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LENGTH ORTHOSPECTRUM OF CONVEX BODIES ON FLAT TORI

NGUYEN VIET DANG, MATTHIEU LEAUTAUD, AND GABRIEL RIVIERE

ABSTRACT. In analogy with the study of Pollicott-Ruelle resonances on negatively curved man-
ifolds, we define anisotropic Sobolev spaces that are well-adapted to the analysis of the geodesic
vector field on the flat torus T¢. Among several applications of this functional point of view, we
study properties of geodesics that are orthogonal to two convex subsets of T¢ (i.e. projection of
the boundaries of strictly convex bodies of R%). Associated to the set of lengths of such ortho-
geodesics, we define a geometric Epstein function and prove its meromorphic continuation. We
compute its residues in terms of intrinsic volumes of the convex sets. We also prove Poisson-type
summation formulas relating the set of lengths of orthogeodesics and the spectrum of magnetic

Laplacians.
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1. INTRODUCTION

Motivated by recent developments on analytical and spectral properties of geodesic flows on
negatively curved manifolds, we study in this article related questions in the opposite setting of a
completely integrable system. Such an analysis is now known to have several types of applications
ranging from the study of correlation functions to counting problems and equidistribution prop-
erties. Before discussing analytical and spectral properties of the geodesic flow on the torus (see
Section 2), we thus start by presenting one of their applications in the context of convex geometry.

Let K; and K3 be two strictly convex and compact subsets of R? (d > 2) with smooth bound-
aries 0Ky and 0Ks. All along this article, by strictly convex, we mean that the boundary of the
convex set K; has all its sectional curvatures positive and we adopt the convention that, if K
is reduced to a point, then it is strictly convex with smooth boundary. By a classical Theorem
of Hadamard [Had97] and Sacksteder [Sac60], if S is a smooth, compact, connected, orientable
hypersurface embedded in R? and if S has all its sectional curvatures nonnegative, then it is the
boundary of a convex body — see also [dCL69].

Through the canonical projection p : R? — T4 := R4/277Z%, the boundaries of K; and K, can
be identified with immersed submanifolds of the flat torus that may have selfintersection points.
We fix an orientation on each submanifold 0K either by the outgoing normal vector to K; or
by the ingoing one. This orientation induces an orientation on ¥; := p(0K;). The choice of
orientation is not necessarily the same on each OK; (hence on each ¥;) and, once each orientation
is fixed, we denote by P, k, the set of geodesic arcs (parametrized by arc length) on T? that are
directly orthog;onal1 to X1 and Ys. The orientation of the sets K;, Ko is implicit in our notation
(in the introduction); the results however depend on this choice. Using the strict convexity of K
and K>, one can first verify the following statement.

Lemma 1.1. There is Ty > 0 large enough, such for any T > 0 the subset
{7 € PKuKz :Tp < 6(7) < T}

of Pk, Kk, is finite.

n the case where K; is reduced to a point, every geodesic passing through K; is said to be orthogonal to it
and we fix the natural orientation using the Euclidean volume on R¢.
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Note that the complementary set in Py, x, might be uncountable, depending on the choice of
orientations of ;. We will be interested on the asymptotic properties of the lengths of these or-
thogeodesics. We shall for instance verify in Theorem 8.12 below that, for 7y > 0 as in Lemma 1.1,

ﬂ%Td
(2m) (4 + 1)

In the case where K7 = Ky = {0}, this exactly amounts to count the number of lattice points in
277Z% of length less than T and understanding the optimal size of the remainder is a deep problem in
number theory. Here, we consider the setting of orthogeodesics for much more general convex sets.
Thus, in some sense less arithmetical tools are available and we do not necessarily expect as strong
properties on the size of the remainder. In fact, rather than refining these asymptotic formulas, our
main purpose is to study various zeta functions associated to these length orthospectra and some
of their analytical properties. We also aim at determining the geometric quantities encoded by
these functions. Recall that counting orthogeodesics to convex subsets in the setup of hyperbolic
geometry was much studied (see e.g. [PP16, BAPP19] and the references therein) and similar
questions arise even if the asymptotic formulas are of different nature.

(L1) ${y € Proya s To < 4(7) <T} = Lo,

1.1. Epstein zeta functions in convex geometry. The most natural way to form a zeta
function starting from Pk, x, is to define, for Ty > 0 as in Lemma 1.1, a generalized Epstein zeta
function:

ety P
()’

(1.2) Cs(K1, Ko, 5) := >

YEPK, Ko £(7)>To

where 3 is a closed and real-valued one form on T¢. Recall that any such form writes 8 =
2?21 Bidx; + df where 3; € R and f € C>°(T% R). The one-form [3] = Z?Zl Bidx; is identified
with the de Rham cohomology class of 5. The first de Rham cohomology group will be denoted
by HY(T? R) = H;(T?): it corresponds to the kernel of the Laplacian acting on smooth real-
valued one-forms and it can be identified with the first singular cohomology group. See [Leel3,
Chapter 17 and 18] or [Lee09, Chapter 10]. We shall say that the cohomology class [5] of 3 is in
H'(T?,7Z) if, in the above decomposition, 3; € Z for all i € {1,...,d}.

Thanks to (1.1), s — (3(K1, K2, s) defines a holomorphic function on {Re(s) > d} and our first
main result describes its meromorphic continuation to C:

Theorem 1.2. Let K; and Ky be two strictly conver and compact subsets of R? (d > 2) with
smooth boundary and let B be a closed and real-valued one form on T®. The following holds:

(1) if the cohomology class [B] of B is in H'(T¢,Z), then
s € {Re(s) > d} — (p(K1, Ko, 5)

extends meromorphically to C, its poles are located at s =1,...,d and are simple;
(2) otherwise, (g(K1, Ko, s) extends holomorphically to C.

In the case where both K; and K, are reduced to points, this theorem recovers a classical
property of Epstein zeta functions [Eps03]. See §1.4.1 below for a brief reminder on such arithmetic
functions. Yet, to the best of our knowledge, this result seems to be new in the case of general
strictly convex subsets.

As for classical zeta functions in number theory, it is natural to compute the explicit values of
the residues and, due to the geometric nature of the problem, one would like to express them in
terms of natural geometric quantities attached to the convex sets K7 and K5. In order to be more
explicit on the residues when 3 = 0, recall Steiner’s formula for a compact and convex subset K
of R [Sch14, §4]:

[VEN

(1.3) for all t > 0, Volga (K +tBy) = Zvd ‘ t,

(gﬂ)
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where Vy (K) > 0 is the ¢-intrinsic volume of the convex set K, and (1.3) may be taken as a
definition of the numbers V; (K). Note that Vo (K) = 1, V4(K) = Volga(K). Moreover, if 0K has
smooth boundary, one finds by the Minkowski-Steiner formula [Sch14, 4.2] [Teil6, p. 86]:

Vi1 (K) = %Vol(aK),

where Vol is the (d—1)-volume measure on 0K induced by the Euclidean structure on R%. Observe
that Vy_p (K) =0 for any 0 < £ < d — 1 when K is reduced to a point. Other properties of these
intrinsic volumes are their invariance under Euclidean isometries (i.e. any composition of a rotation
with a translation), their continuity with respect to the Hausdorff metric and their additivity? on
convex subsets of RY, i.e.

vo<i<d, Vi(K)+Ve(L)=Vi(KUL)+V,(KNL),

whenever K, L, K UL, K N L are convex subsets of R%. In fact, a classical Theorem of Hadwiger
states that any functional on the convex subsets of R? enjoying these three properties is a linear
combination of these intrinsic volumes [Sch14, Th. 6.4.14].

Our second main theorem expresses the residues of (o(K7, Ko, s) (stated for 5 = 0 to improve
readability) in terms of these intrinsic volumes:

Theorem 1.3. Let K; and Ky be two strictly conver and compact subsets of R? (d > 2) with
smooth boundary. Suppose in addition that X1 = p(OK1) (resp. o = p(0K2)) is oriented by the
outgoing (resp. ingoing) normal vector to Ky (resp. Ks).

Then, the function

s = Co(Kq, Ko, s

3 75l Va_o(Ki — K3)

1 d
)_(Qw)dé: r(f+1) s— 10

1
extends holomorphically from {Re(s) > d} to C.

Note that —K5 is a convex set and thus so is K; — K3. Here we only describe the case where
B = 0 and geodesics are pointing outward K; and inward Ks. Yet our proof yields an explicit
expression for any § and for more general orientation conditions on the ;. See formula (8.23)
and §9 for more details. For the sake of simplicity, we restricted ourselves to this case here as
it has a transparent expression in terms of intrinsic volumes while formulas are more involved in
the general case. When K5 is reduced to a point, this theorem in particular solves the following
geometric inverse problem: recover all ¢-intrinsic volumes of K; for 0 < £ < d—1 from the lengths
of the geodesics of R? orthogonal to K and joining K; to an element of 27Z? (see Figure 1).

FIcure 1. Lift of the orthogeodesic arcs when Ko = {0}.

2A functional satisfying such an additive property is referred as a valuation [Schl4, §6.1].
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1.2. Poincaré series in convex geometry. In analogy with the case of negatively curved man-
ifolds [PP16, BAPP19, DR21], one can also define generalized Poincaré series for the length or-
thospectrum:

(1.4) Z5(K1, Ko, 5) = > el fy 85t
YEPK, Ko :L(7)>To

which, as a consequence of (1.1), is holomorphic on {Re(s) > 0}. As above, § is a closed and
real-valued one form on T¢. For such functions, we are able to describe the continuation up to
Re(s) = 0 in the following sense:

Theorem 1.4 (Continuous continuation of Poincaré series). Let K1 and K3 be two strictly convex
and compact subsets of R? (d > 2) with smooth boundary and let 3 be a closed and real-valued one

form on T,
Then, the function

s € {Re(s) > 0} — Z5(K1, K2, s)
extends continuously to
{Re(s) > 0} \ {il¢ - [8]] : € € Z%}.
Moreover, given & € 74, one has

(1) if & — [B] = 0, then there ewxist ag)(Kl, Ks),..., agd) (K1, K3) in C such that

converges as s — 0 (with Re(s) > 0);
d—1
(2) if &o — [B] # 0 and d is odd, then there exist ag?B(Kl,Kg),...,aég)(Kl,Kg) and
bey,3(K1, K2) in C such that

ot )
Bp(, Ky~ S o0 EVED e e — (81
L o Tile— BN

converges as s — £i|§o — [B]| (with Re(s) > 0);
(3) if & — [B] # 0 and d is even, then there exist aég?ﬁ(Kl,Kg), . .,aéj/g)(Kl,Kz) such that

¢ a(é)(Kl K>)
Z5(K1, Ko, ) — i
(L, £2,9) Z%(m@—mo

converges as s — £i|§o — [B]| (with Re(s) > 0).

ati__,°
T_é

This Theorem is a weakened version of Theorem 8.17 where the C* regularity of the continuation
of Z5 will also be discussed. Note that the set of singular points {#i|¢ — [B]| : € € Z9} is linked
to the spectrum of a natural magnetic Laplacian on T%, namely? A_g = (0 — i[B])? — see the
discussion in Sections 2.4 and 5.2.2. For § = 0 and for the orientation conventions of Theorem 1.3,
the “residues” at s = 0 can be explicitly expressed as

© (—1)d71€!7T%

V1< /<d, =2 Ty (K — Ko).
R ARS ag (27r)df(§+1) a—e (K 2)

3The eigenvalues of A_(g and Ag) coincide.
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1.3. Application to Poisson type formulas. According to (1.1), and for Tp > 0 as in Lemma 1.1
above, we emphasize that, on the imaginary axis, the Poincaré series

(1.5) Z5(K1, Ky, it) = > et o P emitt()
YEPK, KoL (7)>To

is the Fourier transform of the counting measure

(1.6) T k0 15 () == 3 e 5t — () e S'(R)

YEPK |, Ko (V) >To

which is a tempered distribution supported in the cone (0, +00). Therefore, thanks to [RS75, Thm
IX.16 p. 23] (see also Proposition 7.5 below), T k, i, (t) can be obtained as the boundary value
of a holomorphic function as follows:

(1.7) Z5(Ky, Ky, it +a) = Tax, x,(t) inS'(R), asa—0F.

The holomorphic function is nothing but the analytic extension of the Fourier transform to the
upper half-plane. Hence, the reader can think of Theorem 1.4 as a loose version of the Paley—
Wiener—Schwartz Theorem, stating that the Fourier transform of a distribution supported on
the half-line (0,400) is the boundary value on R of a holomorphic function on the lower half-
plane (sometimes called its Fourier-Laplace transform). Note that, as a consequence of (1.7), the
Poincaré series completely determines the distribution of the twisted length orthospectrum.

Remark 1.5. In case 8 =0, To k, K, gives precisely the distribution of length of orthogeodesics:
namely if £(K1,Ks) = {€(v),7y € Pk, k,} denotes the set of length of orthogeodesics, then we
simply have

(1.8) To.k, 5, (1) == > med(t — ),  where my = #{y € Px, iy, £(7) = £}
£>To e L(K1,K2)

denotes the multiplicity of the length ¢ € L(K7, K5).

As a direct application of a refined version of Theorem 1.4 (namely Theorem 8.17 below)
together with (1.7), we also obtain a new Poisson-type summation formulas, describing the distri-
butional singularities of T.

Theorem 1.6 (Poisson type formula). Let K1 and Ky be two strictly convex and compact subsets
of R? (d > 2) with smooth boundary and let 3 be a closed and real-valued one form on T%. Then,
with Tg i, K, (T) defined in (1.6), the singular support of

Torm(n) = 3 chfem®
YEPK, ko (v)>To

is included in Sp(+./—Ag)) and the singularities are explicitly described by Theorem 8.17.

Here, we recall that the complementary of the singular support of a distribution T is the open set
where the distribution is smooth. In particular, the singular support of the geometric distribution
'T'gﬁ K., K, s given by the eigenvalues of the magnetic Laplacian and it does not depend on the
convex sets Kq, K. We would like to remark that Theorem 1.6 looks like a trace formula and
we refer to paragraph 1.4.2 for a more detailed comparison. The precise form of the singularity
depends on the geometry of the convex sets K7 and Ko — see Theorem 8.17 for precise expressions
of the leading term at each singularity. We emphasize that the singularities are obtained as the
boundary values of simple holomorphic functions as in [H6r03, Th.3.1.11].

In view of having simpler singularities and motivated by the recent developments on crystalline
measures [Mey22], one can symmetrize (and renormalize) the distribution Tg g, K, (t). This is
the content of our last main result which extends in our geometric setup the Guinand-Meyer
summation formula [Mey16, Th. 5].
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Theorem 1.7 (Guinand-Meyer type formula). Let K7 and Ky be two strictly convex and compact
subsets of R? (d > 2) with smooth boundary and let 3 be a closed and real-valued one form on T?
such that [8] ¢ H* (T, Z). Let u be the signed measure defined as

il i, 5
u(t) = Z ﬁfs(t—é(V))‘F(—i)d_l Z ——=0(t +£(7)),

’YG'PK1=K2:E(’Y)>TO E(’V) 2 ’y€'PK2,K1 :5("/)>TO ’y 2

where we take the same orientation conventions for' Px, x, and Pk, i,
| ) »
Then, there exist complex numbers (C>\))\€Sp(i X)) and r belonging to L} (R) for every

loc
1 <p < o such that

fi(r) = > exd(r—A) +r.
/\Esp(ig/—A[m)

In the case where 8 € H'(T?,7Z), the result would be similar except for an extra singularity of
the Fourier transform at 7 = 0 that may be more singular than the Dirac distribution. Following
our proof, one could in fact describe explicitly this singularity at 7 = 0 even if we do not carry
out the calculation explicitly. In the case where K7 and K5 are distinct points and where d = 3,
it was in fact proved that » = 0 in [Mey16, Th. 5]. The proof of this last fact is briefly recalled in
£8.9.2 using our formalism. We also explain how it can be extended to higher dimensions (when
d is odd) to give rise to crystalline distributions, as first shown in [LR21, §2]. We finally deduce
from this discussion that r is not identically 0 as soon as d > 5, even in the case where K, K>
are points. See also [Gui59, LO16, RV19] for earlier related results and [Mey22] for a review on
recent developments in that direction.

1.4. Related results. Before discussing the relation of these results to the analytical properties
of geodesic flows, let us comment how these applications to zeta functions and Poisson formulas
in convex geometry compare with similar properties and objects appearing in different contexts,
most notably in arithmetic, spectral geometry and hyperbolic geometry.

1.4.1. Comparison with zeta functions from analytic number theory. The zeta functions appearing
in Theorem 1.2 are natural generalizations in the setup of convex geometry of the Hurwitz zeta

function [Apo98, Ch. 12]:
1
<Hur(Q> 5) = Z

S
cetepq STl

where ¢ is some fixed element in [0,1). In the case ¢ = 0, this is nothing else than twice the
Riemann zeta function (g(s). It is well known that these functions extend meromorphically from
{Re(s) > 1} to C with a simple pole at s = 1 whose residue is equal to 2. The relation with
our zeta functions is as follows. Assume that both K; and K, are points in T' = R/27Z that
are at a distance ¢ = 2rmin{q, 1 — ¢} of each other. Then, one can verify that (o(K1, Ka,s) =
(27) " *Caur (g, 8). The fact that we are in higher dimensions is responsible for the presence of extra
poles at s = 1,...d and Theorem 1.3 gives us an explicit expression of their residues in terms
of geometric quantities. Due to our use of stationary phase arguments, we note that our proof
does not work (strictly speaking) for d = 1 even if the functions are of the same nature from the
perspective of convex geometry.

Here we choose to call our functions generalized Epstein zeta functions in analogy with the zeta
functions defined by Epstein [Eps03, Eq. (2)] as higher-dimensional analogues of the Riemann zeta
function:
£2imEB

+ql*
&+l

CEpS((Lﬁvs) = Z

E€ZIN\{~q

4n particular, both sets are a priori distinct.
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where ¢ and 3 are two fixed elements in R? and |.| is the Euclidean norm. When K; and K; are
reduced to two points x; and x5, one has

CEps (xQQWCElaﬁ’ 5> = (2m)*e' TPl (Ky, Ky, s),
where f € R? is identified with a closed one form, and Cp is defined in (1.2). Hence, up to a
multiplicative factors, our zeta functions (3(K7, K3, s) are the natural extension of Epstein zeta
functions when one considers general convex subsets of R? instead of points. It is well-known that
the “classical” Epstein zeta functions extend meromorphically to the whole complex plane with at
most a simple pole at s = d. Theorems 1.2 and 1.3 show that, for more general convex sets, one
may also have poles at s = 1,...,d — 1. Note that we recover the continuation of the “classical”
Epstein case since, if K, K5 are both points, Vy(K; — Ko) =0forall 1 </¢<d—1.

In Theorem 1.2, we saw that if we weight our series with some unitary twist involving a closed
and real-valued one form S, then our zeta functions have in fact a holomorphic extension as
soon as [B] ¢ H'(T? Z). These unitary twists can be thought of as geometric analogues of the
(arithmetic) twisting factors used when one extends the Riemann zeta function to more general
Dirichlet series [Apo98, Ch. 12]. Recall that these are defined in the following manner. Fix a
positive integer D and a morphism x : (Z/DZ)* — S! := {# € Z : |z| = 1} (the Dirichlet
character). Such a morphism can be extended into a D-periodic function x : Z — S! by letting
x (&) = 0 for every & such that £ and D are not coprime. Dirichlet series (or L-functions of weight
x) are then defined as

D D+r 1 & r
L(X,S) = Xg(i) = Z Z >|<(§C]D+_‘_T,|S) = E EX(T)CHur (57 5) )

gezr r=1q¢€Z\{-r/D}

and they have a holomorphic extension to C except for the trivial character y = 1 where one
has a simple pole at s = 1. Understanding the holomorphic continuation of more general L-
functions [Art24] on algebraic number fields (for arbitrary irreducible representations) is in fact a
classical topic in analytic number theory: this is for instance at the heart of Artin’s conjecture.
Here, we emphasize that our unitary twists do not have any particular arithmetic meaning and our
(strictly) convex sets are a priori arbitrary. Despite that and thus for seemingly different reasons,
these twisting factors have the same effect as Dirichlet characters for the Riemann zeta function in
the sense that, under some natural “non-rationality” assumption on (3, our zeta functions extend
holomorphically to C.

1.4.2. Relation with trace formulas. Our main result on the singular support of the oscillatory se-
ries :I\'o, K ke (t) = 22, e~ () is very reminiscent to the celebrated wave trace formula proved
by Chazarain [Cha74] and Duistermaat—Guillemin [DG75] extending previous results by Sel-
berg [Sel56] and Colin de Verdieére [CdV73]. These formulas may be seen as generalizations in
spectral geometry of the Poisson summation formula, letting Sp(,/—A,) denote the spectrum of
the square root of the Laplace-Beltrami operator A, one considers the series

T = >  eMesm),
AESP(y/—Ay)

which converges in tempered distributions thanks to the Weyl law. The wave trace formula states
that the singular support of the distribution T is exactly the set of lengths of periodic geodesic
curves for the metric g. Furthermore, when the geodesic flow is nondegenerate, they described
the singularity of T at each period in terms of geometric data attached to the periodic orbits and
of distributions of the form (¢ 4 £ +40)~!. In other words, the quantum spectrum determines the
classical length spectrum and these wave trace formulas are often referred as generalized Poisson
formulas. Recall from [H6r03, p.72] that the singularities in this formula can also be rewritten as
follows

(1.9) =(t+L+i0)"' =FP <1> — i (t £ 0),

lim ——
v+ t £+ iy tEl
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where FP (.) is the finite part of the (non-integrable) function (¢ & £)~1.

Theorem 1.6 has a similar flavour except that the correspondence is in the other sense and
that it involves orthogeodesics of two given convex sets. More precisely, we start from the length
orthospectrum between two convex sets, we then form the series -T_B,Kl,Kz t)=>, et o Pe—itt()
and its singular support coincides with the quantum spectrum Sp(+i,/—Ag)) where Ag is the
magnetic Laplacian. Another notable difference is that the singularities are more complicated in
the sense that they involve distributions of the form (¢t & A — i0)~* with & > 1 that may not
even be an integer if d is even. We emphasize from (1.9) that, as in the Chazarain-Duistermaat—
Guillemin formula, the singularities of fg, K, K, are not purely Dirac type distributions (and their
derivatives). This is due to the fact that the counting measure T3 g, i, is supported on the
half-line, hence its Fourier transform Z3 g, r,(it) must have its (C° and analytic) wave front set
contained in the half cotangent cone {(¢;7);7 < 0} C T*R. This prevents the presence of purely
§() (t)-like singularities whose contribution to the wave front set would contain both positive and
negative frequencies .

As alluded above, the formulation in Theorem 1.7 is itself motivated by recent developments on
crystalline measures [Mey22], i.e. measures on R carried by a discrete locally finite set, belonging
to 8'(R), whose Fourier transform is still a measure carried by a discrete locally finite set. Here, we
started from a complex valued measure carried by a discrete locally finite set on R (defined from
our convex orthospectrum) and we ended up with a Radon measure carried by the spectrum of the
magnetic Laplacian (which is a discrete locally finite set) modulo some (absolutely continuous)
remainder lying in LP. . Hence, in general, it does not fall into the category of crystalline measures

loc*
due to this a priori nonvanishing remainder.

1.4.3. Poincaré series on negatively curved manifolds. Poincaré series appear naturally when one
studies counting problems on a negatively curved manifold (M,g) [PP16, BAPP19]. In that
context, one aims for instance at couting the number of common perpendicular geodesic curves of
two convex subsets of the universal cover (M, §). Due to the exponential growth of the number
of such orthogeodesics, it is natural to consider e=*“(*) rather than ()~ in order to ensure the
convergence of the sums. The study of the meromorphic continuation of Poincaré series on compact
manifolds of constant negative curvature goes back to the works of Huber in the late fifties [Hub56,
Satz A], [Hubb59, Satz 2]. In that setting, one can obtain the meromorphic continuation through
the relation between Poincaré series and the spectral decomposition of the Laplacian. In the case
of variable negative curvature, the relation with the Laplacian is less explicit and one rather needs
to exploit the ergodic properties of the geodesic flow directly. This approach was initiated by
Margulis in [Mar69, Mar04]. Using this dynamical approach and the theory of Pollicott-Ruelle
resonances, two of the authors recently proved the meromorphic continuation of Poincaré series on
manifolds of variable negative curvature [DR21]. Here, as in the works of Huber, we will use the
tools from harmonic analysis that are available on the torus to study the continuation of Poincaré
series. Yet, rather than making the connection with the Laplacian®, we will directly study the
analytical properties of the geodesic flow on the torus when acting on spaces of distributions with
anisotropic regularity as it was the case for negatively curved manifolds. See §2.2 for more details.
In the negatively curved setting, it is shown in [DR21] that one has meromorphic continuation
beyond the threshold Re(s) = h¢op. In the case of the flat torus, Theorem 1.4 shows that there is
barrier at Re(s) = hiop = 0 where logarithmic or square root singularities may occur at certain
points that correspond to the eigenvalues of the (magnetic) Laplacian. Outside these singularities,
we are however able to continuously /smoothly extend the function up to Re(s) = 0. As already
alluded, our study is intimately related to the analytic properties of the geodesic vector field

(1.10) V=600,
on the unit tangent bundle

ST .= {(x,0) € T? x S*1}.

5The fact that we aim at dealing with general convex sets (and not only points) seems to prevent us from
working with the Laplacian on T¢.
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When studying the resolvent of this operator, we will verify that there is a barrier at Re(s) = 0
when trying to make some analytic continuation. This phenomenon is retated to observations made
by Dyatlov and Zworski at the end of the introduction of [DZ15], where stochastic perturbations
of geodesic vector fields on Anosov manifolds are studied. In that reference, the authors studied
stochastic perturbations of geodesic vector fields on Anosov manifolds. In the opposite setup of
the flat 2-torus, they described the spectrum of P, := V 4 eAgp2 (with V given by (1.10)) and
they observed that, in the limit ¢ — 07, the spectrum of P. fills Y-shaped lines in the halfplane
{Re(s) < 0} that are based at the same singularities as our Poincaré series. See e.g. Figure 3 in
that reference and the companion article [DGBLR22] for more details on this issue.

1.4.4. Orthospectrum identities in hyperbolic geometry. Finally, let us mention the following re-
lated problem in hyperbolic geometry. Consider some hyperbolic manifold X with nonempty
totally geodesic smooth boundary. In that framework, an orthogeodesic v is a geodesic arc which
is properly immersed in X and which is perpendicular to X at its endpoints. The lengths of
these orthogeodesics verify certain identities connecting them to the volume of the boundary of
X (Basmajian’s identity) [Bas93]:

Vol(0X) =Y " Vas (ln (cothe(;)» ,

where V;_;(r) is the volume of a ball of radius r on the hyperbolic space HY~! (with the convention
that Vi(r) = 2r). Similar equalities also relate this length orthospectrum with the volume of the
unit tangent bundle SX (Bridgeman-Kahn’s identity [BK10]) and the analogues of these results on
manifolds with cusps are due to McShane [McS91, McS98]. We refer to [BT16] for a recent review
on this topic. In some sense, this formula has the same flavour as Theorem 1.3 as it relates some
length orthospectrum with some volumes associated with our convex. However, while the right-
hand side of Basmajian’s identity converges in a standard sense, our zeta functions are defined by
analytic continuation and the volumes appear as the residues of these functions.

2. ANALYTICAL RESULTS: A FUNCTIONAL SETUP FOR THE GEODESIC VECTOR FIELD

Let us now discuss the relation of these problems from convex geometry with the analytical
properties of geodesic flows on flat tori and come to the statement of our main analytical results.
For simplicity, we now restrict ourselves to the case where § = 0 and where we look at geodesic
arcs pointing outside K; and inside K7 (as in Theorem 1.3).

2.1. Lifting the problem to the unit tangent bundle. In order to prove Theorems 1.2, 1.3
and 1.4, one way is to rewrite the series we are interested in under an integral form as follows:

+oo
(21) > ) = [ @) ([ xO80-resam o sl

YEPK,, Ky

where x is a nice enough function on R (in the applications we have in mind, x € C°(R%) or
x(t) =t7% or x(t) = e~*"), where 0y (k, — K, +1B,) (%, |dz]) is the volume measure on d( K — Ko+t Bg)
induced by the Euclidean structure on R? and where

(2.2) 5[0] (x) = (2711—)d Z R

ez

A precise signification of the right hand-side of (2.1) together with a proof of this formula are
given in Appendix A. With that expression at hand, proving our main results on convex geometry
amounts to discuss the allowed functions x in (2.1), to decompose dfg) according to (2.2) and to
analyze the oscillatory integrals that come out. Yet, as explained in the beginning of the article,
rather than doing that directly, we will obtain these results as a by-product of a more general
analysis® of the geodesic vector field on ST?. In fact, since the seminal work of Margulis [Mar69,
Mar04], it is well understood that on negatively curved manifolds, it is convenient to lift this kind

6Similar oscillatory integrals will of course appear in our analysis.
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of geometric problems to the unit cotangent bundle of the manifold. For instance, properties of
Poincaré series are related to the asymptotic properties of the geodesic flow, and more specifically
to its mixing properties. In a recent work [DR21], two of the authors formulated this relation
using the theory of De Rham currents and we will see that this still makes sense in the case of
flat tori where the curvature vanishes everywhere. See Section 8 for details. Let us explain this
connection without being very precise on the sense of the various integrals. We denote by N(K;)
the outward unit normal to K; inside ST¢:

N(K;) :={(p(z),dp(z)0),x € 0K;,0 directly orthogonal to 0K, at x} .

Then, given any nice enough function x(t) (say again in C2°(R%), t~* or e~*"), we shall prove that

(23) > (o) = (05 [N [ et V).

YEPK, Ko
where [N(Kj;)] is the current of integration on N(K;) and where
eV i (x,0) € ST? — (x +0,0) € ST

is the geodesic flow. Compared with (2.1), this new formula has the advantage to explicitly
involve the geodesic vector field. This current theoretic approach also allows to deal directly with
the exponential weights appearing in our zeta functions together with the more general orientation
conventions considered in the introduction. On the contrary, the approach using (2.1) (performed
in Appendix A) seems to only apply (at least directly) to the outgoing/ingoing convention of
Theorem 1.3.

Remark 2.1. Formula (2.3) derives from the observation that elements in Pk, x, are in one-to-one
correspondance with the geodesic orbits in ST joining the two Legendrian submanifolds N (K1)
and N(K3). In the framework of symplectic topology, such orbits are referred as the Reeb chords
of these two Legendrian submanifolds.

2.2. Defining a proper functional framework for the geodesic flow. Hence, rather than
proceeding directly to the calculation of zeta functions from (2.1), we choose to view this as
a consequence of analytical properties of geodesic vector fields. More precisely, we will define
appropriate functional frameworks to study the operators appearing in (2.3):

YFW%=AX®5WWW

where Y is a nice enough function (say e~*' or t~%). In the end, our main geometrical theorems
on length orthospectra for convex bodies will be simple corollaries of this analysis — see Section 8.
Even if slightly longer, we believe that this sharp analysis, which is the content of Sections 4 to 7,
is interesting on its own and that it allows to capture the dynamical mechanism at work when
proving this kind of results. Along the way, it also has the advantage to apply directly to other
questions such as equidistribution properties of the geodesic flow. See Theorems 2.5, 5.5 or 10.1
for instance.

On top of these applications, this analysis is motivated by the study of similar questions aris-
ing on negatively curved manifolds where one defines appropriate spaces of anisotropic Sobolev
distributions in order to make sense of the spectrum of the geodesic vector field: the so-called
Pollicott-Ruelle spectrum [Rue76, Pol85]. More precisely, given any N > 0, one aims at defining
a Banach space By such that the geodesic vector field (viewed as an unbounded order 1 differ-
ential operator) has discrete spectrum on {Re(s) > —N}. One of the difficulties when analyzing
such an operator on the unit tangent bundle SX of some manifold (X,g) is that its symbol
H(x,0;8) = £(V(x,0)) is not elliptic and that it vanishes on the noncompact set:

C:={(x,0;¢) e T*SX : £&(V(z,0)) = 0}.
In the case of a negatively curved manifold, this characteristic region is generated by two sub-
bundles: the unstable direction and the stable one. Using this duality, one is able to construct

Banach (or Hilbert) spaces adapted to the operator V' by requiring some negative (resp. positive)
Sobolev regularity along the unstable (resp. stable) direction and by exploiting the contraction
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properties along these directions. The construction of such functional spaces was made explicit
through different methods in various geometric contexts: Anosov flows [Liv04, BL07, Tsul0, FS11,
Tsul2, GLP13, DZ16, FT17b], Axiom A flows [DG16, Med21], billiard dynamics [BDL18, BD20],
Morse-Smale flows [DR20], manifolds with cusps [GBW17], analytic Anosov flows [Jéz21, GBJ20],
etc. We also refer the reader to [Ball8] for a detailed account of the (related) case of hyperbolic
diffeomorphisms.

In our framework, the geodesic flow does not belong to any of these classes of flows as it is an
integrable dynamical system without any hyperbolic property. Despite that and using the fact that
the curvature is 0 (and thus nonpositive), there is a notion of stable and unstable bundles [Rug07,
Ch. 3]. Yet, as opposed to the negatively curved setting, both bundles are equal and they do
not generate the whole characteristic region. They correspond in fact to the tangent space to T¢
intersected with C. See §5.3.1 for details. As we shall recall in §5.3.1, this bundle is in some sense
attractive/repulsive for the lifted dynamics on the cotangent bundle to SX. This observation is
somehow enough to implement the same ideas (with of course also some major differences) as
for geodesic flows on negatively curved manifolds and in order to define spaces with anisotropic
regularity adapted to the geodesic flow on ST¢. On ST, the “mixing” properties of the geodesic
flow are much weaker than for geodesic flows on negatively curved manifolds, but they turn out to
be sufficient in view of proving our main results using formula (2.3). To that aim, we will use tools
from harmonic analysis that are available on the torus in order to construct the spaces adapted to
V. In this respect, our approach is in some sense reminiscent of the one used by Ratner [Rat87]
to study the decay of correlations on hyperbolic surfaces. Even though anisotropic Sobolev spaces
are not explicitly mentioned in her analysis, the Fourier type reduction made in [Rat87, §2] and
the way it is handled there is close to the strategy we will follow in Sections 3 and 4 of the present
work.

2.3. Anisotropic Sobolev spaces. Let us now describe more precisely the analytical properties
we are aiming at in the simplified setting where we consider functions rather than currents of
integrations as in (2.3). We define anisotropic Sobolev spaces of distributions on ST as follows

HMN(STY) 1= S uw € D'(STY) : >~ (>N [[TelFrar ga-1y < +00 p s (€)= (1 +[€[*)7,
g€z
where (M, N) € R? and
i&-x
- e
u(@,0) = 3 @e(0)——

d

2 e
with @e € D'(S?"1), and where ||.|zm denotes the standard Sobolev norm on S¢~!. Roughly
speaking, u = u(x,0) € HMN(ST?) if u has HY regularity in the variable x € T¢ and HM
regularity in the variable # € SY~!. With this convention at hand, we will prove the following type
of results:

Theorem 2.2 (Mellin transform, function case). Let x € CX([1,+00)) such that x = 1 in a
neighborhood of 1 and let N € Z. Then, the operator

M(s) = / 2=tV dt| : C°(ST) — D'(ST?)

1
splits as
M(s) = Mo(s) + Moo (s),
where -
Mo(s) = / Xt~V xldt| - HNTN2(ST) — HN N2 (9T
1

is a holomorphic family of bounded operators on C and where

Moo(s) = / (1 — x(@Nt=*e tV*|dt| : HN—N/2(ST) — H~NN/2(ST9)
1
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extends as a meromorphic family of bounded operators from {Re(s) > 1} to {Re(s) > 1 — N} with
only a simple pole at s = 1 whose residue is given by

1
Vi € C¥(STY),  Resacs (Mac(s)) (6)(2.0) = 7553 [ 0(0.0)d
(2m)? Jra
In particular, this Theorem tells us that the operator

o0
M(s) = / =2~ tV* |t - €0 (ST) — D/ (ST)
1
extends meromorphically from {Re(s) > 1} to the whole complex plane with only a simple pole
at s = 1. Yet, the statement is more precise as it allows us to describe the allowed regularity for
this meromorphic continuation. We emphasize that the mapping properties of My(s) are rather
immediate from the definition of our anisotropic norms and the main difficulty in this statement
is about the “regularizing” properties of M. (s). This Theorem is a direct consequence of the
much more general Theorem 7.4 (together with Proposition 7.9), and it is one of the main results
of this article. In other words, our meromorphic continuations are valid on spaces of distributions
that are regular along the vertical bundle to ST (i.e. the tangent space to S?!') and that
may have negative Sobolev regularity along the horizontal bundle (i.e. the tangent space to T%).
In particular, the anisotropic Sobolev spaces H™N>~/2 contain the Dirac distribution Sj0) () for
N > d, and this is typically the kind of distributions that we will pick as test functions in order
to derive our main applications on convex geometry using (2.3). In order to prove Theorems 1.2
and 1.3, we will in fact need to prove more general statements for the action of M(s) on differential
forms or more precisely on certain anisotropic Sobolev spaces of currents. Among other things, the
action on differential forms will be responsible for the presence of the extra poles at s = 2,...,d
but this simplified statement already illustrates the kind of properties we are aiming at.
The same spaces will also allow us to prove the following statement:

Theorem 2.3 (Laplace transform, function case, continuous continuation). Let x € C°([0, +00))
such that x = 1 in a neighborhood of 0 and let N € 277 + d. Then, the operator

L(s):=V+s)t= / e StemV*|dt] : ¢>°(STY) — D'(ST?)
0

splits as
L(s) = Lo(s) + Loo(s),
where

Lo(s) := / x(t)e steVx|dt| : HN N (STY) — HYV=N(ST?)
0
is a holomorphic family of bounded operators on C and where
Loo(s) := / (1 —x(t))ete™V*|dt] - HN—N/2(STY) — H~NN/2(STY)
0

extends continuously from {Re(s) > 0} to

(1) {Re(s) = 0} \ {0} if d = 4,
(2) {Re(s) >0} \ {Fi|¢| : € € 2} if d = 2,3.

Moreover, in any dimension, one has, as s — 0T,
1
V+s)™t 0) = ——r 0)dy + Op:(1
V497 (0)@.0) = sz [ vl 0y + O (1),
and, when d = 2,3, one has, as s — *il&o| (with &) #0),

(V+5)" (¥)(,0)

T ga(s Fil)) &g (9 : ) < : > N
) (Hl il F = P S = Ydy + Op/ (1),
PRE e MZ_:I&)I@ 0 €] /Td Y €] € Y pr (1)
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where

g2(2) == \/\/2?, and g3(z) := —In(2).

Again, this result is the consequence of the much more precise Theorem 7.8 (together with
Proposition 7.9) which is valid on certain anisotropic Sobolev spaces of currents and which will
also lead us to the proof of Theorem 1.4. In Theorem 7.8, the C* continuation of £(s) is also
discussed, and shows that the Laplace transform actually exhibits C¥-singularities at the points
{£il¢] : € € Z%} in any dimension (but for larger values of k in higher dimension). In the companion
article [DGBLR22], we show that this result can be “improved” if we replace the Sobolev norm
on S9! by some appropriate analytic norm built from the norms used in [GZ19] for the study
of analytic pseudodifferential operators of order 0. In fact, after Fourier decomposition, studying
the resolvent of V' acting on functions amounts to study a family of resolvents of multiplication
operators (i.e. of pseudodifferential operators of order 0) on S¢~!. In Sobolev regularity (as we
are dealing here), one could apply the results from [ABAMGY96, §7.6] (e.g. Th. 7.6.2) based on
Mourre’s commutator method. See also [CAVSR20, DZ19b] for recent developments for more
general pseudodifferential operators of order 0 in dimension 2. Modulo some extra work to sum
over all Fourier modes, this would yield in principle that

Ve>0, YN R, (V+s)t:HztN(STY) - 327N (ST?)

extends continuously from {Re(s) > 0} to {Re(s) > 0} \ {&i|¢| : € € Z?}. In view of our geo-
metric applications to convex geometry, this analysis does not suffice since we aim at considering
distributions having the same regularity as djo), which does not belong to such spaces.

Remark 2.4. The operator £(s)i is the Laplace transform of the solution u(t,-) = e~*V*¢ to the
transport equation

Oru+0-0,u=0, u(r=0z0)=y(z0),

while
—+oo
M(s+ 1) = / efSTefeTV*¢|dT|
0

is the Laplace transform of the map 7 + v(r,) = e~¢ V*(3)) which solves the (reparametrized)
transport equation

Orv+e0-0,v=0, v(r=0,z0)=1v(z,0).

2.4. Emergence of quantum dynamics. Theorems 2.2 and 2.3 (as well as their analogues in
the case of differential forms) are consequences of the fact that, through standard stationary phase
asymptotics, we can give a full expansion of the Schwartz kernel of the geodesic flow. For instance,
the first term in the asymptotic expansion reads

Theorem 2.5 (Time asymptotics of the geodesic flow, function case, leading term). For every
smooth function ¢ € C>(ST?), one has

d—1 v 1 a1 6i5(t\/j—§(d—1))
o5 (0o Vw0 - g [ vwo) = enT ¥ R,

ee{x}
+ OD/(STd)(t_l)

where A = Z?:I 8§j is the Euclidean Laplacian on T¢,

1 5 3 —_ .
P.: C%°(STY) E — < ,:|3> i(y=2)€ gy € (T
+ e C( ) < (2 _/lelf Y € e Y€ (T%)

and

I . p o pooqmd 1 i(m)f) < 5) /(ST
PlL:fec (T)Hg)@ﬂ)d</wf(y)ey ay) 80 (6% 57 ) € D/(ST)
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This Theorem is a corollary of the much more precise statement given in Theorem 5.5 which
provides a full asymptotic expansion with a precise description of the remainder terms at each
step. Once again, this result could (and will) be expressed in terms of anisotropic Sobolev norms.
Yet, due to the absence of integration over time, this requires a refined version of the spaces
HN-—N/2(ST?) with an additional regularity imposed in the direction of the vector field 6 - 9.

In order to keep track of the comparison with negatively curved manifolds, such a result can be
viewed as a simple occurence of the emergence of quantum dynamics (through the half-wave group
(eXV=2), gk on the torus) in the long time dynamics of geodesic flows (i.e. (e!V);er on ST?). This
phenomenon was recently exhibited by Faure and Tsujii in the general context of contact Anosov
flows [FT15, FT17b, FT17a, FT21]. See also [DFG15] for related results of Dyatlov, Faure and
Guillarmou in the particular case of geodesic flows on hyperbolic manifolds. Compared with the
results of Faure and Tsujii, we emphasize that our analysis heavily relies on the algebraic structure
of our flows as in the hyperbolic settings treated in [Rat87, DFG15]. Moreover, we are dealing
with completely integrable systems which have in some sense opposite behaviours compared with
the dynamical situations considered in all these references. In particular, due to the integrable
nature of our system, the asymptotic expansion in terms of the quantum propagator is polynomial
rather than exponential as in [FT21, Th. 1.2]. This is reminiscent to the much weaker mixing
properties of the geodesic flow in this situation.

2.5. Organization of the article. In Section 3, we review the necessary background on de Rham
currents and we fix some conventions that will be used all along this work. Among other things, we
reduce our analysis of etV to the study of certain oscillatory integrals. The reader only interested
in dynamical properties (correlations of functions), and not on the geometrical questions (e.g. in
relation with convex sets) may skip this section and consult directly Sections 4 and 5.

The analysis of these oscillatory integrals is a standard topic in harmonic analysis [Her62a,
Ho6103, Ste93, DZ19a] and in Section 4, we rediscuss some of their properties and pay some attention
on the control of certain estimates in terms of the frequency parameter.

Then, in Section 5, we apply this analysis to define spaces with anisotropic Sobolev regularity, in
which we describe the asymptotic expansion of the operator e~*V* as t — 400 acting on functions,
as in Theorem 2.5.

In Sections 6.1 and 7, we come back to the general forms/currents setting of the article, and
show how to define norms for which the operator X(—iV) is well defined and can be continued
when x depends on some complex parameter s € C as in Theorems 2.2 and 2.3.

In Section 8, we apply these results to particular currents to make the connection between
these kinds of operators and geometric zeta functions/Poincaré series, using the strategy initiated
in [DR21]. Along the way, we prove slightly more general versions of Theorems 1.2, 1.4, 1.6 and 1.7.

We conclude the proof of Theorem 1.3 in Section 9 by identifying the values of certain residues
using tools from convex geometry [Sch14].

Finally, in Section 10, we apply our approach to prove some equidistribution properties of
convex subsets under the action of the geodesic flow. The associated statements, that are variants
of earlier results due to Randol [Ran84], are not presented in the introduction and we refer the
reader directly to this section.

2.6. Comments on generalizations. The choice of the lattice 27Z% is somewhat arbitrary and
it makes the presentation slightly simpler. However, our analysis could be adapted to handle more
general flat tori of the form R?/T" where I is a lattice in R? of maximal rank.

All along this work, we consider the case of the geodesic flow on ST?. Yet our analysis could
handle more general flows of the form:

(z,0) € ST = (z +t2(0),0) € ST,

where 0 € ST > #(0) € R? is the parametrization of the boundary of a strictly convex compact
subset K by its outward normal, i.e. the inverse of the Gauss map. The key observation to
extend our analysis to these flows is that, for every & # 0 in RY, the map 6 € S¥~! s £ - 7(6) has
only two critical points at § = +£/|€|. Moreover, these two points are nondegenerate thanks to
the strict convexity assumption, which allows to perform the stationary phase asymptotics of §4.
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From the geometric perspective of the introduction, this would correspond to the more general
setup where one considers dilations K — TK, T > 0, of the arbitrary strictly convex subset
K [vdC20, Hla50, Her62b, Ran66, CAV77]. In fact, as it will be clear in our proof, our geometric
problem is related to the description of the lattice points in K7 — Ko 4+ T By (at least for a proper
choice of orientation), where By is the Euclidean unit ball of R? centered at 0. The choice of By
(and thus of the geodesic flow) makes the presentation slightly easier.

3. BACKGROUND ON DIFFERENTIAL FORMS AND CURRENTS

In view of defining our functional setup for the vector field V', we need to describe as precisely
as possible the long time behaviour of the geodesic flow eV acting on differential forms of ST¢.
More precisely, given (¢,1) € Q24=17F(ST?) x Q¥ (ST9) (see §3.1 for a reminder of the definition),
we aim at describing the correlation function

(3.1) Co.yp(t) == /S'er eAe VH(), as t— 4oo.

In this preliminary section, we review the notion of current [Sch66, Ch.IX] which plays the role of
distributions for differential forms. Among other things, we define their Fourier transform in the
setting of ST following [Sch66, Ch.IX, §6]. In particular, we fix some conventions that will be
used all along this work and we describe a few concrete examples that will be useful in view of our
applications to convex geometry. This preliminary analysis is then used to rewrite the correlation
function (3.1) using the Fourier decomposition of ¢ and . This is the content of Lemma 3.15
which allows to reduce the problem to estimating some classical oscillatory integrals.

Remark 3.1. We note that we implicitely fix an orientation on T¢ by fixing the volume form
dxi N ...Adxg which can be identified with the Lebesgue measure on T<. When we want to insist
on the fact that we view it as the Lebesgue measure, we will use the convention |dz| and we will
use the same convention to distinguish volume forms and measures on R%, S%~1 or R.

3.1. Differential forms. We begin with [Lec09, Ch. §]:

Definition 3.2. A differential form on ST of degree 0 < k < 2d — 1 is a map which associates to
each point (z,0) € ST? a k-linear form on T} 4ST¢ which is alternating. We denote by A*¥T*ST¢
the set of alternating k-linear form on T'ST?.

Let us be slightly more concrete. Given a subset I = {i; < iy < ... <4} of {1,...,d}, recall
that do! = dz;, Adzy, ... Adx; denotes a differential form of degree |I| on T? (and thus on ST¢
by pullback). Similarly, we can define differential forms on S?~! as follows. For every # € S¢~1,
we can fix a direct orthonormal basis (eg(6) = 6,e1(0),...,eq_1(0)) of R%, depending smoothly on
f in a small open set.

Remark 3.3. For instance, in the case d = 2, we can identify S;,T? = S' with R/27Z via the
map 0 — cosf0, + sinfd,. Then, we complete the vector eg(f) = 6 by the vector e;(0) =
—sin 00, + cos 00,.

To each 0 < j < d — 1, we can associate the 1-form
e;(0,d0) v € R = v - e;(0),

where - denotes the standard Euclidean inner product on R?. For every subset J = {j; < jo <
. <giyof {1,...,d — 1}, we define the |J|-form

e5(0,d0) = €%, (8,d0) A el (6,d0) ... A€, (6, dB).

Since TpS4™1 ~ 0+ = eo(0)*, this differential form of degree |J| < d — 1 on R? restricts to a
differential form on TpS%~!. We keep the same notation for the restriction to TpS%1.

Let U be a small open set of SY! so that we can pick the above orthonormal family (e; (), ..., eq_1(0))
depending in a smooth way on 8 € U. For every 0 < m < oo and 0 < k < 2d — 1, we then define
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the set QF (T x U) of (complex valued) differential forms of degree k and of class C™ as the set
of elements of the form

Y(@,0,dr,do) = > > " (2,0)dz" Aey(6,dD),
Ic{1,...,d} JC{1,....,d=1} |I|+|J|=k
where 17 (z,0) € C™(T? x U, C).
Definition 3.4. An element in QF (ST?) = QF (T? x S971) is a section 1 : ST? — A*T*ST
whose restriction to T x U belongs to QF (T4 x U) for any open set U C S%~! (and it suffices of
course to check this property for U belonging to a finite atlas of S¢~1).

In particular, elements in QF (ST9) can be written under the following form
(0, ds,dd) = > da! Al (2,0, d6),
IC{1,...,d},|I|<k

where, given any (local) smooth orthonormal family 6 — (e1(6),...,eqs_1(6)) as above, ! can be

written as
> > ¢t (w,0)e5(0,d0),

JCAL,...,d—1} |J|=k—]|I|
with ¢!/ (z,0) € C™(T¢ x U, C). In the following and for smooth forms, we will use the convention
QM x U) = () QT xU), QST = (1) Q% (STY).

m>0 m>0
Remark 3.5. The convention dr and df in the arguments of ¢ € QF (ST?) will always indicate

that we are considering differential forms in the x and 6 variables.

3.2. Currents. For any k € {0,...,2d—1}, recall that Q¥(ST9) has a natural structure of Fréchet
space since ST? is compact. We now define the set of currents as the topological dual to differential
forms [Sch66, Ch.IX, §2].

Definition 3.6. The set of currents of degree 0 < k < 2d — 1 on ST is the topological dual of
02d=1-k(ST4) with respect to bilinear pairing
(1,12) € QF(ST?) x Q> F(STY) 1 (1, 1ho) o= / ) 1 Nipg € C,
ST

and the Fréchet topology of Q24-1=k(ST4). We denote this set by D'*(ST?).

More concretely, given any (small enough) open subset U of S?~! and given any smooth or-
thonormal family 6 € U + (e1(6),...,eq_1(0)) as above, an element u in D’*(ST?) can be written
inside T? x U as

u(w,0,dz, df) = > > ul (2, 0)dz" Aey(6,dD),
IC{1,...,d} JC{1,...,d—1} |T|+|J|=F
where ul+7(z,6) is a distribution on T¢ x U, i.e. an element in D'(T¢ x U,C) = D'°(T* x U, C).
Remark 3.7. Note that in the extremal cases k = 0,2d — 1, the restriction to an open subset U is
not necessary in this discussion as there is a canonical volume form on ST? — see §3.3.
3.3. Orientation conventions. In the following, we choose to orient S?~! with the d — 1 form
ey(0,do) Nes(0,dO) A ... Nej_1(0,d0),
and ST? with the 2d — 1-form
dey Ao Ndxg ANef(0,dO) A ... Nes_1(0,d0).

Note that e} (6, d0)Aes(0,dO)A. .. Ae_,(0,dP) is independent of the choice of the orthonormal fam-
ily (e1(8),-..,eq—1(0)) and that it can be identified with the canonical volume form Volga—1 (¢, df)

on S4-1.
d

d
Volga—1(0,d0) = > (=1)P*0, N\ db,, 6es

p=1 q=1,q#p
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When we want to emphasize that we view it as a measure, we will write Volga—1(6, |d6)]).

Remark 3.8 (Orientation conventions for the sphere). If we denote by By := {# € R? : |9] < 1},
the natural orientation on By is given by that on RY. In spherical coordinates (r, ), the current
of integration on By reads [Bg](r, 0, dr, df) = 1o 1(r)dr so that

ST (r, 0, dr, d9) = O[B4)(r, 0, dr,dd) := —d[Bg](r, 0, dr,d) = So(r — 1)dr-

In particular, Volga—1(6, df) is the orientation on S~ = 9B, induced by the one on R? as
([S*™1], Volga-1) :/ [S A Volga—1 > 0
Rd

(where Volga—1 has been extended smoothly in a small neighborhood of S?~1).

In the standard spherical coordinates (él, e éd—l) € (0,m)972 x R/27Z, this volume form
reads
Volga—1 (é, dé) = Sindiz(él) - Sin(éd_g)dél VANAN déd_l.
The volume form Volga—1 (6, df) can also be viewed as a volume form on ST¢ via the pullback map

(x,0) — 0. For the sake of simplicity, we use the same convention for the volume form on S~ or
for its pullback on ST<.

3.4. Decomposition of currents in Fourier series. We now explain how to decompose cur-
rents in Fourier series in the first variable, and fix some conventions. Let u € D'*(ST%) and
U C S ! an open set. One can decompose locally u in T? x U as

u(x,0,dr,do) = ) > > uh(w,0)da’ Aey(0,dD),

IC{1ymed} JC{L,eesd—1} 1|+ || =k

where u?+7 (x,0) € D'(T¢ x U). Given & € Z¢, we can define the Fourier coefficient ﬂé"] e D'(U)
as follows

g’ 1 € CRU) = (u e ) :[SW ul (,0)e_¢(x)9(0)|dx| Volsa—1 (6, |d6]),
with ..
eg(x) = (6277?

This yields the following decomposition in Fourier series of u € D’* (STd):

u(x,0,de,do) = > Y > > gt (0)ee(x)da’ A el (0,d0)

cezd 1C{1,...,d} JC{1,...,d—1} |I|+]|J|=k

Z Z e¢(x)dz! A Z Z AI 7 (0, do)

gezd 1C{1,...,d} JC{1,...,d=1} |T|+|J|=k

In summary, we can decompose any current u in D’*(ST9) as
(3.2) u(a,0,de,do) = > Y ec(x)de’ ATL(O,dD),
gezt Ic{1,....d}
where each “E is a current of degree k — |I| on S ! and u E = 0 if |I| > k. For the sake of
compactness, we also set
7 (u) (0, dw,do) == > dal ATLO,dO),
1c{1,...,d}
and
I (u) (2,0, da,df) == Y ee(w)da’ ATL(O,dO) = ee(w)mt™ (u) (0, da, dB).
Ic{1,....d}
These operators are projectors in the sense that

(3.3) ve, & ez, TN = g 1,
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where ¢ ¢ is the Kronecker symbol. These conventions allow to decompose any element u €

D'*(ST?) as follows
k k
u= Z Hé )(u) = Z Wé )(u)eg.
gezd gezd

Definition 3.9. Suppose that we are given a Sobolev or Hélder type norm ||.|[gge) on some
Banach space B(S?) continuously included in

d—1
@ D/l (Sd_l).
=0

(

If we identify Wfk)(u) with some vector valued distribution (ﬂé)lc{l,wk} on S, we then define

k ~
7t ()l ga-1y = sup {[@ll|pga—1y : 1 {1,....d}, [I] <k}.
Similarly, for some open set U of S¥~1, we set
k ~
I (W)l = sup { 1@ llswy = 1 {1,....d} |I] <k}.

3.5. Fundamental examples of currents of integration. We now discuss an important exam-
ple of current in view of our analysis. In the sequel, [0] denotes the equivalence class of 0 mod VA
We introduce the following current of degree d on T¢:

1
Oonza(x,dx) = —— Z ee(z)dxr A ANdag,

en! &
acting on functions f € C*°(TY) by (8a,z4(x,dx), f) = £([0]). We will also use the notation

1
3.4 01 () = —— x),
(3.4) (0 () @) gzjdes( )

so that we can write
(3.5) Oonza(x,dx) = S (x)dxy A ... A dxg.

If we view this current as a current” on ST? via the pullback by the map (x,0) € ST¢ — x € T4,
then it is in fact the current of integration on the fiber Sig T viewed as a submanifold of dimension
d — 1. We can now slightly modify this example by fixing a smooth map # : S*~! — R? so that
we can set

d
(3.6) IN] = 8oy ( — 2(0)) \ d(2; — :(0)) € D'*(ST?).

i=1

Note that this is the current of integration on the d — 1 dimensional submanifold
N = {(%(0),0): 0 € S¥71} c T? x ¢!

that we have oriented with Volgs-1(6,df) [DR18, Cor. D.4]. This is typically the kind of currents
to which we will apply e~ *V* in Section 8. See (8.10) and Lemma 8.9 for instance.
Thanks to (3.4), we have the following Fourier decomposition

d
N](z,0,dz,df) = &o(x —i(6)) /\ d(z; — ;(0)) € D'4(STY)

d
= F Z ee(x)e 62O /\ d(z; — #;(0)) € D'Y(STY).

gezd

7Again, we use the same notation for the current on the base and its pullback on ST¢. We keep this convention
for simplicity and we will in fact mostly consider the pullback in the following.
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Thus, for every ¢ € Z%, one finds using the conventions of §3.4:
(3.7) m (IN)(9, dz, dO) /\ d(z; — 7;(0)) € Q4(ST?).

3.6. Action by pullback. If we fix a smooth map # : S¥~! — R?, then we can define a translation
map on ST<:

(3.8) T; : (z,0) € ST? — (z + %(0),0) € ST

We can think of the above transport map as generated by the flow Tz = /()92 . ST ST? ¢ ¢
R of the vector field Z(0).0,. In section 9, we will make a crucial use of the above map to transport

the cotangent fiber SiT¢ into the normal bundle N := {(%(6),0) : § € S*~1} € T¢ x S~ when
T is the parametrlzatlon by the normal.

Remark 3.10. An important example for our analysis will be of course given by the action of the
geodesic flow, that is to say etV = Ty1q where Id = Idga—1 (or equivalently Z(#) = 6). Yet, we will
also need to consider more general translation maps when dealing with example (3.6).

Such a diffeomorphism acts on currents by pullback in the following way. Write locally
u(x,0,dr,do) = ) > > uh(w,0)da’ Aey(0,d0),
Ic{1,....d} JC{1,...,d—1} |I|+]|J|=k
for some u € D'*(ST?). The action by pullback on u is defined as
(Tiu)(z,0,dx, dd)
11

= > > S ul @+ 20),0) | N\ d@ +2i,(0) | Aes(0,d0).

IC{1,....,d} JC{1,...,d—1} |T|+|J|=k 1=1

For instance, this allows to rewrite example (3.6) as

d
(3.9) |do(z —£(0)) )\ d(z; — #:(0)) = T* ; (8a,z4) (2,0, dw, dO) = T* ;[SjT%] = [T (i T%).
i=1

This can be explained visually as follows, we start from the cotangent fiber Sy T and transporting
this fiber by the flow 7.9y yields the integration current [A/] on the submanifold A'. We also record
the following useful property regarding the projectors II:

(3.10) T () (2,0, dx, df) = e¢(2)e™*On ") (u)(0, da + dz(6), db).

Finally, we close this preliminary section with two useful lemmas. We let V be the operator
acting as the Lie derivative along V' on differential forms. The first lemma concerns the expansion
rate of the geodesic flow on the torus, and will be useful when computing geometric quantities
appearing in our analysis (like mixed volumes).

Lemma 3.11. Setting w := 1y (dzi A---Adxg) € Q11(ST?), then the form etV w is a polynomial
of degree d — 1 in t with coefficients in Q4= (ST?), with leading coefficient

1
i 1)IVUHW = Volga-1(0, df).
Proof. We start from
d
W= 0;(dr1 A Ndra)(0s;) = 3 (=1)710; duy A Aday A+ Adag,
, =

from which we deduce that

Z 19420, d(xy — t01) A+ Ad(z; — 10;) A+ Ad(wq — t0q)
j=1
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is a polynomial of degree d — 1 in ¢, whence the first statement. As a consequence, we have

d—
where the leading order coefficient in ¢ is thus ((_(1121)!1 Ve-1y. Identifying with the leading order

in the previous computation yields

Vdfl d ) _
(- 1(';' = Z(—l)JHGj dfi A---ANdO; N --- NdBg = 1g.5,(d01 A -+~ NdBg) = Volga-1(0, d6),
b=
which concludes the proof of the lemma. O

The second lemma concerns commutation properties.

Lemma 3.12. Let 7 : ST~ — R? be a smooth map and T3 defined by (3.8), then one has

(3.11) TiV = VT,

(312) LvT; = T;L\/'.

Proof. First notice that e!V Tz (x,0) = (v + () +t0,0) = Tze!V (z,0), from which (3.11) follows.

Next, due to the specific forms of the operators T3, it is sufficient to verify (3.12) on the smooth
forms dx! with I C {1,...,d}. To that aim, we write

l
wTi(de) = ( N dwi, + &, (9)))

m=1

l

l
= Z (—1)l+19im /\ d(xim/ + -%im/ (9)>

m=1 m’'=1,m’'#m
l l
= T (Z(—l)l“&-m N dxi,
m=1 m'=1,m’'#m
= Thiuy(dah).

3.7. Transport equations on differential forms. We set
d
HY T R) ;= B:=>_ Bidu;: (B1,...,Pa) € R?
j=1

Given ug € D'*(ST?), we can verify that
u(t) — efitﬁo(V)eftV*(uO)
solves the transfort equation
ou=—=Vu—i8o(V)u, u(t=0)=u,
where we recall that V = duy + 1y d is the Lie derivative along the geodesic vector field. Equiva-
lently, the transport equation can be written as
(3.13) Oww=—Vgou, Vg, :=(d+ifoN)v + v (d+ifoN).

More generally, we can fix® § € Qﬂlg(']I‘d) such that d8 = 0. Recall that any such 1-form can be
written as By + df where f € C*°(T%,R). Hence, we also define the twisted Lie derivative for such
a general closed 1-form S,

Vs = (d+ifA)y + v (d+iBN),

8The index R means that the coefficients of the form are real valued.
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and consider the corresponding transport equation (3.13). Yet, we note that it is “conjugated” to
the transport equation induced by By € H'(T¢,R) as

(3.14) Vg = e_ifVﬂoeif.

Intuitively, the reader should think that we are doing weighted transport. We transport some
differential form by the flow and simultaneously, we multiply the the differential form by the
integral of 5y along the transport path.

Finally, we also record the following a priori estimate:

Lemma 3.13. Let B € QL(T?) such that dB = 0. Let x € C*®(R) such that t4~x(t) € L*(R).
Then, for every 0 < k <2d—1,

RiVa) s € QST o [ xlt)e Ve (w)ldr € (ST
R
is a bounded operator.

Proof. This follows from the fact that for any k—form ¢ € QF(ST%), we have the polynomial bound
lle=tVe| L = O(t?') which comes from the definition of the flow exactly like in the proof of
Lemma 3.11. 0

Remark 3.14. Note that there is a slight abuse of notations when writing x¥(—iV g) as the operator
—iV is not selfadjoint even on L2-spaces (except if k = 0 or 2d — 1). Yet, this convention from
functional calculus is convenient and we will use it in the following except when it may create
some confusions with the standard spectral Theorem [Ste09, § 12.7].

3.8. Correlation function for differential forms. We can now describe the correlation func-
tion €, (t) defined in (3.1) using our Fourier decomposition. In fact, slightly more generally
than (3.1), we want to fix a smooth map 7 : S?~! — R and some element 3, € H'(T%,R) and to
describe

(3.15) Core () (t: o) = /sqrd AT (),

as t — 400 in terms of ¢, 1 and the map x which will be needed later in our applications to
convex geometry. The element Sy plays the role of magnetic potential. Here, ¢ and v are two
differential forms on ST? of respective degree k1 and ko such that ki + ks = 2d — 1, and T; is
defined in (3.8). We shall also use at some points that, for every smooth map 7 : S~ — R4,

(3.16) / wAfW%Tzwoz/ V50T () A Y,
STd STd

as a consequence of the change of variable formula and of the commutation of e/V-%0 and Tj.
With the above conventions, we can make things slightly more concrete using Fourier series.
Following §3.4, we write

(3.17) (a0, dz,db) = > ee(x)m™ () (0, dx, db).
¢ezd
We collect in the following lemma several useful properties of €, = i(w)(t, Bo)-

Lemma 3.15. Using the above conventions, one has, for every (p,1) € QF1(STY) x QF2(ST?),
and t € R,

min{ky,k2}
(3.18) Cors ((tBo) = > CLore () (t:Bo)  with
=0
tl it(E— -0 _i&-T ka,l
(3.19) e;,Tii(w)(t,ﬁo):ﬁ > /S ) e =0 01€30) B2 (4 ) (8) Volga-1 (0, dB)
gEZd —1

and
(3.20) BY2 (g, 4)(6) Volgra (8, dx, df) := (~1)'7™) (0) (6, dx, ) A VIT* ;7" (y) (0, dz, db) .
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Moreover, for every m € Zy (resp. s € R), one can find some constant Cp, > 0 (resp. Cs > 0)
(depending also on d, &) such that, for every open set U C S, for every & € 72, for every
k1 4+ ko =2d — 1, for every 0 <1 < min{ko, k1} and for every (p,1) € QF1(ST?) x QF2(ST?),

lc |1 (k2
3.21 20| < Cn||r{ ()| [~ w ’
( ) wm.1(U) 7T£ H™(U) 75 H™(U)
resp.
(k}Q,l) (k}l) (k2)
(322) HB @aw)’ Lysi-1) — 71'5 <¢)HH§(Sd_1) ‘71-75 (’L/))HH—S(Sd_l) ’

where W™ (U) is the Sobolev norm of order m and exponent p = 1 and where H™(U) = W™2(U)
is the Sobolev norm of order m (and exponent p = 2) on differential forms on the set U.

The decomposition of the dynamical correlator € in terms of Fourier series and in powers of ¢
introduced in the above Lemma will play a crucial role in the sequel, especially for our applications
for convex geometry.

Proof. According to (3.17) applied to ¢ and to (3.10), we may first expand

min{ks,d—1} (—l)ltl ' o
(3.23) (e_tVBOT*_iw)(x,H,dx,dH) = Z 7 Z eg(x)e—zt(EJrBo)-Ge—l&r(H)
1=0 T gezd

x Vio T ;o™ (v) (0, dx, db).
Hence, using (3.17) applied to ¢, (3.11), (3.23) and (3.16), one has
min{kq,k2}

t! & it(E—PBo)- 2
Cor ()t B0) = > il > /S d_lelﬁ @) eit(€=50)0 gD (5 1)(9) Volga-1 (6, db),

where BY2" (,1)(0) Volgra (6, dz, df) is given by (3.20). This readily yields (3.18)-(3.19).
Finally, estimate (3.21) and (3.22) follow from the fact that the coefficients B(k2 l)( , 1) depend
in a bilinear way on (Wé 1)( ), Skg)(w)), together with the Cauchy-Schwarz inequality. O

According to Lemma 3.15, understanding the properties of the correlation function as ¢t — 400
amounts to describe the behaviour of the integrals

(3.24) Ir(€ = Bo,t) ::/ ei(é—ﬁo).(te+:z(e))eiﬂo.fc(e)p(g) Volga-1 (6, |df)),
S§d—1

as t — +oo, where ¢ € Z%\ {0}, where (3, plays the role of the magnetic potential and where F is
a smooth function. In view of applications, one needs to make this asymptotic description with a
uniform control in terms of the W™ !-norm of F and of ¢ € Z<.

Remark 3.16. The extra oscillating term e*#(®) makes things slightly more involved than when
one treats the case of dilating convex sets as for instance in [Hla50, Her62b, Ran66]. Indeed, in
that setup, the parameter ¢ is also in factor of ¢ - Z(6) which allows to deal with t|¢| as a large
parameter. Despite this technical issue, the strategy to analyze these integrals remains the same.
See Section 4 below.

Remark 3.17. In the case where k1 = 2d — 1 and k3 = 0, one has
o(z,0,dx,do) Z Pe(B)eg(x)dxy A ... dxg A Volga-1(6,d0),
gezd
and R
V(@ 0,dz,df) = Y de(0)ec(x)
gezd
Hence, one gets the simpler expression

Corme (6 0) = D / MBI OB (9)_(0) Volga (6, |a4])

ez
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4. ASYMPTOTICS OF OSCILLATORY INTEGRALS

In view of describing the long time asymptotics of the correlation function (or integrated versions
of it), we need to describe with some accuracy the oscillatory integrals appearing in Lemma 3.15.
More precisely, we want to study the behaviour as t — 400 (and for £ — 8y # 0) of the oscillatory
integral Ir (& — Bo,t) (3.24), where 3y € RY, F € C*°(S¥1,C) and 7 € C*°(S?1,R). Estimating
these kind of integrals as ¢ — 400 is a classical topic in harmonic analysis. See [Her62a, Lit63] for a
rough estimate, and [H6r03, Th. 7.7.14], [Ste93, Section VIII-3, p347] and [DZ19a, Th. 3.38, p140]
for fine asymptotic expansions. The only additional difficulty compared with these references is
that we need to have a good control in terms of |£|. Thus, we need to pay a little attention to
the extra term e’¢#(®) when revisiting the classical stationary phase arguments used to describe
these integrals: this is the content of the present section. There is a subtle competition between
the large times ¢ and the large momenta |£| which is what we deal with in the next Lemmas. As
usual, we split these oscillatory integrals in two parts: one corresponding to nonstationary points
and one corresponding to stationary ones.

4.1. Splitting the oscillatory integral. We first define cutoff functions that will be used all
along the paper and that we will fix once and for all in Lemma 4.4.

Definition 4.1. We let (X;)jer—1,0,13 be any smooth partition of unity of the closed interval
[—1,1] such that x; is equal to one in a neighborhood of 1, supp(x1) C (0,1], x-1(s) = x1(—s),
and supp(xo) C (=1,1).

We shall make a ¢-dependent partition of unity of the sphere 6 € S4~! by letting

that is to say, for j = +1, localization near the poles +
1
equator (%) .
We split the integral Ir defined in (3.24) accordingly as
(1) Ip(€ ~ o) = I V(€ = Bo.t) + Ig) (€ = Bo,t) + Ip (€ = fio, 1), with

(4.2) 1€~ Bo,t) = / Xj (9 S B ) (6= F0)-(t6+2(0)) ¢ibo-2(9) () Volga— (6, |d6)).
§d—1 1€ — Bol
We denote by (eq,...,eq) the canonical basis of R%. We first rewrite & — 3y as € — By = \w with
A=1&—PBo| #0and w = é:gg‘ € S, and let
R:w>S"! = Rw) =R, € SO(d)
be so that w = R,e4. We then make a change of variable in the integral, setting ¢’ = R0 = RL0,
and obtain

Ir(dw, t) = / eMiw)ea (t0+2(9)) ¢iB0-2(0) B () Volga— (6, |d6))
§d—1

£—Bo
[€—Bol

, and for j = 0, localization near the

_ / ei)\ed~(t0'+R;1:§(Rw0'))eiﬁo.i(RMG')F(Rwel) VOISd—l (0/’ |d0’|)
§d—1

where we used the invariance of Volge-1 under SO(d). The above splitting (4.1) of Ir into three
pieces now reads

4.3 Ir(Ow,t) = ISV 0w, t) + TV 0w, 1) + 10w, t),  with
F F F

(44) Il(,f)(Aw, t) _ / X; (9/ . ed)eix\ed~(t0/+R;1£(Rw0/))eiBo‘i(Rwa/)F(Rwe/) VOISd—l (9/7 |d9/|),
Sd—l

and we study each piece separately. To state our results, we also define, for n € R%\ {0},

(4.5) C;(n) := {6‘ € S9! such that 6 - - € supp(xj)} , forj=-1,0,1.

7]
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These are three closed subsets of the sphere. According to the above properties of the cutoff
functions x;, we have, for all n € R%\ {0},

C_1(n) UCo(n) UC; () =S*,

C.1(n) is a neighborhood of :I:lfl—| in S9!, and Cy(n) is a neighborhood of
also notice that these three sets only depend on % = w, whence C;(n) = C;(

(I I)L in S We
1) = Cy(w).

St

=

4.2. Nonstationary points. We start with the integral Il(po)

lemma.

for which we will use the following

Lemma 4.2 (Non-stationary points). We set

To[X, fl(A 1) = / X0 (8- ea)e™ e XD F(6) Volga— (6, d0]).
S§d—1

For all xo € C°(—1,1), there exists C(xo) > 0 such that for all N € N, there is a nondecreasing

function v — Cn(r) > 0 such that for all X € CNTHSYY), ¢ > C(xo)||dX || Lo (Co(eq))s A > 0,

fecN(SY), we have

(46)  To[X, fI(At) = (ixt) N / A WOHXO) £y (o (6 - eq) £(8)) Volga-1 (0, |d6)])
§d—1

where L, is a differential operator of order N on S¢=1 with smooth coefficients depending only on
X and t and such that for all ¢ € CN(S?71), for all 8 € Co(eq), and all t > C(x0)||dX || Lo (Co(ea))
we have

(47) (E0)] < oy (IECte ) 57 (73400

t
la|<N
In particular,

[ Xl (cofea))
t

ZolX. FIN0)] < C ( ) OOl (e

Recall that 8 € Cy(eq) iff 6 - eq € supp(xo). Again, this kind of estimates is classical and the
only novelty here is the explicit control in terms of the various parameters involved which will be
obtained by a careful inspection of the usual arguments.

We now apply this lemma to
X(0') = R;'#(R,0') and f(0') = P ¥Rl (R0,
remarking that

1 XNl +1,00 (o en)) < ONIE[wn+1.00 (0o ()

> IVEFO) < OnlEllwnscowy | D IVIFI(RE) |, for all 6 € Co(ea),
la|<N [vI<N

[ fllw~a(cotea)) < ONIENwn.oe (oo I Wi cow))s

uniformly in the variable w € S¢~!. Denoting L%, = R, oLy oR, we thus obtain the following
corollary.

Corollary 4.3 (Nonstationary points). For all xo € C°(—1,1), there exists C(xo) > 0 such that
for all N € N, there is a nondecreasing function r — Cy(r) > 0 such that for all & € CNFT1(S?-1),
t > C(xo)|dE]| oo ga-1), w € ST™1, X >0 and F € CN(S™1), we have

19 (A, ) = (ixe) N /

MO L5 (xo (6 w) 7O F(9) ) Volga (6, ]d6)),
gd—1
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or equivalently for € € R\ {Bo},
(48) (ile = Bol)N I (€ = Bos1)
i(6— o) (t0+7(8))  TE=A0T §—Po \ iso-a(0)
=/ e 0 Ly Xo (8- €= Aol ePo P E(0) | Volga-1 (6, d8]),
S -1 —

where LY, is a differential operator of order N on S4=1 with smooth coefficients only depending

on X,w and t and such that for all ¢ € CN(S41), for all w € S, for all € Co(w), and all
t > C(x0)||dZ| Loo (sa-1) we have

’< ‘fv,tw)(a” <Cy <||$||WN+1,°°(Co(w))) Z |Vg¢(9>|

t
la|<N
In particular,

([~ -+1,00 (Co (w))
t

11 (. 1)] < O ( ) OOl e

or equivalently, for £ € R\ {Bo}

[l s e -
1§06 = )] < O (PRSI (e )N | Pl eyt

Proof of Lemma 4.2. We denote by Py := +eq = (0,...,0,+1) the north/south poles and, near
the support of 6 — xo(0 - eq), we parametrize the sphere by the height x4 = 6 - 4, yielding the
diffeomorphism

(-1,1) xS42 — S4=I\{P, P} CR?

(x4,0") — (V1—226 24).

The spherical volume measure in these coordinates is given by
Volga—1 (8, |df]) = (1 — 22)“=" Volga—2 (6, |d6'|)|dza).
Writing z = x4 for short, and recalling that supp(xo) C (—1,1), we have
IO[X7 f]()‘7t)

1
= / / xo(z)exp | id |tz +eq- X(V1 =220, 2) | | (V1= 220", 2)(1—2%) 2" |dz| Volga—2 (', |d6|)
sa-2 )1
=p(2,0,t)

We write p(2,0',t) = 2+t teg - X(v1 — 220, 2) and notice that

/
0:p(2,0, 1) = 1+ 17 eq - dX (V1= 220/, 2) - (‘ZG 1) :

V1—22
As a consequence, observing that ’(—\/%, 1)’ = 212‘\_92/|22 +1= ﬁ, we have
t_l
0,0(2,0,t) > 1 — ———|dX (/1 — 220, 2)|,
P00 2 1= X (Y )
where |dX (6)| is the norm of linear maps TpS?~! — R? (endowed with their respective Euclidean
structures).
Setting
1 1

(4.9) K = 5 Sup {de(\/l — 220 2)|,0' €S2 2 € supp(Xg)} ,

we have K < C(x0)||dX|| Lo (supp(xo)) < 0© since supp(xo) C (—1,1). We deduce that
(4.10) D.0(2,0,t) >1/2 forallt > K, 6 € S¥2, 2 € supp(xo).
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0, and

Next, we use that 0, (e“t“"(z*(’,’t)> = iNO,p(z, 0, t)eMe(=0)  Setting L = 78230(; )

integrating N times by parts in the variable z, we deduce that, for all N € N,

(4.11)  Zo[X, fl\ ) =
(ix)~ / / eI LYY (o2 F(VI— 2201, 2)(1 — )7 ) [d2]| Volga-a 0" a0,
Sd 2

where LT9(2,0',t) = -0, (Wiﬁ(z, 9’)). We now set, in these coordinates

d—3

Ln(z,0") = (LT) ( \/ﬁ@’ (1— 22 =2 ) (1-22)""7,

where Yo has supp(Xo) C (—1,1) and xo = 1 in a neighborhood of supp(xo) has the same support
properties as xo (see Definition 4.1). With this definition, pulling (4.11) back to the sphere
yields (4.6).

Next, using (4.10), we thus obtain by induction that there exists some nondecreasing function
7+ Cn(r) > 0 (depending only on N) such that for all t > K, #' € S¥=2 and z € supp(xo),

N
‘(LT)N¢(Zaelat)| < CN(HSO”WN+L°°) Z |a§1/1(279/at)

Pulling this formula back to the sphere implies the existence of a nondecreasing function r —
Cn(r) > 0 such that for all X € CN*1(S41), t > K with K = K(x0,dX) defined by (4.9), A > 1
and f € CN(S971), the pointwise bound (4.7) holds.

Finally, applying this in (4.11) yields

HX||WN+L°° su _
1Zo[X, fI(N 1) < COn ( t Eu2ROOD ) (ML)~ | fllw .1 (supp o)
which concludes the proof of the lemma. O

4.3. Stationary points. We now turn to the terms Iéil) and need the following lemma, which

is again more or less classical (asymptotics of the Fourier transform of the surface measure on the
sphere).

Lemma 4.4 (Stationary points). We set
Lia[u](p) := /d Xet1(60 - ea)e™“ Pu(9)d Volga- (6),
§d—1

For all x; € C=([~1,1]) which is compactly supported in a small enough neighborhood’ of 1 and
equal to one on a slightly smaller neighborhood of 1, with x_1(s) = x1(—s), and for all N € N*,
there exists Cy > 0 such that we have, for all ;1 > 0 and all uw € W2N+d1(§d=1) c ¢2N+1(§d-1)

2m R
T [u) (i) — eTineFiz(d-1) (,u) M J ied)

_ da—1
< Cnp (N+45 )||’U,||WzN+d,1(Supp(Xil))7

where supp(x+1) means 0 is such that 6 - eq € supp(x+1) and where Lf is a differential operator
of order 25 on S~ (depending only on the geometry of St ), with LT =1.

Remark 4.5. For the sake of simplicity, we do not write the explicit expression of the operators
L;E but the proof provides such an expression.

9As we shall in the proof, the size of the neighborhood depends only on the geometry of the sphere.
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Recalling the definitions of II(;il) in (4.4), we want to apply this Lemma with p = At = |£— |t >
0 and
u(f) = ePrea i H B0 i3 (Rl) PR, 0) = 70 F(R,0).

The remainder term can be roughly estimated, for all £ € R\ {fy}, as
ullwe (suppxar)) = €7D F(RuO) w1 (supp(as))
< Helg.w(.)FHW"’I(Cil(E—ﬁo))
< Crlle’ ™0 lwi.oo (a1 e son | F Wt (G te—0))

< Ch,p, max {17 1§ — Bo|k||:%|\';[,k,oo(cil(§,g0))} I E llwea(cpe—po))
Concerning the terms in the sum, we have

thu(o)(ied) = th (eig.i(Rwe)F(Rwa)) (£eq) = Lfé(eig.z(.)p)(ié')

where L;fw =R ™o L?[ o R and L = 1. Hence, we deduce the following corollary:

Corollary 4.6. For all x1 € C*([—1,1]) compactly supported in a small enough neighborhood of
1 and equal to one on a slightly smaller neighborhood of 1, with x—-1(s) = x1(—s), and for all
N € N*, we have, for allt > 0,& € R4\ {Bo}, & € C2NT4S1) and all F € C*N*+4(C11(€ - Bo)),

18V (& = Bo, t)

d

2

_ Eitle—Bol FiT (d-1) < 27 ) 1 Ni:l LI (€500 ) <i §—Bo >
t1€ — Bol — (t]€ — Bol)? iR € = Bol

: 71€=Bol
= [ 0

max {1, ||j||§%§id1m(cil(£iﬁo))|§ _ BO|2N+d}

d—1
(tlE — Bo)N+ 72
where the constant in the remainder Oy g,(1) depends only on N and the cutoff functions and
where wa =R ™o Lj.[ o RY with Lj-[ the differential operator from Lemma 4.4.

+ On,g, (1) 1F'[[w2n+a1 oy (€))

Remark 4.7. We note that the growth in |£| is a priori quite bad (except if Z = 0, which is e.g. the
case when studying dynamical correlations for functions, see Section 5 below) and we will have to
pay attention to this problem in the upcoming sections. For instance, this reads, for N = 1 and
for a constant C' depending on z,

d—1
e e 2w\ 2 ez £=Bo 5—50
16 (¢ — By, t) — eitle=Bol —i% (a=1) <> R (5%)F< >
PE- o) te| €= Gl
5_50 2+d
e ] NN

PV Y
(tlE = Bo)* 7=
Again, the proof of Lemma 4.4 is classical. As it is rather short, we recall it in order to keep

track of the constant in the remainder terms and also to record the explicit expressions for the
operators Lj-t.

Proof of Lemma 4.4. We denote by 2’ = (x1,...,24-1), with z; = 6 - e; the coordinates along
(e1,...,e4-1), and x4 = 0 - eq the coordinate along eg4.
Near the support of 6 — x+1(0 - e4), we may parametrize the upper/lower half-sphere by the
coordinate z’:
Bra-1(0,1) — {z € Sd_l, +x4 > 0}
g = (2, 21— [2?).

Setting p(z') = /1 — |2'|?, we have on supp(x+1), z4 = £p(z’). Moreover, we have

Vo(a') =
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from which we infer that the surface measure reads

/
Volga—1(6,]d6]) = /1 + |[Ve(a')2|dz’| |)

Moreover, given the properties of x41, in these parametrizations, the function

X : = X:I:l(g . ed) = Xil(im)

does not depend on =+, it is equal to 1 in a neighborhood of 0 and its support verifies

supp(X) C Bgra-1(0,1) = {2’ ¢ R |2/] < 1} c R4,
As a consequence, we deduce that
|da|
p(x')

x
The phase function ¢(z’) admits 0 as a unique stationary point with ¢(0) =1 and

Taafil) = [ 555l ()

i0jp(x) = —0;;(1 — |2/)) V2 —aya;(1 — [2/)2) %% = Hessp(0) = —Idga-1,

with determinant det(Hess(0)) = (—1)9~! and signature sgn(Hess ¢(0)) = —(d — 1). Follow-
ing [Zwo12, p.42], we write

1q 2012
:2/ (1 —7)(1+27%|2'| )dT
0

(1=l

Noting that 1 (2’) > 0 on the support of ¥’ and up to taking ¥ supported'’ close enough to 0, we
can make the change of variables y = p(z) := 1/9(2')2’ in our integral:

[Jac(er D) (w)lldyl
oo ()

Taaful() = [ P o o (uler o), el 1)

Setting

e g (Pace W
ble): (Q)jj!Ay( oo () (y”)’

the standard stationary phase estimate (see'! e.g. [Zwo12, Th.3.13-16, p.46-49]) then reads

le

M

T [u)(p) — eFireFiald= 1)< ) Liju(-,£¢(-))(0)

§=0
< Cyp~! N+ ||“HW2N+“1 (supp(X)) -

Recalling that u(-, £¢(-))(0) = u(+eq) and pulling this back to the sphere yields the sought result
(up to changing the name of the operators L;). O

5. ASYMPTOTICS OF TWISTED DYNAMICAL CORRELATIONS

In this section, as a first application of these fine stationary phase asymptotics, we give an
accurate description of the correlation function as ¢ — +o0. See Theorem 5.5 for a precise state-
ment. As a byproduct, this shows how anisotropic Sobolev norms naturally appear when studying
analytical properties of geodesic flows and it also proves Theorem 2.5 from the introduction.

10Thus, X1 is supported close enough to 1.

11Strictly speaking the statement of Th.3.16 in that reference involves the C2N*9-norm. Yet, inspecting the
proof (namely, step 3 in the proof of p.43 together with the proof of Lemma 3.5(ii)), one finds a control by the
W2N+d.1_norm.
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For the sake of simplicity, we restrict ourselves to the case where k; = 2d — 1, ks = 0 and
#(0) = 0. Namely, we fix two smooth functions ¢ and v in C*°(ST¢) and we want to analyze the
behaviour as t — +o00 of

(b o) == [ ola0)e V70 (0)w.0)lda| Vol 0, 48]
= /SW e 0Bz, 0)p(x — 16, 0)|dx| Volga—1 (8, |db|)
where 3y € H'(T%,R) ~ R?%. According to Remark 3.17, this can be rewritten as
Cons(t,Bo) = /S . ()&= NVolga_ (6, |d6)),

ez

where
= Z Pe(@)ec(x), and (x,0) Z ¢§
gezd gezd
We will now implement the decomposition (4.1)-(4.2) together with Corollaries 4.3 and 4.6 in order
to analyze the asymptotic expansion of C, (¢, fo) as t — +o00.

Remark 5.1. Modulo some tedious work, the analysis could be extended to the more general
framework of Lemma 3.15 except that the terms in the asymptotic expansion will be slightly less
explicit.

First, we write

Cou(t, Bo) = Ego(p,0) + > / (0)e™ &P Volga- (0, [df]),
€€Z\{Bo}
where
(51) Eﬁo (%7/1) = /gd—l @50(0)72;—50(0) VOlSd_1(97 |d0|)a if 50 S Zd7

and Fg, (¢, ) = 0 otherwise.

5.1. Anisotropic Sobolev spaces of distributions, splitting the correlation function. We
decompose these correlations further by writing

(52) é@ﬂb(t ﬁo) = Eﬂo (90 w) + églw(t) + éO (t) + é}oﬂl}(t)’ Wltha for JE {_L 0, 1}a
y =B\ o .~ ;
CROESD S R (= E O IO RS U RS )
gezi\{Bo} ’°
where the x; are the cutoff functions defined in §4.1 and Eg,(p,v) is defined in (5.1).

We first consider the term éo( t). Applylng Corollary 4.3toz = 0and F = gagw ¢ combined with

the Cauchy-Schwarz inequality [|Ged—¢llw . coe—s) < 19ell i ote—aon 1P—ell i~ cote— o)
we have the following statement:

Lemma 5.2. For all xo € C°(—1,1) and for all N € N, there is Cny > 0 such that for every
t >0, every By € R, and every ¢,v € C°(ST?), we have

I1Pell v (o (6= 0)) H¢ §H
€= Bol™

HN(Co(§—B0))

‘éo(t)‘ < Ont™N
€€79\{Bo}

We now consider the terms C*1(¢). Applying similarly Corollary 4.6 to #(§) = 0 and F = c’ﬁg{b\_g,
we have the following statement:
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Lemma 5.3. For all x1 € C>®([-1,1]) compactly supported in a small enough neighborhood of
1 and equal to one on a slightly smaller neighborhood of 1, with x_1(s) = x1(—s), and for all
N € N*, we have for every By € R?,

d—1

- ) x 27 R
e:tl 1) = e:l:zt\f—ﬁo\e¥1j(d—l) ()
=2 e~ Bl

£€zZ4\{Bo}
N1 8
o -
8 ; (tle — Bol)? ﬁo j = Gpgzﬁig) ( € — /30|)

o) (t—N—dz;l) > IPelirrscanic-ay H‘LEHHWM(CM&%))
N € — BolN+ T ’
£€z4\{Bo} 0

as t — +oo, where the constant in the remainder On (=N~ ) depends also on By € RY.
The above decomposition motivates the following definition of anisotropic Sobolev norms.

Definition 5.4 (Anisotropic Sobolev spaces). Let v € R? and let (sg, s1, No, N1) be an element
in Z% x R?. For every ¢(z,0) = > e Pe(0)ec(x) € C>°(ST?), we define the following anisotropic
Sobolev norms:

~ 112 ~ 112
lel3zomoerm = 34 IPelirno(coiey T 2 € 1Beliro cuie—n
¢ezd £ezd +

In our applications, these norms are used for v = +f;. The geometric content of these
anisotropic norms is discussed in Section 5.3 below.

5.2. Asymptotics of the correlation function. Now, combining this definition with the re-
duction made in §5.1, we find

Theorem 5.5 (Asymptotics of twisted correlations). Let 8 € H'(T% R) and let N € Z*_. For
every o(z,0) =3 ¢ cza Pe(0)ec(x) and P(z,0) = 3 ecpa Ye(O)ee() in C>®(STY), one has

Cy.y(t, Bo) := /sqrd e_itﬁo'ggo(x, 0)y o e_tv(x, 0)|dz| Volga-1(0, |d0|) — Ea, (p,¢)

LN oEi(tE—Bol—F(d=1)) - Bo
Z Z a1 Li £-Bg (@5#’5)( |€ 50|>

0 cemivgpy e (HE—Bol)’TTE DT

1
+ OnNp0 (M) )

where Eg, (¢,v) was defined in (5.1), Ljﬂfw is the differential operator of degree 2j appearing in
Corollary /.6 and, for every integer so > N + d the constant in the remainder is controlled by

CNso lloll 50 _x_a [l L s N a1
N,sq 90| H;ﬂ, 2 2N+d, — 5 N ’(/} Hmﬂ’ 2N +d,— 4 2
0 —Po

with Cy > 0 depending only on d, N, so, Bo and the cutoff functions (x;);cq0,1y used in §4.

Theorem 2.5 from the introduction is a direct consequence of this result by taking 5y = 0 and
N = 1. See also below for a more detailed connection with the Laplacian. Recalling from the proof
of Lemma 4.4 that the operators Lji can be computed explicitly (up to some tedious work), this
theorem provides an explicit asymptotic of the twisted correlation function for smooth observables.
Besides that, another interesting feature of this theorem is that it illustrates how anisotropic
Sobolev norms naturally appears when studying the asymptotic behaviour of the geodesic flow on
the torus. This is particularly clear in the case of the remainder while for the term in the asymptotic
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expansion, one can remark that, using the standard Sobolev inequalities [Eval0, §5.6.3],

- ~ 2 £ — bBo -~ -
‘Ljégog (%1/1—5)( T 5|>' < Gilleellezsicrre-ponI¥-ellezs (ae s

Cil1Pell 2+ iy (= o)) 1€l 2344 (s (= 0))-

IN

Hence, each term in the sum over j is controlled by some anisotropic Sobolev semi-norm (that
depends on j). In summary, test functions can have a priori arbitrarily large polynomial growth
in [£| away from the direction of £ — By. Close to & — 3y, the situations is not as good and one
needs to have moderate growth in |£] to ensure the convergence of the sums.

5.2.1. Further comments. Let us now comment a little bit more Theorem 5.5. First, we emphasize
that our strategy can be viewed as an analogue on flat tori of the strategy used by Ratner [Rat87]
to describe the asymptotic behaviour of the correlation function for the geodesic flow on hyperbolic
manifolds. Like in this reference, we use tools from harmonic analysis to describe accurately the
correlations and we end up naturally with anisotropic Sobolev norms (see e.g. [Rat87, Th.1] for
the use of spaces with anisotropic Holder regularity). As in [Rat87, Cor.1], it is interesting to
look at the case where ¢ and 1 do not depend on 6. In that case, the asymptotic expansion of
Theorem 5.5 reads as follows

CosltB) = [ Opa)i(o ) do] Volgu 1 (6, d6)
ST

- 27}(” ([ vr-n@iast) ([ vt olal)

a1 N eEi(tE=Fol =5 (d-1))
0 j+ﬂ (pfw_f
J=0 ¢€Z\{Bo}, = (tlE — Bol)) T 2

1

+ Onpuw <tN+dzl> )

where 0z4 g, = 1 if g € 74 and 0z 5, = 0 otherwise and where the coefficients c;t (& — Bo) depend
only on the geometry of S?~! and are uniformly bounded in terms of £&. In particular, we can verify
that the term of degree j is controlled by the following quantity (up to some constant depending
only on j and d)

_jod=1
31— Bol T B S BT | < Callelliz 9z
£eZ\{Bo} £€Z\{Bo}

=
|

The same bound would hold on the remainder term. Hence, L? is the natural space to consider
when considering observables depending only on z as in the case of hyperbolic manifolds [Rat87,
Cor.1]. See also [HR17, Prop. 2.1] for related results on Birkhoff averages in the case of flat tori.

5.2.2. Relation with the magnetic Laplacian. When the observables ¢, depend only on x and
not on 6, the above discussion can also be understood differently if we make the connection with
the magnetic Laplacian

d
Z ax] +Z50]
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Indeed, if we rewrite according to [Ste93, Eq.(25),p.347]

Copltifo) = [ e el — 10)|ds] Volssor (0. )
T
= Y Gede [ Mol (0, as)
fezd §d—1
= 2m ) Poele(tlE+ Bol) T Juzz (27t]E + Bo])
ez

2—d

= 27T/Td¢(x) (t —ABO) " o (27rt —Ago)w(x)|dx|,

where J, is the standard Bessel function of the first kind. In particular, if we denote by II :
(,0) € ST? — 2 € T? the canonical projection, we obtain the following relation between the
twisted geodesic flow and the magnetic Laplacian

(5.3) T, etV =BV = o (t —A50> = Jiz (me —Ago) .

For observables depending also on the 8 variable, the expressions are slightly less explicit. Yet,
as in Theorem 2.5, we can for instance consider the first term in the asymptotic expansion of
Theorem 5.5, which is given by

s +i(tl€—Bol—F (d—1)) ~ §—Bo
(2m) - o (Pt <i )
EEZL%%OHE (1 — fo) ( ) |€ — Bol
a1 eii(t\£+5o|—%(d—l)) ( ~ ) < £+ Bo )
5 q: :

- (27() ’ d—1 ¢—§¢f
fezd%;jo},i (t]E+ Bol) > 1€ + Bol

If we introduce the following map
~ £+ Bo
5 ()= > @ (iw e,
£€29\{~Bo} 0
then the (first term) asymptotic expansion of é%w(t, Bo) in Theorem 5.5 can be rewritten, modulo
Op (7). 28

d—

3 27 En im(d—1) eiit —A-p5g
Casttbo) = () T e [ (Woni%(w)) (@11, () @)

d—

_ (2 " i + 7eiit o o x)|dx
(5.4 -(F) e /Wnﬁo(w(x)((_%)dzl H§0<w>><>|d !

after having used the Plancherel Theorem. Similarly, all the terms in the asymptotic expansion

can be written in the same fashion except that the expression will be slightly more involved.

5.3. Geometry of the anisotropic Sobolev norms. In this section, we review a few facts from
Riemannian geometry [Rug07] that are useful to understand the geometric picture behind these
norms.

5.3.1. Decomposition of the tangent space of ST?. The tangent space to a point (x,0) € ST?
decomposes in a way which is adapted to the dynamical features of our problem. First, we write

T, ST ~ T, T x TS 1.
Given 0 € S?!, we consider as in Section 3.1 an orthonormal family (e;(f), ..., eq_1(#)) such that

det (0, e1(0),. .., eq_1(0)) > 0.
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At a given point (x,0) € ST?, we define the horizontal space as
Ha,o := Spang, pa(e1(0), ..., eq—1(0)) x {0} C T,T? x {0} C Ty 6(ST).
Similarly, we introduce the vertical space
Voo := {0} x Spang,ga—1(e1(0), . ..,eq—1(0)) = {0} x TpS*™! C T, o(ST?).

Note that V(z, ) is the tangent space to the submanifold S,T¢, or equivalently the kernel of the
tangent map of I1 : (x,0) € ST? — z € T¢. Letting V(z,0) = 6 -9, ~ 6§ € T, T? x {0}, one has
then

Ty 9STY =RV (2,0) © Hau g © Vg

In the terminology of symplectic geometry, H, g @&V, ¢ is the kernel of the Liouville (contact) form
a(z,0,dx,dd) ;= 6-dx. This decomposition of the tangent space allows to write the following nice
expression of the tangent map D(e!V) at a point (x, 6):

1 0 0
(5.5) (DY) (@, 0)kv (.00, gave, = | 0 1d tId
0 0 Id

Remark 5.6. Every vector in H; 9 @ V; ¢ tends to the horizontal bundle under the tangent map
as t — too. In fact, in the case of flat tori, the stable and unstable bundles'? coincide and are
equal to the horizontal bundle [Rug07, Ch. 3, §1.3]. See Figure 2.

Vm,@
D(e")(z,0)
// \/
s
Hwﬂ

FIGURE 2. Action of the tangent map on the kernel of the contact form.

Remark 5.7. We will denote by Ej = Ra C T*ST? the annihilator of H @V, by H* C T*ST? the
annihilator of RV @V and by V* C T*ST¢ the annihilator of RV @ H. The action of the tangent
map on T*ST? reads

1 0 0
(5.6) [D(etv)(fca Q)T]Hgi(z,é‘)@?-[: WOV, T 0 Id 0
' ' 0 —tId Id

12Such bundles are well defined on manifolds without conjugate points, e.g. non positively curved manifolds.
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5.3.2. Geometric interpretation of the anisotropic seminorms. With that geometric description at
hand, we can give a rough geometric interpretation of our anisotropic spaces using the notion of
pseudodifferential operators [Hor85]. Usually, Sobolev spaces are designed using the quantization
of a symbol of the form (1 + |(£,0)[2,)2 where (,0,¢,0) is an element in T*ST* and s is
the Sobolev regularity. Here, due to the explicit structure of the problem, we did not write
exactly things in that fashion. Yet, our spaces would in principle correspond to replace s by
a function s(z,0,&,0) whose values depend on the directions in 7*ST? and thus to work with
anisotropic symbols. More precisely, taking v = 0 for simplicity, we would in fact require using
this pseudodifferential approach that

e near Ej, the symbol is given by (1 + 1€2)3 (1 + |©|2) 7. Thus, we are roughly requiring
a Sobolev regularity N; along Ej.

e near H* @ V*, the symbol is given by (1 + \§|2)%(1 +16[2)%. In particular, on V*, this
correspond to a Sobolev regularity of order sy while on H*, the Sobolev regularity is Ng.

See Figure 3.

;,97 ~ <®>SO

PRI
Bile0)~ 6"

FIGURE 3. Sobolev regularity in the cotangent picture.

6. ANISOTROPIC SPACES OF CURRENTS
In Lemma 3.13, we saw that, for 3y € H'(T¢ R) and for a smooth function y : R — R with

enough decay at infinity, the operator

R(=iVa,) = / x(B)e Vol d

is bounded when acting on the space of continuous differential forms. Now we aim at describing
anisotropic Sobolev spaces adapted to the dynamics of the geodesic flow on which X(—iVpg,) will
still extend continuously.

6.1. Anisotropic Sobolev spaces. Motivated by the norms of Definition 5.4 appearing in the
description of the correlation function, we introduce the following spaces of currents.

Definition 6.1 (Anisotropic Sobolev spaces of currents). Let By € H'(T4, R), let 0 < k < 2d — 1
and let (sg, s1, No, N1) in Z2 x R?. We define the following anisotropic Sobolev norm:
2

k)
12,0 = 3 (€ [ )| + 2 @ [P
gy gzjd ¢ H*0(Co(6~F0)) ggi ¢

2

Ho1(Ci1(6—Bo))
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where (1) := (1+ |n]?)2 and where the Sobolev norms H* on forms are understood in the sense
of Remark 3.9. We define the space H}i‘jbﬁ/”’sl’Nl to be the completion of QF(ST4) for this norm.

As above, we note that these norms depend implicitely on the cutoff functions used in §4.1.
In particular, the conic neighborhood C.;(w) can be chosen arbitrarily close to w € S¥~! but it
cannot be too large in order to apply Lemma 4.4. Using these spaces, one gets

Theorem 6.2. Let 0 < k < 2d—1, M,N be elements in Z, By € H' (T R) and x € C(RY).
Then,

~ . M,—M/2,0,—N/2 M,—M/2,0,—N/2
X(=iVg,) : Hy 5, / 2 (H2d+1—£,ﬁ0 / )

defines a continuous linear map, where (H%’_ﬁ]\f,@éﬂw/z)’ C D'*(ST9) is the topological dual of

M,—M/2,0,N/2
H2d+1fk,ﬁ(] ‘

Compared with the spaces appearing when describing the asymptotics of the correlation func-
tion, we now require that test currents are regular enough along the vertical space V while they
can be singular along the horizontal space RV @& H. See Figure 3 with s = M, Ng = —M/2 and
Ny = —N/2.

6.2. Mapping properties. For later applications to counting orthogeodesics, we also fix a smooth
map

z:8%! 5 RY,

and our goal is to study more generally the analytical properties of the operator:
REVAIT = [ (e VT far,
R

under appropriate assumptions on y. To that aim, we fix 0 < k1,k2 < 2d — 1 and two smooth
forms (i, 1) € QF1(ST?) x QF2(ST?) (with ki + ko = 2d —1). Hence, for x with enough regularity,
we want to study the properties of

(61) | oA REVaT ) = [ X0 ot Al

in terms of the anisotropic Sobolev norms we have just introduced. In order to state the main
technical result of this section, let us introduce the following definition:

Definition 6.3. Let p € R and let N € Z,.. We say that x is (N, p)-admissible if y € C*(R,)
and if it satisfies the following properties:

e the support of x does not contain 0,
o for every 0 <m < N,

dm
1' _— p =
Jm o (7x(t) = 0,

o t > tPx(t) € L'(Ry).

This definition obviously includes the case of smooth compactly supported functions on R%} and
Theorem 6.2 is actually a corollary of the much more precise statement:

Theorem 6.4. Let ki + ko = 2d — 1, let By € HY(T,R) and let M,N be elements in Z..
There exists a constant Cpr Ny > 0 such that for all (p,v) € QF(STY) x Q*2(ST9) and for all
X which is (N, p)-admissible (for every 0 < p < min{ky,ko}) and which satisfies'> suppx C
(C(x0)|dZ|| = sa-1), 0), one has

min{k:1 ,kz}

(6.2) [ x0€.z wtmd = > 300,

=0

13The constant is the one from Lemma 4.2.
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where, for all 0 <1 < min{ky, ka},

EY
(o) =[x

N

d
e (L e

}||80||H1|¢||H2

L1 (R4)

with Hy = HX:EOM/Z’O’_N/Q and Hgy := HM M/2 0.=N/2 defined by Definition 6.1 and with

(6.3) EY) = / ¢ 20 B2 (5 ) () Volga—1 (6, d6) if fo € HY(T?,Z), ES) =0 otherwise,
§d—1 ’

where the explicit expression for B(kQ’ ) s given by (3.20).

The function o appearing in this Theorem is the one from Definition 4.1 and we recall that
each function x; implicitely appears in the definition of the anisotropic spaces. Before entering the
details of the proof, we start with the following observation which follows from a direct integration
by parts argument:

Lemma 6.5. Suppose that x is (N, p)-admissible. Then, for every A # 0, one has

/ 2 (t)e ||
Ry

This lemma will allow us to gain a decay in |£| that is lacking in the region where the phase
is stationary. In other words, it will allow us to take observables that may be singular along the
direction of V' while for the correlation function we required to have some regularity along V'; that
is to say, we can now choose N; <« —1 in Figure 3. Henceforth, in the proof of Theorem 6.4, we
only make use of the non-stationary phase estimate of Corollary 4.3 and do not rely on stationary
phase estimates of Corollary 4.6.

< AN H (1)

L'(R4)

Proof of Theorem 6.4. According to Lemma 3.15, we start from the decomposition (3.18)—(3.19)
of the dynamical correlator € according to the various homogeneity in the variable ¢. Integrating
the expression of Gio 1 () (t: o) in (3.18) against x(t) will then yield (6.2) with

(6.4) 3o = [ X(OCL 2, ot )]

We decompose eio,Tim(w)(u Bo) further by writing

) i tt t! . .
(6:5) €, p- ()t Bo) = E< 6“ V() + 0 + 5t D(1), with, for j € {~1,0,1},
B = / eiBO'f(")Bg’“;j)(@,zp)(e) Volga-1(0,d0) if Bo € H'(T%,Z) ~ 7,
gd—1 ’
E[glo) =0 otherwise,
and

P B it(€—Bo)-0 i&F 2,
et = / ( é G ) €T SO B (0,)(6) Volsa-s 6, d0)
gezi\{Bo} 5" 0

where the functions x; were introduced in Definition 4.1. Note that E[glo) concerns the Fourier
coefficient ¢ = By (in the case By € Z? and it vanishes otherwise). The above decomposition
indexed by j = —1,0, 1 corresponds to the different integration regions of S?~! on which we study
the oscillatory integral. Moreover, it is a time invariant quantity.
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We now compute each term in (6.5). The first term is nothing but

(l)

(6.6) / Xt E(l) |dt| = Y(&)t|dt].

We next consider the term involving €40 (¢). Applying Corollary 4.3 to the function F () =
Bgfg’l)(go, 1)(0), we have the following statement: there exists C'(xo) > 0 (independent of &) such
that for all M € Z,, there is Cjy > 0 (depending on the map & : S¥~! +— R9) such that for all

t > C(XO)”di'”Loo(Sdfl), 1€l > 1, (p,) € Q¥ (ST?) x QF2(ST9), we have

e<l’0>t‘< C 7” B2 (5 4)(- H .

‘ ) _fezdz\{ﬁ} Mle = Bolty™ #9)0) WM.1(Co (€~ Fo))
According to (3.21), this implies for every ky + ko = 2d — 1, for every 0 <1 < min{ky, k2} and for
every (p,1)) € QF1(ST?) x Qk"‘(S']I‘d)

Cm k k
O] < T =) =42 ) -
’ ®)] < tM geg\;ﬂ ) 1€ = Bol™ ﬁoIM HM(Co(e—B0)) Il ¢ @) HM (Co(¢—Po))

We thus obtain, if supp x C (C(x0)||dZ| e (gi-1),00), that
4
JRCETRIOT
AT
6.7)

< CulxWE Mgy S || |2 w)|
€EZd\{B } |f ﬁol H]W(CO(g_BO))

For the remaining two terms, we write

[roferu= 3 [ ([ ogersm )

£eZ4\{Bo}

HM (Co(6—Bo))

xm( - BO) €30 g2 (5, 49)(0) Volga-1 (0, db).
1§ — Bol

We then remark from the properties of y 11 in Definition 4.1 that s € supp(x+1) = [s| > €9 > 0.
Lemma 6.5 then implies that for (6,£) in supp x+1 (9 . %)

/X( )tl it(§— ﬁ0)9|dt‘ ; ﬂ (tlx)
R (&= Bo) - OV || atN

LY (Ry)

c_ 1 HdN (%)
= |eo(§ = Bo)|V || dtN X

Coming back to our problem, we can derive the estimate

‘/ (l il) |dt|‘

L1(R4)

1 (had
CNHdtN (%) WHB 2 (0, 0) O 2 (€ (e -p0))
LY (R+) geza\{Bo} 0
(k1) ’ H (kz) ‘
v
H () H e () L2(C1 (6—B0)) W) L2(Cuty (€~ Bo))
a | (€= Bo)[™

L1(R+) ceze\{Bo}

Combining this together with (6.6) and (6.7) in (6.4)—(6.5), and recalling the definition of the

norm H := ’H,]cwé;M/z’o’*Nﬂ in Definition 6.1, we have obtained the expected bound. O
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7. MELLIN AND LAPLACE TRANSFORMS

We will now apply the results of Section 4 to two examples which, besides their own interest,
will be instrumental in our description of zeta functions associated to the length orthospectrum.
All along this section, we will take Xxo to be a smooth function on R satisfying the following
properties

(7.1) 3T, > 1, 3tp > 0, such that supp(xeo) C [T0,00) and xeo(t) =1 for &> Ty +to.

Typically, for our applications, we will in fact work with nondecreasing functions of this type. We
now aim at refining the results of Section 6.1 when the function x depends on some extra complex
parameter, e.g.

X5 (8) = xoo (e and  xJ1 (1) := Xxoo (1)1,
where s € C has large enough real part. Equivalently, this amounts to study the Laplace and the
Mellin transforms of Xoo(t)e™tVeo:

— o0 — o0
(12) xEiVR) = [ e Vol and (V) = [ e Vol

Note that, for Re(s) large enough, we are in the setting of application of Theorem 6.4. Hence, for
such s, these operators are well defined on the anisotropic Sobolev spaces we have introduced in
Section 6.1. Our goal is to show that these operators in fact extend to appropriate subsets of the
complex plane when considered on these spaces. See Theorems 7.4 and 7.8 for precise statements.

This section is divided in two main parts corresponding respectively to the analysis of }Sﬁ(fivgo)
(§7.1) and to the one of xL(—iVg,) (§7.2).

Remark 7.1. Besides applications to Poincaré series, note that the Laplace transform appears
naturally when studying the resolvent of V. In fact, one has

+oo —+oo o
(5+Vg,) = / e te™Vro|dt| = / (1 = xoo(t))e e Vao|dt| + xE(=iVs,),

which defines a bounded operator from QF(ST?) to D’*(ST?) for Re(s) large enough. Note that
the first integral on the right hand side is over a compact interval. Hence, this part extends holo-
morphically to the whole complex plane as an operator from Q*(ST9) to QF(ST?). Equivalently,
understanding the extension of the resolvent amounts to understand the continuation of Y% (—iV').
The same remarks hold for the integral

“+o0
/ t=Se Voo |dt|.
1

We refer to Section 7.3 below for precise statements. A refined analysis of the resolvent when
k =0 and in the case of analytic regularity will be discussed in [DGBLR22].

7.1. Mellin transform. We begin with the case of the Mellin transform which is slightly easier
to handle as it only requires nonstationary phase estimates.

7.1.1. A preliminary lemma. In that case, the analysis relies on the following elementary lemma:

Lemma 7.2. Let Ty > 1 and ¢ € C®(R) be such that supp(¢) C [Tp, +00) and ¢ is constant near
infinity. Then, the following hold:

(1) For any X € R, the function

fo(s) ::/Rqﬁ(t)t_sei/\t|dt|

is a well-defined holomorphic function for Re(s) > 1 satisfying
—(Re(s)—1)
|[fox(s)] < Hd)”LOO(R)mv for s € C,Re(s) > 1.
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(2) If ¢ is compactly supported, fy x is actually defined on the whole complex plane and defines
an entire function on C such that

TJ Re(s)
|f¢>,)\(5)| < C¢m7 fO’I" seC.

(3) If A\ =10 and ¢ = 1 in a neighborhood of +oo, then fy o extends to C as a meromorphic
Sfunction with a single simple pole at s = 1 whose residue is equal to 1. Moreover,

(7.3) fo0(s) = % for all s € C\ {1}.

(4) If A # 0 and ¢ = 1 in a neighborhood of 400, then fy  extends to C as an entire function.
Moreover, this extended function satisfies, for all m € N* and all s € C,

T Jox® = g 3 (7) O I B snalo +3) + (5 ol ),
where
(7.5) P;(s) = 1:[(5 +k), for jeZi, and Py(s)=
k=0

and, for all m € Z, there is a constant Cy , > 0 such that for all A # 0,

<|S|>m TO— Re(s)+1

(7.6) [fox(s)] < Cgm IA™ Re(s) +m—1'

for Re(s) > —(m —1).

Proof. Ttem 1 follows from the rough estimate |¢(t)t=*eM| < ||¢||p~t~ R¢®). In case supp ¢ C
[To, T3], this yields in particular the estimate

T Re(s)+1 Tl_ Re(s)+1
Re(s) —1 ’

(77) FonI < ol [ 40 =
To

which, combined with holomorphy under the integral, provides a proof of Item 2. Item 3 consists

in proving (7.3) for Re(s) > 1 by an integration by parts, and then observing that fy o is an entire

function, whence the right hand-side of (7.3) has the sought properties The result for all s € C

follows from analytic continuation and the residue is fg o( fR @' (t)dt = ¢p(+00) — (0) = 1.
The proof of Item 4 (in case A # 0) also consists in provmg ﬁrst (7.4) for Re(s) > 1 by

integration by parts. After m integrations by parts, one finds for Re(s) > 1

fon(s) < ) /87" £t~ %) e dt).

The Leibniz formula together with the fact that (¢t7*)() = (—1)7 P;(s)t~*77 then implies (7.4) for
Re(s) > 1

Next, we observe that the first term on the right hand-side of (7.4) is an entire function (as
#(™=7) is compactly supported for j < m— 1) and the second term is holomorphic on the half space
Re(s) > —m + 1. Hence, for all m € N*, the right hand-side of (7.4) is a holomorphic function on
Re(s) > —m+1, and all these functions coincide with fy 1(s) on Re(s) > —m+1. As a consequence
of analytic continuation, for any m € N, f4  can be extended uniquely to a holomorphic function
on Re(s) > —m + 1 (still denoted f; 1), which satisfies (7.4) on Re(s) > —m + 1.

To prove the estimate, we use (7.4) and write

m—1
A" fon(s)] < ( ) M Fyom a5 + )]+ [Pon($)] [ Fon(s + )]
=0

J
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Taking 1 < Ty < T such that supp(¢’) C [Ty, T1] and using item 1 together with (7.7), we deduce

m—1 Ty ]
AP (6)] < Con Y- ()™ o [ R
Jj=0 To
T (Re(s)+m—1)
Co(lsD)™ ]l L (Rm
from which the statement follows. O

7.1.2. Meromorphic continuation of @(ﬂ'vﬂo). Before discussing the meromorphic continua-
tion, let us first clarify its holomorphic properties on Re(s) > d:

Proposition 7.3. Let xo be a function verifying assumption (7.1), let By € H' (T4, R) and let
7 :S1 - R? be a smooth function.
Then, for all (p,1) € QF1(ST?) x Q*2(STY) with ky + ka = 2d — 1, the function

(79 5 Mun(s) = [ B =iV T4 (0)
is holomorphic on Re(s) > min{ky, ka} + 1 and it satisfies
—(Re(s)—min{kq,k2}—1)
Reo(s) — min{k1 kQ} 1 HL)OHLZ(ST"’) ||w||L2(STd)'

Note that in this expression, min{k;, k2 } + 1 can be always be replaced by d (but it downgrades
the statement).

(79) [Mpp ()] < ©

Proof. Recalling (6.1), we use again Lemma 3.15 and the decomposition (3.18)—(3.19). Integrat-
ing (3.18)—(3.19) against xoo(¢)t~° then yields

min{kq,ko}

(7.10) Mior(9) = [ o m (=15 T o (0) = > 200
with
(7.11) MU0 = [ X CLre (8 )

We then notice that the index [ is bounded by | < min{k1,k2} < d — 1, and that

Chiae ot 80| = [ 32 [ e RSO B g 0)0) Vol 0, )

A
<q Z /S | BRE" (0. 0)(0)| Volsa- (6, 1d6)
(712) S Ct ||S0||L2(ST‘1)H¢”L2(S’]I‘51)

according to (3.21). We deduce that
[Xoo (08 CL e (8 B0)| < Cxon (O ol csmey W2 oy

Recalling that { < min{k;, k2}, (7.11) then implies holomorphy of M(w ) 0 Re(s) > 141 (and in
particular in Re(s) > min{ky,k2} + 1). Item 1 in Lemma 7.2 finally yields
o Tof(Re(s)fmin{kl,kg}fl)
MG )] < R mmre w11 Il e s,

from which we infer (7.9) thanks to (7.10). O

We now turn to our main statement on these regularized Mellin transforms.
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Theorem 7.4. Let xo be a function verifying assumption (7.1), let By € H*(T? R) and let
& : S — R be a smooth function. Suppose in addition that Ty > C(xo)||dE| = (si-1) where
To > 1 is the constant appearing in (7.1) and C(xo) > 0 the one from Corollary 4.3. Set

By = / Pt @ B2 (o 1)(0) Volga—1 (0, |d0)), if Bo € H'(T%,Z),
§d—1 ’

and Ego) = 0 otherwise. Then, using the conventions of Proposition 7.3, for any N € 77,

there exists Cy > 0 such that, for every couple (p, ) in H]k\i 5év/2 0, =N/2 Hi\g,;zgo/z,o,fN/z with

k14 ko =2d — 1, the function
min{kq,k2} 1 E(l)

B
Mg,y (s) — Z lils—lio—l’

1=0
originally defined on Re(s) > min{k, ka} + 1 extends holomorphically to the half-plane Re(s) >
—N + min{ky, ka} + 1 with

min{kl,kg} 1 Eél)
0
Cn(sh™
~ Re(s) —min{k;, ko} -1+ N
The proof is very close to that of Theorem 6.4 and we just need to pay attention to the

dependence on the parameter s € C. Combined with Proposition 7.9, this proves Theorem 2.2
from the introduction by picking 5y =0, k1 = 2d — 1 and ko = 0.

||90||HRN£}§/2,077N/2 ||¢||HkN2;;%2,osN/2-

Proof. By bilinearity of the considered mappings with respect to (¢,v) and by density, it is
sufficient to prove these analytical estimates when (p,9) € QF1(ST9) x QF2(ST9). As in the
proof of Proposition 7.3, we can decompose Gio T _(w)(t,ﬂo) using (6.5). Then, we are left with

describing the terms ME ) ¢)( s) in (7.11) that can be decomposed accordingly as

MY () 4 MO (g) 4+ M)

0) (LE) 1)
(7.13) M M (0,%) (s) + (e, w)( s) + (e, w)( 5);

(o) (8) = Mg 4y (8) +
with

M) =[xl LEDI,  and

l, . tl , ‘
Mg (s) = /Rxoo(t)t SO dt], for j € {~1,0,1},
We now study each of these terms separately.

Firstly, as supp(xeo) C [1,00), we have

0 (ORENSS
(7.14) M(l E) (s) = E(l) 1 (t)t75+l|dt| _ l Eﬁo + Eﬁo (1— (t))t75+l|dt|
' (¢:) Po 71 e Ths—1—1" X ’

where the second term on the right-hand side of the equation is an entire function. Hence, this
term has the claimed properties.

(1,0)
(1)
According to Corollary 4.3, we have, for t > C(xo)||dZ|| Lo (sa-1)

5 1t(E— -0 _i&-T 2,
SOENDY /x( - °| e 01 2(0) B0 (5 4)(9) Volga-1 (6, ]dB))
£czZ\ (B} *S o

Secondly, we consider the term with M; " (s) and proceed as in the proof of Theorem 6.4.

= X Gle=mlnY [ F(.6.0)Volaun (0. d0)

£eZ29\{Bo}
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with

F(t,€,6) = 650 10+50) L T=50 <xo <"' é - g|) OB e 7”(")) ’
’ — FO

and, for all w € S, for all § € Co(w), and all ¢ > C(xo)||dE]| o (a1,

|( (K/,ﬂ/))(a” < Cx <||-T||WN+1,°°(Co(w))> Z |vg¢(9)

t
la| <N

Coming back to Mgia’oll)(s), we have

l
(1,0) —sT 01,0
M ) = [ x0T ol

/R E€Z\{Bo}

where, as supp(x«) C [To, +oc) with Ty > max{1, C(xo)||dZ|| o (sa-1)}, one has

!
/Sd_1 Xm(t)t’s%(ﬂf — Bolt) "N F(t,&,0) Volga—1 (0, |d6])|dt|,

l
007~ lt)F(1.0)

fé ,00 w
< Yoo ()™ Re(s)+l—N‘§ _ ,80|_NCN <|| HWNJrlt (Co( ))) Z ‘vaB(kml) o, 0)(0)| |,
lo| <N
uniformly for ¢ > max{1, C(xo)||dZ|| e ga-1)}, € € R*\ {Bo} and 6 € Co(£ — fo). We deduce from
that bound and from (3.21) the holomorphy of the term MEZOJJ)(S) in Re(s) > —N +1+1 together

with the estimate

(lO)
’M (ps1h) )’

< Ov IO N ey Y e [BYE )|

€79\ (o} WLN(Co(6—Bo))

H”ﬁ v HHN(C (€—60) H e WH
< OxlxoHE ROy 3 R
£€Za\{Bo} ’

7.‘.(lfl)

HN(Co(§—Po))

T (Re(s)+N—1—1) (go)H

Re(s)+ N —1—-1

%2
HN(Co(£—Bo)) HN(Co(§—Bo))

(7.15) <Oy Pyl

£€ZN\{Bo}
Thirdly, we consider the two terms M(l iwl) (s) and proceed as in the proof of Theorem 6.4 (i.e.

take advantage of the integration over time). We write

(1,£1) _ —s ' ,it(€—Po)-0
o= X[ ([ rtore e o)

£€ZN\{Bo}

X Xil( . gg) €T O BE2D (o 1)(0) Volga-—1 (0, |d6)]).

We then remark from the properties of x41 in Definition 4.1 that o € supp(x+1) = |o| > eo >0
from which we infer that |6 - (£ — Bo)| > €0l — Bo| for (0,€) in the support of x+1 (9 = §3|)
Item 4 in Lemma 7.2 then implies that the integral

“sth ie—so). 1
[ o 0 G It = e pals =)
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extends as an entire function in s for any given (6, ) in the support of x4 (9 . %) According
o (7.6), it satisfies in addition, for any m € Z%,
shm Ty RO

— . _l < C m )
|ono7($ Bo) 9(5 )| = Y Xoo> L66n|f _50|m Re(s) —l+m—1

for Re(s) > —m +1+ 1.

Coming back to M&iwl))(s), we find that it is holomorphic in Re(s) > —m + 1 + 1 together with
the estimate
Re(s)+l+1 1

ka,l
1B (0,9) (013 (0 600

’Mum )‘< (Is)™T

(p9) ~M R — l -1 _ Bn|m
e(s) —l+m ez (8o} 1€ — Bol
(k1) (k)
e =) [ w)
o {shmTy L2(Ci1(6-50)) L?(C1(6=50))
S Ty pr— m '
e(s)—l+m cczi A} 1€ — Bol

Finally, combining this together with (7.15) (and the statement preceding this estimate), and
choosing m = N, we have obtained in the decomposition (7.13) that the function

@) (I,E) (1,-1) (1,0) 1,1)
Mg (8) = Mgy (8) = My (8) My (8) + M ) (5)

is a holomorphic function in Re(s) > —N +[+1. Aslong as To > max{1, C(xo)||dZ|| ;e g¢-1)} and

recalling the definition of the norm Hggﬂf/ 20.=N/2 i) Definition 6.1, we end up with the estimate

() V5 R
Re() I+ N — H(PHHN N/207N/2||'(/1H%N N/207N/2

0 (LE)
Mg (8) = Mgy (8)] < On

Coming back to the decomposition (7.10), recalling that ! < min{k;, k2}, and implementing the
value of MEZ ?)(5) in (7.14) concludes the proof of the theorem. O
7.2. Laplace transform. Here and in the whole section, we write

C, :={z € C,Re(2) > 0},

and we say that a function is in C*(C,) if it is the restriction in C; of a function in C*(C).
In this part, we are going to use the notion of distributions obtained as boundary values of
holomorphic functions [Hoér03, Th. 3.1.11] in the most elementary way. We state a proposition
which characterizes those distributions which arise as boundary values from the upper or lower
half-plane of holomorphic functions:

Proposition 7.5. Let T € S'(R) be a tempered distribution supported in RY . Then, there exists
a holomorphic function F(z) on the half plane Hy = {(x F ty) : y > 0} such that

T = lim F(.Fie) in S'(R),

e—0t

and we shall write T = F(. F i0). Furthermore, F(z F iy) is the Fourier transform of T(x)eT¥<.
Conversely, if we are given a holomorphic function F' on H, such that there exists C, N and some
polynomial P such that Yy > 0:

|F(xFiy)| < CIP(z Fiy)| (L+y ")
then the following limit
T = lim F(.Fi
Jim, F(. ¥ iy)

exists in S'(R) and it is the Fourier transform of a distribution T carried on R .
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This is a particular case of a more general result valid on RY and described in [RS75, Thm
IX.16 p. 23]. Given A < 0, we can now give the fundamental example of such boundary values
together with their Fourier transform. Namely, if we consider

2reFirg

T(Cﬂ) = T)\)ﬂRi (:l::[:)‘;ﬂ*lf)\’

where 1g: is the indicator of the positive reals, then the Fourier transform T(€) is given by
(€ Fi0)* [GS, p. 360]. The function ]ler(:I:x)|x|_1_>‘ is in L{ (R) and bounded polynomially.
Hence it defines a tempered distribution for all A < 0. In the litterature, one can also find the
notation {;1_>‘ = (1[O,+Oo)(:|:§)\§|*1*)‘) [GS, §3.2, p. 48]. We shall use the above proposition to
describe the singularities of our Poincaré series.

The useful analogue to Lemma 7.2 is the following elementary result:

Lemma 7.6. Let Ty > To > 0 and ¢ € C*°(R) be such that supp(¢) C [Tp, +o00) and ¢ =1 on
[Ty + o). Then, the following hold:

(1) For any o € R, the function
Fyo(z) = p(t)t~ e *|dt|,  for Re(z) >0,
Ry

defines a holomorphic function in Re(z) > 0 which satisfies

|Fp0(2)] < Cpar  for z € Cy and extends continuously to this set, if a > 1,

Copa
Fy o < —
Foal)l < goriizs

|Fp,1(2)] < Cy1(|InRe(z)|+1), forze C,Re(z) >0, ifa=1.

for z€ C,Re(2) >0, ifa<l,

(2) OFFy0(2) = (—1)FFsa_k(2) for allk € Z,,z € C,Re(z) > 0, and F, ,, € C*(C,) for all
k € Zy such that a — k > 1.

(3) If a < 1, the function Fy o can be extended to C\R_ (and even to C\{0} ifa € Z_) as a
holomorphic function satisfying Fy o(2) = Fgff) + H,(z) where H, is an entire function
such that, for all k > 0, |0¥H,(2)] < Cyan(e 118 1) on C, for some Cypap > 0.
Moreover, we have the following identity which holds in S'(R):

(1 —a)ezleD

7.16 lm Fy oz + iy) = ) H. (i
(7.16) Jim Fy,a(z +iy) Wi T (iy)
(4) If a = 1, the function Fg1 can be extended to the cut plane C\ R~ as a holomorphic
function satisfying Fy1(z) = —log(z) + Hi(z) where log is the principal determination

of the logarithm and Hy is an entire function such that, for all k > 0, |0FH,(z)| <
Cyrle™h Re(z) 1 1) on C, for some Cs,a,k > 0. Moreover, we have the following identity
which holds in S'(R):

(7.17) lim Fyo(z +iy) = —log(y — i0) — ~ + H, (iy).
z—0+ ’ 2
(5) For all B € R;m € Z%,
1 m P (B
(7.18) Fos(2) = oreBam(2) + (-0 E o),
where P;j(B) is defined in (7.5) and Eg,(2) is an entire function such that
(7.19) |Epm(2)] < Cppm(e” ™R +1), zeC.

(6) ifa>1,a ¢ Z, the function Fy o can be extended to the cut plane C\R_ as a holomorphic
function satisfying Fy o(2) = mzo‘_l + H,(z) where H, is an entire function such
that, for all k >0, |0FH,(2)| < Cyaxl|z))(e7T1Re() £1) on C, for some Cy o > 0.
Moreover, extended by the value zero at zero, we have Fy o € CLaJ*l(E_i_).
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(7) if o« =n € Z%, n > 2, the function Fy, can be extended to the cut plane C\ R_ as a
holomorphic function satisfying Fy ,,(2) = (_nl!)n 2" Llog(2)+ H,(z) where H,, is an entire
function such that, for all k > 0, |0FH,(2)| < Cynr(z))" (e Tt R 1 1) on C, for
some Cyn i > 0. Moreover, extended by the value zero at zero and for n > 2, we have
Fyn € Cn72(6+),

Proof. Let us first prove Item 1. The statement for o« > 1 follows from a crude bound and
continuity under the integral. For a@ < 1, we have

(o9} o
Foa@)] < 0l [ 7 ™ dt] = ol Re2)'* [ e 7o
To To Re(z)

< (/6100 Re(2)! / e do],
0

which is the sought estimate. In the case a = 1, we have

Foa)| < ol [ 71 ™ OMdt = |6l [ o7l 7o
To Re(z)

To
1 00
< ||¢Hoo/ o~ do| + ||¢Hoo/ e~ 7|do] = —|[¢llsc In(To Re(2)) + [|$lloce ™"
To Re(z) 1
Item 2 is a straightforward consequence of Item 1 and differentiation under the integral.

For Item 3, we first notice that for v := —a > —1 and 2z € RY, we have

F¢7_7:/0 tve*2t|dt|+/0 (4(t) — 1)t e *"|dt|

1 oo oo
_ v, ,—0 _ v ,—zt
= Z“/“/O o’e |cl<7|—|—/O (p(t) — 1)t7e™?"|dt]|.

The last integral is an entire function satisfying the sought bound and the result follows from
analytic continuation, where the cut plane C\ R_ is chosen arbitrarily. These bounds give exactly
the necessary moderate growth assumption so that the distributional limit Fy o (iy + 0) exists by
Proposition 7.5.

To prove Item 4, we differentiate Fyy 1 in Re(z) > 0 to obtain
&S] . 0o
B == [ ettt = = [ tie [0 = o)
0 0 0

1 > —zt
_—;+/0 (1 — ¢(t))e*dt.

Integrating this equation on the segment [1, z] for Re(z) > 0 implies

Foa(®) = Faa(1) = ~log(e) + [ (1= ota)) [ e tasa,

whence, for Re(z) > 0,

> _%tsinh(zglt) it
0

Fya(2) = — log(2) + /0 oty tetdt + |- ot :

The right hand side continues holomorphically to C \ R_, the last integral being on the compact
sinh(t(a+ib))| <

set [0,71]. Using now that sinh(a + ib) = sinhacosb + icoshasinb, we have | ;

#2549 | + cosh(ta) < 2coshta) < el'*l, whence

[e%e) . z—1
| a-sape stz 529 4
0

A _

T Th
1+Re(2), |Re(z)—1]| e 1
< C¢/ ez ez ldt=Cy () ‘
Re(z)—1|—(Re(z)+1) "’
0 A A= IRe(=) |2( (2)+1)
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which implies the sought estimate. The distributional limit again follows from Proposition 7.5 and
the bound from item 1.

Item 5 is proved as in Lemma 7.2 and consists in integrating by parts m times to obtain, for

Re(z) >0
Fan@ = [ (22) Gl e o,

and then expanding with the Leibniz formula. We obtain the formula (7.18) with

m—1

Eam() = 3 (1) () B ot ass o)

3=0
and the estimate (7.19) follows from the fact that |Fyum-—s o(2)| < Cga(e” 1R 4 1) for 2 € C
if m — j > 0 since ¢("~7) is compactly supported in R%.

Item 6 is a consequence of Items 3 and 5 for m = |a] € Zy and 8 = a — |a] € (0,1).
From (7.18), we obtain

Fo(2) = Fapim(2) = (()" 5 Fosle) = s Ban)
=g (S 00) - )

where we have used Item 3 in the second line. We further notice from I'(z + 1) = 2I'(2) that

P (B) = F(I?(E’)”) (see (7.5)) whence

_ (_qymmre-1 LA =BLB) ()™ o D)™
F¢,a(z) *( 1) o F(6+m) + Pm(ﬂ Hﬂ( ) Pm(ﬁ)

and hence the sought formula recalling I'(1 — g)['(8) = T = (—1)mm.

Eﬁ,m(z)v

Item 7 is a consequence of Items 4 and 5 taken for § = 1 and m = n — 1, and the fact that
Pnfl(l) =nl. O

7.2.1. Meromorphic continuation of x&(—iVg,). Before discussing the meromorphic continuation,
let us first clarify its holomorphic properties on Re(s) > 0:

Proposition 7.7. Let Yoo be a function verifying assumption (7.1), let By € H'(T?,R) and
let # : S¥1 — R? be a smooth function. Then, for all (p,v) € QF(ST?) x QF2(ST) with
k14 ko =2d — 1, the function

(7.20) s L) 1= [ o AEIVA)T50)

is holomorphic on Re(s) > 0 and it satisfies

C
(7.21) L) (5)] < Ro(s)min{hkz) 11 el 2 (sTay 19| 2 (579 -

Recall that min{k;, k2} < d — 1 so that the latter estimate can always be roughly bounded by
c

Re(s)? "

Proof. We start with (6.1) and we use again Lemma 3.15 to write

min{kl,kg}
Core )t Bo) = D CLpe (y(tfo)
=0
with
2 €T k ,l
Come () (t,Bo) = ,Z/S“ HE=0)0¢e2(0) B2 (5, 4)(9) Volga-1 (6, dB)).

ez
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Integrating against Yoo (t)e™*¢ then yields

min{kl,kz}
o l
(7.22) L(pap)(s) = /SW%Mxé” (=iVe)T (W) = Y L),
=0
with
l —s
(7.23) £ (6 = [ Xt L 0B

According to (7.12), we have
‘%,Tgi(w)(fﬁo)’ < CtM| @l 2 (st 19l L2 (s

which according to (7.23) implies holomorphy of EEQ ) 0 Re(s) > 0. We further deduce that
l —s
£02,006)| < [ sl "€l pe 8 Ao et

<c / oo (Bt 8]l s |0 2 s,
R

Recalling that | < min{k1, k2}, Item 1 in Lemma 7.6 then yields, as Re(s) — 0T,

! C
£ ) (9)] < oty el bl s,
from which we infer (7.21) thanks to (7.22). O

We now turn to our main statement on these regularized Laplace transforms. Lemma 7.6 leads
us to introduce the functions

I'(1-—
g, if a < 17
z «
“1n
(7.24) Fa(z) := ( n') 2" tog(z), if a=necZ,,
- L
— 2 f 1 Z
sin(wa)F(a)z i a>ladZy,

these functions are considered as holomorphic functions on the plane C\ R_ (except if a« € Z* in
which case F, is holomorphic in C*). We also associate the corresponding distributions obtained
as boundary values that is still denoted by F:

(1 —a)esleD

(yfi()?l*a , if a<l,
X L —1)"eis n—1)
(7.25)  Foliy+0) = U;;ynl (tosy — i0) + g) L i a=necZ,,
' iZ(a=1), a—1 if 1 7
sin(ﬂ'oz)F(oz)e g ifoa>ladZy,

Both will describe the singularities of the Laplace transform of correlators up to the imaginary
axis. For a given a € R, F,, is essentially the Laplace transform of t~¢ (near ¢t = +00).
We also denote

T} = {seTy,|Im(s)| <A} = {s € C,Re(z) > 0, |Im(s)| < A},
and explain how the Laplace transform extends to this set.

Theorem 7.8. Suppose that the assumptions of Theorem 7./ on T, Xeo and Ty are satisfied.
Given N,No € Z2,m > 0,A > 1, and (p,v) € Q¥ (ST?) x QF2(ST?) with ki + ko = 2d — 1, we
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define, for all s € C with Re(s) >0

min{k1 JCQ} Eél)
0

N,A
Rigioy (8) = Lo (5) =

+1
S
l

min{k1,k2} N—1

(7.26) - > Ei: >

1=0 7=0 0<|€—Po|<2A

0
Fﬂ_i_]_l(SjF”g_ﬁoD + 6_50
P P
He—po e e (=5

where E( is defined in (6.3), Fy in (7.24), and, letting Li being that of Corollary 4.0, with

(7.27) P [, 0] () = e @D 2m) 5 LE (€70 YD (0, 4)) (w), w e ST

Both sides of the equation 7.26 extend for s = x + iy when x — 0T as tempered distributions of
the variable y where F,, is defined in (7.25).
For any N, Ny € Zi such that

k :=k(Ng,N) = min{No,N—i— [d;l—‘ } —min{ky, ko} —2 >0,

and for any m > 0, there exists C = Cny,Nm > 0 such that for any A > 1 and for every

No,—No/2,2N+d,— No,—No/2,2N+d,—
(p,0) € ’;’-lkloﬁ0 of mn Hk;,Bo o/ ™ with ky + ky = 2d — 1 the function fR@w)

originally defined for Re(s) > 0, extends as a function fR( ’A) € CK(C ) for k = k(Ng, N) with

< CA2m+N+ dati

(7.28) H (V.A)

(¢:)

@) ||@||Hﬁ°,b;N0/2’2N+d""‘HLPHHI,CVQO]:;ZO/“N”""I’

using the notation of Definition 6.1.

In particular, this theorem states that for (p,1) € Q" (ST?) x Q*2(ST?), the Laplace trans-
form L, 4)(s) extends as a C* function in a neighborhood in C, of any point zp € iR \

(£iy/Sp(=A_g,))*, where A_g, = (0, — if30)? is the magnetic Laplacian acting on functions
on T¢. This follows from the fact that bookkeeping the regularities in the proof below, we
may choose the regularity exponent k = inf(Ng — 2 — inf(ki, k2), N — 2 — inf(ki, ko) + 452)
and we see that k — 400 when N, Ny — +oo. Moreover, when Re(s) > 0 goes to zero, then
Y+ L) (iy+0) makes sense as a tempered distribution obtained as boundary value of holomor-

phic function and our Theorem describes its singularity near any point in £4/Sp(—Ag, ) explicitly
in terms of the distributions F, in (7.25). In particular, if d is odd, (7.26) gives an expansion

of the limit Laplace transform lim,_,+ £y y)(z 4 4y) in terms of the distributions O

and (y — 2z;)" log(y — i0 — z;), for z; € £1/Sp(—=Ag,) and m,n € Zy,m < min{k, ko} — 42

If d is even, (7.26) is an expansion of the limit Laplace transform in terms of the distributions
W for z; € 1/Sp(—Ag,) and m € Z, m < 2min{k;, ko} —d+1. The coefficients in this
expansion are explicit; recall for instance that Loiw = 1. Note also that in (7.28) the regularity
of the resolvent up to the imaginary axis, given by the index k(Ng, V), depends explicitly on the
anisotropic Sobolev regularity HNo-—No/2:2N+d,=m/2 of the currents (¢,)). The bigger Ny, N are,
the better the regularity of this background remainder term is.

Note finally that in case & = 0 (and when computing the resolvent acting on functions), the
proof simplifies slightly and the estimate (7.28) of the remainder is better behaved in terms of
spaces and powers of A. As far as the proof is concerned, it is worth noticing that, as opposed to
the proofs of Theorems 6.4 and 7.4, we do actually make use of both non-stationary and
stationary phase estimates of Corollaries 4.3 and 4.6.

Proof of Theorem 7.8 . As in the proof of Proposition 7.7, we consider (p,7) € QF(ST?) x
QF2(ST?) and decompose Cy - _(y)(t, fo) as a sum of €., 1., (t, Bo) according to (3.18)~(3.19).

14Again this can be equivalently rephrased in terms of the spectrum of Ag, instead of that of A_g, if we change
variables £ — —¢ as in (5.4).
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Then decomposing Gio ™ () (t,Bp) according to (6.5), we are left with describing the terms

ng_w)(s) in (7.22)—(7.23), which we again decompose accordingly as

(7.29) £0

o (8) = £EEN () + L0 (6) + L0 () + £00, (9),

(1) (1) (%) (1)
with

LE o _att
ngg)(s):/() Xoo(t)e ™" T ED]dr],  and

. 00 . # . _
(7.30) L7 (s) = /O Xoo(t)e™* D D)]dt],  for j € {~1,0,1}.
We now study each of these terms separately.

Firstly, we have using Item 3 of Lemma 7.6

(7.31) 6B (= EOL [T (t)tle’5t|dt\—Eg°)F (s)—Eé?+E’(3?H (s)
' () = Foqy f o Koo I T A S TR

where H_; is an entire function such that |0¥H_;(s)| < Cy —1.x(e"T1Re(®) 4 1) on C.

Secondly, we consider the term with L‘;Ei;oi)) (s) and proceed as in the proof of Theorem 6.4. The

index j = 0 means that we consider a good term in the nonstationary phase region. According to
Corollary 4.3, we have, for t > C(x0)|[dZ|| e ge-1), all N € Z,

_ ka,l
emI<Cn D0 (16~ Bolt) MIBEEY (0. )llwa cote—son-
£ez4\{Bo}
We now use that supp(xeo) C [To,+00) with Ty > max{1,C(xo)||dZ|[pec(sa-1)}. Integrating
in (7.30), using Item 1 in Lemma 7.6, we deduce that LEZOJ;)(S) extends as a function in C*°(C,.)
with

~ B2 (0, 1) w01 (e o))
%LW”S‘<C /) oo ()R Nog=Re(s)t) gy 8 ol&=Fo
)] < Cx [ xeelt) LDy €= Bol™
¢€Z4\{Bo}
s 20
v v
(7 32) <Cn & Z H ¢ (90) HNo(Co(£€—B0)) —¢ (77[}) HNo(Co(€—B0))
N — 05 bl
£€24\{Bo} €= Bol™

uniformly on Re(s) > 0, as soon as Ny — k — ! > 1. Recalling that ! < min{k1, k2}, this holds for
all Ny, k such that Ny > k + min{ky, k2} + 1.

Thirdly, we consider the term with Lgioil))(s) According to (7.30) and the expression of
CED (1) in (6.5), we have

l
1,£1 t —st _it(E—RBoy)-
o= S [ (e e an)
g€Z4\{Bo}
£ —bo
€ — Bol
An extra decomposition in large and small Fourier modes.

Given A > 0, we recall that we always assume | Im(s)| < A, and we split (further) this expression
according to

X Y41 <9. ) 2O B2 (4, 4)(0) Volga—1 (6, |dd)).

£ () = £ () + £ 855, with
D S IS

£€7,0<|€—Bo| <2A E€Z4,|E—Po|>2A
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In other words, we decomposed the sum Zf into an infinite sum over large Fourier modes (i.e.
|€] far from |s|) and into a finite sum over small Fourier modes. We will apply stationary phase
estimates only to the finite sum and use integration by parts with the infinite sum to get decay in
&. Let us first consider the good term Lg’il)(s). Recalling the properties of x+1 in Definition 4.1,
we have o € supp(x+1) = |o| > €y > 0 with €y < 1/2, from which we infer that |6 - (£ — Bo)| >

€0l — Bo| for (0,€) in the support of x41 (9- %) For |Im(s)| < A, and (6,¢) in the support
of x41 (9 . %) and such that |§ — By| > 2A, we thus have a lower bound on the phase factor:
s —i(§ = Bo) - 0] = [Im(s) — (§ — Bo) - 0] = (1 — €0)|¢ — Bo| — [Im(s)| > (1/2 — €0)§ — Bol-

According to Items 1, 2 and 5 of Lemma 7.6 applied with z = s —i(§ — ) - 0, a« = —I and
B8 =—(l+k), we deduce that for any m,k € Z,
k < Con ke

tl
85/0015 est”(fﬁoedt‘ m, ,
Xl ] < e = A S e pol

uniformly in A > 0, Re(s) > 0, |Im(s)| < A, |€ —Bo] > 2A, (0, &) in the support of x41 (9 . %)
+1)

.. . . A
Moreover, this integral extends as a function in C*°(C, ). As a consequence, L(>l’ also extends

—A —A
as a function in C*°(C, ) with, for s € C+,

ak lil)( ) S Cm k H erl) 80 ’(/J)‘
ez szﬁo>zA € - 5 ™ L1(Cus (6~ f0))
T I  I
(7.33) D D o W peomieim ITE O e s

£€Z4,|€—Bo|>2A
We next consider the term L(l’il)(s) which we rewrite as
1,41 st (1L
a3 2= N [age i, €= ool
€€24,0<|6—Bo|<2A

where I (ﬂ)(f Bo, ) is defined in (4.2). We then use the asymptotic expansion in Corollary 4.6
which yields, with P; l£[<p 1] defined in (7.27),

e - Ryl ¢)(E1)
I(ikl , —P:t < g 50 > NP> )
<2 (o ﬂp)(f Bo,t) = ;) (e — 50|) ],15[80 Y] €~ Bol + NI ,
where
(7.35) IRE [0, 9](€,1)] < Cn]E — B[N+ 5 HB (hah (%¢)||W2N+"’=1(Ci1(£—ﬁo))

(except if & = 0, in which case this remainder is much better behaved in terms of £ and it is not
necessary to split this again). Note that when Z is non zero, the remainder in the stationary phase
estimates has good decay properties in the ¢ variable but not in &, but this is not of our concern
since the extra decomposition involves only a finite sum ZI €—Bo|<2A Coming back to (7.34), we
have obtained

+ N-1
c
(7.36) £ () = L 3" Ti(s) +Ru(s),
7=0
where
_Stilﬂf Bol 1 € _ BO
T (s) = ( Xoo(t T Idt|> ——— P71 lp ¢ (i )
’ €czd 0 Zﬁo<2A Ry Nl € — ﬁo\dTl” phe 1€ — Bol
Ri e, )& 1)
SR DR TR

£€74,0<|6—Bo|<2A
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According to Items 1 and 2 of Lemma 7.6 and the uniform in ¢ estimate in (7.35), RJj\E, extends as
a function in C’“(@ﬁ) as soon as N + 41 — ] — k > 1 (which, recalling [ < min{k;, k> }, holds for
all [ if N,k are such that N > k + min{ky, ko} + 1 — 951), with the estimate for m >0

d+1
(7.37)  |0FRN(s)| < Cx > &= BolNH2 HBg,cgz’l)(‘Pa1/’)HW2N+dv1(Ci1(£))
E€Z4,0<[€—Bo|<2A

™ Y
< O APV Y H ¢ O gavraicyempon ™4 )

_ 2m
£€Z\{Bo} €= Bol

H2N+d(C41(£—Bo))

Then, we have

1 _
o= X wa,d;ﬂ_l(smm—ﬁo)pﬁf[@,w]@f ﬂ0)7

EE _
£€74,0<|—Bo| <2A |& — Bol = I 1€ — Bol

where the singularity of s Fxm7%+j_l(s F i|l¢ — Bo|) near s = +il¢ — Byl is described in
Items 3-4-6-7 of Lemma 7.6, namely:

Py astji(2) = Fagryy  (2) + Haa o (2),

with F, defined in (7.24), and H,, are entire functions whose derivatives are uniformly bounded by
a constant times <z>% on Re(s) > —1. Moreover, the terms T;t(s) have a limit lim, o+ Tji(x—i—iy)
in &’ since the terms F, have boundary value distributions by Lemma 7.6 defined by (7.25). This
allows us to rewrite T,(s) as

0y : 1 + §£—DPo
E - £ezd7o<zfzﬁo§2Angl+j_l(8 e BODWPJ’[’A%M (j: € — 50|)
+ R [, 9] (s),
where
Blowlo)= Y Huy il o) — s Bl (5570
€79 02 E—Pol<2A € = Bo| = € = Bol

The function ]%;t is holomorphic on Re(s) > —1. Moreover, recalling (7.27), the fact that the

operators L* «g, are of order 2j, and using a Sobolev embedding, this can be estimated as
T2 7= 8]

follows, for s € @ﬁ N{|Re(s)| <1},

2&-x(- k‘z,l —
L* s (€% ()ng;,g )(%1/))) (i égﬁ)‘

I3 TE=Bo]

KR ()] e ()T Y

d—1 .
_ |+
£€Z4,0<|E—Bo|<2A & — Bo] = T

&z (- kol
ei€30 B (10, 4)

W23.2°(C+1(£—Po))

d
iy
£€24,0<|6—Bo|<2A €= Bol ="

SRTOE S S T

d—1 . . Iy
€T 0 [E- o] <2A |€ — 5O|T+J W2i+d:1(Cy1(€—Po))

which can be bounded one more time using the Cauchy-Schwarz inequality in terms of the norms
of ¢ and 1. This yields actually a better bound than the estimate (7.37) we already have on R]i\,.

Coming back to the definition of LEQ ) in (7.29) and collecting (7.31), (7.32), (7.33), (7.36),

(7.37) together with the last three lines, we obtain that if N + 451 — 1 —k > 1, Ng—k —1 > 1,
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and m > 0, then the function

0
RN (5) = £0)(5) = o
() N7 Test) g+l

Rl 1 Faca (s Fil€ = Bol —
I R =
T l 2 ‘f ﬁ0|

d—1
! _ —+
=0 £ez4,0< (g Bol<2A €= Bol =+

extends as iREl’N) € Ck(@ﬁ) with, for s € @ﬁ with Re(s) <1,

1)
(k1) (k2)
() [ @)
kp(l,N) H 3 HNo (Co(—Bo)) HNO(Co (£460))
ARV ()] < O > wIb
EEZN{Bo}
(k1) H H (ka) H
i ™
+ O AP S H U HzNM(Cﬂ(S\i&ﬂ?)ﬂ |2_,j N s
EEZN\{Bo} 0
dt1
SCNO,N,m7kA2m+N+ 2 ||<‘0HH;CNO};NO/2’2N+¢7M”(‘DHH,CNO'*BNO/Q*?NHv*ma
1:P0 2,— 8o

where we have used the notation of Definition 6.1. When collecting all terms in (7.22)—(7.23) this

includes the statement of the theorem as fREﬁﬁ))(s) = ﬁg{kl’kr"} :RE;’{:;))(S). O

7.3. Terms near zero in the Mellin and Laplace transforms. To conclude the proofs of
Theorems 2.2 and 2.3 (together with their generalization to the case of forms/currents) it remains
to describe the properties of the part of the integrals involving xo = 1 — Xoo:

Proposition 7.9. Let Ty > 1, assume that xo € C(R) has supp(xo) C [-T1,T1], and let
o, N € R. Consider the operator functions

o0 oo
Ay i s / tSxo(t)e Voo |dt| and Ag:s— / e *xo(t)e Vo |dt|.
1 0

Then, there exists C > 0 such that for all (k1,ke) with k1 + ke = 2d — 1, for every (p,v) €
HU,N,U,N % Hfa,fN,fo',fN
k1,80 k2,—Bo ’

AMpp 1 S > ONAN ()T (¥), Agpw s o NAg(s)T2z(¢)
ST ST

are entire functions satisfying for all s € C,

TfRe(s)er +1
A < -t - o,N,o —o,—N,—o0,—
| M#P”ll’<5>| <C <R6(S)> ||(pH’Hk1NﬁON ||w”7—[k21’7é\(;* =N,

e~ T Re(s) 41

A <(C—7—————— o,N,o, —o—N,—e,=N.
| L#Pﬂb(s” <C <Re(8)> ”SD”HMJ,VISONHTZJHszﬁﬂNo N

Proof. We prove the result for A, (5); the proof for Az o 4 (s) being the same. We start with
the same decomposition as in (7.10)-(7.11), namely

min{kl,kQ}

1 .

Ancpu(s)= Y AU ,(s), with
=0

! > s
AR o) = [ X0 €m0, )

> —stl it(E—Po)-0 it 2
:/1 Xo()t ™ 5 Z/Sd_lef(ﬁ Bo) 6¢i¢-2(0) 2D (15 1) () Volga-1 (6, [d6)])| ],

T eezd
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which is an entire function as yg is compactly supported in R. We also have the rough bound
1
]A&%W )‘ SCZ/ |xo(t)[t™ Re()+ Z/

The conclusion of the proposition follows

¢)(9)‘ Volga_1 (6, |d6])|dt].

T Re(s)+1+1

o] £ T 0 s 7 0

gezd

‘AMW/J

where we have used (3.22), and the Cauchy-Schwarz inequality. O

8. COUNTING ORTHOGEODESICS

Now that we have given a precise description of the analytical properties of the geodesic vector
field, we are in position to derive, essentially as corollaries of this sharp analysis, the expected
properties of generalized Epstein zeta functions and Poincaré series, as well as some asymptotics
of counting functions. We follow the strategy of [DR21, §4]. Before that, we begin by introducing
a few conventions on convex sets of R? in §8.1. Then, we introduce the notion of admissible man-
ifolds of T% and describe their geometric properties and their corresponding zeta functions in §8.2
and §8.3. In §8.4, following [DR21, §4], we define current of integration on their normal bundles
and we establish the connection between our zeta type functions and the analytical quantities ap-
pearing in the previous sections. Finally, in §8.5 to §8.8, we prove Theorems 1.2, 1.4, 1.6 and 1.7
from the introduction as well as the asymptotic formula (1.1).

8.1. Normal bundles to convex sets. Let K be a compact and convex subset of R with
smooth boundary K. As for the case of S¢~! discussed in §3.3, the boundary 0K of a smooth
convex body K is naturally oriented by the outward normal. We define the unit normal bundle to
0K as

N(OK) :={(z,0) € 0K x S* ' : Yo € T, 0K, -v=0}.

Except when K is reduced to a point, this submanifold of R x S*~! has two connected components
and, in that case, we introduce the direct normal bundle to K as

Ny (K):={(x,0) € N(OK) : 0 is pointing outward K},

and the indirect normal bundle to K as N_(K) := N(OK) \ Np(K). In the case where K is
reduced to a point, we set N (K) = N(0K) = N_(K).

Remark 8.1. Recall that the shape operator of the smooth hypersurface 9K is the map
S(z):veT, 0K — V,0 €T, 0K,

where € 9K +— 0(z) € Ny ,(0K) C S~! and where V is the (standard) covariant derivative
in R? [Lee09, §4.2]. In particular, S(z) is the selfadjoint map associated with the second funda-
mental form of ¥ and it is invertible if and only if 0K has nonvanishing Gauss curvature [Lee09,
Def. 4.24]. If K is a stricly convex body (not reduced to a point), then 0K has all its sectional
curvatures [Lee09, p.557] positive by definition (and thus nonvanishing Gaussian curvature). This
is equivalent to saying that all the eigenvalues of the shape operator are non zero and have the
same sign thanks to the Gauss curvature equation [Lee09, Eq. 4.10, p. 172].

If we suppose that K is strictly convex, then the Gauss map
(8.1) G:(z,0) € Ny (K)—0esSit

is a diffeomorphism and there exists a smooth map xx : S~ — R? such that G=1(0) = (zx (), 6).
The map zk is the inverse Gauss map. Note that this remains true when K = {z(} by letting
2k (0) = xo. In both cases, it is natural to say that we can parametrize the convex set by the
normal.
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8.2. Admissible submanifolds. Recall that we denote by p : R? — T¢ the map that associates
to a point x € R? its equivalence class [x] € T¢. In the following, we will need the following
admissibility property:

Definition 8.2. We say that ¥ C T? is admissible if there exists a strictly convex and compact
subset K C R? with smooth boundary such that

POK) =%,
where 0K = K \ K.

This definition includes the case where X is reduced to a point. We also observe that the
map p : OK — T? is a smooth immersion but it is not necessarily injective, i.e. ¥ may have
selfintersection points. Using the inverse of the Gauss map (8.1), one can then define the unit
normal bundle to ¥ as

N(Z) == {(&(0) :=poxk(),+0): 6 S '}.
As above, one can also introduce the direct normal bundle to X:
(8.2) Ny () = {(#(0) == poaxc(6),0) : 0 €51},
and the indirect normal bundle

N_(Z) = {(&(0) :=poak(0),—0): S '}.

Even if ¥ is not a proper submanifold (as it may have selfintersection points), N(X) and Ny (X)
are smooth, compact and embedded submanifolds of T¢ x S¥~!. Using the conventions of §5.3.1,
one has

Lemma 8.3. Let X C T¢ be admissible. Then, for every (x,0) = (Z(),0) € N+(X),
(8.3) Ti(g)’gN_;'_(Z) = {(Di(@)v,v) TV E Vj(g)’o} C RV (2(6),0) @ Hz0),0 © Vz(0),0
(8'4) Tx,ﬁN:I:(E) - Hx,@ D Vac,@a

(8.5) T, 9ST =RV (2,0) ® Hyp © Ty g N4 (T).

In the terminology of symplectic geometry, (8.4) says that N4 (X) is a Legendrian submanifold as
its tangent space lies in the kernel of the Liouville contact form. Property (8.5) is a transversality
property, see Figure 4. It says that our unit normal bundle is never tangent to the horizontal
bundle inside ST?. Recalling Remark 5.6, the horizontal bundle coincides with the stable and
unstable bundles in the case of flat tori. Hence, Property (8.5) agrees with the transversality
assumption appearing in Margulis’ works on Anosov flows [Mar04, Ch. 7].

Proof of Lemma 8.3. We start proving (8.4) and only discuss the case of N1 (X) (the other case
can be handled similarly). We recall that N, (X) is defined in (8.2). In particular, the tangent
set to a point (Z(6),0) is given by (8.3). Thus, in order to prove (8.4), we need to check that
Dz(0)v L V(£(0),0) for every v € Vzgy,9. To see this, we only need to discuss the case where
Dz(0)v # 0. By construction, this means that Dz (6)v # 0. By definition, such a vector is an
element in T, 9y0K and thus orthogonal to 6 - 9, which is the outward normal to 9K at xx ().
This implies that DZ(0)v is orthogonal to V (Z(6), ), hence the conclusion (8.4).

Finally, using the decomposition of the tangent space (8.3) one more time, these Legendrian
submanifolds verify the transversality property (8.5). O

8.3. Epstein zeta functions and Poincaré series for admissible submanifolds. Let now
¥, and X5 be two admissible subsets of T¢ and let o1 and o4 be two elements in {%£}. Our goal in
the present section is to describe the set of times ¢t € R such that N,, (X1) N etV (N,,(X2)) # 0.
To this aim, we define, for ¢t > 0,

(8.6) E(21, %) = Ny, (Z1) NeV(N,,(22)) € ST

Note that the orientations o; are implicit in this notation.
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Vw,e

T,4N4(2)

FIGURE 4. Tangent space to N(X).

8.3.1. A priori bounds on the number of intersection points. The first basic statement concerns
finiteness of £(X1, X2) together with the set of times ¢ for which £(X1,Xs) is nonempty.

Lemma 8.4. There exists some Ty > 0 such that, for every t > Ty, E(X1,%2) is a (possibly
empty) finite set. Moreover, setting

ms,,5, (t) = hgt(zlv 22) < oo, t=>To,
fO’f‘ any [av b] - [TOa —‘rOO),
{t €la,b] : &(X1,%52) # 0} ={¢t € [a,b] : mx, »,(t) # 0},
is as well a finite set.

Note that Lemma 1.1 is then a reformulation of Lemma 8.4. The above Lemma means that
after some time Ty, all possible intersections are transverse and thus our counting problem is
well-posed. We can easily visualize this property as follows. When pushing a convex hypersurface
0K by the geodesic flow, the reader has to imagine that, after some time Tj, it will have all its
sectional curvatures (in the cover R? it behaves more and more like a flat hypersurface) strictly

less than the sectional curvatures of 0K5. This implies that the intersections occuring in STY of
the corresponding normal bundles will become transverse right after Tj.

Proof of Lemma 8.4. Given ty € Ry, one can always find some € > 0 such that
U etV(Nﬂz (22))
tE(to—e,t0+e)

is a smooth submanifold (with boundary) of dimension d inside ST¢. Moreover, thanks to (8.5)
and to (5.5), we know that, for ¢y large enough, one can find € > 0 such that, for every (x,0) €
NUl (21) N UtE(to—ﬁto-‘re)etV(Ntm (22))7

(8.7) Ty0ST? = Ty gNo, (£1) ® oo (Ure(to—crtorer€’” (Noy(E2))) -

In other words, the two submanifolds are transversal and, by compactness, they intersect at
only finitely many points. Note that the transversal intersection implies that the boundary of
Ute(t0_€7t0+€)etv(1\fo2(Zg)) does not meet N, (21). O
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We now provide with an a priori polynomial upper bound on my, 5, (t). This is essential to
ensure our Epstein functions and Poincaré series have non empty convergence domains.

Lemma 8.5. Let X, and ¥y be two admissible subsets of T¢. Then, for Ty as in Lemma 8.4,
there is Cy > 0 such that, for every T > Ty,

d— 1
E mghgg < CoT
T<t<T+1

In particular, as T — +oo,

Z mEhZZ O(Td)

To<t<T

Proof. In order to obtain such an upper bound, it is more convenient to lift the problem to R?
and to recall that the lift of X; is by definition the smooth boundary of a compact and strictly
convex set. As a consequence, we have for any ¢ > 0

ms, 5, () = 1E(21,22) = #E1(0K4,0K2),
where
E(0K,0K>5) == {(x,0) € N, (0K + 20Z%) : (x — t0,0) € N,,(0K2)} C SR™.
Recalling that, when lifting the problem to RY,
N1 (0K;) = {(%;(0) 10 €S ={(%;(0;0),0) : 0 €S},
we notice that
(z,0) € E(OK1,0Ky) = t0 + #1(010) — Fo(020) € 2777,
whence

8 E(OK1,0K>) = 4 {9 eS¢ (9 4 f1(016) ;@(”29)> € 2wzd} .

For ¢t > 1, we have

7@(010);%2(02@ ’ < C) so that

Z ﬂEt(aKl, 8[(2) S ﬁ (27TZd n CT) S CVOle (CT), With CT = E(O, T+1+CQ)\B(0, T*Co).
T<t<T+1

We finally deduce that, for Tj > 0 as in Lemma 8.4,
o ommm,t)= Y #&(0K),0Ky) <CTT!, T >T,
T<t<T+1 T<t<T+1
which concludes the proof of the lemma. O
8.3.2. Generalized Epstein zeta functions and Poincaré series. We fix Ty > 0 large enough to
ensure that Lemma 8.4 (and thus 8.5) apply. We also fix 8 = By + df with fp € H'(T¢,R). In

particular, for such a T and such a 8, we can define, for Re(s) > d, the generalized Epstein zeta
function as

.0
(8.8) Cp(Ka, K1, 8) := Z =5 Z et SZ B(V)(z+50,0)|ds| :

t>To:E(X1,22)#0 (@,0)€€:(31,22)

where (31, 32) is defined in (8.6) and is a finite set according to Lemma 8.4. Lemma 8.5 ensures
that this defines a holomorphic function in {Re(s) > d}.
Similarly, for Re(s) > 0, we define the generalized Poincaré series as

(8.9) Z5(Ka, Ky, 8) == Z o5t Z oS0 BV (a+50,0)|ds|

t>T0:E(S1,52) 0 (2,0)€E(£1,52)
Again Lemma 8.5 shows that this defines a holomorphic function in {Re(s) > 0}.

Remark 8.6. Except for the role of K7 and K5 that are reversed compared with the introduction,
these two functions are exactly the two series defined in (1.2) and (1.4) in the introduction.
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8.4. Currents of integration on admissible subsets. From this point on, we shall always
suppose that ¥ is admissible in the sense of Definition 8.2. We can choose to orient the submanifold
N4 (X) with the volume form Volga-1 (6, df). Once we have fixed an orientation on Ny (X), we can
define the current of integration [N (X)] on this (d — 1)-submanifold [Sch66, p.326-327], i.e.

v € QI1(STY),  ([N(S)],9) = / ’.
N4 (%)

This is the de Rham current of integration on the normal bundle associated to our convex set.
Its expression in the Gauss coordinates (8.2) is given by (3.6) thanks to our choice of orientation
of N.(X). More precisely, one has

d
[NL(2)](,0,dz, dO) = do(z — £(0)) /\ d(z; — %:(0)) ,
=1
and .
[N_(2)](x, 0, dz, dO) = 6o(x — (—0)) /\ d(z; — 3;(—0)).

In any case, this is a current of degree d, i.e. an element of D'(ST9). Finally, we recall from (3.5)
that, in Fourier series, one has the following representation:
d

(8.10) (N1 (2)](x, dx, 0, df) = (2;) > eclw — @(£0)) \ d(x; — &:(£0)).
cezd i=1

Remark 8.7. In the case where X is reduced to a point x(, one has in fact the simple expression:
[Suo T4 = [N (20)] = o(x — zo)dzy A ... Adg = Spnza(x — x0, d).

8.4.1. Wavefront sets of the currents of integration. The following lemma studies the wavefront
set of this current in view of pairing two such objects.

Lemma 8.8. For any admissible subset ¥ of T¢, we have

(8.11)

WF([Ni(E)])mT(*;ﬁ)STd = E5(&(£0),0)®{(0,&, F(d2(£0))7¢) : £ € H*} C (B @ H* @ V*) (2(£0),0).
Moreover, for any conical neighborhood I' of Ef @ V*, there exists Ty > 0 such that, for every

T > Ty, the wavefront set of e=TV* [Ny (X)] = [eTV(NL(X))] satisfies

(8.12) WEF (e "V*[NL(D)]) C {(2,0;¢) € T*ST?: e "V (2,0) € No(2), £ € T(z,0)}.

In particular, if 31 and Yo are two admissible subsets and if o1, oo € {x}, then one can find

Ty > 0 such that, for every T > Ty,

(8.13) WEF ([N, (21)]) N WF (e TV*[N,, (£2)]) C Ef.

Proof. The wavefront set of the current [N (X)] is given according to [Hér03, Th. 8.1.5]'° by the
conormal bundle to N4 (X), namely

N (N1 (D) = {(2,6:€) € T*ST\0: (2,0) € N1(Z), Yo € T, N1 (T), £(v) =0}
In particular, thanks to (8.4), the fiber N, o) (N+(%)) C T(*zﬂ)S’]Td over (x;0) always contains the
annihilator Ej(x,0) of H & V(z,0). Using the description of T, 9N, (X) in (8.3) in the coordi-
nates (8.2), this wavefront set can in fact be identified as
Ny (N2(8)) = E5(2(£0),0) & {(0,&, F(di(£6))7¢€) : £ € H"} C (Eg & H" & V") (3(£0), ),

whence the first statement (8.11). Hence, thanks to (5.6) and to [Hor03, Th. 8.2.4] (see also [BDH16,
Prop. 5.1]), we deduce the second statement (8.12). The last statement (8.13) follows from the first
by choosing I" some sufficiently small conical neighborhood of Ef@®V* so that (WF ([IV,, (£1)]) NT) C
Ej. O

15The proof in that reference is given for a linear space and it can be transfered to submanifolds through a local
chart thanks to [Hor03, Th. 8.2.4]. See Example 8.2.5 in that reference.
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8.4.2. Representation of truncated series using currents. Our goal is to use our fine analysis of
the geodesic vector field to study the continuation of these series beyond their natural halfplane
of definition. As in [DR21, Prop. 4.10], one starts with the following result, relating the above
discrete sums on intersection points between two submanifolds with the geodesic flow acting on
currents.

Lemma 8.9. Let 31 and Yo be two admissible subsets of T¢ and let o1 and oy be elements in
{£}. Let B = Bo + df be a closed one-form with By € H' (T4 R) and f € C®(T4 R). There
exists Ty > 0 large enough such that, for every T > Ty, one can find tg > 0 such that, for every
X € C(?O((T - th +oo))f

10 = (0 [ NI [ 3@ Vo (Vo (Sl

is well defined and is equal to

.0
Z X(t) Z et(x)eﬂ fﬁt B(V)(z+76,0)|dT| ’

t>T—t0:£,(X1,52)#0 (z,0)€€(31,%2)
where e;(x) =1 if

T(,0)No, (1) DRV (2,0) @ D(eV ) (e (2,0)) (To-1v (2,0) Nora (£2))
has the same orientation as ST? and €;(x) = —1 otherwise.

This result follows from [DR21, Lemma 4.11] together with Lemma 8.8. Here, [N1(X;)] is an
element in D'4(ST%) and [, x(t)e " vy ([N4(32)])|dt] is an element in D'~ (ST). The key point
in the argument of [DR21] is that the wavefront sets of these two currents are disjoint so that we
can take their wedge product. Here, the wavefront set of [N, (21)] is given by (8.11) while the
wavefront set of [ x(t)e™" 1y ([Ng, (32)])|dt| is contained in a small conical neighborhood of V*
thanks to Lemma 8.8 and to the integration over time. See [DR21, Lemma 4.11] for more details.
We would like to emphasize that the fact that this lemma states that the dynamical correlator

Ipctes (—1)% /S N (EDIA Y (Vo (22))

is in fact a distribution of the variable ¢ which writes as a weighted sum of §. The reader
should think of the distribution I7 as some kind of weighted counting measure and the Laplace
transform of I is nothing but the Poincaré series.

In order to make the connection with the above series, we need to clarify the values of ¢(x) in
our case:
Lemma 8.10. There exists Tp > 0 such that, for every t > Ty, €(x) = 1.

Proof. Recall that we oriented Ny (31) with the d — 1-form Volga-1 (8, df), or equivalently with the
polyvector (e1(0)-9p) A... A (eq(d) - 0p) where (0,e1(0),...,eq(0)) is a direct orthonormal basis of
RZ. The same holds true for 35 but we need to take into account the action of the tangent map
as given by (5.5) which transforms this polyvector into

(e1(0) - Op +te1(0) - Ox) A ... A (eq(0) - Dy + teq(h) - Oz) .
Finally, RV (x) is oriented through the vector 6 - 9, and it yields the following orientation
t371 (e1(8) - Bp) A ... A (eq(8) - Dg) AN -0y A (er(B) - 0x) A... A (eq() - Dy),

which is the same as the orientation on ST? up to the factor (—1)44—1 = 1. O

Letting i;t (0) = ;(+0), we derive the following corollary.
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Corollary 8.11. There is Ty > 0 and to € (0,Tp) such that for every x € C°((Ty —to, +00)) with
x =1 on [Ty, +0), we have

8.14) > x(®) 3 ot 2 BV (@+76.0)|dr]|

t>To—to (z,0)€EL(X1,22)
=t [ SOEITE gy n [ ) (VT )t Ganz)
where we recall that the notation (0g,74) stands for a current of degree d.
We now recognize in the right hand-side the quantities that we studied in Sections 4 to 7.

Proof. According to Lemma 8.10, for Ty > 0 large enough and recalling (3.14), one deduces from
Lemma 8.9 that, for every x € C°((To — to, +00)),

(815) Y «x(®) S e AW Ero0er]

t>To—to (z,0)€€:(X1,32)
=0 [N @01 0 e e (B
STd R
Thanks to (8.10), we can write, for j = 1, 2,

e:l:z'f[Ngj(Ej)] — e:l:if(x)T*_jc‘,j (Oynga) = eiif(i-;ﬁ')Tii% (8anz)-

J J

Combined with (3.11) and (3.12) in Lemma 3.12 , this allows to rewrite (8.15) as (8.14). O

8.5. Asymptotic of the counting function. As a first application of this construction, we will
refine the a priori bounds obtained in Lemma 8.5 and prove formula (1.1) from the introduction.
Namely, we fix two admissible submanifolds ¥, Yo C T4 and 04,04 € {+}. We want to compute
a precise asymptotic formula for

Yo ommm(t)= Y E(Ney (B1) Nt (Noy(22))) .-

To<t<T To<t<T

Theorem 8.12. Let $1,%5 C T? be two admissible submanifolds, let 01,02 € {£}. Then, there
exists Ty > 0 such that, as T — +00

r2Td

(2m)T (4 + 1) +O(T).

> HE(D1, %) =

To<t<T

Even if it may not be the simplest manner to prove such a result, this discussion illustrates how
our current-theoretical approach to this problem can be implemented. An interesting question
would be to understand how the remainder term depends on ¥; and Xa. See [vdC20, Hla50,
Her62b, Ran66, CdV77] for such results in the context of dilations of convex subsets. We do
not pursue this here and we rather focus on the application of this approach to zeta functions
associated with our families of orthogeodesics.

Proof. First fix Ty > 0 large enough so that all the above lemmas apply. In order to study this
quantity, we take 8 = 0 in (8.14) and we choose appropriate cutoff functions x approximating
the characteristic function of the interval [Ty, T]. More precisely, we fix T > 0 (large enough)
and to > 0 (small enough). We define two smooth cutoffs functions x& € C°(R, [0,1]) with the
following properties:
e X7 is equal to 1 on [Tp, T1, it is compactly supported on (Tp —to, T+t), it is nonincreasing
on [T, T + to].
o x7 isequal to 1 on [Ty+tg, T —1to), it is compactly supported on (Tp,T'), it is nonincreasing
on [T — to, T]
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With such functions at hand, one has

(8.16) Yo oxarOme < Y men) < Y xFEme, 0.
t>To—to To<t<T t>To—to

Hence, thanks to (8.14), we have to study

Z X%(t)mxl,%(t) = (_1)d—1/

6271.Z¢i AN / X% (t) <€7tVT;~;d1 _iGQ) LV(527rzd)|dt|,
S Toet ST R v
0 0

which can be analyzed using Theorem 6.4. Indeed, the cutoff functions X% are compactly supported
which implies that they satisfy the assumption of this Theorem. We just have to pay some attention
to their dependence in T as T' — 4-00. More precisely, we need to apply this Theorem with k1 = d,
ko =d—1 and

We have

co— 8 4o _d_ _
(817)  peH o T = () Hi,
e€(0,1]

d da
§— oo, —§—

+o0,—
, and wE"deiO

Thus, we are left with analyzing the size of the different integrals involving X%- First, for 0 <1 <
d — 1, one has
Tl+1

[+1

(T + to)l-i-l
[+1

+0() < [ xiora < +on)
R

and
I+1

H’%W1+mMS/&ﬂm%ﬂéT +0Q),
R

[+1 l+1
where the constants in the remainders are independent of 7. Similarly, we can treat the re-
mainder terms involving terms of the type ||(x7 4t')®** V|11, ) = O(T?"'). Finally, the term

HX;(;tl_@dH) |1 () is bounded uniformly in terms of T'. Gathering these bounds, we find that

527'er A\ / X% (t) (eith;gﬂl __,3‘72) LV(527er)|dt|
STd R 1 2

T (d—1,d—1)

h d! §d—1 57327~T170

(627er7 LV((SQde))VOlSd*l (9, d@) + O(Td_1>‘

(d—1,d—1)
Z92—%71,0

Recall now that B (0arzd, tv (0axza)) is defined in (3.20) as

Bﬁi;ijf;g (8omzds 11 (83574) ) Volgpa (0, da, d6)

Lo

_ d % — d—
= ()P arza) AT VI (0 (B

= (=1)**(2m)~%(d — 1)!Volgra (8, dz, df),

after having used (3.4)—(3.5) together with Lemma 3.11. Inserting this expression in the above

calculation and recalling that Vol(S¢~1) = ﬁ@d//;) = p(ﬁl’};ﬁl) concludes the proof of the theorem.
O

8.6. Continuation of generalized Epstein zeta functions. We now aim at proving The-
orem 1.2. Using the conventions of this paragraph, this amounts to studying the meromorphic
properties of the generalized Epstein zeta function defined in (8.8). As an application of Lemma 8.5,
it defines a holomorphic function on {Re(s) > d} and we want to understand its possible exten-
sion beyond the threshold Re(s) > d. To that aim, the first step is to use Lemma 8.9 to interpret
(xy,5.,1(8) as the Mellin transform of a correlation function of appropriate currents, and then
make use of Theorem 7.4.
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Lemma 8.13. There is T > 0 such that for all Ty > T, one can find X~ verifying assump-
tion (7.1) with to > 0 small enough such that

(8.18) (p(Ka, Ky,s) = (—1)"" /SW e @EDSE) 6y 0 AXM (~iV5,) Tior_so2tv (O2nza)|dt],
where @(—iVﬂo) was defined in (7.2).

In a more compact manner and using the conventions of Theorem 7.4 with & = 5% — Z]*, the
right hand-side of (8.18) can be rewritten as

M(euf(i;'?)—f(ifl Ns

)(3)

2nzd bV (05, 7d)
. _02 _ _.0'1 —_ R *
_ /S dez(fm SIS0 XM (=i 30) T ot (Oaeze) .
T

Proof. First, we fix a smooth nondecreasing function x, which is equal to 1 on [Ty +tp, 00) and to
0 on (—o0,Tp] for some small enough ¢y > 0 to ensure that my, s, (t) = 0 for all ¢t € (Tp, To + to].
We also fix a smooth function x € C°((—2,2),[0,1]) such that

VteR, > x(t+j) =1
JEZ

We let Xoo,;(t) := Xoo(t)x(t + 7). Using (8.14), this leads to the following decomposition

- r0
(8.19) Ca(K2, K1,8) =Y > Xooj(t)t* 3 o=t [ BV (a+76,0)|dr|

JEZ t>TH (w,ﬁ)eé‘t(Eth)
_ d IZ/ f(w;2) f(z 01))62 7d /\/Xoo,j(t)t_s (e_tVﬂOT;i’l_gz?) Lv((SQﬂ.Zd)‘dtl.
JEZ R
We now fix some N large enough in order to apply Theorem 6.4 (with N = M) to & = Ty — I,
to k1 =d, ks = d — 1, and to the currents
o = UEDT@EN)5, 0 e D'USTY), and ¥ = 1y (6gpz4) € D4=1(STY).

In order to apply this theorem, we have (in practice) to split the sum over j into a finite sum and
an infinite one corresponding to the cutoff functions x (¢)x(t 4+ j) in the range of application of
this statement. We also have to control the growth of several integrals, namely for 0 <1 <d—1
and for Re(s) large enough,

/Xoo() (t+ )t~ dt| = O, /xm( t)x(t+ )t TN de = 0N,
R R
and

dN
[ | Ottt + 507249 el = 07>+

These bounds allow to apply Theorem 6.4 for Re(s) large enough and thus the sums under con-
sideration converge in the anisotropic Sobolev spaces of Section 6.1 as long as N is large enough
to have ¢ and % in that space. O

The next step is to make use of Theorem 7.4 to deduce the meromorphic continuation.

Theorem 8.14. If By ¢ Z¢, the function (5(Ka, K1,s) extends holomorphically to the whole
complex plane. If By € Z%, the function extends meromorphically to the whole complex plane with

(at most) simple poles at s =1,...,d whose residues are given by

(=D ey
(820) RGSSZZ(Cﬁ(KQ,Kl,S)) = WEBO , fOT le {1,...7d},
with

(_1)d+é

(-1 _
(8.21) BY V= R

/ zf HIORS IOk dziA. . Ndzghey VT 1T~ol g2 (dzy A ... ANdzy) .
ST
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Recall that, for Sy = 0, we used the convention that E(gé) = 0 for every 1 < £ < d. This
lemma proves in particular Theorem 1.2 as a particular case (see Remark 8.6). In order to prove
Theorem 1.3, we are left with giving an expression of these residues in terms of geometric quantities
associated with our convex subsets. This will be the topic of Section 9.

Remark 8.15. Before getting to this, let us already observe that the residue at s = d can be written
explicitly as
1
(2m)?
Moreover, if 7' = Z3? or if ¥; and X5 are both points, all these residues vanish except for the
one at s = d which is equal to

/ ei fifl(g)ﬁi?(g) ﬁVOISd_l (97 |d0|)'
gd—1

dei fi{ln%igz B
d d :
24727 (5 + 1)

In that case, we recall that the lengths of the geodesic arcs joining ¥1 to Xy are given explicitly
by (|27 + £3> — &7"|)¢eza so that we end up with the classical Epstein zeta function [Eps03].

Proof of Theorem 8.14. Given (8.18), we are now in position to apply Theorem 7.4 to
(8.22)

B ~o Lo _d_ _d_ —d_ —d_
Y= ez(f(xQQ)_f(xll))(szTrzd S H;(;;’ 2T 5 and w = LV<62‘n'Zd) S H:f?:750 oo 5

where the notation is taken from (8.17). Up to increasing slightly the value of Tj to be in the
setup of Theorem 7.4, this result applies for all N > d/2. This theorem implies that for 3y ¢ Z<,
the function (s, x,7,(s) extends holomorphically to the whole complex plane (as Eélo) =0 in
that case). When 3y € Z% Theorem 7.4 implies that the function extends meromorphically to

the whole complex plane with possibly some simple poles at s = 1,...,d. Moreover, together
with (8.18), we deduce that if 3y € Z%, then
(-1

Resg—i41(Cs(Ka, K1, 8)) = EY), for 1e{0,...,d—1},

l!
with

Bo Z,2—27",Bo

E(”:/SH (i @ O)=a 7 O) gL (@ SCTN g, 1y (83z4)) (6) Volga (6, |d6)]),

where the bilinear operator B is defined in (3.20). From the expression of B, one can verify that

¢i(F@*)=F@E™M) can be put in factor so that, in the resulting exponential, we obtain a term
Bo~(f§2(9)—f‘fl(9))+f(f§2)—f(f‘fl)=/U B
91 (0)—332(0)

which is independent of the choice of the path between Z7*(6) and £5*(6) modulo 27Z. Therefore,
the residue at s =¢:=1+1¢€ {1,...,d} is given by

By = /S etz P UL (5, iy (§axza)) (8) Volsa- (6, |d6)).

52 —7%,80
Using expression (3.20) together with (3.12) in Lemma 3.12, we finally obtain

(_1)6—1

(£-1)
2 FE =
(8 3) Bo (27r)d

i .o e B _
/ e fﬁl(e)”“zz(e) dzy A ... Ndzg Ay Ve 1T;zlfl _332 (O2rz4) -
S’]l‘d

for 1 < ¢ < d. The latter can be rewriten as (8.21) when recalling (3.4)—(3.5). O
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8.7. Continuation of generalized Poincaré series. We now turn to the proof of Theorem 1.4
which amounts to study the properties of the generalized Poincaré series defined in (8.9). Arguing
as in Lemma 8.13 with e~*! instead of =%, we can make use of Theorem 6.4 and Lemma 8.9 to
interpret Zg(Ko, K1, s) as the Laplace transform of a correlation function of appropriate currents.

Lemma 8.16. There is Tf > 0 such that for all Ty > T, one can find xoo verifying assump-
tion (7.1) with to > 0 small enough such that

(8.24)  Zp(Ks, Ky, 5) = (—1)"! / e (1D ET) 5y AXE (—iV 50) Tion _soatv (anza)-
STd

Again, using the conventions of Theorem 7.8 with & = 32 — Z{", the right-hand side can be
rewritten as

(s)

L/ oiirizo2 501
(el(f(lz e ))62wzd’bv(52wzd))

= / (f(i;z) f@ )62 7.d A\ Xs ( Z-VBD)T;"l _z02 Lv(62ﬂ-zd)
ST ! 2
We are thus in position to apply Theorem 7.8.
Theorem 8.17. Setting

(8.25) Sgo = {Fil€ = ol, €€,
the following statements hold:

(1) Z5(K2, K1, ) extends as a function in C>°(C4\ Sg,) and the limit lim,_,o+ Z5(Ka, K1, 2+
iy) exists in S'(R) as boundary value of holomorphic function,

(2) if Bo € Z¢ (i.e. 0 € Sg,), then

d_ple=1)
Z K27K17 Z BO

is a C* function in a neighborhood of zero in C, where E(zfl) is given by (8.23). The
B
limit lim, o0+ Z3(K2, K1,z +iy) — Ze 1 (H_Zy)z exists as a smooth function near y = 0.

In case By & 7%, then Zg(Ko, K1, s) is itself a C> function in a neighborhood of zero in
C..

(3) There exist constants C;o—1(&, Bo) for every € € {1,...,d} and j € Z,., such that for any
ird = +il& — Bo| € Sg, \ {0}, the function

N-1

d
1
(8.26) Zﬁ(Kz,Kl,S)—Z Z mcizq(f’ﬂo) Faa ;i1 o(s Z‘ch)c)v

t=1 j=0 \¢ezd |t Bo|=|r|

extends as a CN~1-[*F] function in a neighborhood of i?ﬁ in Cy.
Moreover, the most singular term in this expansion near irgt is given by (j = 0 and

(=d)
(71)d716$i%(d*1)F i (5 — ZT(:)t)

(2m) %

|7“0 |

x Y el () U —se) (i)
gezd |e—po|=|rE|

Recall that for a € R, the distribution F, is defined in (7.25) and it is essentially the Laplace
transform of t~¢ (near t = +00).
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Note the important fact that the difference

(8.27)
d N-—1 1

xgrngZﬂ(KmKl,x—l-ly Z Z (5 ! M 1(5 /80) F%H—s—l—f(x—i_iy_iroi)’
=1 j=0 \¢ezd,|¢—Bo|=|rF]

d+1

Viewed as tempered distributions in S'(R) of the variable y is an element in N1~ [“F1 near
Yy = 7”0 Here we view the difference as a distribution obtained as boundary values of holomorphic
functions.

Proof. We apply Theorem 7.8 to & = 252 — Z{*' and to the currents ¢, in (8.22). Theorem 7.8
thus applies to all Ny > d, N > 0,m > d/2 and Item 1 readily follows. As for Item 2, Theorem 7.8

implies the expected result after recalling the definition of E/g?

We next prove Item 3. We fix a pomt rE := 4|¢ — Bol such that ird = +i|¢, — Bo| € Sp, \ {0},
and describe Z3(K3, K1, s) near zro Theorem 7.8, taken for Ny > d large enough (compared to
N), implies that

d—1N-1

Z5(Kq, K1, s) ZZ Z ﬁcfz(fa%) Fa LA . z( ”’3[)7

1=0 j=0 \¢ezd,|¢—Bo|=|rT]

extends as a C* function in a neighborhood of irSE in C, where

k=N + [d;ﬂ —min{ky, ko} —2=N—1— [d;rlw ,
(recall that min{ky, ko} = d — 1 here) and
1 i(f(232)—f (&7 £ — bBo
(8.28) C;'t,l(faﬂo) = mljﬁ,g [e (@)1 ))62de7LV(§27er):| < = ﬂ0|>

Now, recalling the definition of F,, in (7.24), we notice that the most singular term in the expan-
sion (8.26) is for { =d — 1 and j = 0, and is given by

1 + .+

(8.29) Z . (dfl)!CO,dfl(g’BO) F_%(s—zro).
£€Z%,|6~Bo|=|rq |

We now compute it explicitly. We first compute Ci ,(w) according to the definition of ijj@

n (7.27), recalling from Lemma 4.4 and Corollary 4.6 that LE o =1, as

(8.30) Pge [U@EIFET)5, 0, Lv(52wzd)} (Fw)

= FEOD (2m) T T BT (DS E) G0, 1y (Baz) ) (00).
Finally, the expression of Bé‘fgl’l) is given in (3.20) and writes for | = d — 1,

BY (@UEEDIE) 5, a1y (B3r3) ) (6) Volpa (6, dar, df)

= (—1)d 1 U@ 1D (5, 50) (0, d, d0) A VIV 7 (0 (Banza)) (0, der, dO)

According to (3.4)—(3.5), we have wéd) (Ognza) = dzq A -+ - A dzg together with

(2 )d/2

1
(d5 1) (v (0rza)) = Ww(dzl A Adag).
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Thanks to Lemmas 3.12 and 3.11, we then deduce

1
VAT 2l (1 (830z0)) (6. de,db) = 5557 T VI (day A+ A dag))
d—1)!, .,
= ((27T)d/)2 Tii VOlSd—l ((9, dtg)

_ ((d . W=D Volsa (0, db).

Combining the above three lines, we have obtained that

C1de1) (i FaT e B (R | VRO
B (620(122)7“%1))52#2@Lv(52WZd)) (0= )(27r()d) (S =F@ED) @)

Coming back to (8.28)—(8.29)—(8.30), this concludes the proof of the statement in Item 3. O

8.8. A summation formula in the spirit of Guinand—-Meyer. We now turn to the proof
of Theorem 1.7. Repeating the above arguments for certain variations of Poincaré series, we can
in fact deduce a summation formula in the spirit of the recent results on crystalline measures by
Meyer [Mey16]. More precisely, we set

> e —i [© T+T T
(8.31) Z5(Ka, Ky, 5) := Z S Z et 2 BOV) (@+76,0)|dr|
t>T0:€t(21722);é® t ($79)€5t(21,22)

and we emphasize that this function depends on the choice of orientation (o1,02) even if we
drop this dependence for the moment. As for Poincaré series, the limit as  — 07 of y
zg(Kg, K1,z +1iy) exists as a tempered distribution on R thanks to Lemma 8.5. Arguing as in the
proof of Theorem 8.17, one can verify that the singular support of this distribution is the same as

for lim, _,o+ Z3(K2, K1,z +4y) but the singularity are slightly simpler due to the renormalization

factor t~“=. More precisely, using the conventions of this Theorem, one finds that, near y = rar ,

lim, ,q+ Z3(K2, K1,z + iy) is equal to
d—1p—i%(d—1 oo o - oo o

i (1) ey y 3 it (352 -a7) (15 ) (s @) - 1) (152)

e=0t (2m) 5 |5 (e + iy — iry)

c€z,|e—Bol=IrF]

modulo some remainder belonging to L”((r0 — 6,7y + 8)) for some positive § and for every
1 < p < co. Similarly, one has, near y = r{", lim,_,0+ Z5(Ka, K1, — iy) is equal to

_1)d—1,i%(d-1) 72 39 i o =
lim d+$ 1) d 1614 X Z ezf (%2 mll)( Ig gg\) 1(f(f622)—f(z11))(_\2728\)
o+ d+1l, 4 d—1 . .t
w0 2m) = g |72 (2 =iy + i)\ g g e

modulo some remainder belonging to LP((rg — §,7¢ + d)) for every 1 < p < oo. Recalling
from [Hor03, Eq. (3.2.11), p.72] that

hm( ?1.>2mmm

z—0+t \Yy +1x Yy —1T

we finally find that, near y = 1“3' , the tempered distribution'®

lim (ei%(d_l)ggz’ol (Ko, K1,z +1y) + e_i%(d_l)ég_ﬂ’_al (K2, Ky, — Z?J))

z—0t

is equal to

_1)d-1 R e _ ‘ .
( ]-) Ljo(zi d;rlo ) X Z elf-($227111)(é_gg‘)el(f( ) f(af 1))(|5 50‘) + OLP(l)
(271') 2 |TO | 2 EGZ(Z"E*[’}O‘:V‘J‘

16\We restablish the dependence in the orientation to get the expected cancellation.
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The same discussion of course holds near y = ry . Hence, if 8y ¢ H Y(T4,Z), one finds that the
distribution

eif(d—l)Z?’Ul (K2, Ky, iy) + €_i%(d_1)2ﬁ_027_01 (K2, Ky, —iy)

is a combination of Dirac masses modulo some L{, . remainder which proves Theorem 1.7.

8.9. The case when K;, K, are points. In this section we finally discuss the particular case
where the convex sets are reduced to points (or to balls). In that case, the proofs are simpler and
lead to very explicit formulas with connection to the magnetic Laplacian.

8.9.1. Meromorphic continuation of Poincaré series.

Proposition 8.18. Assume K| := {x} and Ky := {y} where x,y € R? are two points and
B = Bo +df is a closed real valued one-form such that [B] = By € H(T?, R) ~ R%. Then we have

) 4 Ja—z2 (27t /—A o
(8.32) Z e f Bo(t — t(v)) = 27t W1 (@) 2 ( d_f )(aj,y) in D'(R%).

V€Pzy (\/ _AﬁO)T

If moreover x # y, then (8.32) also holds in D'((—tg,00)) for some small enough ty > 0, and we
have

_ d+1 .
(833) Z/@(l‘,y7 S) = 2(17_[_‘12—11—\ (;) ez(f(y)—f(x))S(SQ — 47‘[‘2A,80)_%($,y)7 RG(S) > 0.

Recall that in the right hand-side of (8.33), (s2 —4772A50)_% (z,y) denotes the Schwartz kernel
of the operator (s? — 47T2A50)_% taken at the point (z,y). The proof relies on the fact that the
twisted counting measure ) et 85 (t — £(7)) has an explicit relation with the Schwartz kernel of
et VH+Bo(VIIT* (acting on functions) at (z,y).

Proof. On the one hand, by a direct calculation, one has

_ 1 . .
—t(V+iBo(V * _ i (y—x it(§—Lo)-0
ILe{ VBV (2, y) = @i > el /S(H e"E=B0)ONolgu 1 (6, dB).
gezd
On the other hand, one can make use of Lemma 8.9 (applied either for z # y or for ¢ > 0) to write

the twisted counting measure when Ky = {2} and K; = {y}. This yields that this is equal to the
previous quantity up to a normalization factor:

Z et )y Aot — (7)) = I =F@Nyd=11y o=tV H+iBo(VIIT* (2, 4)) in D'(R%).
YEPz,y

In particular, according to (5.3), one has (8.32). Note that, as soon as = # y, the formula (8.32)
still makes sense in D’ ((—tg,00)) for some small enough to > 0. For x # y, we can then make the
Laplace transform of this equality:

o Jas (21t /—A
3 eifwﬁefsf(v):%ei(f(y)ff(x))/ 4 s (27 7ﬁ0)(x,y)675t|dt|.

d—2
"/EPm,y 0 (\/ —ABU) ’

We now recall that, for every v > —1 and for every a € R,

/ e St T, (at)|dt| = PAARF -l ) (I/ + 2) a’s(s* + a2)*”*%, Re(s) > 0,
0
see e.g. [EMOT54, Table 8, line (8) p 182]. Combining the last two lines, we obtain

T e Bt = pdp ey (d‘; 1> =1 (2 _ 4r2 A, )~ (2,),
YEPaz,y

which is the sought result. O
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In particular, using the spectral properties of the operator Ag,, we can directly recover Theo-
rem 1.4 from the introduction in that case. Precisely, one has, for x # y,

d+1 d+1 .
(8.34) Zﬁ(:c’y,s) =g =z [ () tFW)—f(@) g _.
2 5§d (52 +472[¢ + o[2) 5

et (z—y)

We can even be slightly more precise as we can verify that

e if d is odd, this expression has a meromorphic extension to C with poles located at

Sp (£iy/—Ag,);

e if d is even, this expression has a meromorphic extension for instance to
(8.35) (C\{i/\JrR_,)\ € +Sp («/fAﬁo) \{0}},

due to the presence, in this case, of squareroot singularities at the points of Sp (:l:z} /—A @0)\
{0}. Note that the only possible pole in the region described in (8.35) is then at 0 and
that it only occurs if 8y € Z.

Finally, when the convex sets K; and K are two round balls, i.e. K7 = B(z,r1) and K; =
B(y,r2), with 2 # y and small enough radii r; and ro, the Poincaré series is slightly modified by
a factor e~ *("1172) and the above formula yields

(836) ZB(K17K27 S) = 7‘(’7%11 (T) ei(f(y)ff(z))sefs("é“rrl) Z (
¢ezd

et (z—y)

s2 4+ 4m2|€ + Bo?

)

where we have taken (01,02) = (4, —) for the (implicit) choice of orientations of the two balls.

8.9.2. A Guinand-Meyer formula when d is odd. Let us now discuss a variant of Theorem 1.7
when K := {z} and K := {y} are reduced to points that are distinct. Following [Mey16, Th. 5],
we define, for z # y,

e J. 8
(8.37) pa(t) = gpj 769

which is a Radon measure in S’(R) carried by a discrete and locally finite set of R. Note that
compared to the twisted counting measure in (8.32), pgar is symmetrized and renormalized by
t~!. In particular, this is not the same renormalization as in Theorem 1.7 except if d = 3.

Proposition 8.19. Assume that d is odd, that x # y and that By ¢ H* (T, Z) ~ Z%. Then, the
Fourier transform of pugar in (8.37) is given by

952 9d 4 Li(f(y)—f (@)

(0 = £(7)) = o(t +£(7)))

g (7) = i(-1)
y <6<d2‘°’><7 2+ Bol) 6<%3><T+2w|s+ﬁo|>> |
feze \ (T+27[¢+ Bol) T (= 27§ + Bol) 7

The assumption 3y ¢ H'(T?,Z) ~ Z implies that the continuation of the Laplace transform
of uear has no pole at s = 0 while the assumption d odd ensures that the Poincaré series extends
meromorphically to C with poles located on the imaginary axis. When d = 3, this proposition
recovers [Mey16, Th. 5] and, for d > 5, it corresponds to the more general statement from [LR21,
Corollary 2.4]. In particular, if d = 3, ugas is a crystalline measure: a measure in S’(R) carried
by a discrete and locally finite set of R with Fourier transform having the same properties. In
odd dimension d # 3, [igas 18 no longer a crystalline measure since its Fourier transform is not a
measure (but a distribution of order 25%). Following [LR21], one says that the measure pigas is
a crystalline distribution, i.e. a distribution in §&’(R) carried by a discrete and locally finite set of
R with Fourier transform having the same properties. Compared to the measure in Theorem 1.7,
g has the drawback of not being a measure here. However, it has the advantage to be carried
by a discrete and locally finite set of R (i.e. there is no absolutely continuous remainder r as in

Theorem 1.7).
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Proof. Dividing (8.32) by ¢ (which we may since z # y), we obtain

ifwﬁ d—2 . Jﬁ 27Tt 7A
E 5t — (y)) = 2nt T W —F @) 2 72‘3")(3;,3,).

&, 1) (VBa) T

Taking the Laplace transform, one finds that, for Re(s) > 0,
et h P

o5 — 9 i F (W)~ (@) / ostyis? T 2] .

VEXP;W o) 0 ( /_ABO)T

Recalling that, for every v > —1/2 and for every a € R,

e 1 1
/ e ' ], (at)|dt| = 2V7 2T (1/ + 2) a”(s? + a2)_”_%, Re(s) > 0,
0

see e.g. [EMOT54, Table 8, line (7) p 182], we deduce that

e’ Y d—1_4-1 d—1Y\ ; 2 4 d—1
(838) Z We—s () =2 tx =T <2> €Z(f(y)_f(x))(8 — 47 Aﬁ0>_T(x)y)
YEPz,y v
Recalling the definition of ugps in (8.37), its Fourier transform is given by
if, B if B
~ _ e —irl(7) i'rZ(’y)) o e —(iT+a)l(v) —(—iT4+a)l(v)
e () = (e —e = lim Z e —e .
i ) a0t S ()

This is an odd distribution and, according to (8.38), it is smooth near 7 = 0 since 3y ¢ Z<.
Next, from (8.38), one knows that

G (7) = 24712 5T (d; 1) @) =F (@)

x lim (((w )2 —4rtAg) T — ((—it+a)? — 47T4A50)—%) (z,y).
a—0t
As Ligr is odd and smooth near 0, we just need to understand this distribution for 7 > 0. To do

that, we write that, for A > 0 and 7 > 0,

lim (57 + )%+ X2) ™% = (it +0)? + X))

a—0t
1 d—1

- i —A—i@)T T (= A i) ).
= Jim ((T i) (1 +ia) )

Implementing [Hor03, Eq. (3.2.11), p.72] one more time, one finds
(—1)“=" 2ir

lim (((z’r F )2+ 22T — (it +a) + A2)—%) = sCZ) (r — ).

o D)

We can now rewrite figas(7) using this formula. It yields, for 7 > 0,
1

ceza (T +27[€ + Bol)

Recalling that figas is smooth near 0 and odd, this completely determines the Fourier transform
and concludes the proof of the propotition. O

ficn (T) = i(_l)%Qdﬂ_%ei(ﬂy)—ﬂm)) e 5(%)(7 —27|€ + Bol)-
3

Remark 8.20. Recall that in Theorem 1.7, we are rather interested (in the more general setting of
two convex sets) by a renormalized version of (8.37), namely

i eif'YB in eif’Yﬁ
fian (t) = e T 3" (7)) e T Y Ot + (7).

’Yepz,y ‘e 7 2 'Yepm,y 7)oz
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In particular, when d = 5, one has

fran (1) = — Z
VEPa,

ety P
0%

. . =~/ ~
(ewé(v) n e—zrz(v)> » e (1) = e (1),

and, thanks to Proposition 8.19, the remainder r in Theorem 1.7 is not identically 0 (as /(1) is a
combination of Dirac distributions). A similar remark holds for d > 5.

9. GEOMETRIC INTERPRETATION OF THE RESIDUES

In this Section, we aim at computing somehow explicitly the residues appearing in (8.23) in
terms of geometric quantities. We will always suppose in the following that § = 0 which will make
the content of this residue more geometric. Along the way, we will prove Theorem 1.3 from the
introduction.

Before giving a geometric interpretation of these residues, recall that the admissible manifolds
331 and X5 used to define our generalized Epstein zeta functions are constructed from two compact
and strictly convex subsets K; and Ky of R? with smooth boundaries 9K; and 0K, (possibly
reduced to a point). The submanifolds ¥; are parametrized through the inverse Gauss map
#; : %1 — T9 (using the convention that K, is oriented using the outward normal vector to
K;). In order to take the various possibilities for our orthospectrum (outward or inward pointing
geodesics), we introduced orientation parameters o; € {£} and we have set

.’377 (9) = 5:,(019)

When o; = + (resp. o; = —), it means that ¥; = p(0K;) is oriented using the outward (resp.
inward) normal vector to K;.

9.1. Some simple cases. In Remark 8.15, we saw that the residue at s = d for the Epstein zeta
function has an explicit expression. Let us now discuss a couple of other simple cases that do not
require to introduce definitions from convex geometry.

9.1.1. The case d = 2. When d = 2, the residue at s = 1 reads

Res,—1 (Co(K2, K1,5)) = *ﬁ /'JT2><81 dey A dwy A Ther ooty (duy A das)
_ (271#1 /MSI doy Adey ATies_es (61w — Oaday)
= _ (2;)4 /T2XS1 dzq A dxg A (eldgng _ 92d5c‘1’}1)

+ (271r)4 /1r2xs1 day A dwy A (01d25% — 02dE37)

1 ~0 ~01 1 50 o
= —W ‘/Sl (91d$1’12 — 92d$1’1) + W /Sl (61dm2?2 - egdl'z)zl) s
where we wrote Z7*(0) = (271(0),7]5(#)) € T?. Recalling that #;(#) = p(z:(0)) is the projection
on T? of the boundary curve for K;, this can equivalently be rewritten as
1 o o1 1 o o
Ress—1 (Co(Ka2, K1,38)) = _W /S1 (Gldsclf2 — 92(1;1:171) + W /Sl (91dx2f2 — Hgdwzfl) .

Hence, we recognize the volume forms of 0K; and 0 K which are either oriented with the outward
(0; = +) or inward (o; = —) normal vector to the convex set. Hence,

(91) RESS:1 (CO(KQ, Kl, 8)) = (23—1')2 (02V01(8K2) — 01V01(8K1)) .
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9.1.2. The case where Yo is reduced to a point. We now discuss the residue at s = 1 when X is

reduced to a point and when d > 2. In that case, following the same lines as for d = 2, the residue

can be written as

(_l)d—l
(2m)2® Jsra
(71)d71

d
= 7 —1)YH,daTt AL AdZTE AL A daTh
(2m)? /Sd,l ;( Rt 1 T1.d

Ress—1 (Co(Ka2, K1,3)) dry A ... Adzg A LVT;? (dxy A ... Ndzyg)

One more time, as  is the normal to 0K at x1(6), we recognize the volume form on 9K, endowed
with orientation induced by o7. Therefore, when o7 = + and up to the factor (27r)d, we find that

this is equal to (—1)?~'Vol(0K;). When ¢; = —, we find Vol(0K1). In a more compact way, we
write
(_1)<1a11>2<d—1)
(92) ReSS:1 (CO(KQ, Kl, S)) = WVO](@KQ
9.2. Volumes in convex geometry. In this paragraph, we suppose that ¢y = — and that

02 = +. Equivalently, it means that we consider geodesic arcs that go from 35 to ¥; and that

point outside Ky and inward K; (when lifted to R?). Let 1 < ¢ < d. Thanks to (8.20)—(8.21), we

now compute the coefficients E(gz_l)

(_1)€+d
@m0 — 1)

It will be more convenient to lift this expression as an integral on R? x S¢~!. To do that, we
introduce the following vector fields on R% x S¢~1:

Vlz = x;(0) - Oy, Vi, = xi(—0) -0, and V:=0-0,,

or equivalently the residues

Ress—¢ (Co(K2, Ky,8)) = / day A Adeg NTE oy V! (doy AL Adag) .
STd v

where we recall that § € S¥=1 +— x;(0) € R? is the inverse Gauss map associated with the convex

K; (used to define ¥;). We denote by etVic the corresponding flows on SRY. We also observe
that V is just the geodesic vector field on SR? and that it could be written as V[J{d with these

conventions (where By is the unit ball of RY). Finally, one has
Vi ==V,

and thus we will drop the exponents + and just write Vi = V,{.

With these notations at hand, the residue at s = ¢ can be rewritten as

Ress—¢ (Co(K2, K1, 5))

= ﬂ §£1$‘d ()dxy A ... ANdxg A e V-ri*eVia® -l (dxy A ... ANdxg).
2m)d (¢ —1)! Jspa

Observe now that

/ [SoRY A e V=rr*e™Via* e V* (dy AL A dayg)
SRe

(

—t)t-1
((—1)!

d
= / [S’ORd] Ae V-ri*emVio® Tl (dxy A ... Ndzyg),
- SRd

1

where [SoRY] = 6B (2)dzy A ... A dzg is the current of integration on SoR? := {0} x S?~1. In
particular, one has

(9.3)

(-1)*! A r o~ (Voge, +Viey +Vip, )% d -1

W [S()R } Ne —KL T VR TVEBG )T, (d!L‘l/\.../\dS(}d) :Zt Resgs—¢ (Co(K27K1,S)).
T SRd =

We now aim at expressing the left hand side of (9.3) in terms of the intrinsic volumes appearing
in Steiner’s formula (1.3).



72 NGUYEN VIET DANG, MATTHIEU LEAUTAUD, AND GABRIEL RIVIERE

9.2.1. A reminder on convex geometry. Let K be a compact and convex subset of R? (not necessar-
ily strictly convex or with a smooth boundary). Following [Sch14, §1.7], we define the supporting
hyperplane to K with exterior normal v € R%\ {0} as

H(K,v) = {wERd:U~w:maxv~x}.
reK
Note that the maximum in this definition is necessarily attained at a point ¢y € K. In particular,
if a point x lies in H(K,v) N K, then it belongs to K. For such a point, v is called an outward
normal vector of K at x. Then, the normal bundle N, (K) to K at the point x consists into the
collection of all the outward normal vectors of K at = together with the zero vector [Schl4, §2.2].

Remark 9.1. Note that for strictly convex smooth domains, as considered in the present article,
N, (K) is a one-dimensional cone. This is not necessarily the case for general convex sets, see for
instance K := {(z,y) € R : z+y < 1} where the reader can convince himself that, at the vertices
of the square, the normal bundle contains subcones of the tangent fiber.

In that manner, we can extend the definition given in §8.1 to any compact and convex subset
of R%:
Ny (K) = | {(z,v) : v € No(K)} s

reK
Given two compact and convex subsets K and L of R?, one has according to [Sch14, Th. 2.2.1]
(9.4) V(z,y) € K x L, Nypyy(K + L) = N,(K) N N, (L)

In particular, if K and L are two strictly convex bodies with smooth boundaries N4, (K + L) is
not reduced to 0 if and only if the outward unit normal vectors at € 0K and y € 0L coincide.
We may summarize the formula for the normal bundle of the sum of two strictly convex subsets
as

(9.5) N(K+L)={(z+y:&;(x:§) € N(K), (y;§) € N(L)},

where we only take the outgoing normals.

9.2.2. Back to computing residues. Thanks to (9.4), we deduce the following fact of independent
interest

Lemma 9.2. Let K1, Ko be two smooth strictly convex subsets of R whose boundaries 0K, 0K,
are parametrized by their outward normals through the maps &1,% : S¥ 1 +— R Then, the
Minkowski sum Ky + Ko is such that its boundary 0 (K1 + K3) is parametrized by the sum:
Iil +.’22 : Sd71 — Rd.
In particular, the boundary of the compact convex set Ko — K7 + tBy is parametrized by the
map 0 € S s 29(0) — x1(—0) + t0 € RY. Therefore, we can rewrite (9.3) as
d

/ d[SoRd] A e VEa=KitBa* 1 (day AL A dxg) = (—1)d-1t Ztg_l Resg—¢ (Co(K2, K1,58)),
SR (=1

1
(2m)?
or equivalently,

1
(2m)¢

d
/ eVia= K18 * [SORY A vy (day A ... Adxg) = (—1)771 Zt#l Ress—¢ (Co(K2, K1, $)) .
SR4 =1

Intertwining the place of ¢y in the integral, we find

1
()

d
Z t*~ T Res,_y (Co(K2,Ky,5)) =
(=1

Write now that

/ Ly (eVKTKI“Bd*[SORd]) ANdxi A ... Ndzg.
SRd

eVie Kt eBa* [SoRY) = Gy (x + 22(0) — 21 (—0) +10) N d(z; + 22,5(0) — 21,;(—0) + t0;),
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where 6 is the normal to Ky — Ky + tBy at the point z9(0) — xz1(—0) + t0. Hence, as in the
preliminary examples, we can recognize the volume form of 9(Ks — Ky + tB,) and we obtain

d
Z t“ "I Reso—g (Co(Ka, K1, 5))
=1

1

d
7 / (5]15 (x — y)dVoly(k,—r,+tB.) (Y, dy) Ndxy A ... Adxg,
(2m)% Jraxo(ks— Ky +¢B2)

which implies
d

Zt#l Ress—¢ (Co(K2, K1,5)) = ﬁVol (O(K3 — Ky +tBy)).
=1

In particular, by the Minkowski-Steiner formula, one finds

d
1 d
2#71 Ress=¢t1 (Co(KQ, Ky, S)) = W%VOIRd (KQ - K1+ th> .
(=1 T

Remark 9.3. Observe that we implicitely proved through this calculation that the volume Ky —
K, + tBgy is a polynomial in ¢, or equivalently Steiner’s formula (1.3) for such (strictly) convex
subsets.

According to (1.3), this last quantity can be expressed in terms of the intrinsic volumes of the

convex sets under consideration and we end up with:

Proposition 9.4. Let K1 and Ks be two stricly convex subsets'” of R4, let 01 = + and oy = —
and let To > 0 be large enough to have the meromorphic extension of (o(Ka, K1,s). Then, one
has, for every 1 < £ <d,

[VES

Ress—s (Co (K2, K1,5)) =

Ve (K2 — K7).

[ SIS 3

@m)ar(£+1)

This concludes the proof of Theorem 1.3.
Remark 9.5. Recall that 2V,_; (K2 — K1) = Vol(9(K2 — K7)).

10. EQUIDISTRIBUTION OF THE BOUNDARY OF CONVEX BODIES

In this final section, we revisit the equidistribution results of Section 5 when convex subsets are
involved as in Section 8. More precisely, in all this section, we fix a strictly convex subset K of R?
which has a smooth boundary 0K. Recall that we implicitely allow K to be reduced to a point
2. Following §8.1, the smooth map zx : § € S¥1 — R? parametrizes the boundary 0K by its
ouward normal vector § € S?~!. We then define the strictly convex subset

vVt >0, K;:=K-+tBy,
whose boundary 0K is parametrized as follows
0Ky = {xk(0)+t0: 0 €S},

thanks to §9.2.1. Our goal is to decribe the distribution of this submanifold modulo 27Z%, i.e. the
distribution as t — 400 of

(101) Zt = p(aKt),

where we recall that p : R? — T9 is the canonical projection. Our main result in that direction
reads:

17Recall that we denote by ¥; the corresponding admissible submanifolds on T¢.
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Theorem 10.1. Let K be a strictly convex subset of R? which has a smooth boundary K. Then,
for every f € C(T?), one has
1
VOI(Zt)
where ¥ is the image of OK; on T? as defined in (10.1), Volx, is the volume measure'® on 3,

induced by the Euclidean structure on T and the constant in the remainder only depends on d
and K.

|da| _d1
/Et f(l‘) VOIEt,(Ivdx) = T f(I) (27T)d +0 (||fHH2d+1(Td)t 2 ) ) as t— +00,

18

This Theorem is a variant of a classical result due to Randol [Ran84] who considered the
equidistribution of (¢tK) instead of (K +tBy). See also [Str89] for further generalizations in the
Euclidean setting and [EM93] in the context of Lie groups. The proof of Theorem 10.1 is given
in Section 10.2.1 below. In the case where K is reduced to a point, we can get a slightly better
remainder — see (10.8) below. See also Remark 10.4 below for more details on the remainder.

As stated in Theorem 10.1, the explicit dependence in f of the remainder also allows us to
consider the case where the test function f is a characteristic function. Indeed, let U be some
open set of T¢ with smooth boundary. Given ¢ > 0, one can fix two smooth functions fs,+ on T4
such that

0< f5+ <1,

Jo— <1y < fs4,

| f5.+llcx = O(67F) for every k > 0,
de fg}i($)|d$| = VOlvﬂ-d (U) + 0(5)
One has then

1 Vol(2, N U) 1
Vol(y) /E t f5.—(x) Volg, (z,dz) < Vol(3,) < VoIS Js, f5.+(x) Volg, (2, dx).

Using Theorem 10.1, it yields
Vol(X; NU)  Volpa(U)
Vol(%) — (2m)d

+O(6) + Ot~ 7 5~ dH1)y,

from which we infer by taking 6 = {7 that
Vol(X; NU) _ Volga(U)
Vol(%;) (2m)d
For a nice enough subset U satisfying some convexity assumption, and in the case where K is

a point (i.e. ¥; is the projection on T? of a sphere of R? radius ¢), then one can be even more
precise:

+O(t‘%).

Theorem 10.2. Suppose that the assumption of Theorem 10.1 are satisfied and that K is reduced
to a point xo. Then, for any open set U of T¢ whose boundary OU is a smooth, connected, compact
and embedded submanifold all of whose sectional curvatures are positive, the function

a1 (Vol(S,NU)  Volyu(U)
R(t) =t < Vol(Zy) (2T7r)d )

satisfies the following properties
e its singular support is contained in the set of times t such that X is tangent to OU;
o for every s >0, || (1-02)"" R||pe®,) < Cu,s < +o00.

This result provides with an accurate analysis of the remainder in our equidistribution statement
when one considers projections of large spheres on T and when measured with particular test
functions (namely characteristic functions of convex open sets). The proof of Theorem 10.2 is
given in Section 10.2.2 below. Together with the proof of Theorem 10.1 (and actually with all
results presented in this article), it relies on lifting the problem to ST?. The end of Section 10 is
devoted to the proofs of Theorems 10.1 and 10.2.

18In particular, Vol(X¢) = fEt Voly, (z, dz).
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10.1. Lifting the problem to the unit tangent bundle. As before, this problem takes natu-

rally place in the unit normal bundle of the torus. Hence, we reformulate things in terms of the
normal bundle N, (3g) of the admissible subset g C T¢:

Lemma 10.3. Under the assumptions of Theorem 10.1 and for any smooth function f, one has

/ e VN (B A flx)dey A ... Adzg = (=141 [ f(z) Volg, (z, dz).
STd P

where N1 (Xg) was defined in §8.2.

The volume form

IS8

(10.2) Prc(t,0)Volga-1 (0, d0) := > (=1)*0, \ d ((0) + t6;)
=1 j#e

will appear at several stages of our proof. Remark that, as 6 is the outward unit normal to 0K at
i (0) +t0, Pk (t,0)Volga-1(0,d0) is the volume form on JK; induced by the Euclidean structure
on R?. We also note that

(10.3) Pr(t,0) =t fag o0t 2+ ...+ ao(h),
is a polynomial whose coefficients depend implicitely on K. For simplicity of the expressions in

the upcoming proof, we set ag_1 = 1. When K is reduced to a point, a;(#) vanishes for every

0 < j <d—2. More generally, when K is a Euclidean ball of radius » > 0 centered at a point of
d—1—2¢
R?, one has ay = W for every 0 < £ < d — 2.

Proof. In order to prove this Lemma, we proceed as in Section 9 and recognize the natural volume
form on ¥g. We first note that

d
e VN, (20)] = do(z — — 16) /\ —3;(0) — 16;) = [N+(3¢)].

where Z(0) = p(xx(0)) is the boundary map of ¥y as in §8.2. After letting y = xx(0) + t0 and
recalling (10.2) one has

/ e VN, (So)] A f(@)dzs A .. A dag
STd
= (—1)d_1 / f(x)dgrza(x —y)Volgk, (y,dy) Adxy A ... A dxg,
Tdx 0K,
from which the Lemma follows O

10.2. Equidistribution properties. This paragraph is devoted to the proofs of Theorems 10.1
and 10.2.

10.2.1. Proof of Theorem 10.1. In order to prove this theorem, we shall start from

/ tye VN (Zo)] A flx)dey A ... Adxg
ST

and reexpress it in terms of the oscillatory integrals of Section 4 following the analysis of Section 3.
Then, we will be able to implement the arguments of Section 5 up to some (minor) modifications
needed to handle the lack of regularity of [N, (Xg)] (and possibly of f). For the moment, we make
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the assumption that f is smooth so that

/ e VNG (S0)] A f(z)dzy A ... Adag
ST

- Z / o at _tv[N+(Zo)]/\dx1/\.../\dxd
cezd sTd (27) 2

- CUSE) [ i+ [ £

€40 ¢ (2m)2
where we used Lemma 10.3 to rewrite the Fourier coefficient £ = 0. Recalling (3.6) and (10.3),
this can be rewritten as

dl
/ wre VN, (So)] A F(@)dar A .. A dig = VOl V"lzt / F(@)|de]
STd

(—1)? / O)+6) p
Gt § & @ O+10) p (4 G)Voloa 1 (6, df).
(277)5 70 Sd—1

Hence, according to Lemma 10.3, one has

Lve_tv [NL(Zo)] Aday Ao Adag

||
( ™)

= tt / € @r(0)+9) o (9)Volga—1 (6, db).
2 FVol(s) ;) ;f& s ¢(0)Volga-1 (0, db)

(10.4) ﬁ /2 H@) Vol ) — [ 1@

We recognize the oscillatory integrals studied in Section 4. In particular, given f € C>(T%), one
can make use of Corollaries 4.3 and 4.6 to derive

Vol / (@) Vols, (z, dz) = / f@ (=5,

We can in fact be rather precise about the dependence in f . Applymg Corollary 4.3 with N =d
and Corollary 4.6 with N = 1, one finds that, for every 0 < ¢ < d — 1, one has

d—1

2 .

/ eif‘(‘"“((0)+t9)a,g(9)V01Sd*1 (9,d9)‘ S
Sd 1

Hence, one finds

1
Vol(Zt)/Zt f(z) Voly, (z,dx) — /er flx) o)1

This proves Theorem 10.1.

d—

< OHf||H2d+1(Td)le~

Remark 10.4. As in Section 5 and for any f € C>®(T¢), we could in fact get an asymptotic
expansion at any order in ¢ by using the full asymptotic expansion given in Corollary 4.6 in order
to describe the asymptotics of the integral

/ SO g, (9)Volga 1 (6, dO).
Sd—1

Finally, revisiting the above argument, one can in fact prove the following result, which considers
the asymptotic distribution of the normal cycle [N} (X)] subject to the geodesic flow on the torus.

Proposition 10.5 (Asymptotic distribution of the normal cycle). Suppose that ¥ is admissible
in the sense of §8.2. Then, as t — 400, one has

t= e VN, (20)] I Z dOr A ... ANdOp—y Adxg AdOpyy A ... A dOg + Opragsray(t™).

Again, we could in fact write the full asymptotic expansion in powers of t=2 using the full
strength of Corollaries 4.3 and 4.6. We do not write this asymptotics for concision and readability.
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10.2.2. The case K = {xo}: proof of Theorem 10.2. Let us now be slightly more precise in the
case where K is reduced to a point . In that case, equality (10.4) reads

(10.5) @ /Et f(z) Volg, (z,dx) = /Td f(x) (|2€i::)|d

%Z g0 / e %Volga—1 (8, dh).

€40
According to Corollaries 4.3 and 4.6, one has

2m

t|£|>; cos (t¢] = F(d—1)) +O((tleh =),

(10.6) / e %Volga—1 (0, df) = 2(
gd—1

from which we infer, for every s > 0,

1 B |dz|
107 o /. (@) Vol () = IR
r(s) iean _ap
*WQS' 5 cos (t1¢] = S = 1) Fee' ™ + O, (Il y4eruyt™F )

We note that the sum is absolutely convergent for f € Hats (T9) as soon as s > 0 so that when
K = {z¢}, one finds, for every s > 0,

(10.8) ﬁ / S Vol () = | st >('dx)' 40, (I, et 5)

We can also record from (10.5) and from Plancherel formula the following result on average over
o € T

Proposition 10.6. There erists a constant Cq > 0, such that, for every f € C>(T?) and for
everyt > 1, one has
1 da |

/]I‘d \/bl(Et(-TO))/Et(zo) f(x)VOIEt(mo)(xvdx)_ f( )( )d

where ¥4(xo) is the projection on T¢ of the Euclidean sphere of radius t centered at x.

Cd —d N
dg < 7% ST Il
€40

Hence, averaging in zy allows to decrease the regulamty needed on f to ensure convergence by
replacing the H'/2** norm in (10.8) by the H— “Z* norm. In particular, if f is the characteristic
function of some (small) open set U, then f € L?(T%) and the righthand side of the above inequality

Vol(Sy(zo) NU)  Volpa(U) |?

is convergent, i.e.
- dry = O~").
LSy -S| a0

One can be even more precise on the regularity of the map
VOl(Et (Io) n U) VOle (U)
Vol(2¢(zo)) (2m)d

if one makes extra assumptions on the regularity of QU. For instance, recall the following conse-
quence of Herz asymptotic formula:

Oy : (¢, x0) € [, oo)x’]I'dl—>t (

Lemma 10.7. If U is some open set whose boundary OU is a smooth, compact and embedded
submanifold of T¢ and such that the sectional curvatures of OU are positive everywhere (so that
U, viewed as a subset of R?, is a strictly conver set), then the characteristic function f = 1y
verifies

(10.9) fel = O(g|= ).
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Proof. The proof uses the Stokes Theorem combined with Littman’s Theorem'? [Lit63]. More
precisely, the Gauss-Green formula, one writes, for every 1 < j <d,

—ifj/ e_i"c'5|dm| :/ e_iy'gnj(y)VolaU(%\dy\),
U U

where n;(y) is the j-th component of the outward normal vector n(y) at y € OU. Multiplying this
equality by &; and summing over j, one finds

—ilep? / e d| = / ¢ - n(y)Volau (yldy))-
U oU

Thus, using the strict convexity of OU, one can apply Littman’s formula [Ste93, §VIIL.3.1] on the
decay of the Fourier transform of surface measures and it yields the expected result. O

Hence, equation (10.5) together with the Fourier decay bound (10.9) imply the existence for
every s > 0 of a constant Cs y > 0 such that

(1= Az) @yl Lo ([1,00)xT4) < Cs,U-

It now remains to discuss the regularity of @y (¢,20) in ¢ with zy being fixed: this amounts to
study the remainder term R(t) in Theorem 10.2. Using equation (10.5) one more time, the Fourier
decay bound (10.9) together with (10.6) to control the remainder term in equation (10.5) and the
fact that (1 — 97) ™ cos(t|¢| — F(d — 1)) = O((£)~2*) for every s > 0, one finds the existence of a

constant C'S’U > 0 such that
Vo € T ||(1 = 07) *®u (., 20) || oe((1,00)) < Cs,

which proves the third item of Theorem 10.2. It remains to discuss the local regularity of the
remainder term R = ®y (., 20) defined in Theorem 10.2. To that aim, we can apply Lemma 10.3
to f = 1y by density and we find

Vol(Zi(zg) NU) = (fl)dfl/ vye  V[Su T Ay (x)dey A ... Adxg
STd

_ -1 / 1y (2)80(z — o — t)Volga—1 (0, d0) Adz1 A ... Adxg
ST

td—1 / Z 1y (zo + 27€ 4 t0) Volga—1 (0, db),
S§d—1

gezd

where, in the last equality, we identify U with a strictly convex subset of R% and x¢ with one of
its representative in R%. Hence, one has
Vol (S (z) NU) T (&

)/
= 1 + th + 27€)Voly—_1(6, db).
Vol (Et(ﬂﬁo)) 271'% gd—1 Eezzd U(.’Eo ﬂf) Olg 1( )

Note that, as in §8.4, the wavefront set of the function f(y) = dezd 1y (y+x0+27E) is contained
in

U {.m) € (0U — 20 — 2m€) x (RY)*\ {0}) : Vo € T,0U, (v) = 0}.

ez

Now we pullback the function f through the map & : (£,0) € Rsg x S~ ! — t§ € R%. By the
pullback Theorem of Hormander [Hor03, Th. 8.2.4], f o k has wavefront set inside

d d
t,0; | S m0; | dt, > tndo; | st (ta,n)eWF(f)
j=1 j=1

191 the case we are interested in (strictly convex subsets), the result can also be found in the works of
Hlawka [Hla50] and Herz [Her62a].
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Since

Vol (X¢(x0) NU) / _

_— = 1y (t0 + o + 2wE) Volga-1 (0, dB) = o k(t,0)Volga-1(6,db),
Vol (Si(0))  Joas E;W (16 + 2o + 2mE)Volgas (0,d0) = | f o k(¢ 6) Volga-1 (6, df)

and thanks to the pushforward Theorem [Hor03, Th. 8.2.12], the map ¢t — %W has its

wavefront set inside
{(t,7) € Ry x R* : (t,0;7,0) € WE(f o k)}
= {(t,r) e Ry xR*: 30 € S* ! such that t0 € X(z0), 76 L Ttgf](ajo)} .

where }
Y(zg) := U (OU — xg — 27E).

gezd

In particular, this allows to bound the singular support of both functions %f(‘;{gg]) and R(t)
appearing in Theorem 10.2. Geometrically speaking, we are saying that R is smooth outside
the set of times where the sphere tS?~! is tangent to Ugeza (OU — x9 — 27€). Arguing as at the

beginning of §8.3, one can verify that these singularities form a discrete subset for ¢ large enough:

Lemma 10.8. There exists Ty > 0 such that, for every t > Ty, the set of times t when the scaled
sphere tS*1 is tangent to Ugeza (OU — 2o — 27) s locally finite and the tangency occurs at a
finite number of points of tS1.

APPENDIX A. ANOTHER FORMULA FOR ZETA FUNCTIONS

We now briefly explain how to prove (2.1) without appealing the theory of De Rham currents
and how it may slightly simplify the exposition of the proofs of Theorems 1.2, 1.3 and 1.4. Yet,
this would be at the expense of loosing the dynamical pictures behind these results and thus the
relation of these results with our other (more clearly dynamical) applications. Recall also that
this formula only holds a priori for a specific choice of orientations for K; and Ky while our
current theoretic approach allows to handle any orientation convention and to easily implement
exponential weights in our zeta functions.

First, from §8.1, 9K, and K5 can be parametrized by their outward normal vector # € S?~1
through the maps rg; : S4=1 R4, j € {1,2}. Moreover, according to §9.2.1, the maps

0 — TK, (9) — JCKQ(*Q) + t0
parametrize the boundary of the convex set K1 — Ky +tBy for every 0 < ¢ < T'. Let us now remark
that v belongs to Pk, r, with 0 < £(y) = ¢t < T if and only if there exist § € S¢~1 and ¢ € Z¢
such that
i, (—0) = zk, (0) + t0 — 27€.

Equivalently, it means that there exists £ € Z¢ such that 27¢ belongs to (K, — Ko + tf). Hence,
elements v in Pk, g, are in one-to-one correspondance with the set

2778 N (K1 — Ko+ TByg) \ (K1 — Ko).

Now observe that the restriction of the Lebesgue measure to the set (K1 — Ko + T'Bg)\ (K2 — K1)
can be disintegrated as follows

T
/0 Sosts— a1 (@, dz) d]
so that

T
H0 € P 1000 STV = [ Ga@) | Sote,samy (o e,
d 0

with dj defined in (2.2). Similarly, if we weight the Lebesgue measure with x () on each sublevel
O(Ky — K3 + t0), we derive formula (2.1) from the introduction. Now, in order to prove our
theorems on convex geometry from this formula, one would need to decompose Jjg) (=) according
to (2.2) and to make sense of the right side after this decomposition for the functions t~* and e~5¢.
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For Re(s) large enough, this is not a problem through a direct calculation. Then, one would need
to make the meromorphic continuation of the right hand side through the natural threshold. This
could be achieved by reducing to the oscillatory integrals of Section 4 (through the parametrization
of K1 — Ky+tBgy by 0 as in Sections 8 and 9) and by arguing as in Section 7 with the simplifications
that we only deal with ¢ functions rather than general test functions (as in §8.6 and 8.7). Thus, the
analytical difficulties would remain exactly the same through this approach. The main advantage
would be that the fact that the residues involve the intrinsic volume would be more direct (from
the analysis of the Fourier mode 0).
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