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Abstract

We study the Kardar-Parisi-Zhang equation on the half-line x > 0 with Neumann
type boundary condition. Stationary measures of the KPZ dynamics were character-
ized in recent work: they depend on two parameters, the boundary parameter u of the
dynamics, and the drift −v of the initial condition at infinity. We consider the fluctu-
ations of the height field when the initial condition is given by one of these stationary
processes. At large time t, it is natural to rescale parameters as (u, v) = t−1/3(a, b) to
study the critical region. In the special case a+ b = 0, treated in previous works, the
stationary process is simply Brownian. However, these Brownian stationary measures
are particularly relevant in the bound phase (a < 0) but not in the unbound phase.
For instance, starting from the flat or droplet initial condition, the height field near
the boundary converges to the stationary process with a > 0 and b = 0, which is not
Brownian. For a + b > 0, we determine exactly the large time distribution F stat

a,b of
the height function h(0, t). As an application, we obtain the exact covariance of the
height field in a half-line at two times 1 � t1 � t2 starting from stationary initial
condition, as well as estimates, when starting from droplet initial condition, in the
limit t1/t2 → 1.
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1 Introduction and main results

1.1 Introduction

The Kardar-Parisi-Zhang (KPZ) equation [1] in one dimension describes the time evolution
of the height field h(x, t) of an interface which undergoes a local growth process driven by
white noise. It is a paradigmatic element of a large universality class of one dimensional
models with identical universal behavior at large scale, the so-called KPZ class. Since the
interface is growing, with h(x, t) ∼ v∞t at large time, it is intrisically an out of equilibrium
problem. One can nevertheless ask whether a stationary state can be reached at large time.
While the height at one point grows linearly in time with non trivial t1/3 fluctuations, the
height difference between any two points, h(x, t)−h(y, t), reaches a stationary distribution.
Even when this distribution is known, it says nothing about the increments of the height
field in time, say h(0, t) − h(0, 0). In this paper, we are interested in computing these
temporal increments and their asymptotics at stationarity (i.e. starting from a stationary
initial condition), and apply it to compute the two-time covariance of the height field.

Let us first briefly review what is known about stationary distributions for the KPZ
equation. They depend on whether one considers the equation on the full-line, or in
a restricted geometry such as a half-line or an interval. On the full-line, it has been
predicted for a long time [2,3] that the KPZ equation admits the Brownian motion (BM)
with an arbitrary drift as a stationary measure. This was proved rigorously in [4], and
in [5] for periodic boundary conditions. Interestingly, in the cases of the half-line and the
interval, the generic situation is more complicated (not translation invariant, not Gaussian,
see below). One typically imposes Neumann type boundary conditions (that is, one fixes
the derivative of the height field at the boundary) so that stationary measures depend
on boundary parameters. For the interval it depends on the two boundary parameters,
while for the half-line it depends on one boundary parameter and on the drift at infinity.
In the special case when boundary and drift parameters are such that the slope imposed
at the origin has the same value as the drift at infinity, the BM (with the same drift)
is again stationary, as was shown in the case of the half-line in [6] (this specific half-line
stationary measure was studied in the equivalent directed polymer context in [7]). But this
Brownian stationary measure is not unique, and for arbitrary values of the drift parameter,
the stationary measures have been found only recently.

For the KPZ equation on an interval [0, L], an explicit formula for the Laplace trans-
form (LT) of the stationary height distribution was obtained in [8] (for L = 1, and for
some range of parameters). Explicit Laplace inversion was performed shortly after in [9]
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and [10] (see also [11]). In [10] a rather simple and explicit characterization of the pro-
cess h(x, t) − h(x, 0) was obtained by two of the present authors. This characterization
allowed in particular to predict the stationary measures in the limit of the half-line, letting
the size of the interval to infinity. This large interval limit is actually quite non-trivial,
but surprisingly, the limit of stationary measures on [0, L] had been already studied in
the mathematics literature [12], with completely different motivations. This is why we
refer below to the resulting processes on the half-line (i.e. the non-Brownian stationary
distribution for KPZ in a half-space) as Hariya-Yor processes.

Let us now describe in more details the question we address in this paper. While the
steady-state distribution of h(x, t) − h(0, t) for the KPZ equation on the half-line x > 0
is now clear, it remains to understand the global height, that is the height at one point,
for instance h(0, t). Apart from situations where the boundary is very attractive, already
studied in [7], the height grows at large time as h(0, t) ' v∞t+ t1/3χ, where χ is a random
variable whose distribution depends on some details of the initial condition h(x, 0). For
the KPZ equation on the full-line with a stationary, i.e. BM initial condition, χ follows the
Baik-Rains distribution [13–16]. It is universal over the KPZ class and, remarkably, was
measured in recent experiments on liquid crystals [17]. For the half-line, the corresponding
question was addressed only recently, but until now only for the special case mentioned
above where the BM (with drift) is still the stationary measure. The analog of the Baik-
Rains distribution then depends on one boundary parameter, we denote it FBrownian

a , and
it was obtained in [18] (in the context of last-passage-percolation, which is equivalent by
universality) and in [6] directly for the KPZ equation for a = 0.

The aim of this paper is to obtain the analog of the Baik-Rains distribution for the KPZ
equation on the half-line starting from a stationary initial condition in the generic case,
that is for the Hariya-Yor initial conditions. We show in this paper that these Hariya-Yor
processes are integrable, in the sense that one can write down simple exact formulas for the
mixed exponential moments, using the framework of half-space Macdonald processes [19].
Through the usual Hopf-Cole mapping h(x, t) = logZ(x, t), the process Z(x, t) solves the
multiplicative noise stochastic heat equation (that is the partition function of a continuous
Brownian directed polymer in a random potential) and we compute explicitly all moments
of Z(x, t) via a Bethe ansatz type approach. Following a similar line as in [6] (and previous
works including [20,21]), we express the Laplace transform of Z(x, t) as Fredholm Pfaffians
and determinants, which we analyze asymptotically to obtain the limiting distribution of
χ.

It is important to note that although our results are obtained from the large-scale
analysis of the KPZ equation, we expect that they hold universally for all half-space
models in the KPZ universality class. As an application, following a method introduced
in [22] for full-space models, we have obtained the two-time covariance of the KPZ height
in a half-line geometry. These results can also be translated in terms of the free energy of
a directed polymer in the presence of a wall.

Outline. In the following sections, we first review the stationary measures for the KPZ
equation on the half-line (Section 1.2) and discuss the various distributions that arise for
the large time fluctuations of the height field (Section 1.3). Our main new results are
presented in Section 1.3.3. We then present an important application of the main results
to the computation of two-time covariance in half-space KPZ growth in Section 1.4.

The remaining sections are devoted to details of the derivations. In Section 2, we
obtain the moments and Laplace transform formulas characterizing the distribution of
h(0, t). We analyze the formulas asymptotically in Section 3 and obtain explicit formulas
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for the cumulative distribution function (CDF) of the limiting distributions. We provide
the details of computations of two-time covariance in half-space KPZ growth in Section
4. Finally, in Appendix A, we extend the results of our previous work [6] to provide an
explicit formula for the CDF FBrownian

a when the boundary parameter a 6= 0. In Appendix
B, we explain how to compute the distribution of h(x, t) instead of h(0, t), when x is scaled
of order t2/3, and the initial condition is a Hariya-Yor processes.

1.2 Half-space KPZ stationary measures

Let Z(x, t) denote the solution to the half-space stochastic heat equation

∂tZ(x, t) = ∂xxZ(x, t) +
√

2η(x, t)Z(x, t), (x > 0, t > 0), (1)

with standard white noise η, initial condition Z0(x) and boundary parameter A ∈ R,
corresponding formally to

∂xZ(x, t)
∣∣∣
x=0

= AZ(0, t).

We will often denote the boundary parameter rather by the letter u where u = 1
2 + A.

Then, we will say that hu(x, t) = logZ(x, t) solves the Kardar-Parisi-Zhang equation on
R+

∂thu = ∂xxhu + (∂xhu)2 +
√

2η (2)

with boundary parameter u.
It was noticed in [6] that if the initial condition x 7→7→ hu(x, 0) is distributed as

hu(x, 0) = B(x) + ux (3)

that is a Brownian motion with drift u, then for all t > 0, the process x 7→ hu(x, t)−hu(x, 0)
has the same distribution, that is

hu(x, t)− hu(0, t) (d)= B(x) + ux. (4)

In other terms, the Brownian motion with drift u is a stationary distribution for the
KPZ equation in a half-space with boundary parameter u. In infinite volume (that is
for dynamics on functions of R or R+), there is no reason to expect that the stationary
process is unique. Indeed, there exist other, more complicated, stationary measures for
the half-space KPZ equation, recently described in [10], based on results for the stationary
measure on an interval from [8] (see also [9,11] for an equivalent description of stationary
measures on an interval). These additional stationary measures depend on a parameter v,
where −v is the drift of the process at infinity, and they arise only when u > v, v 6 0. It
is convenient to represent them on the diagram of Fig. 1, which explains which stationary
processes arise in the large time limit, depending on the boundary parameter u and the
drift of the initial condition. They are defined in terms of a process that we call the
Hariya-Yor process, defined below and denoted HYu,v,

For u > v, v 6 0 with u+ v > 0, we define the Hariya-Yor process, denoted1 HYu,v(x),
by

exp
(
HYu,v(x)

)
:= w1

∫ x

0
dteB1(t)+B2(x)−B2(t) + w1w2e

B2(x), (5)

where B1, B2 are independent standard Brownian motions with drifts −v and v respec-
tively, and w1, w2 are independent inverse gamma random variables w1 ∼ Gamma−1(u+v)

1our notations are different from [10], where a slightly different process was denoted HY−vu (x))
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v
drift

parameter

u
boundary parameter

0

0

Standard Brownian
motion with drift u

HYu,v
defined in (5)

HYu,0
defined in (5)

Figure 1: Phase diagram of stationary measures for the KPZ equation in the half-space R+
with boundary parameter u. The diagram means that if the initial condition h(x, 0) has
drift −v at infinity, the height field should converge at large time under mild assumptions
to the stationary measure indicated in one of the three regions of the (u, v) plane, namely
R1 = {u > 0, v > 0}, R2 = {u 6 0, u 6 v} and R3 = {u > v, v 6 0}. Along the line
u+ v = 0, the stationary measure is a Brownian motion with drift u = −v.

and w2 ∼ Gamma−1(u − v). We say that a random variable X follows the Gamma−1(θ)
distribution if 1/X is a Gamma random variable with scale parameter 1 and shape param-
eter θ. In other terms, X is a positive random variable with density 1

Γ(θ)1x>0x
−θe−1/x dx

x .
In order to give a unified description of the stationary measures, is is convenient to

define, for any u, v ∈ R, a stationary initial condition hstat
u,v , where

hstat
u,v (x) =


HYu,0(x)−HYu,0(0), for u > 0, v > 0, that is (u, v) ∈ R1,

B(x) + ux for u 6 0, v > u, that is (u, v) ∈ R2,

HYu,v(x)−HYu,v(0), for u > v, v 6 0, that is (u, v) ∈ R3.

(6)

Let us stress that while in the phase u > v, v 6 0 the process hstat
u,v (x) describes exactly

the spatial increments of HYu,v(x), it is defined differently in the other phases and this
is why we needed a new notation. We will use alternatively hstat

u,v (x) and HYu,v(x) for
the following reason: hstat

u,v (x) is the natural way to describe the stationary height field,
in particular it is normalized so that hstat

u,v (0) = 0. The process HYu,v(x), however, is
not normalized but contains the appropriate random shift that makes exact computations
possible.

Remark 1.1. The Hariya-Yor process (5) is defined only when u > v, v 6 0 with u+v > 0.
It depends on a random variable w1 ∼ Gamma−1(u + v), which explains the condition
u+ v > 0. However,

hstat
u,v (x) = HYu,v(x)−HYu,v(0) = HYu,v(x)− logw1 − logw2

depends only on w2 ∼ Gamma−1(u− v), and on two Brownian motions B1, B2, hence it
is well-defined for any u > v, v 6 0, without imposing the condition u+ v > 0.

Remark 1.2. For any u > 0,

HYu,−u(x)−HYu,−u(0) = B(x) + ux (7)
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where B(x) is a standard Brownian motion. This is a nontrivial result, discovered by
Hariya and Yor in [12].

Remark 1.3. As v → u, it is easy to check that

HYu,v(x)−HYu,v(0) ==⇒
v→u

B(x) + ux. (8)

Remark 1.4. Our definition of HYu,v(x) may appear different from the process defined
in [10, Eq. (35)] but it is equal up to a shift by log(w1w2). Indeed, the process is defined
in [10] as

H(x) = B(1)(x) +B(2)(x) + log
(

1 + γu−v

∫ x

0
e−2B(2)(z)dz

)
, (9)

where B(1)(x), B(2)(x) are independent Brownian motions with variance 1/2 and drifts 0
and v respectively. Using the change of variables

B(1) = B1 +B2
2 , B(2) = B2 −B1

2 ,

B1, B2 are two independent standard Brownian motions of drifts −v and v respectively,
and we have that, if we identify γu−v in (9) with 1/w2 in (5), then

eH(x) = eHYu,v(x)

w1w2
, (10)

so that
H(x) = HYu,v(x)− log(w1)− log(w2). (11)

Remark 1.5. The integral (5) is similar to the partition function of the semi-discrete
O’Connell-Yor polymer [23, 24] with two rows. Other O’Connell-Yor partition functions
decorated by inverse Gamma variables appeared in the literature, [7, 16, 25], though the
partition function in (5) is different. In the limit u→∞, we recover exactly the O’Connell-
Yor partition function.

1.3 Limiting distribution for the KPZ height on a half-line

1.3.1 Droplet initial condition. For the droplet initial condition, i.e. ehu(x,t) →t→0
δ(x), and boundary parameter u, a phase transition occurs based on the sign of u. We
have

lim
t→∞

P
(
hu(0, t) + t

12
t1/3

6 s

)
=


FGSE(s) for u > 0,
FGOE(s) for u = 0,
0 for u < 0.

(12)

In the phase u < 0, the scaling and statistics are different: hu(0, t) ' t
(
−1
12 + u2

)
[26] and

statistics are Gaussian on the t1/2 scale (see [7,27]). If we scale u close to the critical point
as u = at−1/3, we have that

lim
t→∞

P
(
hat−1/3(0, t) + t

12
t1/3

6 s

)
= F droplet

a (s). (13)

The existence of a transition was anticipated in [26]. In the equivalent directed polymer
problem, it corresponds to a transition to polymers bound to the wall at x = 0 when u < 0
to unbound polymers when u > 0. The statistics occurring around the phase transition
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(12) and the exact formula for F droplet
a were first discovered in [28, 29] in the context of

asymptotic fluctuations of symmetrized last passage percolation models. For the KPZ
equation, these asymptotics were obtained in [30] for u = +∞, in [20] for u = 1/2, in [31]
for a = 0 (i.e. the critical case, u = 0), and in [21, 27] in the general case. We have in
particular F droplet

0 = FGOE.

1.3.2 Brownian initial condition. For a Brownian initial condition hu(x, 0) = B(x)+
ux, where B(x) is a standard Brownian motion, which is stationary for any u ∈ R, we
have for u = at−1/3

lim
t→∞

P
(
hat−1/3(0, t) + t

12
t1/3

6 s

)
= FBrownian

a (s). (14)

This statement and an exact formula for FBrownian
a was obtained in [6] in the special case

a = 0. In the context of last-passage percolation, the analogous statement for any a ∈ R
was shown earlier in [18]. We also provide in Appendix A an alternative formula for
FBrownian
a , based on an extension of our earlier result for a = 0 in [6] (The formula for
FBrownian
a (s) appears in (133)). It remains to be shown that the exact formulas from [32]

and our formulas in [6] and Section A are equivalent. Note that in [18,32], formulas were
also obtained for the height distribution and multipoint correlations at points away from
the boundary.

According to the phase diagram of Fig. 1, in the bound phase, i.e. when u < 0,
for any initial condition with drift at infinity not exceeding −u, the spatial process
hu(x, t)− hu(0, t) should converge, as t goes to infinity, to a Brownian with drift u, hence
the importance of this case. Consequences about the geometry of the polymer and the
distribution of the endpoint were investigated in [7].

In the unbound phase u > 0 however, the stationary process obtained at large time is
the Hariya-Yor process HYu,v, when the drift of the initial condition is positive and equals
−v > 0, and HYu,0 when the drift is negative. Brownian stationary measures arise only
when u + v = 0, see Remark 1.2, which is a very special case. For droplet or flat initial
condition for instance, the stationary process observed at large times is the Hariya-Yor
process HYu,0. This makes the study of fluctuations starting from the Hariya-Yor initial
condition particularly important in the unbound phase.

1.3.3 Main new result: Hariya-Yor initial condition. We now focus on the re-
gions R1 and R3. We assume that the initial condition hu(x, t) = logZ(x, t) is given by
hu(x, 0) = HYu,v(x), for u > v, v 6 0 as defined in (5), under the additional technical
assumption u+ v > 0. We will show that, for u = at−1/3, v = bt−1/3, with a+ b > 0, b 6 0

lim
t→∞

P
(
hat−1/3(0, t) + t

12
t1/3

6 s

)
= GHY

a,b (s) (15)

where the CDF GHY
a,b (s) will be explicitly determined. An explicit formula for GHY

a,b (s) is
given in (78). When a > 0 and b = 0, that is in the maximal current phase, the formula
simplifies and we obtain

GHY
a,0 (s) = ∂s

(
Det(I + Ãs)

(
−2
a

+ s+ 2R+
))

, (16)
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where Ãs is an integral operator acting on L2(0,+∞) with kernel Ãs(x, y) = Ã(s+ x+ y)
where

Ã(x) =
∫ dz

2iπ
a+ z

a− z
e−xz+

z3
3 , (17)

where the contour is a vertical line with real part between 0 and a, and R+ is a scalar
product defined using quantum mechanical notations as (see Section 3.2 for details)

R+ = 〈1| Ãs

1 + Ãs
|1〉 . (18)

Remark 1.6. As a → +∞, we notice that GHY
a,0 (s) → FBrownian

0 given in [6, Eq. (7.24)].
This limit is obvious from the formula but the reason is non-trivial, it can be seen as a
consequence of a surprising identity in distribution obtained in [6, Sections 4.5 and 4.6], see
more details in Remark 3.1. This identity in distribution itself comes from more general
identities in distribution for the log-gamma polymer and half-space Macdonald processes
found in [19, Prop. 2.6 and Prop. 8.1].

The distribution given by GHY
a,b is not centered, unlike the Baik-Rains distribution or

the distribution FBrownian
a , but this is an artefact due to our definition of the Hariya-

Yor process. Indeed, under the scaling u = at−1/3, v = bt−1/3, limt→∞ t
−1/3HYu,v(0) (d)=

Ea+b + Ea−b, where Ea+b and Ea−b are independent exponential random variables with
parameters a± b. We can construct a centered variable as follows: we may write that

lim
t→∞

P
(
hat−1/3(0, t)− hat−1/3(0, 0) + t

12
t1/3

6 s

)
= FHY

a,b (s) (19)

where FHY
a,b (s) is such that

E
[
FHY
a,b (s− Ea+b − Ea−b)

]
= GHY

a,b (s). (20)

More explicitly, this means that

GHY
a,b (s) = (a2 − b2)

∫ +∞

0
du e−ua sinh(bu)

b
FHY
a,b (s− u). (21)

This can be inverted as

FHY
a,b (s) = GHY

a,b (s) + ∂sG
HY
a,b (s) 2a

a2 − b2
+ ∂2

sG
HY
a,b (s) 1

a2 − b2
. (22)

Equivalently, if we denote by χa,b a random variable with distribution GHY
a,b and ξa,b a

random variable with distribution FHY
a,b , we have that (recall that we have assumed in this

section that b 6 0, a+ b > 0)

ξa,b + Ea+b + Ea−b = χa,b. (23)

where ξa,b, Ea+b and Ea−b are independent. By stationarity, we can argue that E
[
ξa,b
]

= 0.
Indeed,

E
[
ξa,b
]

= lim
t→∞

t−1/3E
[
hat−1/3(0, t)− hat−1/3(0, 0) + t

12

]
= lim

t→∞
t−1/3

∫ t

0

(
∂sE

[
hat−1/3(0, s)− hat−1/3(0, 0)

]
+ 1

12

)
ds

The quantity inside the integral is independent of s, by stationarity, so it is a constant.
This constant is necessarily 0, otherwise we would have that limt→∞

h
at−1/3 (0,t)

t 6= −1
12 .
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b
drift

parameter

a
boundary parameter

0

0

FBrownian
a

FBrownian
a

FBrownian
a

FHY
a,b

??

FHY
a,0

FBrownian
a

Figure 2: Definition of F stat
a,b as in (26) for various values of a, b. In a small portion of the

phase diagram below the line a + b = 0, we are not able to characterize the distribution
of large time fluctuations.

Remark 1.7. In view of Remark 1.2, we should obtain that as b→ −a,

FHY
a,b (s) −−−−→

b→−a
FBrownian
a (s), (24)

although this is not immediately apparent from our formulas.

1.3.4 Summary. The results presented above for the different phases of the diagram
in Fig. 1 can be summarized in a unified manner. We expect that for any a, b ∈ R, scaling
u = at−1/3, v = bt−1/3, when one considers the initial condition h(x, 0) = hstat

u,v (x) defined
in (6), we have that

lim
t→∞

P
(
hat−1/3(0, t) + t

12
t1/3

6 s

)
= F stat

a,b (s), (25)

for some CDF F stat
a,b . We have obtained (25) and determined a formula for F stat

a,b in a
number of cases (see Fig. 2), in particular:

F stat
a,b (s) =


FHY
a,0 (s) for a > 0, b > 0,
FBrownian
a for a 6 0, b > a,

FHY
a,b (s) for a > b, b 6 0, a+ b > 0,
FBrownian
a for a > 0, a+ b = 0,

(26)

where FBrownian
a is defined in Section 1.3.2 and FHY

a,b is defined in Section 1.3.3. In the
next Sections, we will denote by ξa,b a random variable with distribution F stat

a,b .

1.3.5 Away from the boundary. While we understand now the distribution and
asymptotics of hu(0, t) and we know as well the distribution of stationary spatial incre-
ments hu(x, t) − hu(0, t), we cannot immediately deduce the asymptotics of hu(x, t) for
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x > 0. This is due to the fact that the random variables hu(0, t) and hu(x, t) − hu(0, t)
are correlated in a very nontrivial way.

However, the distribution of hu(x, t) can be computed explicitly, at least in the large
time limit, for the same initial condition as in the previous sections. When x = x̃t2/3, we
obtain

lim
t→∞

P

hat−1/3(t2/3x̃, t) + t
12

t1/3
6 y

 = GHY
a,b (y, x̃). (27)

The CDF is computed in Appendix B and given in (191).

1.4 Two-time covariance

An interesting application of our results concerns the two-time covariance. For general
initial conditions, one can study the correlation of the KPZ height field at two different
times, i.e. the correlation of h(0, t1) and h(0, t) (here we focus on the same space point). In
the limit where both times are large 1� t1 < t with a fixed ratio τ = t1/t, this covariance
becomes a universal function C(τ) of τ ∈ [0, 1], whose specific form depends only on the
class of initial condition (stationary, droplet, flat, etc. . . ). This covariance, as well as
the full two-time height distribution, were studied for the full-space geometry [33–42] and
measured in experiments [43]. One defines for a general initial condition,

C(τ) = lim
t→+∞

1
t2/3

Cov(hu(0, tτ), hu(0, t)) (28)

The results of this paper allow to obtain some predictions for C(τ) in the half-space
geometry. In particular we obtain C(τ) for the stationary initial conditions for all 0 < τ <
1, and for droplet initial conditions for close times, i.e. 1− τ � 1. Of particular interest
are the dimensionless ratios

%(τ) = lim
t→+∞

Cov(hu(0, tτ), hu(0, t))√
Varhu(0, tτ)Varhu(0, t)

= C(τ)
τ1/3C(1)

, (29)

R(τ) = lim
t→+∞

Cov(hu(0, tτ), hu(0, t))
Varhu(0, tτ) = C(τ)

τ2/3C(1)
, (30)

which measure the overlap of the two polymer configurations (of lengths τt and t respec-
tively). In particular a finite value of R(0), i.e. in the limit of infinitely separated times is
a measure of memory or ergodicity breaking [34,36,43].

Let us first consider the droplet initial condition, and start by recalling the result for
the full-space problem. For close times, i.e. in the limit τ → 1, one expects that the height
profile reaches local stationarity at the intermediate time, which allows to compute the
two-time covariance. Indeed it was shown that [33]

Cdroplet(τ) = Var[ξGUE]− 1
2Var[ξBR](1− τ)2/3 +O(1− τ), (31)

where ξGUE follows the GUE Tracy-Widom distribution and ξBR denotes a random variable
following the Baik-Rains distribution [13]. We have Var[ξBR] ≈ 1.1504. In this paper we
extend the arguments of [33] to the half-line geometry. The results depend on the value of
the boundary parameter u. In the critical region (u close to zero) it is natural to scale the
boundary parameter u = at−1/3, and, as shown below, we obtain for the droplet initial
condition (centered at x = 0), as τ → 1,

Cdroplet(τ) = Var
[
ξdroplet
a

]
− 1

2Var
[
ξ0,0

]
(1− τ)2/3 +O(1− τ), (32)

10



where ξdroplet
a denotes a random variable with distribution F droplet

a defined in (12), and
ξ0,0 denotes a random variable with distribution F stat

0,0 = FBrownian
0 . The variance was

computed in [6], we have Var[ξ0,0] ≈ 1.649. In the particular case a = 0 the variable
ξdroplet

0 has the GOE Tracy Widom distribution and its variance is Var[ξdroplet
0 ] ≈ 1.6078.

In the limit a→ +∞ one enters the unbound phase and ξdroplet
∞ has the GSE Tracy-Widom

distribution [44] with variance is Var[ξdroplet
∞ ] ≈ 0.5177.

Consider now stationary initial conditions. In that case one can compute C(τ) for
arbitrary τ ∈ [0, 1]. Let us recall the result in full-space, obtained in [33]. If the initial
condition is given by a standard Brownian motion, one obtains

C(τ) = 1
2
(
1 + τ2/3 − (1− τ)2/3

)
Var[ξBR]. (33)

Note that it leads to the dimensionless ratio R(τ) = C(τ)
τ2/3 →τ→0

1
2 which shows a memory

effect at very separated times. We have extended the arguments of [33] to the half-line
geometry. The results depend on the value of the boundary and drift parameters u, v. Let
us start with the discussion of the critical region with u = at−1/3, v = bt−1/3. We find,
for any a, b, starting from the initial condition hstat

at−1/3,bt−1/3 ,

C(τ) = 1
2
(
Var(ξa,b) + τ2/3Var(ξaτ1/3,bτ1/3)− (1− τ)2/3Var(ξa(1−τ)1/3,b(1−τ)1/3)

)
. (34)

where ξa,b a random variable with distribution F stat
a,b defined in (26).

Remark 1.8. For τ → 0 one finds R(0+) = 1
2

Var(ξ0,0)
Var(ξa,b)

Remark 1.9. Consider the case a = 0 and b > 0. For b > 0, ξa,b = ξa,0 by definition,
and for a = 0, ξa,0 = ξ0,0 = ξBrownian

0 , so that the dimensionless ratio defined in (29) is
asymptotically

%(τ) = 1
2τ1/3

(
1 + τ2/3 − (1− τ)2/3

)
, (35)

that is exactly the same as for the KPZ equation in full-space [33]. For general a, b
this is not the case however. Using Remark 1.6, the same formula is true in the case
a = +∞, b > 0 (since ξ+∞,0 = ξBrownian

0 ).

Let us now discuss what happens for fixed u, v. There are three phases which are
depicted in Fig. 3 where the main results are summarized. The first phase is defined by
u, v > 0 corresponding by to taking the limit a, b → +∞ in the previous discussion. We
find that the two-time covariance does not depend on u, v and is given by (35) (indeed, as
explained in Remark 1.9, ξ+∞,+∞ = ξBrownian

0 ).
If u < 0 or v < 0, however, the scalings will be different with height fluctuations of

order t1/2 instead of t1/3. We define a variant of the coefficient C(τ) by

C̃(τ) = lim
t→+∞

1
t
Cov(hu(0, tτ), hu(0, t)). (36)

To discuss the phase u < 0 (with u < v), we consider the equivalent polymer picture. In
that phase, the polymer is bound to the wall (with Gaussian free energy fluctuations) so
that Cov(hu(0, tτ), hu(0, t)) ' Var(hu(0, tτ)) at large time, which is known [7, 27] to be
asymptotically equivalent to −2utτ . This implies that C̃(τ) = −2uτ . The R ratio being
now equal to R(τ) = C(τ)

τC(1) one finds that it is equal to R(τ) = 1 in that phase.
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v
drift

parameter

u
boundary parameter

0

0

R(τ) = 1
C̃(τ) = −2uτ

R(τ) = 1
C̃(τ) = −2vτ

R(τ) = 1
2τ2/3

(
1 + τ2/3 − (1− τ)2/3

)
C(τ) = Var[ξBrownian

0 ]τ2/3R(τ)

Figure 3: Phase diagram of two time covariances, for stationary initial condition hstat
u,v with

fixed u, v.

In the phase v < 0 (with v < u), the covariance will be determined by the initial
condition, which can be approximated at large scale by a Brownian motion with drift −v.
The free energy equals

hu(0, t) = logZ(0, t) = log
(∫ +∞

0
dxZ(x, 0|0, t)ehu(x,0)

)
≈ max

x

(
logZ(x, 0|0, t) + hu(x, 0)

)
. (37)

The optimal x = xmax can be approximated by arg max
{
x2

4t + vt
}
so that xmax ' −2vt and

the fluctuations of the free energy logZ(x, 0|0, t) are subdominant compared to fluctuations
of h(x, 0). Thus, we again have that Cov(hu(0, tτ), hu(0, t)) ' Var(hu(0, tτ)) which is
asymptotically equivalent to the variance of the initial condition Var(hu(x, 0)) at the point
x = −tτv. Since the initial condition can be approximated at large scale by a Brownian
motion with drift −v, we find that Cov(hu(0, tτ), h(0, t)) = −2vtτ . This implies that
C̃(τ) = −2vτ , and again the R ratio is again equal to R(τ) = C(τ)

τC(1) one finds that it is
equal to R(τ) = 1 in that phase.

1.5 Mathematical aspects

Let us stress a few points that deserve further consideration from a mathematical per-
spective. First of all, outside of the Brownian phase (a 6 0, a 6 b), the fact that the
Hariya-Yor processes defined in (6) are stationary for the half-space KPZ equation was
discovered in [10]. These processes arose as L → +∞ limits of stationary processes for
the KPZ equation on [0, L], for which formulas had been found in [8]. That the L→ +∞
limit of stationary processes on [0, L] are stationary for the dynamics on R+ is a very
reasonable hypothesis, but it still needs to be formally proven mathematically.

The computation of limiting distributions obtained in this article rely on a combination
of physics and mathematics methods, but we focus in this article on physics results and do
not attempt to prove the results according to the standards of writing in the mathematics
literature. We refer to [6, Section 2.4] where we had already discussed the interplay

12



between these physics and mathematics arguments, as well as the main challenges that
would arise to turn these results into mathematical proofs. The results of [45, Section 10]
would likely be useful in order to prove rigorously the Pfaffian formula for the generating
series (51).

The results of Section 1.4 also rely on a mixture of established facts, and assumptions
based on analogies with the full-space setting, about the universal processes describing
the large time fluctuations of h(x, t), starting from various initial conditions. It would be
interesting to confirm those assumptions by rigorous proofs.

Acknowledgements. This article is based upon work supported by the National Sci-
ence Foundation under Grant No. DMS-1928930 while the three authors participated in a
program hosted by the Mathematical Sciences Research Institute in Berkeley, California,
during the Fall 2021 semester. G.B. was partially supported by the ANR grant COR-
TIPOM. AK acknowledges support from ERC under Consolidator grant number 771536
(NEMO). PLD acknowledges support from ANR grant ANR-17-CE30-0027-01 RaMaTraF.

2 Moment formula

2.1 Nested contour moment formula

In order to study this initial condition (5), we will first study formulas from the more
general initial condition

Zu,v1,v2(x) = w1

∫ x

0
dteB1(t)+B2(x)−B2(t) + w1w2e

B2(x), (38)

where B1, B2 are independent standard Brownian motions with drifts −v1 and −v2 respec-
tively, and w1, w2 are independent inverse gamma random variables
w1 ∼ Gamma−1(u + v1) and w2 ∼ Gamma−1(u + v2). Equation (38) can be interpreted
as a two-row O’Connell-Yor semi-discrete polymer partition function with inverse gamma
weights in the beginning of each row. Eventually, we will let v2 = −v1 = v, so that
log(Zu,v1,v2(x)) = HYu,v(x).

Remark 2.1. Similar partition functions of O’Connell-Yor type polymers with inverse
Gamma decorations have been considered earlier in [16, 25] in the context of full-space
KPZ growth and in [7] in the context of KPZ equation in a half-space.

For x1 > x2 > · · · > xk > 0, define f(t, ~x) = E
[
Z(x1, t) . . . Z(xk, t)

]
where we assume

the initial condition Z(x, 0) = Zu,v1,v2(x). The function f(t, ~x) satisfies the following
conditions [20] (see also [46,47]). It satisfies the heat equation

∂tf(~x, t) =
k∑
i=1

∂2
xif(t, ~x), (39)

on the sector x1 > x2 > · · · > xk > 0, subject to the two-body boundary condition(
∂xi+1 − ∂xi − 1

)
f
∣∣∣
xi=xi+1

= 0, (40)

with a boundary condition at 0 given by(
∂xk − (u− 1

2)
)
f
∣∣∣
xk=0

= 0. (41)
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0

r1 + iRr2 + iRr3 + iR

......

rk + iR

v1 − 1
2

v2 − 1
2

1
2 − u

> 1

Figure 4: The contours used in (43).

The function f(t, ~x) must also satisfy the initial condition

f(~x, t = 0) = E

 k∏
i=1

Z(xi, 0)

 . (42)

Fix k > 1 and assume that u, v1, v2 ∈ R>0 are such that v1− 1
2 > k−1, v2− 1

2 > k−1 (note
that this hypothesis is necessary and it was missing in [6, Claim 4.7]) and u+v1, u+v2 > k.
The function

f(~x, t|u, v1, v2) = 2kΓ(v1 + v2)
Γ(v1 + v2 − k)

∫
r1+iR

dz1
2iπ · · ·

∫
rk+iR

dzk
2iπ

∏
16a<b6k

za − zb
za − zb − 1

za + zb
za + zb − 1

×
k∏
i=1

zi

zi + u− 1
2

1
(v1 − 1/2)2 − z2

i

1
(v2 − 1/2)2 − z2

i

etz
2
i−xizi , (43)

where the contours (see Fig. 4) are chosen so that

min
{
v1 −

1
2 , v2 −

1
2

}
> r1 > r2 + 1 > . . . , > rk + k − 1 > max{k − 1− u+ 1

2 , k − 1},

satisfies the equations (39), (40), (41) and the initial condition (42) with Z0(x) = Zu,v1,v2(x)
defined in (38). Assuming that there is at most one solution to these equations, we ob-
tain that for x1 > x2 > · · · > xk > 0, u + v1 > k, u + v2 > k, v1 − 1/2 > k − 1 and
v2 − 1/2 > k − 1,

E
[
Z(x1, t) . . . Z(xk, t)

]
= f(~x, t|u, v1, v2) (44)

where f(~x, t|u, v1, v2) is defined in (43).

Remark 2.2. When v1 → +∞ one has that Z0(x) → w1w2e
B2(x) and thus one recovers

the result (4.19) in [6], taking into account that wk1 = Γ(v1+u−k)
Γ(v1+u) and wk2 = Γ(v2+u−k)

Γ(v2+u) .
When v2 → +∞ one has v2Z0(x)→ w1e

B1(x) and the same works.

Let us now explain why f(~x, t|u, v1, v2) satisfies each of the equations (39), (40), (41)
and (42) one by one (except for (42), the arguments are based on [20] and [48]).
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The function ∏k
i=1 e

tz2
i−xizi is a solution of (39) for any ~z, so that by linearity, the

function f(~x, t|u, v1, v2) is also a solution.

Let us apply the operator
(
∂xi+1 − ∂xi − 1

)
to f(~x, t|u, v) and let us assume that

xi = xi+1 for some i. The application of the operator brings a factor (−zi+1 + zi − 1)
inside the integrand in (43). This extra factor cancels with the denominator za − zb − 1
for a = i, b = i + 1, so that there is no pole anymore at zi+1 = zi − 1. Hence, we may
deform the contour for zi+1 to be the same as the one for zi. Because of the factor za− zb
for a = i, b = i+ 1, the integrand is now antisymmetric with respect to exchanging zi and
zi+1, and since both variables are integrated along the same contour, their integral is zero.
We conclude that f(~x, t|u, v) satisfies (40).

Let as apply the operator
(
∂xk − u+ 1

2

)
to f(~x, t|u, v). This brings an extra factor

−zk−u+ 1
2 to the integrand, which cancels the denominator zk +u− 1

2 already present in
the formula. After this cancellation, and if one assumes that xk = 0, then the integrand is
antisymmetric with respect to changing zk into −zk. Furthermore, the integrand has no
pole anymore at zk = −(u− 1

2) so that the contour of zk can be freely deformed to the left,
regardless of the value of u. Since v − 1

2 > k − 1, it is then always possible to shift the zk
contour to the left so that v−1

2 > r1 > r2+1 > · · · > rk−1+k−2 > max{k−1, k−2−(u−1
2)}

and rk = 0. Now, the integration contour for zk is symmetric with respect to changing zk
into −zk, and thus the integral is zero. We conclude that f(~x, t|A,B) satisfies (41).

Let us assume that t = 0 and x1 > x2 > . . . xk > 0. The formula agrees with moments
of Zu,v1,v2(x) using a scaling limit of the half-space log-gamma polymer moment formula
from [19] (see [6, Proposition 4.2]). More precisely, we take α◦ = u, α1 = v1, α2 = v2 and
for i > 3, αi = 1

2 +
√
n and consider the log-gamma partition function Z(

√
nx/2, 2). The

scaling limit is explained in [6, Section 4.3], see also [7, Appendix C.3].

2.2 Pfaffian formula

Let us define the two functions

G(z) = z3

3 −
z2

2 + z

6 , Ω(z) = Γ(u− z)
Γ(u+ z)

Γ(v1 − z)
Γ(v1 + z)

Γ(v2 − z)
Γ(v2 + z)Γ(2z) (45)

Then, for u − 1
2 , v1 − 1

2 , v2 − 1
2 > k − 1, using the moment formula (44) and similar

manipulations as in [6, Sections 4.4 and 4.7], based on [20, Conjecture 5.2], we obtain the
expression for the moment of Z(0, t) as

E[Z(0, t)k] = 4kk! Γ(v1 + v2)
Γ(v1 + v2 − k)

∑
λ`k

λ=1m1 2m2 ...

(−1)`(λ)

m1!m2! . . .

∫
iR

dw1
2iπ · · ·

∫
iR

dw`(λ)
2iπ

× Pf
[
ui − uj
ui + uj

]2`(λ)

i,j=1

`(λ)∏
j=1

etG(wj+λj)

etG(wj)
(wj + 1/2)λj−1

4(wj)λj
Γ(−wj + 1)Γ(wj + λj)
Γ(−wj − λj + 1)Γ(wj)

×
Γ(u+ 1

2 − wj − λj)Γ(v1 + 1
2 − wj − λj)Γ(v2 + 1

2 − wj − λj)
Γ(u− 1

2 + wj + λj)Γ(v1 − 1
2 + wj + λj)Γ(v2 − 1

2 + wj + λj)

×
Γ(u− 1

2 + wj)Γ(v1 − 1
2 + wj)Γ(v2 − 1

2 + wj)
Γ(u+ 1

2 − wj)Γ(v1 + 1
2 − wj)Γ(v2 + 1

2 − wj)
,

(46)
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where (u1, . . . , u2`(λ)) = (−w1 + 1
2 , w1 − 1

2 + λ1, . . . ,−w`(λ) + 1
2 , w`(λ) − 1

2 + λ`(λ)) and the
sum runs over integer partitions λ of k. This can be rewritten as

E[Z(0, t)k] = 4kk! Γ(v1 + v2)
Γ(v1 + v2 − k)

∑
λ`k

λ=1m1 2m2 ...

(−1)`(λ)

m1!m2! . . .

∫
iR

dw1
2iπ · · ·

∫
iR

dw`(λ)
2iπ

× Pf
[
ui − uj
ui + uj

]2`(λ)

i,j=1

`(λ)∏
j=1

etG(wj+λj)

etG(wj)
(wj + 1/2)λj−1

4(wj)λj
Γ(−wj + 1)Γ(wj + λj)
Γ(−wj − λj + 1)Γ(wj)

×
Ω(wj − 1

2 + λj)Ω(−wj + 1
2)

Γ(2wj − 1 + 2λj)Γ(1− 2wj)
, (47)

We recognize the same formula as [6, Claim 4.11, Eq. (4.35)] with the only difference
that the ratio Ω(z) here should be replaced by

G(z) = Γ(A+ 1/2− z)
Γ(A+ 1/2 + z)

Γ(B + 1/2− z)
Γ(B + 1/2 + z)Γ(2z). (48)

2.3 Moment series in terms of a Fredholm Pfaffian

We will now write the moment generating function of Z(0, t). Let W be a inverse gamma
random variable with parameter v1 + v2, independent from the initial condition and from
the noise ξ. We define, for ς > 0,

g(ς) = E
[
exp(−ςe

t
12WZ(0, t))

]
. (49)

Ignoring the fact that the summation over k cannot be exchanged with the expectation
due to the divergence of moments, we will consider the following formal power series

1 +
∞∑
k=1

(−ςe t
12 )k

k! E
[
W kZ(0, t)k

]
, (50)

that we will again denote by g(ς). This generating series was computed in [6, Section 5],
and leads to the Fredholm Pfaffian formula [6, (5.16)] with the kernel [6, (2.12)]. Since
our moment formula has exactly the same form with a different choice of Ω, we apply the
same manipulations (it suffices to replace Ω(z) in the present paper by G(z) in [6]) and
obtain the following.

g(ς) = 1 +
∞∑
`=1

(−1)`
`!

∏̀
p=1

∫
R

drp
ς

ς + e−rp
Pf
[
K(ri, rj)

]2`(λ)
i,j=1 (51)

This series is a Fredholm Pfaffian,

g(ς) = E
[
exp(−ςe

t
12WZ(0, t))

]
= Pf(J − σςK)L2(R). (52)

The kernel K is matrix valued and represented by a 2× 2 block matrix with elements

K11(r, r′) =
∫∫

C2

dw
2iπ

dz
2iπ

w − z
w + z

Ω(w)Ω(z) cos(πw) cos(πz)e−rw−r′z+t
w3+z3

3 ,

K22(r, r′) =
∫∫

C2

dw
2iπ

dz
2iπ

w − z
w + z

Ω(w)Ω(z)sin(πw)
π

sin(πz)
π

e−rw−r
′z+tw

3+z3
3 ,

K12(r, r′) =
∫∫

C2

dw
2iπ

dz
2iπ

w − z
w + z

Ω(w)Ω(z) cos(πw)sin(πz)
π

e−rw−r
′z+tw

3+z3
3 ,

K21(r, r′) = −K12(r′, r).

(53)
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where the dependence in parameters u, v1, v2 only appears in the function Ω(z) which was
defined in (45), and the contour C is an upwardly oriented vertical line parallel to the
imaginary axis with real part between 0 and min{u, v1, v2, 1}. The function σς is given by

σς(r) = ς
ς+e−r and the 2× 2 symplectic kernel J is given by J(r, r′) =

(
0 1
−1 0

)
1r=r′ .

As in [6, Section 2.2.2] we may also rewrite g(ς) as the square root of a Fredholm
determinant with a scalar kernel. We obtain

g(ς) = E
[
exp(−ςe

t
12WZ(0, t))

]
= Pf(J − σςK)L2(R) =

√
Det(I − K̄t,ς)L2(R+). (54)

where the kernel K̄t,ς is defined by

K̄t,ς(x, y) = 2∂x
∫∫

C2

dwdz
(2iπ)2 Ω(z)Ω(w)sin(π(z − w))

sin(π(z + w)) ς
w+ze−xz−yw+tw

3+z3
3 (55)

From the generating function g(ς), one can compute the Laplace transform

E
[
exp(−ςe

t
12Z(0, t))

]
using [6, Remark 5.1], or perform a analogue of Laplace inversion using [6, Remark 5.2].
In the sequel, we will only be interested in the large time limit, in which case, asymptotics
can be directly extracted from the asymptotics of g(ς).

3 Large time height distribution at x = 0

3.1 Limiting distribution in terms of a Fredholm determinant

As we have found in [6], at large times,

g(e−t1/3s) ' P
(
hu(0, t) + logW + t

12
t1/3

6 s

)
. (56)

We will also rescale parameters as

u = at−1/3, v1 = bt−1/3, v2 = ct−1/3. (57)

Under this scaling, log(W )/t1/3 converges to an exponential distribution independent from
hat−1/3(0, t), so that [22, Eq. (4.3)]

lim
t→+∞

P
(
hat−1/3(0, t) + t

12
t1/3

6 s

)
=
(

1 + ∂s
b+ c

)
lim
t→∞

g(e−t1/3s). (58)

To compute the limit of g(e−t1/3s), we use (55) with the scalings (w, z)→ t−1/3(w, z). The
kernel t1/3K̄

t,e−t
1/3s(xt1/3, yt1/3) converges to K̄(a,b,c)(x+ s, y + s) where

K̄(a,b,c)(x, y) = 1
2

∫∫
Γ2
A

dwdz
(2iπ)2ω(w)ω(z)w − z

w + z

1
w
e−xz−yw+w3+z3

3 , (59)

where the contour ΓA is an upwardly oriented vertical line with real part between 0 and
min{a, b, c} as previously, and

ω(z) = a+ z

a− z
b+ z

b− z
c+ z

c− z
. (60)
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Thus, for any a, b, c > 0,

G(a,b,c)(s) := lim
t→+∞

P
(
h(0, t) + t

12
t1/3

6 s

)
(61)

=
(

1 + ∂s
b+ c

)√
Det(I − K̄(a,b,c))L2(s,+∞), (62)

where K̄(a,b,c) is defined in (59). Using the decomposition 1
2

w−z
(w+z)w = 1

w+z −
1

2w , we obtain
that

K̄(a,b,c)(x, y) =
∫ +∞

0
dλA(a,b,c)(x+ λ)A(a,b,c)(λ+ y) − 1

2A
(a,b,c)(x)

∫ +∞

0
A(a,b,c)(y + λ) dλ,

(63)
where the function A(a,b,c)(x) is defined by

A(a,b,c)(x) =
∫

ΓA

dz
2iπω(z)e−xz+

z3
3 , (64)

where the contour ΓA is a vertical line with real part between 0 and min{a, b, c}. Note
that the function A(a,b,c) has exponential decay at +∞, that is for any d ∈ (0,min{a, b, c}),
there exist C ∈ R such that

∣∣∣A(a,b,c)(x)
∣∣∣ 6 Ce−dx. Let us introduce an operator Âs acting

on L2(0,+∞) with kernel

As(x, y) = A(a,b,c)(x+ y + s), (65)

and an operator K̄(a,b,c)
s acting on L2(0,+∞) with kernel K̄(a,b,c)

s (x, y) := K̄(a,b,c)(x+s, y+
s). For any s ∈ R, and a, b, c > 0, we have [6, Claim 7.1]√

Det(I − K̄(a,b,c)
s ) = 1

2
(
Det(I − Âs) + Det(I + Âs)

)
, (66)

where all operators act on L2(0,+∞). Hence one has

G(a,b,c)(s) = 1
2

(
1 + ∂s

b+ c

)(
Det(I − Âs) + Det(I + Âs)

)
(67)

In order to compute G(a,b,c)(s), we had assumed that a, b, c > 0. However, if we fix some
a > 0, we expect that the RHS of (61) is analytic in b and c in the region {(b, c) ∈ R2; b+c >
0, a + b > 0, a + c > 0} (recall that when a + b 6 0 or a + c 6 0, the initial condition
would not even be defined, and when b+ c 6 0 we cannot compute the moments). In the
sequel, we implicitly extend the definition of G(a,b,c)(s) by analyticity. To be more precise,
G(a,b,c)(s) is defined in (67) in terms of the operator Âs with kernel A(a,b,c)(x+y+s) where
the function A(a,b,c) is defined in (64). This function can be readily extended analytically
to b < 0 (for example). Indeed, the value when b < 0 can be expressed by first moving
the integration contour to the right of b, taking into account the associated residue, and
finally setting b to the desired negative value.

3.2 Stationary limit c→ −b

Assume that a > b, c, 0. In this section we set c = −b + ε and let ε go to 0 to obtain the
stationary limit. Let us rewrite

A(a,b,c)(x) = Ã(a,b,c)(x) + 2b+ c

b− c
(
hc(x)− hb(x)

)
, (68)
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where
Ã(a,b,c)(x) =

∫
ΓÃ

dz
2iπω(z)e−xz+

z3
3 , (69)

the contour being now a vertical line with real part between max{0, b, c} and a, and

hb(x) = b
a+ b

a− b
e
b3
3 −bx. (70)

From now on, we use quantum mechanical notations with kets and bra. For functions
f, g ∈ L2(0,+∞), and an operator O on L2(0,+∞) acting with a kernel O(x, y), we
denote by 〈f |O |g〉 the integral

∫+∞
0 dx

∫+∞
0 dyf(x)O(x, y)g(y) and we denote by |f〉 〈g| the

operator acting on L2(R+) with kernel f(x)g(y). In particular, 〈1| , |1〉 below corresponds
to the constant functions f(x) = 1, g(y) = 1.

We rewrite the kernel as

As(x, y) = Ã(a,b,c)
s (x+ y) + 2b+ c

b− c
(
|fc(x)〉 〈gc(y)| − |fb(x)〉 〈gb(y)|

)
, (71)

where

fα(x) = α
a+ α

a− α
e
α3
3 −(x+s)α, gβ(x) = e−xβ. (72)

Here Ã(a,b,c)
s (x) = Ã(a,b,c)(x+ s), and we will also denote by the same symbol Ã(a,b,c)

s the
operator with kernel Ã(a,b,c)

s (x+ y). Then we have

Det
(
I ± Â(a,b,c)

s

)
=

Det
(
I ± Ã(a,b,c)

)(1± 2b+ c

b− c
Icc

)(
1∓ 2b+ c

b− c
Ibb

)
+ 4

(
b+ c

b− c

)2

IbcIcb

 (73)

where

Iα,β = 〈fα|gβ〉 ∓ 〈fα|
Ã

(a,b,c)
s

I ± Ã(a,b,c)
s

|gβ〉 (74)

Explicitly, we have

Iα,β = e
α3
3 −sα

a+ α

a− α

(
α

α+ β
∓ αR±a,b,c(α, β)

)
, (75)

where

R±a,b,c(α, β) = 〈e−xα| Ã
(a,b,c)
s

1± Ã(a,b,c)
s

|e−xβ〉 . (76)

where the braket notation denotes the two-sided Laplace transform and has the fol-
lowing definition: for any operator O acting on L2(R+) with kernel (u, v) 7→ O(u, v) we
have

〈e−xα| O |e−xβ〉 =
∫∫

R2
+

dudv e−αuO(u, v)e−βv (77)

In the limit when c→ −b, we find, after simplifications using Mathematica, that

lim
b→−c

F (a,b,c)(s) = GHY
a,b (s) := 1

2∂s
(
Det(1 + Ãs)Q+(a, b, s) + Det(1− Ãs)Q−(a, b, s)

)
,

(78)
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where Ãs is now an operator acting with kernel Ãs(x, y) = Ã(s+ x+ y) with

Ã(x) =
∫ dz

2iπ
a+ z

a− z
e−xz+

z3
3 , (79)

where the contour is a vertical line with real part between 0 and a. We define

Q±(a, b, s) = S±(a, b, s) + S±(a,−b, s),

where

S+(a, b, s) = 1
2
(
s− b2 + 2R+(b,−b)

)
+ (a+ b)2

2b(a2 − b2)e
b3/3−bs(2bR+(b, b)− 1)− a

a2 − b2
,

(80)

S−(a, b, s) = 1
2
(
s− b2 − 2R−(b,−b)

)
+ (a+ b)2

2b(a2 − b2)e
b3/3−bs(2bR−(b, b) + 1)− a

a2 − b2
.

(81)

and
R±(α, β) = 〈e−xα| Ãs

1± Ãs
|e−xβ〉 . (82)

3.3 Case b = 0, a > 0

This case corresponds to the maximal current phase. Only the + term remains, as in [6].
In the special case b = 0, we have the simplifications

Q+(a, 0, s) = 2
a

(
−2 + as+ 2aR+(0, 0)

)
, (83)

Q−(a, 0, s) = 0, (84)

so that
GHY
a,0 (s) = ∂s

(
Det(I + Ãs)

(
−2
a

+ s+ 2R+(0, 0)
))

. (85)

Remark 3.1. As a→ +∞, we recover FBrownian
a studied in [6] (denoted simply F in [6]).

This is due to a symmetry between boundary and initial condition parameters [6, Section
4.6] (see also [19, 49]). The law of h(0, t) for the half-line KPZ equation with Dirichlet
boundary condition (that is a = +∞) and with initial condition given by a O’Connell-Yor
polymer partition function, is the same as the law of h(0, t) for the half-line KPZ equation
with Robin boundary condition and Brownian initial condition, for appropriately chosen
parameters, see details in [6, Sections 4.5 and 4.6]. More generally, using the results
of [6, Sections 4.6] we obtain that lima→∞G

HY
a,b = FBrownian

−b .

4 Two-time covariance

4.1 Full-space variational formulas

In full space one has, for the droplet initial condition eh(x,0) = δ0(x), at large time t,

h(x, t) + t

12 ' t
1/3(A2(x̂)− x̂2), x̂ = x

2t2/3
(86)
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For a Brownian IC one has

h(x, t) + t

12 ' t
1/3Astat(x̂) (87)

where the process Astat was introduced in [50], and can be characterized by the following
formula [51]: for any fixed x̂,

Astat(x̂) = max
ŷ∈R

(
√

2B(ŷ) +A2(x̂− ŷ)− (x̂− ŷ)2). (88)

Since the Brownian motion is stationary for the KPZ equation, (87) implies that, as
processes in x̂,

Astat(x̂)−Astat(0) (d)=
√

2B(x̂). (89)
where B is a two-sided Brownian motion.

4.2 Half-space universal processes

In half-space, for droplet IC and boundary parameter u = at−1/3 one has, for large t and
fixed a, the solution hu(x, t) behaves as

hu=at−1/3(x, t) + t

12 ' t
1/3(Aa(x̂)− x̂2), x̂ = x

2t2/3
> 0, (90)

where Aa(x̂) is a half-space variant of the Airy2 process, having explicit finite-dimensional
marginal distributions computed in [52] (this limiting process was obtained as a limit of a
model of last passage percolation in a half-space, but by universality, the same should arise
as a limit of the KPZ equation). More generally, for an initial condition h0(x) = h(x, 0),
such that the rescaled process

hrescaled
0 (x) = lim

y→∞
1
√
y
h0(2xy) (91)

exists, we expect that the solution hu(x, t) of the half-space KPZ equation with boundary
parameter u behaves asymptotically as

hu=at−1/3(0, t) + t

12 ' t
1/3 max

ŷ>0

{
hrescaled

0 (ŷ) +Aa(ŷ)− ŷ2
}
. (92)

For the stationary initial condition h(x, 0) = hstat
u,v (x), we similarly expect that for

u = at−1/3 and v = bt−1/3, there exists a process Astat
a,b (x̂) such that at large t

hat−1/3(x, t) + t

12 ' t
1/3Astat

a,b (x̂), x̂ = x

2t2/3
> 0. (93)

In particular, we have that
Astat
a,b (0) (d)= ξa,b. (94)

In the case a+ b = 0 and a 6 0, a 6 b, that is when the initial condition is Brownian this
process is defined and studied in [32]. We expect that

Astat
a,b (0) = max

ŷ>0

{
hrescaled
a,b (ŷ) +Aa(ŷ)− ŷ2

}
. (95)

where the process hrescaled
a,b is defined as

hrescaled
a,b (x) = lim

r→∞
1√
r
hstat
ar−1/2,br−1/2(2rx). (96)
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We may describe this process very explicitly using (6), even in cases where it is not
Brownian. For a > b, b 6 0, we have that

hrescaled
a,b (x) = max

{
B2(2x),−Ea−b + max

t∈[0,x]

{
B1(2t) +B2(2x)−B2(2t)

}}
, (97)

where B1, B2 are independent standard Brownian motions with drifts −b and b respec-
tively, and Ea−b is an independent exponential random variables with parameter a − b.
For a > 0, b > 0,

hrescaled
a,b (x) = max

{
B2(2x),−Ea + max

t∈[0,x]

{
B1(2t) +B2(2x)−B2(2t)

}}
, (98)

where B1, B2 are independent standard Brownian motions (without drift). In the limit
a→ +∞ and b = 0, this process has the same law as the maximum of two non intersecting
Brownians [24]. For a 6 b, a 6 0,

hrescaled
a,b (x) = B(x) + ax, (99)

where B is a standard Brownian motion.

By stationarity, we have the equality in distribution of processes in the variable x:

Astat
a,b (x)−Astat

a,b (0) (d)= hrescaled
a,b (x). (100)

4.3 Computation of two-time covariances

In this Section we compute two-time covariances starting from various initial conditions.
To this purpose we adapt the argument from [33] to the half-space geometry. We also use
similar notations as in that paper. Let us use the notation, where t is the late time and
τt the earlier time, 0 < τ < 1,

C(τ) = lim
t→∞

Cov
(
Xt(τ),Xt(1)

)
, Xt(τ) =

hu(0, tτ) + tτ
12

t1/3
. (101)

We will use the formula

Cov
(
Xt(τ),Xt(1)

)
= 1

2Var
[
Xt(1)

]
+ 1

2Var
[
Xt(τ)

]
− 1

2Var
[
Xt(1)−Xt(τ)

]
. (102)

4.3.1 Stationary Hariya-Yor initial condition. Here we relate the two-time covari-
ance of the scaled KPZ height field with stationary initial condition to the variance of the
random variable ξa,b studied in this paper of CDF denoted F stat

a,b , defined in (26).
For the moment we focus on the regions in the regions R1 and R3, that is u > v, v 6

0. Assume that we start from the initial condition h(x, 0) = hstat
u,v (x). Recall that by

stationarity, E
[
Xt(τ)

]
= 0, so that we have

C(τ) = lim
t→∞

1
2

(
VarXt(1) + VarXt(τ)− E

[
(Xt(1)−Xt(τ))2

])
. (103)

Scaling u, v as u = at−1/3, v = bt−1/3, we have, by replacing t → τt and a → aτ1/3,
b→ bτ1/3 in (93) that the height field at the earlier time satisfies

hat−1/3(x, τt) + τt

12 ' (τt)1/3Astat
aτ1/3,bτ1/3

(
x

2(τt)2/3

)
(104)
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This field can then be used as an initial condition for the evolution from time τt to time
t. Using formula (92) with t → (1 − τ)t, a → a(1 − τ)1/3 and ŷ = x

2(t(1−τ))2/3 it leads to
the variational formula, where we denote τ̂ = τ

1−τ

Xt(1) ' (1− τ)1/3 max
ŷ>0

{
τ̂1/3Astat

aτ1/3,bτ1/3

(
τ̂−2/3ŷ

)
+Aa(1−τ)1/3(ŷ)− ŷ2

}
, (105)

where the processes Astat
aτ1/3,bτ1/3 and Aa(1−τ)1/3 are independent, because they describe the

growth over two disjoint time intervals. Thus, using (104) with x = 0, Xt(1)− Xt(τ) has
asymptotically the same distribution as

(1− τ)1/3 max
ŷ>0

{
τ̂1/3

(
Astat
aτ1/3,bτ1/3

(
τ̂−2/3ŷ

)
−Astat

aτ1/3,bτ1/3 (0)
)

+Aa(1−τ)1/3(ŷ)− ŷ2
}
.

(106)
Using (100) and (95), we obtain that (106) has the same distribution as

(1− τ)1/3 max
ŷ>0

{
τ̂1/3hrescaled

aτ1/3,bτ1/3(τ̂−2/3ŷ) +Aa(1−τ)1/3(ŷ)− ŷ2
}
. (107)

Now, we use the fact that the process hrescaled satisfies the scaling property

1√
r
hrescaled
ar−1/2,br−1/2(rx) (d)= hrescaled

a,b (x), (108)

so that using (92),

Xt(1)−Xt(τ) (d)= (1− τ)1/3 max
x>0

{
hrescaled
a(1−τ)1/3,b(1−τ)1/3(x) +Aa(1−τ)1/3(x)− x2

}
,

(d)= (1− τ)1/3ξa(1−τ)1/3,b(1−τ)1/3 .

where in the last formula we used (95) and (94). Finally, we obtain that using (93) and
(103)

C(τ) = 1
2
(
Var(ξa,b) + τ2/3Var(ξaτ1/3,bτ1/3)− (1− τ)2/3Var(ξa(1−τ)1/3,b(1−τ)1/3)

)
. (109)

4.3.2 Droplet initial condition. Now we consider the solution hu of the half-space
KPZ equation with boundary parameter u and droplet initial condition at the origin. At
large time, the height field should converge locally to one of the invariant distributions.
The limiting distribution depends on the boundary parameter, u, and the drift of the
initial condition, according to the diagram in [7, Fig. 2]. In the case of the droplet initial
condition, the drift parameter v = +∞, so the height field converges to the invariant
process HYu,0, see [10, Fig. 2]. More precisely, for x in a domain of order 1, and u > 0,

lim
t→∞

hu(x, t)− hu(0, t) (d)= HYu,0(x)−HYu,0(0). (110)

When u < 0,
lim
t→∞

hu(x, t)− hu(0, t) (d)= B(x) + ux. (111)

Hence, for any u,
lim
t→∞

hu(x, t)− hu(0, t) (d)= hstat
u,0 (x). (112)
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On the other hand, we also know by (90) that on the scale t2/3, if u = at−1/3 the height
field converges to Aa, that is

lim
t→∞

hu(2x̂t2/3, t)− hu(0, t) (d)= t1/3
(
Aa(x̂)−Aa(0)− x̂2

)
. (113)

We expect that (112) and (113) match when x = 2x̂t2/3 goes to infinity and x̂ goes to
zero. This implies that, for x̂ going to zero,

lim
t→∞

t−1/3hstat
at−1/3(2x̂t2/3) (d)= Aa(x̂)−Aa(x̂). (114)

In other terms, for x̂ going to zero and any fixed a ∈ R,

hrescaled
a,0 (x̂) ' Aa(x̂)−Aa(0). (115)

Scaling u as u = at−1/3, we obtain, by replacing t → τt and a → aτ1/3 in (90), that
the height field at the earlier time satisfies for large t

hat−1/3(x, τt) + τt

12 ' (τt)1/3

Aaτ1/3

(
x

2(τt)2/3

)
− x2

4(τt)4/3

 (116)

This field can then be used as an initial condition for the evolution from time τt to time
t. Using formula (92) with t → (1 − τ)t, a → a(1 − τ)1/3 and ŷ = x

2(t(1−τ))2/3 it leads to
the variational formula, where we denote τ̂ = τ

1−τ

Xt(1) ' (1− τ)1/3 max
ŷ>0

{
τ̂1/3Aaτ1/3

(
τ̂−2/3ŷ

)
− τ̂−1ŷ2 + Ãa(1−τ)1/3(ŷ)− ŷ2

}
, (117)

where the processes Aaτ1/3 and Ãa(1−τ)1/3 are independent, because they describe the
growth over two disjoint time intervals. Thus, using (116) with x = 0, Xt(1)− Xt(τ) has
asymptotically the same distribution as

(1− τ)1/3 max
ŷ>0

{
τ̂1/3

(
Aaτ1/3

(
τ̂−2/3ŷ

)
−Aaτ1/3 (0)− τ̂−4/3ŷ2

)
+ Ãa(1−τ)1/3(ŷ)− ŷ2

}
.

(118)
In the limit 1− τ � 1, the argument τ̂−2/3ŷ is small and one can use (115) and the scale
invariance property (108) leading to

Xt(1)−Xt(τ) ' (1− τ)1/3 max
ŷ>0

{
hrescaled
a(1−τ)1/3,0(ŷ) + Ãa(1−τ)1/3(ŷ)− ŷ2

}
,

' (1− τ)1/3ξa(1−τ)1/3,0

where in the last formula we used (95) and (94) . So that, the formula (102) yields, for
any a ∈ R and τ → 1,

C(τ) = 1
2Var

[
Aa(0)

]
+ 1

2τ
2/3Var

[
Aaτ1/3(0)

]
− 1

2(1− τ)2/3Var
[
ξa(1−τ)1/3,0

]
+O(1− τ).

(119)
Since this formula is valid only in the limit τ → 1, we may simplify it using Var[ξa(1−τ)1/3,0] =
Var[ξ0,0] +O((1− τ)1/3) and Var

[
Aaτ1/3(0)

]
= Var

[
Aa(0)

]
+O(1− τ), so that

C(τ) = Var
[
Aa(0)

]
− 1

2(1− τ)2/3Var
[
ξ0,0

]
+O(1− τ), (120)

thus we obtain (32) as announced.
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Appendix

A Brownian case

In [6], we computed only the function FBrownian
a (s) when a = 0. We show in this Section

that very similar arguments as those already developed in [6] also yields an expression for
FBrownian
a (s) for any a ∈ R. We start from

FBrownian
a (s) = lim

b→−a
F (a,b)(s) (121)

where F (a,b)(s) was given in [6, (7.11)] as

F (a,b)(s) = 1
2

(
1 + ∂s

a+ b

)(
Det(I − Âs) + Det(I + Âs)

)
(122)

We will follow the same notations as in [6] (up to minor changes). The operator As acts
L2(0,+∞) with kernel

Âs(x, y) = A(a,b)(x+ y + s), (123)

where the function A(a,b)(x) is defined by

A(a,b)(x) =
∫ dz

2iπ
a+ z

a− z
b+ z

b− z
e−xz+

z3
3 , (124)

and the contour is a vertical line with real part between 0 and min{a, b}. Moving the
contour to the right, we obtained in [6] that

A(a,b)(x) = Ã(a,b)(x) + 2a+ b

a− b
(hb(x)− ha(x)), (125)

with hb(x) = be−xb+b
3/3. Letting b = −a+ ε, we have

Ã(a,b)(x) =
∫ dz

2iπ
a+ z

a− z
b+ z

b− z
e−xz+z

3/3 = Ai(x) + 2ε
∫ +∞

x
dλ cosh(ay)Ai(λ+ y) +O(ε2),

(126)
(I corrected that formula) where in the integral over z, the contour passes to the right of
a, b. We also introduce the operator Ãs acting on L2(0,+∞) with kernel

Ãs(x, y) = Ã(a,b)(s+ x+ y).

Âs is a rank-2 perturbation of Ãs, in the sense that

Âs(x, y) = Ãs(x, y) + 2a+ b

a− b
(b |fb(x)〉 〈fb(y)| − a |fa(x)〉 〈fa(y)|), (127)

with fb(x) = eb
3/6−bs/2−bx. Using the matrix determinant lemma, we have

Det(I∓Âs) = Det(I∓Ãs)

(1∓ 2ba+ b

a− b
Ib,b

)(
1± 2aa+ b

a− b
Ia,a

)
+ 4ab

(
a+ b

a− b

)2

Ib,aIa,b


(128)

where
Iα,β = 〈fα|fβ〉 ± 〈fα|

Ãs

I ∓ Ãs
|fβ〉 . (129)
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The scalar products are evaluated as

〈fα|fβ〉 = 1
α+ β

e
α3
6 +β3

6 −
α+β

2 s (130)

and
〈fα|

Ãs

I ∓ Ãs
|fβ〉 = e

α3
6 +β3

6 e−
α+β

2 s 〈e−αx| Ãs

I ∓ Ãs
|e−βx〉 . (131)

Putting all this into Mathematica, we find that

Det(I − Âs) + Det(I + Âs) (132)

is of order ε. Hence, dividing by ε and using (121) and (122),

FBrownian
a (s) = 1

2∂s
(
Det(I −Ais)S−a + Det(I + Ais)S+

a

)
(133)

where Ais denotes the operator with kernel Ai(x+ y + s),

S−a = eas−
a3
3 R−−a,−a + e

a3
3 −asR−a,a − 2R−a,−a +

sinh
(

1
3a
(
a2 − 3s

))
a

− a2 + s, (134)

S+
a = eas−

a3
3 R+
−a,−a + e

a3
3 −asR+

a,a + 2R+
a,−a −

sinh
(

1
3a
(
a2 − 3s

))
a

− a2 + s (135)

and
R∓α,β = 〈e−αx| Ais

I ∓Ais
|e−βx〉 . (136)

We may check that for a = 0, S−0 = 0 and S+
0 = 4R+

0 + 2s, so that we recover exactly the
result from [6]. Using the Sherman-Morrison formula, we have that

R∓α,β = ∓Det(I ∓Ais ∓ |Aise−βy〉 〈e−αx|)
Det(I ∓Ais)

± 1. (137)

so that FBrownian
a can be written in terms of Fredholm determinants and simple functions,

and could be evaluated numerically (to compute the Fredholm determinants of rank one
perturbation of Ais, one may need to conjugate the kernel so that all kernels involved are
decaying at infinity).

B Limiting one-point distribution away from the wall at x > 0

In this Appendix we study the distribution of the height h(x, t) at x > 0.

B.1 Moment formula

We start from the moment formula (44), that is

E[Z(x, t)k] = 2k Γ(v1 + v2)
Γ(v1 + v2 − k)

∫
r1+iR

dz1
2iπ · · ·

∫
rk+iR

dzk
2iπ

∏
16a<b6k

za − zb
za − zb − 1F (~z)

F (~z) =
∏

16a<b6k

za + zb
za + zb − 1

k∏
i=1

zi
zi + u− 1/2

1
(v1 − 1/2)2 − z2

i

1
(v2 − 1/2)2 − z2

i

etz
2
i−zix,

(138)
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We use [20, Proposition 5.1] specializing to a function F (~z) which is symmetric in its
arguments∫

r1+iR

dz1
2iπ · · ·

∫
rk+iR

dzk
2iπ

∏
16a<b6k

za − zb
za − zb − 1F (~z)

= k!
∑
λ`k

1
m1(λ)!m2(λ)! . . .

∫
aw+iR

dw1
2iπ
· · ·
∫
aw+iR

dw`(λ)
2iπ

Det
[

1
wi + λi − wj

]`(λ)

i,j=1

× F (w1, w1 + 1, . . . , w1 + λ1 − 1, . . . , w`(λ), w`(λ) + 1, . . . , w`(λ) + λ`(λ) − 1) (139)

For the last equation to be valid, the function F need to be holomorphic in each variable
in the region spanned by the contour deformation, that is, it needs to be holomorphic in
the whole region between r1 + iR and rk+ iR. This will be the case if we choose u− 1

2 > r1
and rk > max{0,−v1 + 1

2 ,−v2 + 1
2} on the left hand side, so that we may take the contour

in the right hand side such that v1 − k + 1 > aw > max{1/2− u, 0} (one can simply take
aw = rk).

B.2 Laplace transform formula

We can evaluate the function F into strings using the same manipulations as in Section
(2.2), and using the idenity

λ1−1∏
a=0

λ2−1∏
b=0

w1 + w2 + a+ b

w1 + w2 + a+ b− 1 = Γ (w1 + w2 − 1) Γ (w1 + w2 + λ1 + λ2 − 1)
Γ (w1 + w2 + λ1 − 1) Γ (w1 + w2 + λ2 − 1) (140)

and ∏
06a<b6λ−1

2w + a+ b

2w + a+ b− 1 = 2−λΓ(w)Γ
(
2(w + λ)− 1

)
Γ(w + λ)Γ(2w + λ− 1) . (141)

We obtain

E[Z(x, t)k] = 2kΓ(v1 + v2)
Γ(v1 + v2 − k)k!

∑
λ`k

1
m1(λ)!m2(λ)! . . .∫

aw+iR

dw1
2iπ · · ·

∫
aw+iR

dw`(λ)
2iπ Det

[
1

wi + λi − wj

]`(λ)

i,j=1

`(λ)∏
j=1

etG(wj+λj)−x2 (wj+λj)2+x
2 (λj+wj)

etG(wj)−x2w
2
j+x

2wj

×
`(λ)∏
j=1

2−λjΓ
(
2(wj + λj)− 1

)
Γ(2wj + λj − 1)

η̂(wj + λj − 1/2)
η̂(wj − 1/2)

×
∏

16i<j6`(λ)

Γ
(
wi + wj − 1

)
Γ
(
wi + wj + λi + λj − 1

)
Γ
(
wi + wj + λi − 1

)
Γ
(
wi + wj + λj − 1

) . (142)

where
η̂(z) = Γ(v1 − z)

Γ(v1 + z)
Γ(v2 − z)
Γ(v2 + z)

1
Γ(u+ z) . (143)

The contour for the variables wi has to be chosen so that

max{1/2− u, 1/2} < aw < v − 1/2− λi + 1 (144)

for any λi and v = v1, v2, and the moment formula was valid for u+v > k and v− 1
2 > k−1,

which implies that u+v > λi, v− 1
2 > λi−1 so that one can always find aw satisfying (144).

27



0 1/2

v1 + 1/21/2− u as

w w + 1 w + 2

aw + iR Cas [w]

Figure 5: The contour Cas [w] used in (145).

Summing to obtain the generating function, and using Mellin-Barnes the Mellin-Barnes
integral representation, we obtain

E
[
exp

(
−ςe

t
12WZ(x, t)

)]

=
+∞∑
`=0

(−1)`
`!

∫
aw+iR

dw1
2iπ · · ·

∫
aw+iR

dw`
2iπ

∫
Cas [w1]

ds1
2iπ · · ·

∫
Cas [w`]

ds`
2iπDet

[
1

si − wj

]`
i,j=1

×
∏̀
j=1

etG(sj)−x2 s
2
j+

x
2 (sj−wj)

etG(wj)−x2w
2
j

π

sin(π(sj − wj))
(ςe

t
12 )sj−wj η̂(sj − 1/2)

η̂(wj − 1/2)

×
∏̀
j=1

Γ
(
2sj − 1

)
Γ(wj + sj − 1)

∏
16i<j6`

Γ
(
wi + wj − 1

)
Γ
(
si + sj − 1

)
Γ
(
si + wj − 1

)
Γ
(
wi + sj − 1

) . (145)

The contour Cas [w] (depicted on Fig. 5) is formed by two semi-infinite rays going to ∞
in the direction ±π/3, starting from the horizontal axis at the point as and the union of
negatively oriented circles around the poles at w + 1, w + 2, . . . when these lie to the left
of the semi-infinite rays. The infinite part of the contour is oriented from bottom to top.

The real numbers as and aw has to be chosen so that (recall that after the analytic
continuation, <[λ] = <[s− w] = as − aw)

aw < as < aw+1, max{1/2−u, 1/2, 1/2−v} < aw, as < v1+1/2, u+v1 > as−aw−1.
(146)

Note that the condition as < aw + 1 is not really needed since we have added the small
circles to the contour for si. Additionally, we need to chose as > 1/2, so that Γ(2s − 1)
has no poles on the right of contours. One also needs to discuss the convergence of
the w integral. A sufficient condition for the integrals over wi to be convergent is that
aw − 1/2 < x/2.
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B.3 Pfaffian formula in the large time limit

We now consider the large time limit, and the critical region, hence we rescale

u = at−1/3, v1 = bt−1/3, v2 = ct−1/3, (147)

wi →
1
2 + t−1/3wi, si →

1
2 + t−1/3si, (148)

x = t2/3x̃, ς = exp(−yt1/3). (149)

Defining the rational function

η(z) = (a+ z)(b+ z)(c+ z)
(b− z)(c− z) , (150)

the right hand side becomes

E
[
exp

(
−ςe

t
12WZ(x, t)

)]

=
+∞∑
`=0

(−1)`
`!

∫
aw+iR

dw1
2iπ · · ·

∫
aw+iR

dw`
2iπ

∫
Cas

ds1
2iπ · · ·

∫
Cas

ds`
2iπDet

[
1

si − wj

]`
i,j=1

×
∏̀
j=1

exp
(
s3
j

3 −
w3
j

3 −
x̃

2 (s2
j − w2

j )− y(sj − wj)
)
sj + wj
sj − wj

η(sj)
η(wj)

1
2sj

×
∏

16i<j6`

(si + wj)(sj + wi)
(wi + wj)(si + sj)

(151)

The contour Cas is now formed by two semi-infinite rays going to ∞ in the direction
±π/3, starting from the horizontal axis at the point as (without additional small circles).
The values of aw, as now satisfy

max{−a,−b,−c, 0} < aw < as < min{b, c}, (152)

which can be happen only when b, c > 0 and a+ b, a+ c > 0. Note that the condition that
aw, as are positive is important because of the denominators (wi + wj) and (si + sj), and
also the pole at s = 0. Now, the condition for the convergence of the integrals over wi is
that aw < x̃

2 .
Observe that we may write

∏̀
j=1

(sj + wj)
∏

16i<j6`

(si + wj)(sj + wi)
(wi + wj)(si + sj)

Det
[

1
si − wj

]`
i,j=1

=
∏̀
i=1

si + wi
si − wi

∏
i<j

(si − sj)(−wi + wj)(si + wj)(−wi − sj)
(−wi − wj)(si + sj)(si − wj)(−wi + sj)

=
∏
i<j

ui − uj
ui + uj

, (153)

where ~u = (s1,−w1, s2,−w2, . . . , s`,−w`). We recognize Schur’s Pfaffian formula, so that
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we obtain

E
[
exp

(
−ςe

t
12WZ(x, t)

)]
=

+∞∑
`=0

(−1)`
`!

∫
aw+iR

dw1
2iπ · · ·

∫
aw+iR

dw`
2iπ

∫
Cas

ds1
2iπ · · ·

∫
Cas

ds`
2iπPf

[
ui − uj
ui + uj

]2`

i,j=1

×
∏̀
j=1

exp
(
s3
j

3 −
w3
j

3 −
x̃
2 (s2

j − w2
j )− y(sj − wj)

)
(sj − wj)(2sj)

η(sj)
η(wj)

(154)

This corresponds to

E
[
exp

(
−ςe

t
12WZ(x, t)

)]
= Pf[J −K]L2(0,+∞) (155)

=
+∞∑
`=0

(−1)`
`!

∫
R+

dr1· · ·
∫
R+

drk Pf
[
K(ri, rj)

]`
i,j=1 , (156)

where, after a change of variables w → −w in the integrals, we may define the kernel by

K11(r, r′) =
∫
Cas

dz
2iπ

∫
Cas

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2+w2)−(r+y)z−(r′+y)w η(z)η(w)

4zw , (157a)

K12(r, r′) =
∫
Cas

dz
2iπ

∫
−aw+iR

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2−w2)−(r+y)z−(r′+y)w η(z)

2zη(−w) ,

(157b)

K22(r, r′) =
∫
−aw+iR

dz
2iπ

∫
−aw+iR

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (−z2−w2)−(r+y)z−(r′+y)w 1

η(−z)η(−w) .

(157c)

We now shift the contour for −aw+iR to the right of 0. In K12 we can deform the contours
without crossing any pole. In K22, we do cross a pole and have to take into account the
residue.

K11(r, r′) =
∫
Cas

dz
2iπ

∫
Cas

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2+w2)−(r+y)z−(r′+y)w η(z)η(w)

4zw , (158a)

K12(r, r′) =
∫
Cas

dz
2iπ

∫
Cas

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2−w2)−(r+y)z−(r′+y)w η(z)

2zη(−w) , (158b)

K22(r, r′) =
∫
Cas

dz
2iπ

∫
Cas

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (−z2−w2)−(r+y)z−(r′+y)w 1

η(−z)η(−w)
(158c)

− 2
∫
Cas

dz
2iπe

xz2+(r′−r)z z

a2 − z2 . (158d)

The kernel has a particuliar structure. Define an operator D such that for a function f
written as

f(r) =
∫
Cas

dz
2iπ f̂(z)e−rz, (159)

then
Df(r) =

∫
Cas

dz
2iπD̂(z)f̂(z)e−rz (160)
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where
D̂(z) = −2 zex̃z

2

a2 − z2 = −ex̃z2
[ 1
a− z

− 1
a+ z

]
. (161)

We have that
K =

(
K11 K12
K21 K22

)
=
(

K11 −K11D
ᵀ

−DK11 DK11D
ᵀ +Dε

)
(162)

where ε is an operator with kernel ε(r, r′) = δ(r − r′). In other terms, ε is the identity
operator, i.e. ε = I. The operator Dᵀ acts on the left, i.e. 〈f |Dᵀ |g〉 =

∫∞
0 drDf(r)g(r).

B.4 From Fredholm Pfaffians to Fredholm determinants with scalar kernels

Consider operators B,D, ε : L2(R+) → L2(R+). The operator D acts by multiplication
in Fourier space (as in (160)) and the operator ε is such that Dε has an anti-symmetric
kernel. Recall the expression of the symplectic matrix

J =
(

0 1
−1 0

)
. (163)

We can then perform the manipulations (similarly to [53])

Pf

J − [ B −BDᵀ

−DB DBDᵀ +Dε

]2

= Pf

J − [1 0
0 D

] [
B −BDᵀ

−B BDᵀ + ε

]2

= Det

I +
[
B −BDᵀ

−B BDᵀ + ε

]
J

[
1 0
0 D

]
= Det

I +
[

BDᵀ BD
−BDᵀ − ε −BD

] .
(164)

Summing the first line to the second one and subtracting the second column to the first
one, we obtain

Det

I +
[

BDᵀ BD
−BDᵀ − ε −BD

] = Det

I +
[
B(Dᵀ −D) BD
−ε 0

]
= Det

(
I +B(Dᵀ −D) +BDε

)
= Det

(
I + (Dᵀ −D)B +DεB

)
.

(165)

To go from the first line with a matrix-valued kernel to the second line with a scalar kernel,
we used a Schur’s complement formula. to go from the second line to the third one we
used Det(I +MN) = Det(I +NM).

For our specific kernel K in (162), we choose B = K11 and ε = I, so that we obtain
the simple formula

Pf(J −K) =
√

Det (I +DᵀK11) =
√

Det (I +K11Dᵀ), (166)

where now K11D
ᵀ is a scalar kernel, acting on L2(0,+∞). Explicitly, we have

(K11D
ᵀ)(r, r′) = −

∫
Cas

dz
2iπ

∫
Cas

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2−w2)−(r+y)z−(r′+y)w η(z)

2zη(−w)
(167)
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with the rational factors
η(z) = (a+ z)(b+ z)(c+ z)

(b− z)(c− z) (168)

B.5 Stationary limit

As in (62) we want to calculate

GHY
a,b (y, x̃) := lim

c→−b

(
1 + ∂y

b+ c

)√
Det (I +K11Dᵀ). (169)

in order to obtain the cumulative distribution of the height at large time for a stationary
initial condition with parameters a, b.

For now as in (167) satisfies 0 < as < a, b, c. To be able to perform the limit c→ −b we
move c across the contours for w, z. It gives two additional residue terms and no double
residue. Define

f±(r) = (a± c)±1 exp
(
c3

3 ∓
x̃

2 c
2 − (r + y)c

)
. (170)

g+(r) = −
∫
Cas

dw
2iπ exp(w

3

3 + x̃

2w
2 − (r + y)w) (b+ w)

(b− w)(a− w) (171)

and
g−(r) =

∫
Cas

dz
2iπ exp(z

3

3 −
x̃

2 z
2 − (r + y)z)1

z

(b+ z)(a+ z)
(b− z) (172)

so that

− Resz=c(K11D
ᵀ) = b+ c

b− c
f+(r)g+(r′), −Resw=c(K11D

ᵀ) = c
b+ c

b− c
f−(r′)g−(r). (173)

Hence we may write

(K11D
ᵀ)(r, r′) = L(r, r′) + b+ c

b− c

(
f+(r)g+(r′) + cf−(r′)g−(r)

)
, (174)

or in the operator formalism

(K11D
ᵀ) = L+ b+ c

b− c
(
|f+〉 〈g+|+ c |g−〉 〈f−|

)
, (175)

where

L(r, r′) = −
∫
Cas

dz
2iπ

∫
Cas

dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2−w2)−(r+y)z−(r′+y)w η(z)

2zη(−w) (176)

with both contours going between {0, c} and {a, b}. Thus, we have

Det(I+K11D
ᵀ) = Det(I+L)Det

(
1 + b+c

b−c 〈g+| 1
1+L |f+〉 b+c

b−cc 〈f−|
1

1+L |f+〉
b+c
b−c 〈g+| 1

1+L |g−〉 1 + b+c
b−cc 〈f−|

1
1+L |g−〉 .

)
(177)

Letting ε = b+ c, we will write upon expanding in ε

(177) ' (Det(I + L0 + εX)(C0 + C1ε+ C2ε
2) (178)

and show that C0 = C1 = 0, so that

GHY
a,b (y, x̃) = lim

ε→0

(
1 + ∂y

b+ c

)√
Det(I +K11Dᵀ) = ∂y

√
Det(I + L0)C2 . (179)

Let us calculate some inner products explicitly and expand in ε each term in (177)
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• One has
b+ c

b− c
c 〈f−|f+〉 = 1

2
b+ c

b− c
a+ c

a− c
e

2
3 c

3−2yc (180)

This scalar product is defined only for c > 0 but we will consider the analytic
continuation to −b < c < 0.

• One has
b+ c

b− c
c 〈f−|g−〉 = b+ c

b− c
c

a− c
e
c3
3 + x̃

2 c
2−yc

∫
Cas

dz
2iπ

e
z3
3 −

x̃
2 z

2−yz 1
z

(b+ z)(a+ z)
(b− z)(z + c)

= −1 + ε

(
bx̃+ y + 1

2b − b
2 − 1

a+ b

)
+ ε

2
1

a+ b
e−

b3
3 + x̃

2 b
2+yb

∫ dz
2iπe

z3
3 −

x̃
2 z

2−yz 1
z

(b+ z)(a+ z)
(z − b)2

(181)

where we have moved the contour to z > b and taken the residue, which for c = −b
has a pole. The remaining integral has no singularity at c = −b.

• One has
b+ c

b− c
〈g+|f+〉 = −b+ c

b− c
(a+ c)e

c3
3 −

x̃
2 c

2−yc
∫ dw

2iπe
w3
3 + x̃

2w
2−yw (b+ w)

(b− w)(a− w)(w + c)

= −1 + ε

(
y − 1

2b + 1
b− a

− b(b+ x̃)
)

+ ε
a− b

2b e−
b3
3 −

x̃
2 b

2+yb
∫ dw

2iπe
w3
3 + x̃

2w
2−yw b+ w

(a− w)(w − b)2

(182)

• One has
b+ c

b− c
〈g+|g−〉

= −b+ c

b− c

∫
Cas

dw
2iπ

∫
Cas

dz
2iπ

1
w + z

e
w3
3 + x̃

2w
2−yw+ z3

3 −
x̃
2 z

2−yz (b+ w)(b+ z)(a+ z)
(b− w)(a− w)(b− z)

1
z

(183)

Let
L0(r, r′) = lim

ε→0
L(r, r′)

= −
∫ dz

2iπ

∫ dw
2iπ

z − w
z + w

e
z3
3 +w3

3 −
x̃
2 (z2−w2)−(r+y)z−(r′+y)w a+ z

2z(a− w) ,
(184)

where the contours pass between 0 and a. We can see that L0 can be bounded, for any
M > 0, as |L0(r, r′)| 6 Ce−Mr−ar′ for some constant C. Let us also define

f0
±(r) = lim

ε→0
f±(r) = (a∓ b)±1 exp

(
−b

3

3 ∓
x̃

2 b
2 + (r + y)b

)
. (185)

We compute now the inner products in (177). Since the functions g+ and g− decay
exponentially fast at infinity, we simply have

b+ c

b− c
〈g+|

1
1 + L

|g−〉 = ε

2b 〈g+|
1

1 + L0
|g−〉+ o(ε). (186)

To compute the remaining inner products, we use the decomposition
1

1 + L
= 1− L

1 + L
.
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• One has
b+ c

b− c
c 〈f−|

1
1 + L

|f+〉 = ε

4b
a− b
a+ b

e−
2
3 b

3+2yb + ε

2 〈f
0
−|

L0

1 + L0 |f
0
+〉+ o(ε). (187)

• One has
b+ c

b− c
c 〈f−|

1
1 + L

|g−〉 = −1 + ε

(
bx̃+ y + 1

2b − b
2 − 1

a+ b

)
+ ε

2
1

a+ b
e−

b3
3 + x̃

2 b
2+yb

∫ dz
2iπe

z3
3 −

x̃
2 z

2−yz (b+ z)(a+ z)
z(z − b)2 + ε

2 〈f
0
−|

L0

1 + L0 |g−〉+ o(ε)

(188)
where the contour passes to the right of b.

• One has
b+ c

b− c
〈g+|

1
1 + L

〈f+| = −1 + ε

(
y − 1

2b + 1
b− a

− b(b+ x̃)
)

+εa− b2b e−
b3
3 −

x̃
2 b

2+yb
∫ dw

2iπe
w3
3 + x̃

2w
2−yw b+ w

(a− w)(w − b)2−
ε

2b 〈g+|
L0

1 + L0 |f
0
+〉+o(ε),

(189)
where the contour passes to the right of b and to the left of a.

Hence our final result is that for the initial condition h(x, 0) = HYu,v(x), where u =
at−1/3, v = bt−1/3, with a+ b > 0, b 6 0

lim
t→∞

P

hat−1/3(t2/3x̃, t) + t
12

t1/3
6 y

 = GHY
a,b (y, x̃). (190)

The CDF of the solution with Hariya-Yor initial condition is

GHY
a,b (y, x̃) = ∂y

√
Det(I + L0)Det(M) (191)

where M is the 2 by 2 matrix

M =
(
M11 M12
M21 M22

)
, (192)

with

M11 = y − 1
2b + 1

b− a
− b(b+ x̃)− 1

2b 〈g+|
L0

1 + L0 |f
0
+〉 (193)

+ a− b
2b e−

b3
3 −

x̃
2 b

2+yb
∫ dw

2iπe
w3
3 + x̃

2w
2−yw b+ w

(a− w)(w − b)2 ,

M12 = 1
4b
a− b
a+ b

e−
2
3 b

3+2yb + 1
2 〈f

0
−|

L0

1 + L0 |f
0
+〉 , (194)

M21 = 1
2b 〈g+|

1
1 + L0

|g−〉 , (195)

M22 = bx̃+ y + 1
2b − b

2 − 1
a+ b

+ 1
2 〈f

0
−|

L0

1 + L0 |g−〉 (196)

+ e−
b3
3 + x̃

2 b
2+yb

2(a+ b)

∫ dz
2iπe

z3
3 −

x̃
2 z

2−yz (b+ z)(a+ z)
z(z − b)2 .

We recall that L0 is defined in (184), f0
± in (185), g± in (171), (172). Although this result

is fully explicit, it is quite involved and it remains to be studied how the various known
limits can be obtained from it.
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