ą 0 and u 2 is locally bounded, then, taking the derivative of (2.7), we get that for k ą 0, `f 1 pkq ´ρ˘u 1 pkq " ´Hq `k, u 1 pkq ˘u2 pkq.

We deduce that if the optimal investment is 0, i.e. H q pk, u 1 pkqq " 0, then

f 1 pkq " ρ. (3.6) 
From Assumption 2.2, (3.6) has a unique solution which we name κ ˚(note that κ depends on w, see (2.10) in Theorem 2.1). Moreover, H q pκ ˚, u 1 pκ ˚qq " 0 implies that u 1 pκ ˚q " U 1 pf pκ ˚qq and Hpκ ˚, u 1 pκ ˚qq " U pf pκ ˚qq, see Figure 3.1. Hence, from (2.7), we deduce that upκ ˚q " U pf pκ ˚qq{ρ. On the other hand, because of the state constraint, we expect that H q pk, u 1 pkqq is positive for small values of k. Hence, we expect that for a classical state constrained solution u of (2.7),

H `k, u 1 pkq ˘" " H Ò pk, u 1 pkqq , if k ă κ ˚, H Ó pk, u 1 pkqq , if k ą κ ˚.
Therefore, we are going to look for u as the solution of two ordinary differential equations in p0, κ ˚q and pκ ˚, `8q which respectively involve the inverse functions of q Þ Ñ H Ò pk, qq and q Þ Ñ H Ó pk, qq, with the boundary condition upκ ˚q " U pf pκ ˚qq{ρ.

In order to carry out this program, we need to consider the inverse functions of q Þ Ñ H Ò pk, qq and q Þ Ñ H Ó pk, qq: Definition 3.6. We make Assumptions 2.1 and 2.2 and suppose furthermore that δ " 0.

' Define the sets Program. Our program will be as follows:

Ω Ò "
1. Prove that the following Cauchy problem has a unique solution u Ó : rκ ˚, `8q Ñ R:

du Ó dk pkq " F Ó pk, u Ó pkqq, for k ě κ ˚, (3.11) pk, u Ó pkqq P Ω Ó , for k ą κ ˚, (3.12 
)

u Ó pκ ˚q " 1 ρ U pf pκ ˚qq. (3.13) 
2. Prove that the following Cauchy problem has a unique solution u Ò : p0, κ ˚s Ñ R:

du Ò dk pkq " F Ò pk, u Ò pkqq, for k ď κ ˚, (3.14) pk, u Ò pkqq P Ω Ò , for 0 ă k ă κ ˚, (3.15) 
u Ò pκ ˚q " 1 ρ U pf pκ ˚qq.

(3.16)

3. Prove that the function u which coincides with u Ò on r0, κ ˚s and u Ó on rκ ˚, `8q is the solution of (2.7)-(2.9).

Before starting this program, let us state a useful lemma: Lemma 3.7. Under the same assumptions as in Lemma 3.2, F Ó p¨, ¨q (respectively

F Ò p¨, ¨q) is of class C 1 on Ω Ó (respectively Ω Ò ).
Proof. We skip the proof for brevity and refer to [START_REF] Petit | [END_REF], which contains an extended version of the present paper. 

φ 1 λ pkq " F Ó pk, φ λ pkqq, for k ě κ ˚, (3.17) 
pk, φ λ pkqq P Ω Ó , (3.18)

φ λ pκ ˚q " λ, (3.19) 
for λ such that pκ ˚, λq P Ω Ó , see (3.8). Cauchy-Lipschitz theorem may be applied because F Ó is regular enough on Ω Ó . After having proved the existence and uniqueness of φ λ , we will let λ tend to U pf pκ ˚qq{ρ and obtain that the sequence φ λ converges to a solution of (3.11)-(3.13). One reason for not applying directly the standard existence results to the Cauchy problem with initial condition λ " U pf pκ ˚qq{ρ is that F Ó p¨, ¨q is not regular at the boundary of Ω Ó . In particular, v Þ Ñ F Ó pκ ˚, vq is not Lipschitz continuous in the neighborhood of pκ ˚, U pf pκ ˚qq{ρq. Moreover, the point pκ ˚, U pf pκ ˚qq{ρq belongs to the boundary of Ω Ó ; this forbids the direct use of Cauchy-Peano-Arzelà theorem for obtaining the existence of a solution. Proposition 3.8. We make Assumptions 2.1 and 2.2 and suppose furthermore that δ " 0. For every λ such that pκ ˚, λq P Ω Ó , there exists a unique global solution φ λ of (3.17)- (3.19) in rκ ˚, `8q. The function φ λ is increasing and strictly concave.

Proof. Setting Θpkq " pk, φ λ pkqq, it is convenient to rewrite (3.17

)-(3.19) in the equivalent form: find k Þ Ñ Θpkq P Ω Ó such that Θ 1 pkq " `1, F Ó pΘpkqq ˘, k ě κ ˚, (3.20) 
Θpκ ˚q " pκ ˚, λq.

(3.21)

We may apply Cauchy-Lipschitz theorem; indeed, from Lemma, the map Θ Þ Ñ `1, F Ó pΘq ˘is C 1 on Ω Ó . Therefore, there exists a unique maximal solution Θ of (3.20)-(3.21) in rκ ˚, kq. We observe that for k P rκ ˚, kq, φ 1 λ pkq " F Ó pk, φ λ pkqq ą 0, so lim kÑ k´φ λ pkq exists. Moreover, by taking the derivative,

φ 2 λ pkq " ρ ´f 1 pkq H q pk, φ 1 λ pkqq φ 1 λ pkq ă 0.
Therefore φ λ is strictly concave in rκ ˚, kq.

If k ă 8, then from Cauchy-Lipschitz theorem, ρ lim kÑ k´φ λ pkq must be equal either to U pf p kqq or to lim qÑ0 Hpk, qq " lim cÑ`8 U pcq (which does not depend on k). Let us show by contradiction that both cases are impossible.

1. Assume first that ρ lim kÑ k´φ λ pkq " lim qÑ0 Hpk, qq " lim cÑ`8 U pcq; let us make out two subcases: (a) If lim cÑ`8 U pcq " `8, then lim kÑ k´φ λ pkq " `8, which yields that lim kÑ k´F Ó pk, φ λ pkqq " 0. From (3.20), we see that lim kÑ k´φ 1 λ pkq " 0, in contradiction with lim kÑ k´φ λ pkqq " `8. (b) If lim cÑ`8 U pcq " P R, then it is possible to extend continuously φ λ to k by setting φ λ p kq " {ρ. Since Hpk, 0q " for all k, we see that

F Ó pk, {ρq " 0, for all k ě κ ˚. (3.22)
On the other hand, since U 1 pc ˚pqqq " q, Assumption 2.1 implies that lim qÑ0 c ˚pqq " `8. This implies that 

BF Ó Bv pk, {ρq " 0, for all k ě κ ˚. ( 3 
ˆU pf pkqq ρ ˙´F Ó ˆk, U pf pkqq ρ ˙" U 1 pf pkqq f 1 pkq ´ρ ρ ă 0, for k ą κ ˚, (3.24) 
from the definition of κ ˚and Assumption 2.2. Thus, k Þ Ñ U pf pkqq{ρ is a subsolution of the ordinary differential equation satisfied by φ λ , which yields that U pf pkqq{ρ ą φ λ pkq for k ă k. This is impossible, since pk, φ λ pkqq P Ω Ó for k ă k. We have proved that k " `8. The unique maximal solution of (3.20)-(3.21) is a global solution.

Letting λ tend to U pf pκ ˚qq{ρ, we shall prove the following result: Proposition 3.9. Under the same assumptions as in Proposition 3.10, the Cauchy problem (3.11)-(3.13) has a unique solution u Ó P C 1 prκ ˚, `8qqXC 2 pκ ˚, `8q. Moreover u Ó is strictly concave on pκ ˚, `8q.

Proof. Consider a decreasing sequence pλ n q nPN , such for all n P N, pκ ˚, λ n q P Ω Ó and lim nÑ8 λ n " U pf pκ ˚qq{ρ. A direct consequence of Cauchy-Lipschitz theorem is that φ λn pkq ą φ λn`1 pkq for all k ě κ ˚. On the other hand, we know that φ λn pkq ě U pf pkqq{ρ. This implies that there exists a function φ : rκ ˚, `8q Ñ R such that φ λn converge to φ pointwise as n tends to `8. Since pφ λn q nPN is a sequence of concave functions locally uniformly bounded, we see from [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Theorem 3.3.3] that the convergence is uniform on every compact set, so the limit φ is continuous. Since F Ó p¨, ¨q is continuous on the closure of Ω Ó , we may pass to the limit in the integral form of (3.17): for all k ě κ ˚, φpkq " 1 ρ U pf pκ ˚qq `ż k κ ˚F Ó pκ, φpκqqdκ. This implies that φ P C 1 prκ ˚, `8qq and that φ satisfies (3.11) and (3.13). Hence φ is an increasing function. On the other hand, (3.24) implies that φpkq ą U pf pkqq{ρ for all k ą κ ˚. This shows that φ satisfies (3.12). Arguing as in the proof of Proposition 3.8, we see that φ is C 2 on pκ ˚, `8q and strictly concave. We have proved the existence of a solution of (3.11)- (3.13).

Assume that there are two such solutions φ 1 and φ 2 . If there exists k 0 ą κ such that φ 1 pk 0 q " φ 2 pk 0 q, then φ 1 and φ 2 coincide from Cauchy-Lipschitz theorem. Hence we may assume that φ 1 pkq ă φ 2 pkq for k ą κ ˚. Then, using the non increasing character of F Ó pk, ¨q, we see that, for every k ą κ ˚, 0 ą φ 1 pkq ´φ2 pkq " ż k κ ˚F Ó pκ, φ 1 pκqq ´FÓ pκ, φ 2 pκqqdκ ě 0. We have found a contradiction and achieved the proof of uniqueness.

The Cauchy problem (3.14)-(3.16

). Also in this case, F Ò pk, ¨q is not Lipschitz continuous in the neighborhood of pκ ˚, U pf pκ ˚qq{ρq and pκ ˚, U pf pκ ˚qq{ρq belongs to the boundary of Ω Ò . This prevents us from applying directly standard existence results to (3.14)- (3.16). For this reason, we start by considering the Cauchy problem:

ψ 1 ,λ pkq " F Ò pk, ψ ,λ pkqq, 0 ă k ď κ ˚, (3.25) 
pk, ψ ,λ pkqq P Ω Ò , (3.26)

ψ ,λ p q " λ, (3.27) 
for p , λq P Ω Ò , see (3.10) (thus 0 ă ă κ ˚). As above, Cauchy-Lipschitz theorem may be applied to (3.25)-(3.27). After having obtained the existence and uniqueness of a maximal solution ψ ,λ , we will prove that there exists λ such that ψ ,λ is a global solution, i.e. defined on p0, κ ˚s, and that ψ ,λ pκ ˚q " U pf pκ ˚qq{ρ. Lemma 3.10. We make Assumptions 2.1 and 2.2 and suppose furthermore that δ " 0. For every p , λq P Ω Ò with 0 ă ă κ ˚, there exists a unique maximal solution of the Cauchy problem (3.25)-(3.27) of the form ´p0, kp , λqq, ψ ,λ ¯where ă kp , λq ď κ ˚. The function ψ ,λ is strictly concave and increasing in p0, kp , λqq.

Proof. Existence and uniqueness of a maximal solution follow from the Cauchy-Lipschitz theorem. The strict monotonicity and concavity of ψ ,λ are obtained as in Proposition 3.8. Assume by contradiction that the interval in the definition of the maximal solution is not of the form p0, kp , λqq. This implies that there exists k P p0, q such that either lim kÑk ψ ,λ pkq " ´8 or ψ ,λ pkq " U pf pkqq{ρ. Let us rule out both situations:

' If lim kÑk ψ ,λ pkq " ´8, then lim kÑk ψ 1 ,λ pkq " `8. This implies that lim kÑk ψ ,λ pkq " U pf pkqq{ρ, and we have obtained the desired contradiction. ' If ψ ,λ pkq " U pf pkqq{ρ, then proceeding as in the end of the proof of Proposition 3.8, this implies that ψ ,λ pkq ď U pf pkqq{ρ for all k P rk, s, in contradiction with ψ ,λ p q " λ ą U pf p qq{ρ. Therefore the maximal solution is defined in an interval of the form p0, kp , λqq.

Remark 3.3. Note that if f p0q " 0, then ψ 1 ,λ pkq blows up when k Ñ 0 `: indeed, from (3.1), 0 ă H q pk, ψ 1 ,λ pkqq " f pkq ´c˚´ψ1 ,λ pkq ¯, hence c ˚´ψ 1 ,λ pkq ¯ă f pkq. Therefore, U 1 ´c˚´ψ1

,λ pkq ¯¯ą U 1 pf pkqq. Thus, from Assumption 2.1, ψ 1 ,λ pkq " U 1 ´c˚´ψ1

,λ pkq ¯¯ą U 1 pf pkqq tends to `8 as k Ñ 0. Lemma 3.11. Under the same assumptions as in Lemma 3.10, for every P p0, κ ˚q, the set Λ " λ ą U pf p qq{ρ such that kp , λq " κ ˚( (3.28)

is not empty. Proof. Take λ ą U pf pκ ˚qq{ρ. Assume by contradiction that kp , λq ă κ ˚, where ´p0, kp , λqq, ψ ,λ ¯is the maximal solution of the Cauchy problem (3.25)-(3.27), (note that ă kp , λq). Observe first that ψ ,λ cannot blow up as k Ñ kp , λq. Indeed v Þ Ñ F Ò pk, ρvq is Lipschitz continuous on rmax kPr ,κ ˚s U pf pkqq `1, `8q with a Lipschitz constant that does not depend on k P r , κ ˚s. This property prevents ψ ,λ from blowing up in finite time. Therefore, the function ψ ,λ can be extended to kp , λq by continuity, and

ψ ,λ pkp , λqq " U pf pkp , λqqq{ρ, (3.29) 
otherwise it would not be the maximal solution. On the other hand, we know that f is increasing in p0, κ ˚s, hence U pf pκ ˚qq ą U pf pkqq for all k ă κ ˚. In particular, U pf pκ ˚qq ą U pf pkp , λqqq. From the monotonicity of ψ ,λ , we obtain that ψ ,λ pkp , λqq ě ψ ,λ p q " λ ą U pf pκ ˚qq{ρ ą U pf pkp , λqqq{ρ, which contradicts (3.29).

We have proved that if λ ą U pf pκ ˚qq{ρ, then the maximal solution is defined on p0, κ ˚s. Therefore, Λ is not empty.

Proposition 3.12. For all ă κ ˚, there exists λ such that p , λq P Ω Ò and a global solution ψ ,λ (i.e. defined on p0, κ ˚s) of the Cauchy problem (3.25)-(3.27) such that ψ ,λ pκ ˚q " U pf pκ ˚qq{ρ.

Proof. Consider a decreasing sequence pλ n q nPN in Λ (see (3.28)) such that lim nÑ8 λ n " λ " inf λPΛ λ. It is clear that pψ ,λn q nPN is a decreasing sequence of functions defined on p0, κ ˚s. Moreover, since pk, ψ ,λn pkqq P Ω Ò for k P p0, κ ˚q, ψ ,λn is bounded from below by the function U ˝f {ρ. Hence, there exists a function ψ defined on p0, κ ˚s such that lim nÑ`8 ψ ,λn pkq " ψ pkq for all k P p0, κ ˚s. Since pψ ,λn q nPN is a sequence of concave functions locally uniformly bounded, [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]Theorem 3.3.3] ensures that the convergence is uniform on every compact set, thus ψ is continuous on p0, κ ˚s. Extending F Ò p¨, ¨q by continuity on the set tpk, U pf pkqq{ρq : k P p0, κ ˚su, we may pass to the limit in the integral form of the differential equation satisfied by ψ ,λn and get

ψ pkq " λ `ż k F Ò pκ, ψ pκqqdκ.
Hence ψ is a solution of (3.25) on p0, κ ˚q, which implies that ψ is C 1 and increasing in p0, κ ˚q.

We are left with proving that ψ pκ ˚q " U pf pκ ˚qq{ρ. It is already known that ψ pκ ˚q ě U pf pκ ˚qq{ρ. Assume by contradiction that ψ pκ ˚q ą U pf pκ ˚qq{ρ. Then, set b "

ψ pκ ˚q `U pf pκ ˚qq{ρ 2 ,
and consider the Cauchy problem on p0, κ ˚s:

ξ 1 pkq " F Ò pk, ξpkqq, pk, ξpkqq P Ω Ò , ξpκ ˚q " b.
It can be proved by contradiction (with the same kind of argument as in the end of the proof of Proposition 3.8) that the maximal solution of this problem is in fact global, therefore defined on p0, κ ˚s. Cauchy-Lipschitz theorem implies that ξpkq ă ψ pkq for all k P p0, κ ˚s. Therefore, ξp q P Λ and ξp q ă ψ p q " λ , which contradicts the definition of λ . Therefore, ψ pκ ˚q " U pf pκ ˚qq{ρ. The same arguments as in the proof of Proposition 3.8 yield that ψ pkq ą U pf pkqq{ρ for all k P p0, κ ˚q. Hence ψ " ψ ,λ . This achieves the proof. Proposition 3.13. Under the same assumptions as in Lemma 3.10, the Cauchy problem (3.14)-(3.16) has a unique solution u Ò P C 1 pp0, κ ˚sq X C 2 p0, κ ˚q. Moreover u Ò is strictly concave on p0, κ ˚q.

Proof. Existence is a consequence of Proposition 3.12. Uniqueness is proved exactly with the same arguments as in the proof of Proposition 3.9.

Remark 3.4. From Remark 3.3, it is possible that lim kÑ0 du Ò dk pkq " `8 and that lim kÑ0 u Ò pkq " ´8.

3.1.5. End of the proof of Theorem 2.1 in the particular case where δ " 0.

Existence. With u Ò and u Ó as in Propositions 3.13 and 3.9, define upkq "

# u Ò pkq, if k P p0, κ ˚s, u Ó pkq, if k P rκ ˚, `8q. (3.30)
The properties of u Ò and u Ó ensure that u is of class C 1 , increasing and strictly concave in p0, `8q, and C 2 in p0, κ ˚qYpκ ˚, `8q. In particular, u Ò pκ ˚q " u Ó pκ ˚q " 1 ρ U pf pκ ˚qq and du Ò dk pκ ˚q " du Ó dk pκ ˚q " U 1 pf pκ ˚qq. Moreover,

H q `k, u 1 pkq ˘$ ' & ' % ą 0, if k P p0, κ ˚q, ă 0, if k P pκ ˚, `8q, " 0 if k " κ ˚.
Hence, u satisfies (2.7)-(2.9).

Uniqueness and characterization by (2.3).

Let us now prove that if u P C 1 p0, `8q X C 2 pp0, κ ˚q Y pκ ˚, `8qq satisfies (2.7)-(2.9), then it is the value function of problem (2.2). This will yield the uniqueness of a classical solution of (2.7)-(2.9) as well as the characterization of the value function of (2.2). Let us set χp¨q " c ˚pu 1 p¨qq " f p¨q ´Hq p¨, u 1 p¨qq. Assumptions 2.1, 2.2, and Lemma 4.1 below imply that k Þ Ñ H q p¨, u 1 p¨qq is locally Lipschitz continuous on p0, `8q. This property and (2.8)-(2.9) imply that for any k 0 P p0, `8q, there is a unique solution k of the Cauchy problem dk dt ptq " f pkptqq ´χ pkptqq , t ą 0

kp0q " k 0 ,
It is an admissible trajectory for problem (2.2). Therefore u is not greater than the value function of the optimal control problem (2.3).

On the other hand, consider c P L 1 loc pR `; R `q, P L 1 loc pR `; R d `q, k P W 1,1 loc pR `q, such that dk dt ptq " F pkptq, ptqq ´w ¨ ptq ´δkptq ´cptq, for a.a. t ą 0, kp0q " k 0 , kptq ě 0, for a.a. t ą 0.

Observe that for almost every t ě 0, sup cě0, lě0

U pcq `u1 pkptqq `F pkptq, lq ´wl ´δkptq ´c ˘( ěU pcptqq `u1 pkptqq pF pkptq, ptqq ´w ptq ´δkptq ´cptqq "U pcptqq `u1 pkptqq dk dt ptq.

The left hand side coincides with H pkptq, u 1 pkptqqq " ρupkptqq. Hence, U pcptqq ď ´u1 pkptqq dk dt ptq `ρupkptqq. This implies that ş 8 0 U pcptqqe ´ρt dt ď upk 0 q. Hence, u is not smaller than the value function of problem (2.3). We have proved that if u P C 1 p0, `8q satisfies (2.7)-(2.9), then it is the value function of problem (2.2).

3.2.

The case where δ ą 0. Lemma 3.14. We make Assumption 2.2 and suppose furthermore that δ ą 0. Then there exits a unique k 0 P p0, `8q such that f pk 0 q " 0.

(3.31)

The function f takes positive values on p0, k 0 q and negative values on pk 0 , `8q. Moreover, f 1 pk 0 q ă 0 and κ ˚ă k 0 , where κ ˚is the unique positive number such that f 1 pκ ˚q " ρ, see (2.10).

Proof. Since the proof is elementary, we skip it for brevity.

Proof. [ Proof of Theorem 2.1 when δ ą 0] Lemma 3.14 implies that in the interval p0, k 0 q which contains κ ˚and where f is positive, it is possible to repeat the construction done in paragraphs 3.1.3 and 3.1.4. New arguments will be needed to construct the solution in rk 0 , `8q.

Step 1. In p0, k 0 q, it is possible to repeat the construction made in paragraphs 3.1.3 and 3.1.4: there exists a unique classical solution u 1 P C 1 p0, k 0 q of the following problem:

´ρu 1 pkq `H `k, u 1 1 pkq ˘" 0, for 0 ă k ă k 0 , (3.32) 
H q `k, u 1 1 pkq ˘ą 0, for 0 ă k ă κ ˚, (3.33) 
H q `k, u 1 1 pkq ˘ă 0, for κ ˚ă k ă k 0 . (3.34) 
The function u 1 is strictly concave and increasing in p0, k 0 q. Since f is continuous and concave and lim kÑ0 f 1 pkq " `8, f 1 pk 0 q ă 0, there exists k P pκ ˚, k 0 q such that f p kq " max kPr0,k0s f pkq. Since u 1 p¨q is increasing, lim kÑk0 u 1 pk 0 q ě u 1 p kq. On the other hand, ρu 1 p kq ą U pf p kqq (see paragraph 3.1.3). Since U is increasing, U pf pp kqq ą lim kÑk0 U pf pkqq " lim cÑ0 U pcq (which may be ´8). Therefore,

ρ lim kÑk0 u 1 pk 0 q ą lim cÑ0 U pcq.
With the same kind of arguments as in the proof of Proposition 3.8, it can also be proved that ρu 1 pk 0 q ă lim cÑ`8 U pcq. This implies that u 1 p¨q can be extended by continuity to p0, k 0 s and that

lim cÑ0 U pcq ă ρu 1 pk 0 q ă lim cÑ8 U pcq. (3.35) 
The function u 1 1 p¨q can then be extended by continuity to k " k 0 and (3.32) holds up to k " k 0 .

Step 2. We are left with constructing the solution in pk 0 , `8q. Observe first that, for any k ě k 0 , q Þ Ñ Hpk, qq is decreasing from (3.1), and that 1. lim qÑ0 Hpk, qq " lim cÑ`8 U pcq 2. Since lim qÑ`8 c ˚pqq " 0 and U pcq ´cq `f pkqq ď U pcq, we deduce that lim qÑ`8

Hpk, qq ď lim cÑ0 U pcq.

Hence, for any k ě k 0 , q Þ Ñ Hpk, qq maps p0, `8q onto the interval plim cÑ0 U pcq, lim cÑ`8 U pcqq and has a right inverse z Þ Ñ Fpk, zq: for any z P plim cÑ0 U pcq, lim cÑ`8 U pcqq, there is a unique Fpk, zq ą 0 such that Hpk, Fpk, zqq " z.

Let ε ą 0 be small enough so that ρpu 1 pk 0 q ´εq ą lim cÑ0 U pcq, see (3.35). Set Ω " " pk, vq : k 0 ď k and ρpu 1 pk 0 q ´εq ă ρv ă lim

cÑ`8 U pcq * . (3.36) 
Note that pk 0 , u 1 pk 0 qq P Ω. It is possible to prove that Fp¨, ¨q is of class C 1 on Ω. Furthermore, it can be seen that v Þ Ñ Fpk, vq is Lipschitz continuous on ru 1 pk 0 q έ, lim cÑ8 U pcq{ρs with a Lipschitz constant which does not depend on k P rk 0 , `8q.

Consider the Cauchy problem

u 1 2 pkq " Fpk, u 2 pkqq, for k ě k 0 , (3.37) 
pk, u 2 pkqq P Ω, (3.38)

u 2 pk 0 q " u 1 pk 0 q. (3.39)
From Cauchy-Lipchitz theorem, there is a unique maximal solution of (3.37)-(3.39).

The same arguments as in the proof of Proposition 3.8 yield that the solution is indeed global, i.e. defined on rk 0 , `8q, increasing and strictly concave.

Step 3. Set

upkq " # u 1 pkq, if k P p0, k 0 s, u 2 pkq, if k P rk 0 , `8q.
From what precedes, u P C 1 p0, `8q, and ρupkq " Hpk, u 1 pkqq for any k P p0, `8q. Note that u is also C 2 in p0, κ ˚q Y pκ ˚, `8q. Hence, u is a classical solution of (2.7)-(2.9). The remaining part of the proof (uniqueness and verification result) is exactly as in paragraph 3.1.5.

4. The distribution of capital. We still assume that w, the prices of the production factors, is a fixed vector in p0, `8q d ; we keep omitting w everywhere. The optimal investment policy of a firm with capital k is H q pk, u 1 pkqq, where u is the solution of (2.7)-(2.9). We are interested in finding a weak solution m of the following problem:

d dk ˆmH q ˆ¨, du dk p¨q ˙˙" ηp¨, up¨qq ´νmp¨q, (4.1) 
ν ż R`m pkqdk " ż R`η pk, upkqqdk. (4.2) 
From (2.8)-(2.9), we see that if (4.1) holds, then the optimal investment strategy has the effect of pushing m toward κ ˚. It is therefore important to understand whether m has a singularity at k " κ ˚. For that, the following lemma gives information on the behavior of u near κ ˚:

Lemma 4.1. Under Assumptions 2.1 and 2.2, there exist ą 0 and M ą 0 such that

0 ďH q pκ, u 1 pkqq ď M pκ ˚´kq, if k P rκ ˚´ , κ ˚s, (4.3) 
M pκ ˚´kq ďH q pk, u 1 pkqq ď 0,

if k P rκ ˚, κ ˚` s. (4.4) 
Proof. We focus on the proof of (4.3), since the proof of (4.4) is completely similar.

Since u P C 1 p0, `8q, and u is C 2 in p0, κ ˚q Y pκ ˚, `8q, it is possible to take the derivative of (2.7) at κ " κ ˚: ρu 1 pκq ´Hk pκ, u 1 pκqq " H q pκ, u 1 pκqqu 2 pκq. (

Let us set χpκq " c ˚pu 1 pκqq.

Note that χpκ ˚q " f pκ ˚q. The function χ is positive, continuous and increasing in p0, `8q, and C 1 on p0, κ ˚q Y pκ ˚, `8q. Recall that H k pκ, u 1 pκqq " f 1 pκqu 1 pκq, u 1 pκq " U 1 pχpκqq, and H q pκ, u 1 pκqq " f pκq ´χpκq.

Then (4.5) can be written as follows:

U 1 pχpκqqpρ ´f 1 pκqq " pf pκq ´χpκqqU 2 pχpκqqχ 1 pκq. (4.7) 
The inequality on the left hand side of (4.3) is already known since f pkq´χpkq ą 0 for k ă κ ˚. We are left with proving the other inequality for k sufficiently close to κ ˚.

We first claim that there exist ą 0 and C 2 ą 0 such that for every k P rκ ˚´ , κ ˚s, χpκ ˚q ´χpkq " f pκ ˚q ´χpkq ď C 2 pκ ˚´kq.

(4.8)

Proof of (4.8). For 0 ă small enough, dividing (4.7) by U 2 pχpκqq and integrating between k and κ ˚yields

ż κ k U 1 pχpκqq U 2 pχpκqq pρ ´f 1 pκqqdκ `ż κ k pf pκ ˚q ´f pκqqχ 1 pκqdκ " ż κ k pχpκ ˚q ´χpκqqχ 1 pκqdκ " 1 2 pχpκ ˚q ´χpkqq 2 .
(4.9)

Let us deal with the first integral in the left hand side of (4.9). Since f P W 2,8 loc , there exists 0 ą 0 and C 0 ą 0 such that for all k P rκ ˚´ 0 , κ ˚s, ρ ´f 1 pκq " f 1 pκ ˚q ´f 1 pκq "

ż κ κ f 2 pzqdz ě ´C0 pκ ˚´κq, thus ż κ k U 1 pχpκqq U 2 pχpκqq pρ ´f 1 pκqqdκ ď ´C0 ż κ k U 1 pχpκqq U 2 pχpκqq pκ ˚´κqdκ (4.10)
Since U 1 pχpκqq{U 2 pχpκqq admits a negative limit as κ Ñ κ ˚, there exists C 1 ą 0 such that for all k P rκ ˚´ 0 , κ ˚s, 

ż κ k U 1 pχpκqq U 2 pχpκqq pρ ´f 1 pκqqdκ ď C 1 pκ ˚´kq 2 . ( 4 
where the last inequality is a consequence of (4.13). The bound in (4.8) is proved.

Finally, the definition of κ ˚in (2.10) implies that f pkq ´χpκ ˚q " f pkq ´f pκ ˚q " ´ρpκ ˚´kq `opκ ˚´kq. Therefore, from (4.8), there exists ą 0 and M ą 0 such that for all k P rκ ˚´ , κ ˚s, 0 ď H q pk, u 1 pkqq " f pkq ´χpkq ď M pκ ˚´kq, which achieves the proof of (4.3).

Remark 4.1. Note that under the additional assumption that f is locally uniformly concave, (i.e. for every compact set K Ă p0, `8q, there exists θ ą 0 such that f 2 pkq ď ´θ for all k P K), it can be checked with a similar argument to the one in the proof of Lemma 4.1 that there exists ą 0 and M 1 ą 0 such that for every k P rκ ˚´ , κ ˚` s, |H q pk, u 1 pkqq| ě M 1 |κ ˚´k|.

(4.16)

Consider k ‰ κ ˚such that |k ´κ˚| ď ; by differentiating (2.7) at k, we obtain u 2 pkq " u 1 pkq pρ ´f 1 pkqq H q pk, u 1 pkqq .

Using estimate (4.16) and the regularity of f , we deduce that there exists a constant M 2 ą 0 independent of k taken in rκ ˚´ , κ ˚` s such that

|u 2 pkq| ď M 2 u 1 pkq.
This shows that u 2 P L 8 pκ ˚´ , κ ˚` q. Finally, u P W 2,8 loc p0, `8q. Proof. [Proof of Proposition 2.2] For brevity, we use the notation bpkq " H q pk, u 1 pkqq. If m satisfies (2.11) in the sense of distributions and (2.12), then the weak derivative of bm is ηp¨, up¨qq ´νm, a bounded measure from (2.12) and Assumption 2.3. Hence bm P BV loc p0, `8q. On the other hand, 1{b P C 1 pp0, κ ˚q Y pκ ˚, `8qq. Therefore, the restriction of m to p0, κ ˚q Ypκ ˚, `8q can be written pbmq{b and identified with a function in BV loc pp0, κ ˚qYpκ ˚, `8qq. The Lebesgue decomposition of m is m " m ac `ms ; the singular part m s is supported in tκ ˚u, hence m s " λδ κ˚w ith λ ě 0; the regular part m ac can be identified with a nonnegative function in L 1 p0, `8q. We claim that λ " 0. To prove this fact, consider a family pϕ ε q εą0 such that ' ϕ ε P C 8 c p0, `8q ' supppϕ ε q Ă rκ ˚´ε, κ ˚`εs ' ϕ ε pκ ˚q " 1 ' ϕ ε is non decreasing on r0, κ ˚s, and non increasing in rκ ˚, `8q ' }ϕ 1 ε } 8 ď 2{ε We deduce from (2.11)-(2.12) that for ε small enough, ´żR`ϕ

1 ε pkqbpkqdmpkq " ´ν ż R`ϕ ε pkqdmpkq `żR`ϕ ε pkqηpk, upkqqdk.
For ε P p0, κ ˚{2q, this leads to This yields

´ż κ ˚`ε κ ˚´ε ϕ 1 ε pkqbpkqm ac pkqdk " ´ν ż κ ˚`ε κ ˚´ε ϕ ε pkqm ac pkqdk `ż κ ˚`ε κ ˚´ε ϕ ε pkqηpk,
0 ď νλ ď 2M ż k ˚`ε k ˚´ε m ac pkqdk `ż κ ˚`ε κ ˚´ε ϕ ε pkqηpk, upkqqdk.
Letting ε Ñ 0, we obtain that λ " 0 by applying Lebesgue dominated convergence theorem. The claim is proved. Therefore, m P L 1 p0, `8q, and (4.3) implies that bm P W 1,1 loc p0, `8q, and that 0 ď m P L 1 p0, `8q X C 1 pp0, κ ˚q Y pκ ˚, `8qq. Integrating equation (2.11) Focusing on I 1 , Lemma 5.3 (Continuity of w Þ Ñ up¨, wq). Let pw n q nPN , w n P p0, `8q d , be a sequence converging to w P p0, `8q d as n Ñ 8. Then, under Assumptions 2.1 and 2.2, up¨, w n q Ñ up¨, wq in C 1 pKq for every compact subset K of p0, `8q.

I 1 " ż κ 0 1 bpkq ż k 0 ηpκ, upκqq exp
Proof. We may assume without loss of generality that there exist two vectors w, w P p0, `8q d such that, for all n ě 0, w ď w n ď w.

From Lemma 5.1, the following inequalities hold for all n ě 0: up¨, wq ď up¨, w n q ď up¨, wq.

Using (2.7) and the coercivity of q Þ Ñ Hpk, q, w n q uniform w.r.t. n and k P K, where K is a compact subset of p0, `8q, we see that Bu Bk pk, w n q is bounded uniformly in n and k P K. Moreover, if lim cÑ`8 U pcq " `8, then Bu Bk p¨, w n q is bounded uniformly away from 0 w.r.t. n and k P K. Since pup¨, w n qq nPN is a sequence of concave functions uniformly bounded on every compact subset of p0, `8q, there exists a continuous and concave function v : p0, `8q Ñ R such that, after the extraction of a subsequence, ' up¨, w n q Ñ v locally uniformly in p0, `8q ' Bu Bk p¨, w n q Ñ v 1 almost everywhere in p0, `8q. On the other hand, from Lemma 5.2, there exist κ ą 0 and κ ą κ such that κ ă min wďwďw κ ˚pwq ď max wďwďw κ ˚pwq ă κ.

Take any compact interval ra, bs such that 0 ă a ă κ and κ ă b.

The functions up¨, w n q are uniformly Lipschitz viscosity solutions (with Bu Bk p¨, w n q bounded away from 0 if lim cÑ`8 U pcq " `8) of (2.7) (with w " w n ) on pa, bq with state constrained boundary conditions at a and b. From the continuity of H on ra, bs ˆp0, `8q d ˆp0, `8q d , the uniform bounds on Bu Bk p¨, w n q stated above and the uniform convergence of pup¨, w n qq nPN towards v on ra, bs, stability results on viscosity solutions, see e.g. [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications[END_REF] can be used and yield that v is a viscosity solution of ρvpkq " Hpk, v 1 pkq, wq, on pa, bq, with state constrained boundary conditions at k " a and k " b. Note that the eventuality that Hpk, q, wq Ñ `8 as q Ñ 0 does not imply any difficulty, because in this case, Bu Bk p¨, w n q is uniformly bounded away from 0. From this observation, we can also use well-known results on the uniqueness of state constrained solutions of the Hamilton-Jacobi equation, see e.g. [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications[END_REF], and find that v " up¨, wq.

In fact, the convergence holds locally in C 1 . We know that ' up¨, w n q tends to up¨, wq uniformly in ra, bs ' there exists a measurable subset E of ra, bs, such that the Lebesgue measure of ra, bszE is zero and that Bu Bk p¨, w n q tends to Bu Bk p¨, wq pointwise in E. Note that after slightly modifying a or b if necessary, we can always assume that a P E and b P E. A variant of Dini's first theorem yields that the convergence of Bu Bk p¨, w n q is in fact uniform in ra, bs: for completeness, the proof is given in what follows.

The function Bu

Bk p¨, wq is continuous, thus uniformly continuous on ra, bs; hence, given ą 0, it is possible to choose δ ą 0 small enough such that |k ´k1 | ď δ ñ ˇˇˇB u Bk pk, wq ´Bu Bk pk 1 , wq ˇˇˇă ε 2 , @k, k 1 P ra, bs.

For such a choice of δ ą 0, it is possible to define a finite subdivision pσ i q iPt0,...,Iu of ra, bs such that ' for every i P t0, . . . , Iu, σ i P E.

' for any i P t0, . . . , I ´1u, 0 ă σ i`1 ´σi ă δ. On the other hand, for any k P ra, bs, there exists i 0 P t0, . . . I ´1u such that σ i0 ď k ď σ i0`1 A similar argument can be used to bound Bu Bk pk, w n q ´Bu Bk pk, wq from below. Finally, for any ε ą 0 there exists N ą 0 such that sup kPra,bs ˇˇˇB u Bk pk, w n q ´Bu Bk pk, wq ˇˇˇă ε, @n ě N.

This achieves the proof.

Existence of equilibria.

Proof. [Proof of Theorem 2.3] Recall that Φ and g are respectively defined in Assumption 2.4 and formula (2.16). Let be the constant appearing in Assumption 2.5. There exist two constants 0 ă κ ď κ ă `8 such that for all w P r , 1{ s d , κ ă κ ˚pwq ă κ. Hence, mp¨, wq is supported in the compact inteval J " conv prκ, κs X supportpηqq.

We claim that the map w Þ Ñ mp¨, wq is continuous from r , 1{ s d to the set of probability measures supported in J. Indeed, let pw n q nPN , w n P r , 1{ s d , be a sequence converging to w as n Ñ `8. From Lemma 5.3, up¨, w n q Ñ up¨, wq in C 1 pKq for any compact subset K of p0, `8q. The probability measures mp¨, w n q are all supported in J. Hence, the sequence mp¨, w n q has a cluster point µ in the weak ˚topology. Let us prove that µ " mp¨, wq: for any test function φp¨q P C φpkqµpkqdk. On the other hand, the C 1 convergence of up¨, w n q to up¨, wq on every compact subset of p0, `8q implies the uniform convergence of H q p¨, Bu Bk p¨, w n q, w n q to H q `¨, Bu Bk p¨, wq, w ˘in J. We deduce that ż 8 0 φ 1 pkqH q ˆk, Bu Bk pk, w n q, w n ˙mpk, w n qdk Ñ ż 8 0 φ 1 pkqH q ˆk, Bu Bk pk, wq, w ˙µpkqdk.

Therefore µ " mp¨, wq and the whole sequence mp¨, w n q weakly ˚converges to mp¨, wq as n Ñ 8. The map w Þ Ñ mp¨, wq is continuous on r , 1{ s d .

For λ P r0, 1s, we then consider the map T λ defined on r , 1{ s where the function g has been defined in (2.16), (recall that k Þ Ñ gpkq is convex).

From the observation made above on mp¨, wq and from Assumption 2.4, the function to be minimized is continuous, strictly convex and coercive on r0, `8q d ; hence T λ pwq is well defined. Moreover, }T λ pwq} 8 is bounded uniformly in w P r , 1{ s d . Let w n and λ n be two sequences taking their values respectively in r , 1{ s d and in r0, 1s; assume that w n tends to w and that λ n tends to λ. The sequence T λn pw n q takes its values in a compact; hence, up to the extraction of a subsequence, we may assume that T λn pw n q converges to some w. Since mp¨, w n q weakly ˚converges to mp¨, wq, it is easy to check that w " T λ pwq and that the whole sequence T λn pw n q converges. Hence, the map pλ, wq Þ Ñ T λ pwq is continuous.

For λ P r0, 1s, we consider the equation: find w P r , 1{ s d such that w´T λ pwq " 0, which we write χpw, λq " 0. We now aim at applying Brouwer degree theory to χ.

First, setting t 0 " arg min Φp¨q `ş8 0 gpk, ¨qdηpkq ( which does not depend on w, the equation χpw, 0q " 0 writes w " t 0 P p , 1{ q d . Therefore, deg `χp¨, 0q, p , 1{ q d , 0 R d ˘" 1.

(5.2)

Second, for all λ P r0, 1s, we know from Assumption 2.5 that the equation w Tλ pwq " 0 has no solution on the boundary of r , 1{ s d .

From the two observations above, we see that for all λ P r0, 1s, deg `χp¨, λq, p , 1{ q d , 0 R d ˘" 1.

(5.3)

We deduce that there exists w ˚P p , 1{ q d such that .

Writing the first order necessary optimality conditions associated with this minimization problem, we see that w ˚satisfies (2.15). Remark 5.1. We have actually proved more than the existence of an equilibrium, namely that degpχ, p , 1{ q d , 0q " 1. where c 4 is a positive constant. We deduce from this and (5.5) that Φpwq ď Φp1q `Mλ pwq ď Φp1q `c4 .

(5.9)

From the coercivity of Φ, this yields that max i w i ă c 5 , for a positive constant c 5 .

Then G β pwq ă c 3 implies that min i w i ą , where is a positive constant which can be obtained from the exponents β i and the constants c 3 and c 5 . Finally, taking a smaller value of if necessary, we get (2.18). Since gp¨, wq is non decreasing, we deduce from (5.11) that there exists a constant ą 0 independent of λ such that (2.17) implies min i w i ą and taking a smaller value of if necessary, we get (2.18).

We are left with proving (5.11): we know that gpk, wq ě gp0, wq " sup ˜ÿ i βi i ¸γ ´w ¨ .

A competitor can be chosen by taking ˜ i " w

´b β i i
where b " min i β i {2. Therefore gpk, wq ě `ři w ´b i ˘γ ´ři w 1´b β i i

. The first term tends to `8 if min i w i Ñ 0, while the second term is bounded since }w} 8 ď c 1 .

1 ĉ

 1 ηpkq ď ηpk, vq ď ĉηpkq. Equation (2.11) is supplemented with the condition ν ż

2. 4 .

 4 Classical examples of utility and production functions. 2.4.1. Examples of utility functions. The constant relative risk aversion (CRRA) utility is a common example of a utility that satisfies Assumption 2.1: U pcq " lnpcq or U pcq " 1 b c b with b P p0, 1q 2.4.2. Examples of production functions. 1. A classical example is the Cobb-Douglas function:

  min qą0 Hpk, qq " U pf pkqq, (3.2) arg min qą0 Hpk, qq " U 1 pf pkqq ( . (3.3)

3. 1 . 3 .

 13 The Cauchy problem (3.11)-(3.13). Let us first consider the maximal solution φ λ of the following Cauchy problem:

¨q´p 1

 1 ´λqdηpkq `λdmpk, wq ¯* , (5.1)

5. 3 .. ( 5 . 7 )M λ pwq ď c 1 λ max ´a, c 2 pG β pwqq 1´|β| 1´α´|β| ¯α 1´|β| `p1 ´λqM 0 ď c 1 λ max ˆa, c 2 c 1´|β| 1´α´|β| 3 ˙α 1´|β| `p1 ´λqM 0 " c 4 ,

 357304 Assumption 2.5 holds in the examples of Subsection 2.4. 5.3.1. The Cobb-Douglas production function. Proposition 5.4. Assumption 2.5 holds with the Cobb-Douglas production function described in Subsection 2.4 . Proof. From (2.19), we deduce that for two positive constants c 1 and c 2 gpk, wq " c 1 k α 1´|β| G β pwq and κ ˚pwq " c 2 pG β pwqq wq `p1 ´λqM 0 ˙with M 0 " c 1 Φpwq `Mλ pwqG β pwq ď Φp1q `Mλ pwq. (5.5)Since Φpwq ě 0, (5.5) implies that G β pwq ď 1 `Φp1q{M λ pwq. On the other hand, (5.4) yieldsM λ pwq ě c 1 λ min ´a, c 2 pG β pwqq 1´|β| 1´α´|β| ¯α 1´|β| `p1 ´λqM 0 ,(5.6)where a is the minimal value in the support of η. Combining the latter two estimates yieldsG β pwq ď 1 `Φp1q c 1 λ min ´a, c 2 pG β pwqq 1´|β| 1´α´|β| ¯α 1´|β| `p1 ´λqM 0It is easy to deduce from (5.7) that G β pwq ă c 3 , for a positive constant c 3 independent of w.If a is the maximal value in the support of η, this implies that

  tpk, vq : k P p0, κ ˚s and ρv P pU pf pkqq, `8qu ,

						(3.7)
	Ω Ó "	" pk, vq : k P rκ ˚, `8q and ρv P ˆU pf pkqq, lim qÑ0 `H pk, qq ˙* . (3.8)
	' Set				
		F Ò pk, vq " `HÒ pk,	¨q˘´1	pρvq,	for pk, vq P Ω Ò ,	(3.9)
		F Ó pk, vq " `HÓ pk,	¨q˘´1 pρvq,	for pk, vq P Ω Ó .	(3.10)

  .23) But(3.22) and (3.23) prevent the state {ρ to be reached in finite time by a solution of (3.17)-(3.18); we have obtained the desired contradiction. 2. Assume that lim kÑ k´φ λ pkq " U pf p kqq{ρ. It is then possible to extend continuously φ λ to k by setting φ λ p kq " U pf p kqq{ρ, and (3.17) holds in rκ ˚, ks.

	On the other hand,
	d
	dk

  Jpkq ď f pκ ˚q ´f pkq. , one deduces that for ď minp 0 , 1 q, pχpκ ˚q ´χpkqq 2 ď 2C 1 pκ ˚´kq 2 `2pχpκ ˚q ´χpkqqJpkq.(4.14)Elementary algebra yields that for all k P rκ ˚´ , κ ˚s, 0 ď χpκ ˚q ´χpkq ď Jpkq `´J 2 pkq `2C 1 pκ ˚´kq 2 ¯1 2

	Setting Jpkq "	ş κ k	f 1 pκq χpκq´χpkq χpκ ˚q´χpkq dκ, and using that both f and χ are increasing,
	we obtain					
	0 ď Hence, there exists 1 ą 0 and M 1 ą 0 and such that if
		0 ď Jpkq ď M 1 pκ ˚´kq,	for all k P rκ ˚´	1 , κ ˚s.	(4.13)
	From (4.9), (4.11) and (4.12)ď ´M1 `ˆM 2 1 `2C 1	¯1 2	˙pκ ˚´kq,
							.11)
	Next, integrating by part the second integral in (4.9) yields
	ż κ k		ż κ	k		
	pf pκ ˚q ´f pκqqχ 1 pκqdκ "	f 1 pκqpχpκq ´χpkqqdκ
			" pχpκ ˚q ´χpkqq	ż κ k	f 1 pκq	χpκ ˚q ´χpkq χpκq ´χpkq	dκ.	(4.12)

  upkqqdk ´νλ, because bpκ ˚q " 0. The construction of ϕ ε and (4.3)-(4.4) ensure that

	sup kPrκ ˚´ε,κ ˚`εs	|ϕ 1 ε pkqbpkq| ď 2M.

  over the intervals p0, κ ˚q and pκ ˚, `8q, we see that for two real numbers A and B. But, from Lemma 4.1, we see that a necessary condition for the integrability of m is that A " B " 0. Imposing A " B " 0, we see that m is a nonnegative function. It remains to check (2.12). Set I 1 " ş κ

	bpkqmpkq "					
	$ ' ' ' ' &	ż k 0	ηpκ, upκqq exp	˜´ż k κ	ν bpzq	dz ¸dκ `A exp	˜´ż k κ 2	ν bpzq	dz ¸, if 0 ă k ă κ ˚,
	' ' ' ' %	´ż 8 k	ηpκ, upκqq exp	ˆż κ k	ν bpzq	dz ˙dκ `B exp	˜ż 3κ 2 k	ν bpzq	dz ¸, if k ą κ ˚,
										0
										mpkqdk
	and I 2 "	ş `8 κ ˚mpkqdk.				

  . Then the concavity of u with respect to k yields

	Bu Bk	pk, w n q	´Bu Bk	pk, wq ď	Bu Bk	pσ i0 , w n q	´Bu Bk	pσ i0`1 , wq
				"	Bu Bk	pσ i0 , w n q	´Bu Bk	pσ i0 , wq	`Bu Bk	pσ i0 , wq	´Bu Bk	pσ i0`1 , wq.
	Taking N P N large enough such that for every n ě N ,
				max 0ďiďI	ˇˇˇB u Bk	pσ i , w n q	´Bu Bk	upσ i , wq ˇˇˇă ε 2
	yields that							
				Bu Bk	pk, w n q	´Bu Bk	upk, wq ă ε, @n ě N.

  5.3.2. Constant elasticity of substitution. Proposition 5.5. Assumption 2.5 holds with the example of the production function with the constant elasticity of substitution described in Subsection 2.4 .Proof. Combining (2.23) and (2.26) implies that Hence κ ˚pwq is bounded from above by a positive constant independent of w. From this information and the coercivity of Φ, we proceed as for the Cobb-Douglas function and see that there exists a positive constant c 1 such that (2.17) implies that }w} 8 ă c 1 .

	γ "	δ	`ρ α	¨pκ ˚pwqq α `d ÿ j"1	ˆλβ j w j	˙βj 1´β j	'1´γ	pκ ˚pwqq 1´α .
	Since γ P p0, 1q, this yields			
					δ	`ρ α	pκ ˚pwqq 1´α`αp1´γq ď γ.	(5.10)
	Next, we claim that					
			$			lim	gp0, wq " `8.	(5.11)
			&	min i"1,...,d w i Ñ 0,
			%	}w} 8 ď c 1	
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The second line in (4.17) is obtained using the non negativity of the integrand and Tonelli's theorem. The third line in (4.17) comes from the fact that ş κ κ ν bpzq dz " `8, which is a consequence of Lemma 4.1. It can be proved in the same way that

Hence νpI 1 `I2 q " ş R`η pκ, upκqqdκ, and m given by (2.13) is the unique solution of (2.11)-(2.12).

5.

Equilibrium. This paragraph is devoted to existence of equilibria. Proof. Assume w ď w and consider an admissible trajectory associated with the vector of prices w: it satisfies dk dt ptq " f pkptq, wq ´cptq with kp0q " k 0 . The differential equation also reads: dk dt ptq " f pkptq, wq ´pcptq `f pkptq, wq ´f pkptq, wqq, and cptq `f pkptq, wq ´f pkptq, wq ě cptq ě 0, which can be used as a control. This yields that upk 0 , wq ě Taking the supremum on all admissible trajectories associated with w, we deduce that for all k 0 ą 0, upk 0 , wq ě upk 0 , wq.

Lemma 5.2. Under Assumption 2.2, the map p0, `8q d Q w Þ Ñ κ ˚pwq P p0, `8q defined in (2.10) is continuous.

Proof. Consider a sequence pw n q nPN , w n P p0, `8q d , such that w n tends to w P p0, `8q d as n Ñ `8. We first claim that κ ˚pw n q remains in a compact subset of p0, `8q. We proceed by contradiction:

' Assume first that up to the extraction of a subsequence, κ ˚pw n q tends to `8 as n Ñ `8. Hence, for any k ą 0, there exists N ą 0 such that if n ě N , then Bf Bk pk, w n q ą ρ. Passing to the limit using the C 1 regularity of f (see Assumption 2.2), we get that Bf Bk pk, wq ě ρ for all k ą 0. But k Þ Ñ f pk, wq is strictly concave: Hence, Bf Bk pk, wq ą ρ for all k ą 0. This contradicts point 2.iii in Assumption 2.2 (see also Remark 2.2). ' Assume that up to the extraction of a subsequence, κ ˚pw n q tends to 0 as n Ñ `8: arguing as above, this implies that Bf Bk pk, wq ă ρ for all k ą 0. This contradicts point 2.ii in Assumption 2.2. The claim is proved.

Possibly after the extraction of a subsequence, κ ˚pw n q tends to a positive limit κ. It is easy to deduce from Assumption 2.2 that Bf Bk pκ, wq " ρ. Therefore κ " κ ˚pwq, and the uniqueness of the cluster point implies that the whole sequence κ ˚pw n q tends to κ ˚pwq. This achieves the proof.