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1. Abstract 

 
Reliable operation of nanoscale CMOS quantum dot devices at cryogenic temperatures fabricated with 
standard manufacturing techniques is of great importance for quantum computing applications. We 
investigated the very low temperature behavior of an Ultra Thin Body and Buried oxide (UTBB) Fully 
Depleted Silicon-On-Insulator (FD-SOI) quantum dot device fabricated using the standard fabrication process 
of STMicroelectronics. The performance of the quantum dot device is simulated and analyzed using the 3D 
Quantum Technology Computer Aided Design (QTCAD) software recently developed by Nanoacademic 
Technologies, achieving convergence down to 1.4 K. In this paper we present preliminary simulation results 
of this work and compare them with experimental data collected from the measurements on a device with the 
same geometry. 
 
2. Introduction 
 
Quantum computers, which use quantum bits (qubits) as their building blocks, promise to harness quantum 
mechanics to deliver disruptive advantages over a wide range of classical technologies. Quantum dots in 
silicon offer a promising approach to implement physical qubits. In this architecture the quantum information 
is encoded into the spin of a single electron or hole confined in the quantum dot [1, 2]. 

Qubits based on silicon quantum dots in conventional CMOS technologies promise to enable reproducible, 
high-yield industrial manufacturing [3] and co-integration [4] with classical control hardware, two decisive 
steps toward scalability [5-9].  In addition, by shortening R&D cycles, industrial spin-qubit production 
promises to accelerate the development of novel scaled-up devices coupling several qubits together for large 
scale, high-fidelity logical operations. A milestone towards a scalable qubit architecture is to develop a silicon-
based qubit structure fabricated using exclusively CMOS industrial manufacturing techniques.  

Our device is based on the 28 nm Ultra-Thin Body and Buried oxide (UTBB) Fully Depleted Silicon-On-
Insulator (FD-SOI) technology node of STMicroelectronics which has already demonstrated functional 
operation at cryogenic temperatures [10-15]. In order to define a consistent and fast design flow for quantum 
dot devices, it is crucial to predict their performance at cryogenic temperatures and to understand the electrical 
and quantum phenomena that occur using a simulation environment, before actually fabricating the device. 
This is a key step to avoid lengthy fabrication-and-measurement optimization loops that are time-consuming 
due to the long fabrication and characterization cycles. As a step forward towards this direction, we 
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demonstrate the use of a 3D Quantum Technology Computer Aided Design (QTCAD) simulation tool for 
modeling our quantum dot device at cryogenic temperatures.   

 
3. 28 nm UTBB FD-SOI technology 

 
The quantum dot architecture developed and studied in this work is based on a modification of a conventional 
MOSFET using the 28 nm UTBB FD-SOI technology node [16].  
  Figure 1 (a) shows a TEM image of a typical UTBB FD-SOI MOSFET. This four-terminal device consists 
of a source, a drain, a top gate, and a back plane that can be used as a back gate thanks to a thin 25-nm thick 
layer of Buried OXide (BOX). The device possesses a thin and undoped 7-nm thick silicon film playing the 
role of the body channel between the source and the drain.  

 

4. 28 nm UTBB FD-SOI split-gate device 
 

The quantum dot device that we studied is based on the split-gate architecture [18] and was designed and 
fabricated using the thick-gate-oxide Regular Vth option of the 28 nm STMicroelectronics FD-SOI technology. 
As illustrated in Fig. 1 (b) and (c), the source and the drain are n-doped and epitaxially grown to reduce the 
access resistance. Spacers are used to limit the source/drain extensions (also known as lightly doped drains) 
under the gate. The top gates are made of polysilicon, and the back plane is p-doped. Shallow Trench Isolation 

 

Figure 1: (a) TEM image illustrating the cross-section of a typical FD-SOI MOSFET. The spacers 
and epitaxial layers are indicated on the device. Image taken from [17]. (b) Schematic representation 
showing the top view of the split-gate device. (c) Schematic representation showing the cross-section 
of the split-gate device taken along the dashed line depicted in the top-view. 
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(STI) trenches filled with oxide allows electrical contact to the back gate. To complete the CMOS fabrication 
process, silicide is formed almost everywhere on top of the source, drain and gates, excluding the region over 
the channel where the quantum dot is expected to be formed. 

The gate (G2) is designed to control the quantum dot potential in the silicon channel splits the front gate in 
two parts: Front Gate Top (FGT) and Front Gate Bottom (FGB). A positive voltage on both parts of the front 
gate is used to form the two-dimensional electron gas (2DEG) at their interface with the oxide to create the 
source (drain) reservoir. The two additional lateral gates (G1 and G3) were initially designed to obtain extra 
control over the tunnel barriers between the reservoirs and the quantum dot by controlling their heights and 
widths. We will see that, instead, they lead to the formation of corner dots. 
 
5. Quantum Technology Computer Aided Design model at cryogenic temperatures 

 
We modeled our quantum dot device using the Quantum Technology Computer Aided Design (QTCAD) 
simulation tool [19, 20]. This finite-element modeling (FEM) software developed by Nanoacademic 
Technologies Inc. allows the simulation of the electrical and quantum behavior at cryogenic temperatures. 

The 3D geometry of the quantum dot structure was defined via the FEM mesh generating tool Gmsh [21].  
A first-order mesh containing 2.5 million nodes was generated, with local refinements in regions of fast 
potential variations to improve precision and convergence. Once the different materials and regions were 
defined, the electrodes and the doping were specified. The resulting computer-aided design (CAD) model is 
illustrated in Figure 2. Isothermal conditions were assumed in all simulations with a uniform temperature of 
1.4 K imposed throughout the device. Polysilicon gates (red surfaces in Fig. 2) and Ohmic contacts (surface 
at the bottom of the BOX, dark green surfaces at source and drain in Fig. 2) set Dirichlet boundary conditions 
on the electrostatic potential. All simulations were executed on the Niagara cluster of Compute Canada [22]. 

 

Figure 2: 3D model of the FD-SOI nanostructure from the layout used for fabrication of the device 
via Gmsh [21] and the QTCAD simulation tool. The device is used to form electrostatically defined 
quantum dots under the electrodes for quantum computing applications. (a) Cross-section along the 
y-axis illustrating the two parts of the front gate (red), the gate G2 (red) and the silicon channel (pale 
green)  grown on the BOX (gray). (b) Cross-section along the x-axis illustrating the channel, the 
front gate lying on the silicon film and the gate G3 that lies on the oxide. (c) Cross section along the 
x-axis presenting the channel, the epitaxially grown source and drain, the spacers, the gate stack and, 
finally, the gate oxide. The darkest green shade indicates surfaces at which Ohmic boundary 
conditions are imposed in the simulations. 
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Assuming thermodynamic equilibrium, the non-linear Poisson equation [23, 24] is solved self-consistently, 
yielding the electrostatic potential and the classical charge distribution that corresponds according to the 
statistical physics of semiconductors. Figure 3 shows the conduction band edge plotted for different voltages 
applied on the gate G2 and the back gate following a linecut located along the y-axis in the middle of the front 
gate (see Figure 2) and at 0.1 nm above the BOX. 

 
The formation of a single electrostatic quantum dot under the gate G2 was not observed experimentally. 

Nevertheless, this gate can be used for tunnel barrier control when the conduction channel is activated by the 

  

Figure 3: Simulated conduction band profile using the simulation tool QTCAD at 0.1 nm from the BOX 
into the silicon film along y-axis parallel to the transport (see Fig. 2). A 2DEG at the Si/SiO2 interface 
is observed, along with an ability to tune the potential barrier height by applying the appropriate voltages 
to G2 and the back gate. (a) A voltage sweep is performed on the gate G2 with all the other gates 
grounded. (b) A voltage sweep is performed on the back gate with all the other gates grounded. The 
zero of energy corresponds to the Fermi level. 

 

  

Figure 4: Measured current as a function of VBG and VG2 forming the charge 
stability diagram. Density plot: experimentally measured current. Blue dots: 
numerical calculations of the band diagram predicting blocked transport. 
Red dots: numerical calculations predicting allowed transport. In the device 
measured at 1.4 K, a transport apex is identified at (VG2 , VBG) = (0.34 , 2.24) 
V (white circle). In the simulated device, it is identified at (VG2, VBG) = (0.0 
, 3.7) V. The numerical data have been shifted in the VG2 and VBG axes by 
0.34V and -1.46V, respectively, so that these two apexes fit together. 
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BG and the rest of the gates are grounded, as shown by the simulation results in Fig. 3 (b). Here, we show that 
experimental data demonstrating channel activation is well explained by QTCAD simulations at 1.4 K. 

Figure 4 shows the stability diagrams extracted for a voltage sweep performed on G2 while the voltage on 
BG was stepped. We could distinguish two regimes in this diagram starting from the transport apex that is 
indicated in the figure with a white circle. First, beyond this point, the transport is activated only by the back 
gate. Second, below this point, G2 acts as a tunnel barrier and VBG must be increased to overcome the barrier 
and activate transport. This behavior is well reproduced by QTCAD simulations shown by the red and blue 
dots in the figure, with the slope of the oblique line delimiting transport regions being nearly identical in 
theory and experiment. The shift of the theoretical transport apex with respect to experiment is expected 
because numerical simulations do not account for surface charges trapped at the gate oxide interfaces; in fact, 
these shifts may eventually be used to estimate the magnitude of the charge trap density. 

 
6. Observation of corner dots in the FD-SOI split-gate device 
 

We now show numerical and experimental evidence that corner quantum dots [25] can be formed in front of 
G1 and G3 when these lateral gates are polarized positively.  

At low voltage and without back body biasing, the tunneling barriers due to the distance between the gates 
FGT, G2 and FGB do not allow transport to be measured experimentally without exceeding the polysilicon 
gates nominal supply voltage (1.8 V) of this technology. However, when a voltage of the order of 10 V is 
applied on G1 and G3, the additional potential forces the conduction band under the Fermi level and forms a 
conduction channel. It is possible to apply voltages much higher than 1.8 V on these gates without risking 
damaging the structure, since the lateral gates are not built on the gate oxide layer as opposed to FGT, G2, 
and FGB. Reference [26] reports current measurements resulted in charge stability diagrams which enabled a 
triangulation analysis suggesting the formation of quantum dots near G1 and G3 (Figure 5 (c)). 

QTCAD simulations predict the appearance of corner dots at positions that are compatible with experimental 
observations. More precisely, Figure 5 (a) shows the numerically calculated conduction band edge profile 
over a slice along the x-y plane, 1 nm below the interface between the channel and the gate oxides.  This band 
edge displays clear energy-potential minima in front of G1 and G3. The numerical solution of the 3D single-
electron effective-mass Schrödinger’s equation resulted in bound eigenstates that are localized near the top 
edge of the channel in front of G1 and G3 (Figure 5 (b)). 

Sequential tunneling simulations were also done using QTCAD’s many-body and master equation solvers 
to better understand transport measurements. These simulations predicted that single electrons may in 
principle be loaded in the corner dots at G1 and G3 voltages approaching 2 V. However, at this voltage, 
potential barriers surrounding the dots are too high to lead to measurable currents, explaining why the single-
electron regime was not observed at the experimental gate bias of 10 V at which Coulomb diamonds were 
measured.  
 
7. Conclusions 

 
We reported our work on the simulation of a 28 nm UTBB FD-SOI split-gate device at cryogenic temperatures 
with the QTCAD simulation tool.  Electrostatic simulations done with QTCAD at 1.4 K elucidated channel 
activation via the combined action of G2 and the back gate. In addition, effective-mass Schrödinger 
calculations corroborated the experimental observation of quantum dots near G1 and G3, and clarified their 
corner-dot nature. Finally, transport simulations explained why the single-electron regime was not 
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experimentally observed for these dots. These results pave the way to the integration of QTCAD into the gated 
quantum-dot design workflow. 
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