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LENGTH ORTHOSPECTRUM OF CONVEX BODIES ON FLAT TORI

NGUYEN VIET DANG, MATTHIEU LÉAUTAUD, AND GABRIEL RIVIÈRE

Abstract. In analogy with the study of Pollicott-Ruelle resonances on negatively curved man-

ifolds, we define anisotropic Sobolev spaces that are well-adapted to the analysis of the geodesic

vector field on the flat torus Td. Among several applications of this functional point of view, we
study properties of geodesics that are orthogonal to two convex subsets of Td (i.e. projection of

the boundaries of strictly convex bodies of Rd). Associated to the set of lengths of such ortho-

geodesics, we define a geometric Epstein function and prove its meromorphic continuation. We
compute its residues in terms of intrinsic volumes of the convex sets. We also prove Poisson-type

summation formulas relating the set of lengths of orthogeodesics and the spectrum of magnetic

Laplacians.
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1. Introduction

Motivated by recent developments on analytical and spectral properties of geodesic flows on
negatively curved manifolds, we study in this article related questions in the opposite setting of a
completely integrable system. Such an analysis is now known to have several types of applications
ranging from the study of correlation functions to counting problems and equidistribution prop-
erties. Before discussing analytical and spectral properties of the geodesic flow on the torus (see
Section 2), we thus start by presenting one of their applications in the context of convex geometry.

Let K1 and K2 be two strictly convex and compact subsets of Rd (d ≥ 2) with smooth bound-
aries ∂K1 and ∂K2. All along this article, by strictly convex, we mean that the boundary of the
convex set Ki has all its sectional curvatures positive and we adopt the convention that, if K
is reduced to a point, then it is strictly convex with smooth boundary. By a classical Theorem
of Hadamard [Had97] and Sacksteder [Sac60], if S is a smooth, compact, connected, orientable
hypersurface embedded in Rd and if S has all its sectional curvatures nonnegative, then it is the
boundary of a convex body – see also [dCL69].

Through the canonical projection p : Rd → Td := Rd/2πZd, the boundaries of K1 and K2 can
be identified with immersed submanifolds of the flat torus that may have selfintersection points.
We fix an orientation on each submanifold ∂Ki either by the outgoing normal vector to Ki or
by the ingoing one. This orientation induces an orientation on Σi := p(∂Ki). The choice of
orientation is not necessarily the same on each ∂Ki (hence on each Σi) and, once each orientation
is fixed, we denote by PK1,K2

the set of geodesic arcs (parametrized by arc length) on Td that are
directly orthogonal1 to Σ1 and Σ2. The orientation of the sets K1,K2 is implicit in our notation
(in the introduction); the results however depend on this choice. Using the strict convexity of K1

and K2, one can first verify the following statement.

Lemma 1.1. There is T0 > 0 large enough, such for any T > 0 the subset

{γ ∈ PK1,K2 : T0 < `(γ) ≤ T}
of PK1,K2

is finite.

1In the case where Ki is reduced to a point, every geodesic passing through Ki is said to be orthogonal to it
and we fix the natural orientation using the Euclidean volume on Rd.
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Note that the complementary set in PK1,K2
might be uncountable, depending on the choice of

orientations of Σi. We will be interested on the asymptotic properties of the lengths of these or-
thogeodesics. We shall for instance verify in Theorem 8.12 below that, for T0 > 0 as in Lemma 1.1,

(1.1) ] {γ ∈ PK1,K2
: T0 < `(γ) ≤ T} =

π
d
2 T d

(2π)dΓ
(
d
2 + 1

) +O(T d−1).

In the case where K1 = K2 = {0}, this exactly amounts to count the number of lattice points in
2πZd of length less than T and understanding the optimal size of the remainder is a deep problem in
number theory. Here, we consider the setting of orthogeodesics for much more general convex sets.
Thus, in some sense less arithmetical tools are available and we do not necessarily expect as strong
properties on the size of the remainder. In fact, rather than refining these asymptotic formulas, our
main purpose is to study various zeta functions associated to these length orthospectra and some
of their analytical properties. We also aim at determining the geometric quantities encoded by
these functions. Recall that counting orthogeodesics to convex subsets in the setup of hyperbolic
geometry was much studied (see e.g. [PP16, BAPP19] and the references therein) and similar
questions arise even if the asymptotic formulas are of different nature.

1.1. Epstein zeta functions in convex geometry. The most natural way to form a zeta
function starting from PK1,K2

is to define, for T0 > 0 as in Lemma 1.1, a generalized Epstein zeta
function:

(1.2) ζβ(K1,K2, s) :=
∑

γ∈PK1,K2
:`(γ)>T0

ei
∫
γ
β

`(γ)s
,

where β is a closed and real-valued one form on Td. Recall that any such form writes β =∑d
i=1 βidxi + df where βi ∈ R and f ∈ C∞(Td;R). The one-form [β] =

∑d
i=1 βidxi is identified

with the de Rham cohomology class of β. The first de Rham cohomology group will be denoted
by H1(Td,R) = H1

dR(Td): it corresponds to the kernel of the Laplacian acting on smooth real-
valued one-forms and it can be identified with the first singular cohomology group. See [Lee13,
Chapter 17 and 18] or [Lee09, Chapter 10]. We shall say that the cohomology class [β] of β is in
H1(Td,Z) if, in the above decomposition, βi ∈ Z for all i ∈ {1, . . . , d}.

Thanks to (1.1), s 7→ ζβ(K1,K2, s) defines a holomorphic function on {Re(s) > d} and our first
main result describes its meromorphic continuation to C:

Theorem 1.2. Let K1 and K2 be two strictly convex and compact subsets of Rd (d ≥ 2) with
smooth boundary and let β be a closed and real-valued one form on Td. The following holds:

(1) if the cohomology class [β] of β is in H1(Td,Z), then

s ∈ {Re(s) > d} 7→ ζβ(K1,K2, s)

extends meromorphically to C, its poles are located at s = 1, . . . , d and are simple;
(2) otherwise, ζβ(K1,K2, s) extends holomorphically to C.

In the case where both K1 and K2 are reduced to points, this theorem recovers a classical
property of Epstein zeta functions [Eps03]. See §1.4.1 below for a brief reminder on such arithmetic
functions. Yet, to the best of our knowledge, this result seems to be new in the case of general
strictly convex subsets.

As for classical zeta functions in number theory, it is natural to compute the explicit values of
the residues and, due to the geometric nature of the problem, one would like to express them in
terms of natural geometric quantities attached to the convex sets K1 and K2. In order to be more
explicit on the residues when β = 0, recall Steiner’s formula for a compact and convex subset K
of Rd [Sch14, §4]:

(1.3) for all t > 0, VolRd (K + tBd) =

d∑
`=0

Vd−` (K)
π
`
2

Γ
(
`
2 + 1

) t`,
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where V` (K) ≥ 0 is the `-intrinsic volume of the convex set K, and (1.3) may be taken as a
definition of the numbers V` (K). Note that V0(K) = 1, Vd(K) = VolRd(K). Moreover, if ∂K has
smooth boundary, one finds by the Minkowski-Steiner formula [Sch14, 4.2] [Tei16, p. 86]:

Vd−1(K) =
1

2
Vol(∂K),

where Vol is the (d−1)-volume measure on ∂K induced by the Euclidean structure on Rd. Observe
that Vd−` (K) = 0 for any 0 ≤ ` ≤ d− 1 when K is reduced to a point. Other properties of these
intrinsic volumes are their invariance under Euclidean isometries (i.e. any composition of a rotation
with a translation), their continuity with respect to the Hausdorff metric and their additivity2 on
convex subsets of Rd, i.e.

∀ 0 ≤ ` ≤ d, V` (K) + V` (L) = V` (K ∪ L) + V` (K ∩ L) ,

whenever K, L, K ∪L, K ∩L are convex subsets of Rd. In fact, a classical Theorem of Hadwiger
states that any functional on the convex subsets of Rd enjoying these three properties is a linear
combination of these intrinsic volumes [Sch14, Th. 6.4.14].

Our second main theorem expresses the residues of ζ0(K1,K2, s) (stated for β = 0 to improve
readability) in terms of these intrinsic volumes:

Theorem 1.3. Let K1 and K2 be two strictly convex and compact subsets of Rd (d ≥ 2) with
smooth boundary. Suppose in addition that Σ1 = p(∂K1) (resp. Σ2 = p(∂K2)) is oriented by the
outgoing (resp. ingoing) normal vector to K1 (resp. K2).

Then, the function

s 7→ ζ0(K1,K2, s)−
1

(2π)d

d∑
`=1

π
`
2 `

Γ
(
`
2 + 1

) Vd−` (K1 −K2)

s− `

extends holomorphically from {Re(s) > d} to C.

Note that −K2 is a convex set and thus so is K1 −K2. Here we only describe the case where
β = 0 and geodesics are pointing outward K1 and inward K2. Yet our proof yields an explicit
expression for any β and for more general orientation conditions on the Σi. See formula (8.23)
and §9 for more details. For the sake of simplicity, we restricted ourselves to this case here as
it has a transparent expression in terms of intrinsic volumes while formulas are more involved in
the general case. When K2 is reduced to a point, this theorem in particular solves the following
geometric inverse problem: recover all `-intrinsic volumes of K1 for 0 ≤ ` ≤ d−1 from the lengths
of the geodesics of Rd orthogonal to K1 and joining K1 to an element of 2πZd (see Figure 1).

Figure 1. Lift of the orthogeodesic arcs when K2 = {0}.

2A functional satisfying such an additive property is referred as a valuation [Sch14, §6.1].
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1.2. Poincaré series in convex geometry. In analogy with the case of negatively curved man-
ifolds [PP16, BAPP19, DR21], one can also define generalized Poincaré series for the length or-
thospectrum:

(1.4) Zβ(K1,K2, s) :=
∑

γ∈PK1,K2
:`(γ)>T0

ei
∫
γ
β−s`(γ),

which, as a consequence of (1.1), is holomorphic on {Re(s) > 0}. As above, β is a closed and
real-valued one form on Td. For such functions, we are able to describe the continuation up to
Re(s) = 0 in the following sense:

Theorem 1.4 (Continuous continuation of Poincaré series). Let K1 and K2 be two strictly convex
and compact subsets of Rd (d ≥ 2) with smooth boundary and let β be a closed and real-valued one
form on Td.

Then, the function

s ∈ {Re(s) > 0} 7→ Zβ(K1,K2, s)

extends continuously to

{Re(s) ≥ 0} \ {±i|ξ − [β]| : ξ ∈ Zd}.

Moreover, given ξ0 ∈ Zd, one has

(1) if ξ0 − [β] = 0, then there exist a
(1)
β (K1,K2), . . . , a

(d)
β (K1,K2) in C such that

Zβ(K1,K2, s)−
d∑
`=1

a
(`)
β (K1,K2)

s`

converges as s→ 0 (with Re(s) > 0);

(2) if ξ0 − [β] 6= 0 and d is odd, then there exist a
(0)
ξ0,β

(K1,K2), . . . , a
( d−1

2 )

ξ0,β
(K1,K2) and

bξ0,β(K1,K2) in C such that

Zβ(K1,K2, s)−

d−1
2∑
`=0

a
(`)
ξ0,β

(K1,K2)

(s∓ i|ξ0 − [β]|) d+1
2 −`

− bξ0,β(K1,K2) ln(s∓ i|ξ0 − [β]|)

converges as s→ ±i|ξ0 − [β]| (with Re(s) > 0);

(3) if ξ0 − [β] 6= 0 and d is even, then there exist a
(0)
ξ0,β

(K1,K2), . . . , a
(d/2)
ξ0,β

(K1,K2) such that

Zβ(K1,K2, s)−
d
2∑
`=0

a
(`)
ξ0β

(K1,K2)

(s∓ i|ξ0 − [β]|) d+1
2 −`

.

converges as s→ ±i|ξ0 − [β]| (with Re(s) > 0).

This Theorem is a weakened version of Theorem 8.17 where the Ck regularity of the continuation
of Zβ will also be discussed. Note that the set of singular points {±i|ξ − [β]| : ξ ∈ Zd} is linked
to the spectrum of a natural magnetic Laplacian on Td, namely3 ∆−[β] = (∂x − i[β])2 – see the
discussion in Sections 2.4 and 5.2.2. For β = 0 and for the orientation conventions of Theorem 1.3,
the “residues” at s = 0 can be explicitly expressed as

∀1 ≤ ` ≤ d, a
(`)
0 :=

(−1)d−1`!π
d
2

(2π)dΓ
(
`
2 + 1

)Vd−`(K1 −K2).

3The eigenvalues of ∆−[β] and ∆[β] coincide.
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1.3. Application to Poisson type formulas. According to (1.1), and for T0 > 0 as in Lemma 1.1
above, we emphasize that, on the imaginary axis, the Poincaré series

Zβ(K1,K2, it) =
∑

γ∈PK1,K2
:`(γ)>T0

ei
∫
γ
βe−it`(γ)(1.5)

is the Fourier transform of the counting measure

Tβ,K1,K2
(t) :=

∑
γ∈PK1,K2

:`(γ)>T0

ei
∫
γ
βδ(t− `(γ)) ∈ S ′(R)(1.6)

which is a tempered distribution supported in the cone (0,+∞). Therefore, thanks to [RS75, Thm

IX.16 p. 23] (see also Proposition 7.5 below), T̂β,K1,K2
(t) can be obtained as the boundary value

of a holomorphic function as follows:

Zβ(K1,K2, it+ α) ⇀ T̂β,K1,K2
(t) in S ′(R), as α→ 0+.(1.7)

The holomorphic function is nothing but the analytic extension of the Fourier transform to the
upper half–plane. Hence, the reader can think of Theorem 1.4 as a loose version of the Paley–
Wiener–Schwartz Theorem, stating that the Fourier transform of a distribution supported on
the half–line (0,+∞) is the boundary value on R of a holomorphic function on the lower half–
plane (sometimes called its Fourier-Laplace transform). Note that, as a consequence of (1.7), the
Poincaré series completely determines the distribution of the twisted length orthospectrum.

Remark 1.5. In case β = 0, T0,K1,K2 gives precisely the distribution of length of orthogeodesics:
namely if L(K1,K2) = {`(γ), γ ∈ PK1,K2

} denotes the set of length of orthogeodesics, then we
simply have

T0,K1,K2
(t) :=

∑
`>T0,`∈L(K1,K2)

m`δ(t− `), where m` = ] {γ ∈ PK1,K2
, `(γ) = `}(1.8)

denotes the multiplicity of the length ` ∈ L(K1,K2).

As a direct application of a refined version of Theorem 1.4 (namely Theorem 8.17 below)
together with (1.7), we also obtain a new Poisson-type summation formulas, describing the distri-

butional singularities of T̂.

Theorem 1.6 (Poisson type formula). Let K1 and K2 be two strictly convex and compact subsets
of Rd (d ≥ 2) with smooth boundary and let β be a closed and real-valued one form on Td. Then,
with Tβ,K1,K2(τ) defined in (1.6), the singular support of

T̂β,K1,K2(τ) =
∑

γ∈PK1,K2
:`(γ)>T0

ei
∫
γ
βe−iτ`(γ)

is included in Sp(±
√
−∆[β]) and the singularities are explicitly described by Theorem 8.17.

Here, we recall that the complementary of the singular support of a distribution T is the open set
where the distribution is smooth. In particular, the singular support of the geometric distribution

T̂β,K1,K2 is given by the eigenvalues of the magnetic Laplacian and it does not depend on the
convex sets K1,K2. We would like to remark that Theorem 1.6 looks like a trace formula and
we refer to paragraph 1.4.2 for a more detailed comparison. The precise form of the singularity
depends on the geometry of the convex sets K1 and K2 – see Theorem 8.17 for precise expressions
of the leading term at each singularity. We emphasize that the singularities are obtained as the
boundary values of simple holomorphic functions as in [Hör03, Th.3.1.11].

In view of having simpler singularities and motivated by the recent developments on crystalline
measures [Mey22], one can symmetrize (and renormalize) the distribution Tβ,K1,K2

(t). This is
the content of our last main result which extends in our geometric setup the Guinand–Meyer
summation formula [Mey16, Th. 5].
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Theorem 1.7 (Guinand–Meyer type formula). Let K1 and K2 be two strictly convex and compact
subsets of Rd (d ≥ 2) with smooth boundary and let β be a closed and real-valued one form on Td
such that [β] /∈ H1(Td,Z). Let µ be the signed measure defined as

µ(t) =
∑

γ∈PK1,K2
:`(γ)>T0

ei
∫
γ
β

`(γ)
d−1

2

δ(t− `(γ)) + (−i)d−1
∑

γ∈PK2,K1
:`(γ)>T0

e−i
∫
γ
β

`(γ)
d−1

2

δ(t+ `(γ)),

where we take the same orientation conventions for4 PK2,K1
and PK1,K2

.
Then, there exist complex numbers (cλ)λ∈Sp(±

√
−∆[β])

and r belonging to Lploc(R) for every

1 ≤ p <∞ such that

µ̂(τ) =
∑

λ∈Sp(±
√
−∆[β])

cλδ(τ − λ) + r.

In the case where β ∈ H1(Td,Z), the result would be similar except for an extra singularity of
the Fourier transform at τ = 0 that may be more singular than the Dirac distribution. Following
our proof, one could in fact describe explicitly this singularity at τ = 0 even if we do not carry
out the calculation explicitly. In the case where K1 and K2 are distinct points and where d = 3,
it was in fact proved that r ≡ 0 in [Mey16, Th. 5]. The proof of this last fact is briefly recalled in
§8.9.2 using our formalism. We also explain how it can be extended to higher dimensions (when
d is odd) to give rise to crystalline distributions, as first shown in [LR21, §2]. We finally deduce
from this discussion that r is not identically 0 as soon as d ≥ 5, even in the case where K1,K2

are points. See also [Gui59, LO16, RV19] for earlier related results and [Mey22] for a review on
recent developments in that direction.

1.4. Related results. Before discussing the relation of these results to the analytical properties
of geodesic flows, let us comment how these applications to zeta functions and Poisson formulas
in convex geometry compare with similar properties and objects appearing in different contexts,
most notably in arithmetic, spectral geometry and hyperbolic geometry.

1.4.1. Comparison with zeta functions from analytic number theory. The zeta functions appearing
in Theorem 1.2 are natural generalizations in the setup of convex geometry of the Hurwitz zeta
function [Apo98, Ch. 12]:

ζHur(q, s) :=
∑

ξ∈Z:ξ 6=−q

1

|ξ + q|s
,

where q is some fixed element in [0, 1). In the case q = 0, this is nothing else than twice the
Riemann zeta function ζR(s). It is well known that these functions extend meromorphically from
{Re(s) > 1} to C with a simple pole at s = 1 whose residue is equal to 2. The relation with
our zeta functions is as follows. Assume that both K1 and K2 are points in T1 = R/2πZ that
are at a distance ` = 2πmin{q, 1 − q} of each other. Then, one can verify that ζ0(K1,K2, s) =
(2π)−sζHur(q, s). The fact that we are in higher dimensions is responsible for the presence of extra
poles at s = 1, . . . d and Theorem 1.3 gives us an explicit expression of their residues in terms
of geometric quantities. Due to our use of stationary phase arguments, we note that our proof
does not work (strictly speaking) for d = 1 even if the functions are of the same nature from the
perspective of convex geometry.

Here we choose to call our functions generalized Epstein zeta functions in analogy with the zeta
functions defined by Epstein [Eps03, Eq. (2)] as higher-dimensional analogues of the Riemann zeta
function:

ζEps(q, β, s) :=
∑

ξ∈Zd\{−q}

e2iπξ·β

|ξ + q|s
.

4In particular, both sets are a priori distinct.
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where q and β are two fixed elements in Rd and |.| is the Euclidean norm. When K1 and K2 are
reduced to two points x1 and x2, one has

ζEps

(
x2 − x1

2π
, β, s

)
= (2π)sei(x1−x2)·βζβ(K1,K2, s),

where β ∈ Rd is identified with a closed one form, and ζβ is defined in (1.2). Hence, up to a
multiplicative factors, our zeta functions ζβ(K1,K2, s) are the natural extension of Epstein zeta
functions when one considers general convex subsets of Rd instead of points. It is well-known that
the “classical” Epstein zeta functions extend meromorphically to the whole complex plane with at
most a simple pole at s = d. Theorems 1.2 and 1.3 show that, for more general convex sets, one
may also have poles at s = 1, . . . , d − 1. Note that we recover the continuation of the “classical”
Epstein case since, if K1,K2 are both points, V`(K1 −K2) = 0 for all 1 ≤ ` ≤ d− 1.

In Theorem 1.2, we saw that if we weight our series with some unitary twist involving a closed
and real-valued one form β, then our zeta functions have in fact a holomorphic extension as
soon as [β] /∈ H1(Td,Z). These unitary twists can be thought of as geometric analogues of the
(arithmetic) twisting factors used when one extends the Riemann zeta function to more general
Dirichlet series [Apo98, Ch. 12]. Recall that these are defined in the following manner. Fix a
positive integer D and a morphism χ : (Z/DZ)∗ → S1 := {z ∈ Z : |z| = 1} (the Dirichlet
character). Such a morphism can be extended into a D-periodic function χ : Z → S1 by letting
χ(ξ) = 0 for every ξ such that ξ and D are not coprime. Dirichlet series (or L-functions of weight
χ) are then defined as

L(χ, s) :=
∑
ξ∈Z∗

χ(ξ)

|ξ|s
=

D∑
r=1

∑
q∈Z\{−r/D}

χ(qD + r)

|qD + r|s
=

1

Ds

D∑
r=1

χ(r)ζHur

(
s,
r

D

)
,

and they have a holomorphic extension to C except for the trivial character χ = 1 where one
has a simple pole at s = 1. Understanding the holomorphic continuation of more general L-
functions [Art24] on algebraic number fields (for arbitrary irreducible representations) is in fact a
classical topic in analytic number theory: this is for instance at the heart of Artin’s conjecture.
Here, we emphasize that our unitary twists do not have any particular arithmetic meaning and our
(strictly) convex sets are a priori arbitrary. Despite that and thus for seemingly different reasons,
these twisting factors have the same effect as Dirichlet characters for the Riemann zeta function in
the sense that, under some natural “non-rationality” assumption on β, our zeta functions extend
holomorphically to C.

1.4.2. Relation with trace formulas. Our main result on the singular support of the oscillatory se-

ries T̂0,K1,K2(t) =
∑
γ e
−it`(γ) is very reminiscent to the celebrated wave trace formula proved

by Chazarain [Cha74] and Duistermaat–Guillemin [DG75] extending previous results by Sel-
berg [Sel56] and Colin de Verdière [CdV73]. These formulas may be seen as generalizations in
spectral geometry of the Poisson summation formula, letting Sp(

√
−∆g) denote the spectrum of

the square root of the Laplace-Beltrami operator ∆g, one considers the series

T̂(t) =
∑

λ∈Sp(
√
−∆g)

e−itλ ∈ S ′(R),

which converges in tempered distributions thanks to the Weyl law. The wave trace formula states

that the singular support of the distribution T̂ is exactly the set of lengths of periodic geodesic
curves for the metric g. Furthermore, when the geodesic flow is nondegenerate, they described

the singularity of T̂ at each period in terms of geometric data attached to the periodic orbits and
of distributions of the form (t± `+ i0)−1. In other words, the quantum spectrum determines the
classical length spectrum and these wave trace formulas are often referred as generalized Poisson
formulas. Recall from [Hör03, p.72] that the singularities in this formula can also be rewritten as
follows

(1.9) lim
y→0+

1

t± `+ iy
= (t± `+ i0)−1 = FP

(
1

t± `

)
− iπδ(t± `),
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where FP (.) is the finite part of the (non-integrable) function (t± `)−1.
Theorem 1.6 has a similar flavour except that the correspondence is in the other sense and

that it involves orthogeodesics of two given convex sets. More precisely, we start from the length

orthospectrum between two convex sets, we then form the series T̂β,K1,K2
(t) =

∑
γ e

i
∫
γ
βe−it`(γ),

and its singular support coincides with the quantum spectrum Sp(±i
√
−∆[β]) where ∆[β] is the

magnetic Laplacian. Another notable difference is that the singularities are more complicated in
the sense that they involve distributions of the form (t ± λ − i0)−k with k ≥ 1 that may not
even be an integer if d is even. We emphasize from (1.9) that, as in the Chazarain–Duistermaat–

Guillemin formula, the singularities of T̂β,K1,K2
are not purely Dirac type distributions (and their

derivatives). This is due to the fact that the counting measure Tβ,K1,K2 is supported on the
half–line, hence its Fourier transform Zβ,K1,K2(it) must have its (C∞ and analytic) wave front set
contained in the half cotangent cone {(t; τ); τ < 0} ⊂ T ∗R. This prevents the presence of purely
δ(k)(t)–like singularities whose contribution to the wave front set would contain both positive and
negative frequencies τ .

As alluded above, the formulation in Theorem 1.7 is itself motivated by recent developments on
crystalline measures [Mey22], i.e. measures on R carried by a discrete locally finite set, belonging
to S ′(R), whose Fourier transform is still a measure carried by a discrete locally finite set. Here, we
started from a complex valued measure carried by a discrete locally finite set on R (defined from
our convex orthospectrum) and we ended up with a Radon measure carried by the spectrum of the
magnetic Laplacian (which is a discrete locally finite set) modulo some (absolutely continuous)
remainder lying in Lploc. Hence, in general, it does not fall into the category of crystalline measures
due to this a priori nonvanishing remainder.

1.4.3. Poincaré series on negatively curved manifolds. Poincaré series appear naturally when one
studies counting problems on a negatively curved manifold (M, g) [PP16, BAPP19]. In that
context, one aims for instance at couting the number of common perpendicular geodesic curves of
two convex subsets of the universal cover (M̃, g̃). Due to the exponential growth of the number
of such orthogeodesics, it is natural to consider e−s`(γ) rather than `(γ)−s in order to ensure the
convergence of the sums. The study of the meromorphic continuation of Poincaré series on compact
manifolds of constant negative curvature goes back to the works of Huber in the late fifties [Hub56,
Satz A], [Hub59, Satz 2]. In that setting, one can obtain the meromorphic continuation through
the relation between Poincaré series and the spectral decomposition of the Laplacian. In the case
of variable negative curvature, the relation with the Laplacian is less explicit and one rather needs
to exploit the ergodic properties of the geodesic flow directly. This approach was initiated by
Margulis in [Mar69, Mar04]. Using this dynamical approach and the theory of Pollicott-Ruelle
resonances, two of the authors recently proved the meromorphic continuation of Poincaré series on
manifolds of variable negative curvature [DR21]. Here, as in the works of Huber, we will use the
tools from harmonic analysis that are available on the torus to study the continuation of Poincaré
series. Yet, rather than making the connection with the Laplacian5, we will directly study the
analytical properties of the geodesic flow on the torus when acting on spaces of distributions with
anisotropic regularity as it was the case for negatively curved manifolds. See §2.2 for more details.
In the negatively curved setting, it is shown in [DR21] that one has meromorphic continuation
beyond the threshold Re(s) = htop. In the case of the flat torus, Theorem 1.4 shows that there is
barrier at Re(s) = htop = 0 where logarithmic or square root singularities may occur at certain
points that correspond to the eigenvalues of the (magnetic) Laplacian. Outside these singularities,
we are however able to continuously/smoothly extend the function up to Re(s) = 0. As already
alluded, our study is intimately related to the analytic properties of the geodesic vector field

V := θ · ∂x(1.10)

on the unit tangent bundle

STd := {(x, θ) ∈ Td × Sd−1}.

5The fact that we aim at dealing with general convex sets (and not only points) seems to prevent us from
working with the Laplacian on Td.
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When studying the resolvent of this operator, we will verify that there is a barrier at Re(s) = 0
when trying to make some analytic continuation. This phenomenon is retated to observations made
by Dyatlov and Zworski at the end of the introduction of [DZ15], where stochastic perturbations
of geodesic vector fields on Anosov manifolds are studied. In that reference, the authors studied
stochastic perturbations of geodesic vector fields on Anosov manifolds. In the opposite setup of
the flat 2-torus, they described the spectrum of Pε := V + ε∆ST2 (with V given by (1.10)) and
they observed that, in the limit ε → 0+, the spectrum of Pε fills Y -shaped lines in the halfplane
{Re(s) ≤ 0} that are based at the same singularities as our Poincaré series. See e.g. Figure 3 in
that reference and the companion article [DGBLR22] for more details on this issue.

1.4.4. Orthospectrum identities in hyperbolic geometry. Finally, let us mention the following re-
lated problem in hyperbolic geometry. Consider some hyperbolic manifold X with nonempty
totally geodesic smooth boundary. In that framework, an orthogeodesic γ is a geodesic arc which
is properly immersed in X and which is perpendicular to ∂X at its endpoints. The lengths of
these orthogeodesics verify certain identities connecting them to the volume of the boundary of
X (Basmajian’s identity) [Bas93]:

Vol(∂X) =
∑
γ

Vd−1

(
ln

(
coth

`(γ)

2

))
,

where Vd−1(r) is the volume of a ball of radius r on the hyperbolic space Hd−1 (with the convention
that V1(r) = 2r). Similar equalities also relate this length orthospectrum with the volume of the
unit tangent bundle SX (Bridgeman-Kahn’s identity [BK10]) and the analogues of these results on
manifolds with cusps are due to McShane [McS91, McS98]. We refer to [BT16] for a recent review
on this topic. In some sense, this formula has the same flavour as Theorem 1.3 as it relates some
length orthospectrum with some volumes associated with our convex. However, while the right-
hand side of Basmajian’s identity converges in a standard sense, our zeta functions are defined by
analytic continuation and the volumes appear as the residues of these functions.

2. Analytical results: a functional setup for the geodesic vector field

Let us now discuss the relation of these problems from convex geometry with the analytical
properties of geodesic flows on flat tori and come to the statement of our main analytical results.
For simplicity, we now restrict ourselves to the case where β = 0 and where we look at geodesic
arcs pointing outside K1 and inside K2 (as in Theorem 1.3).

2.1. Lifting the problem to the unit tangent bundle. In order to prove Theorems 1.2, 1.3
and 1.4, one way is to rewrite the series we are interested in under an integral form as follows:

(2.1)
∑

γ∈PK1,K2

χ(`(γ)) =

∫
Rd
δ[0](x)

(∫ +∞

0

χ(t)δ∂(K1−K2+tBd)(x, |dx|)|dt|
)
,

where χ is a nice enough function on R∗+ (in the applications we have in mind, χ ∈ C∞c (R∗+) or
χ(t) = t−s or χ(t) = e−st), where δ∂(K1−K2+tBd)(x, |dx|) is the volume measure on ∂(K1−K2+tBd)

induced by the Euclidean structure on Rd and where

(2.2) δ[0](x) =
1

(2π)d

∑
ξ∈Zd

eiξ·x.

A precise signification of the right hand-side of (2.1) together with a proof of this formula are
given in Appendix A. With that expression at hand, proving our main results on convex geometry
amounts to discuss the allowed functions χ in (2.1), to decompose δ[0] according to (2.2) and to
analyze the oscillatory integrals that come out. Yet, as explained in the beginning of the article,
rather than doing that directly, we will obtain these results as a by-product of a more general
analysis6 of the geodesic vector field on STd. In fact, since the seminal work of Margulis [Mar69,
Mar04], it is well understood that on negatively curved manifolds, it is convenient to lift this kind

6Similar oscillatory integrals will of course appear in our analysis.
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of geometric problems to the unit cotangent bundle of the manifold. For instance, properties of
Poincaré series are related to the asymptotic properties of the geodesic flow, and more specifically
to its mixing properties. In a recent work [DR21], two of the authors formulated this relation
using the theory of De Rham currents and we will see that this still makes sense in the case of
flat tori where the curvature vanishes everywhere. See Section 8 for details. Let us explain this
connection without being very precise on the sense of the various integrals. We denote by N(Ki)
the outward unit normal to Ki inside STd:

N(Ki) := {(p(x), dp(x)θ), x ∈ ∂Ki, θ directly orthogonal to ∂Ki at x} .
Then, given any nice enough function χ(t) (say again in C∞c (R∗+), t−s or e−st), we shall prove that

(2.3)
∑

γ∈PK1,K2

χ(`(γ)) = (−1)d−1

∫
STd

[N(K1)] ∧
∫
R
χ(t)ιV e

−tV ∗[N(K2)]|dt|.

where [N(Ki)] is the current of integration on N(Ki) and where

etV : (x, θ) ∈ STd → (x+ tθ, θ) ∈ STd

is the geodesic flow. Compared with (2.1), this new formula has the advantage to explicitly
involve the geodesic vector field. This current theoretic approach also allows to deal directly with
the exponential weights appearing in our zeta functions together with the more general orientation
conventions considered in the introduction. On the contrary, the approach using (2.1) (performed
in Appendix A) seems to only apply (at least directly) to the outgoing/ingoing convention of
Theorem 1.3.

Remark 2.1. Formula (2.3) derives from the observation that elements in PK1,K2
are in one-to-one

correspondance with the geodesic orbits in STd joining the two Legendrian submanifolds N(K1)
and N(K2). In the framework of symplectic topology, such orbits are referred as the Reeb chords
of these two Legendrian submanifolds.

2.2. Defining a proper functional framework for the geodesic flow. Hence, rather than
proceeding directly to the calculation of zeta functions from (2.1), we choose to view this as
a consequence of analytical properties of geodesic vector fields. More precisely, we will define
appropriate functional frameworks to study the operators appearing in (2.3):

χ̂(−iV ) :=

∫
R
χ(t)e−tV ∗|dt|,

where χ is a nice enough function (say e−st or t−s). In the end, our main geometrical theorems
on length orthospectra for convex bodies will be simple corollaries of this analysis – see Section 8.
Even if slightly longer, we believe that this sharp analysis, which is the content of Sections 4 to 7,
is interesting on its own and that it allows to capture the dynamical mechanism at work when
proving this kind of results. Along the way, it also has the advantage to apply directly to other
questions such as equidistribution properties of the geodesic flow. See Theorems 2.5, 5.5 or 10.1
for instance.

On top of these applications, this analysis is motivated by the study of similar questions aris-
ing on negatively curved manifolds where one defines appropriate spaces of anisotropic Sobolev
distributions in order to make sense of the spectrum of the geodesic vector field: the so-called
Pollicott-Ruelle spectrum [Rue76, Pol85]. More precisely, given any N > 0, one aims at defining
a Banach space BN such that the geodesic vector field (viewed as an unbounded order 1 differ-
ential operator) has discrete spectrum on {Re(s) > −N}. One of the difficulties when analyzing
such an operator on the unit tangent bundle SX of some manifold (X, g) is that its symbol
H(x, θ; ξ) = ξ(V (x, θ)) is not elliptic and that it vanishes on the noncompact set:

C := {(x, θ; ξ) ∈ T ∗SX : ξ(V (x, θ)) = 0}.
In the case of a negatively curved manifold, this characteristic region is generated by two sub-
bundles: the unstable direction and the stable one. Using this duality, one is able to construct
Banach (or Hilbert) spaces adapted to the operator V by requiring some negative (resp. positive)
Sobolev regularity along the unstable (resp. stable) direction and by exploiting the contraction
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properties along these directions. The construction of such functional spaces was made explicit
through different methods in various geometric contexts: Anosov flows [Liv04, BL07, Tsu10, FS11,
Tsu12, GLP13, DZ16, FT17b], Axiom A flows [DG16, Med21], billiard dynamics [BDL18, BD20],
Morse-Smale flows [DR20], manifolds with cusps [GBW17], analytic Anosov flows [Jéz21, GBJ20],
etc. We also refer the reader to [Bal18] for a detailed account of the (related) case of hyperbolic
diffeomorphisms.

In our framework, the geodesic flow does not belong to any of these classes of flows as it is an
integrable dynamical system without any hyperbolic property. Despite that and using the fact that
the curvature is 0 (and thus nonpositive), there is a notion of stable and unstable bundles [Rug07,
Ch. 3]. Yet, as opposed to the negatively curved setting, both bundles are equal and they do
not generate the whole characteristic region. They correspond in fact to the tangent space to Td
intersected with C. See §5.3.1 for details. As we shall recall in §5.3.1, this bundle is in some sense
attractive/repulsive for the lifted dynamics on the cotangent bundle to SX. This observation is
somehow enough to implement the same ideas (with of course also some major differences) as
for geodesic flows on negatively curved manifolds and in order to define spaces with anisotropic
regularity adapted to the geodesic flow on STd. On STd, the “mixing” properties of the geodesic
flow are much weaker than for geodesic flows on negatively curved manifolds, but they turn out to
be sufficient in view of proving our main results using formula (2.3). To that aim, we will use tools
from harmonic analysis that are available on the torus in order to construct the spaces adapted to
V . In this respect, our approach is in some sense reminiscent of the one used by Ratner [Rat87]
to study the decay of correlations on hyperbolic surfaces. Even though anisotropic Sobolev spaces
are not explicitly mentioned in her analysis, the Fourier type reduction made in [Rat87, §2] and
the way it is handled there is close to the strategy we will follow in Sections 3 and 4 of the present
work.

2.3. Anisotropic Sobolev spaces. Let us now describe more precisely the analytical properties
we are aiming at in the simplified setting where we consider functions rather than currents of
integrations as in (2.3). We define anisotropic Sobolev spaces of distributions on STd as follows

HM,N (STd) :=

u ∈ D′(STd) :
∑
ξ∈Zd
〈ξ〉2N‖ûξ‖2HM (Sd−1) < +∞

 , 〈ξ〉 = (1 + |ξ|2)
1
2 ,

where (M,N) ∈ R2 and

u(x, θ) =
∑
ξ∈Zd

ûξ(θ)
eiξ·x

(2π)
d
2

,

with ûξ ∈ D′(Sd−1), and where ‖.‖HM denotes the standard Sobolev norm on Sd−1. Roughly
speaking, u = u(x, θ) ∈ HM,N (STd) if u has HN regularity in the variable x ∈ Td and HM

regularity in the variable θ ∈ Sd−1. With this convention at hand, we will prove the following type
of results:

Theorem 2.2 (Mellin transform, function case). Let χ ∈ C∞c ([1,+∞)) such that χ = 1 in a
neighborhood of 1 and let N ∈ Z+. Then, the operator

M(s) :=

∫ ∞
1

t−se−tV ∗|dt| : C∞(STd)→ D′(STd)

splits as

M(s) =M0(s) +M∞(s),

where

M0(s) :=

∫ ∞
1

χ(t)t−se−tV ∗|dt| : HN,−N/2(STd)→ HN,−N/2(STd)

is a holomorphic family of bounded operators on C and where

M∞(s) :=

∫ ∞
1

(1− χ(t))t−se−tV ∗|dt| : HN,−N/2(STd)→ H−N,N/2(STd)
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extends as a meromorphic family of bounded operators from {Re(s) > 1} to {Re(s) > 1−N} with
only a simple pole at s = 1 whose residue is given by

∀ψ ∈ C∞(STd), Ress=1 (M∞(s)) (ψ)(x, θ) =
1

(2π)d

∫
Td
ψ(y, θ)dy.

In particular, this Theorem tells us that the operator

M(s) :=

∫ ∞
1

t−se−tV ∗|dt| : C∞(STd)→ D′(STd)

extends meromorphically from {Re(s) > 1} to the whole complex plane with only a simple pole
at s = 1. Yet, the statement is more precise as it allows us to describe the allowed regularity for
this meromorphic continuation. We emphasize that the mapping properties of M0(s) are rather
immediate from the definition of our anisotropic norms and the main difficulty in this statement
is about the “regularizing” properties of M∞(s). This Theorem is a direct consequence of the
much more general Theorem 7.4 (together with Proposition 7.9), and it is one of the main results
of this article. In other words, our meromorphic continuations are valid on spaces of distributions
that are regular along the vertical bundle to STd (i.e. the tangent space to Sd−1) and that
may have negative Sobolev regularity along the horizontal bundle (i.e. the tangent space to Td).
In particular, the anisotropic Sobolev spaces HN,−N/2 contain the Dirac distribution δ[0](x) for
N > d, and this is typically the kind of distributions that we will pick as test functions in order
to derive our main applications on convex geometry using (2.3). In order to prove Theorems 1.2
and 1.3, we will in fact need to prove more general statements for the action ofM(s) on differential
forms or more precisely on certain anisotropic Sobolev spaces of currents. Among other things, the
action on differential forms will be responsible for the presence of the extra poles at s = 2, . . . , d
but this simplified statement already illustrates the kind of properties we are aiming at.

The same spaces will also allow us to prove the following statement:

Theorem 2.3 (Laplace transform, function case, continuous continuation). Let χ ∈ C∞c ([0,+∞))
such that χ = 1 in a neighborhood of 0 and let N ∈ 2Z∗+ + d. Then, the operator

L(s) := (V + s)−1 =

∫ ∞
0

e−ste−tV ∗|dt| : C∞(STd)→ D′(STd)

splits as

L(s) = L0(s) + L∞(s),

where

L0(s) :=

∫ ∞
0

χ(t)e−ste−tV ∗|dt| : HN,−N (STd)→ HN,−N (STd)

is a holomorphic family of bounded operators on C and where

L∞(s) :=

∫ ∞
0

(1− χ(t))e−ste−tV ∗|dt| : HN,−N/2(STd)→ H−N,N/2(STd)

extends continuously from {Re(s) > 0} to

(1) {Re(s) ≥ 0} \ {0} if d ≥ 4,
(2) {Re(s) ≥ 0} \ {±i|ξ| : ξ ∈ Zd} if d = 2, 3.

Moreover, in any dimension, one has, as s→ 0+,

(V + s)−1(ψ)(x, θ) =
1

(2π)ds

∫
Td
ψ(y, θ)dy +OD′(1),

and, when d = 2, 3, one has, as s→ ±i|ξ0| (with |ξ0| 6= 0),

(V + s)−1(ψ)(x, θ)

=
e∓iπ

d−1
4 gd(s∓ i|ξ0|)

(2π)
d+1

2 |ξ0|
d−1

2

∑
ξ:|ξ|=|ξ0|

eiξ·xδ0

(
θ ∓ ξ

|ξ|

)∫
Td
ψ

(
y,± ξ

|ξ|

)
e−iξ·ydy +OD′(1),
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where

g2(z) :=

√
2π√
z
, and g3(z) := − ln(z).

Again, this result is the consequence of the much more precise Theorem 7.8 (together with
Proposition 7.9) which is valid on certain anisotropic Sobolev spaces of currents and which will
also lead us to the proof of Theorem 1.4. In Theorem 7.8, the Ck continuation of L(s) is also
discussed, and shows that the Laplace transform actually exhibits Ck-singularities at the points
{±i|ξ| : ξ ∈ Zd} in any dimension (but for larger values of k in higher dimension). In the companion
article [DGBLR22], we show that this result can be “improved” if we replace the Sobolev norm
on Sd−1 by some appropriate analytic norm built from the norms used in [GZ19] for the study
of analytic pseudodifferential operators of order 0. In fact, after Fourier decomposition, studying
the resolvent of V acting on functions amounts to study a family of resolvents of multiplication
operators (i.e. of pseudodifferential operators of order 0) on Sd−1. In Sobolev regularity (as we
are dealing here), one could apply the results from [ABdMG96, §7.6] (e.g. Th. 7.6.2) based on
Mourre’s commutator method. See also [CdVSR20, DZ19b] for recent developments for more
general pseudodifferential operators of order 0 in dimension 2. Modulo some extra work to sum
over all Fourier modes, this would yield in principle that

∀ε > 0, ∀N ∈ R, (V + s)−1 : H 1
2 +ε,N (STd)→ H− 1

2−ε,−N (STd)

extends continuously from {Re(s) > 0} to {Re(s) ≥ 0} \ {±i|ξ| : ξ ∈ Zd}. In view of our geo-
metric applications to convex geometry, this analysis does not suffice since we aim at considering
distributions having the same regularity as δ[0], which does not belong to such spaces.

Remark 2.4. The operator L(s)ψ is the Laplace transform of the solution u(t, ·) = e−tV ∗ψ to the
transport equation

∂τu+ θ · ∂xu = 0, u(τ = 0, x, θ) = ψ(x, θ),

while

M(s+ 1)ψ =

∫ +∞

0

e−sτe−e
τV ∗ψ|dτ |

is the Laplace transform of the map τ 7→ v(τ, ·) = e−e
τV ∗(ψ) which solves the (reparametrized)

transport equation

∂τv + eτθ · ∂xv = 0, v(τ = 0, x, θ) = ψ(x, θ).

2.4. Emergence of quantum dynamics. Theorems 2.2 and 2.3 (as well as their analogues in
the case of differential forms) are consequences of the fact that, through standard stationary phase
asymptotics, we can give a full expansion of the Schwartz kernel of the geodesic flow. For instance,
the first term in the asymptotic expansion reads

Theorem 2.5 (Time asymptotics of the geodesic flow, function case, leading term). For every
smooth function ψ ∈ C∞(STd), one has

t
d−1

2

(
ψ ◦ e−tV (x, θ)− 1

(2π)d

∫
Td
ψ(y, θ)dy

)
= (2π)

d−1
2

∑
ε∈{±}

P†ε
eiε(t

√
−∆−π4 (d−1))

(−∆)
d−1

4

Pε

+ OD′(STd)(t
−1)

where ∆ =
∑d
j=1 ∂

2
xj is the Euclidean Laplacian on Td,

P± : ψ ∈ C∞(STd) 7→
∑
ξ 6=0

1

(2π)d

∫
Td
ψ

(
y,± ξ

|ξ|

)
ei(y−x)·ξdy ∈ C∞(Td)

and

P†± : f ∈ C∞(Td) 7→
∑
ξ 6=0

1

(2π)d

(∫
Td
f (y) ei(y−x)·ξdy

)
δ0

(
θ ∓ ξ

|ξ|

)
∈ D′(STd)
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This Theorem is a corollary of the much more precise statement given in Theorem 5.5 which
provides a full asymptotic expansion with a precise description of the remainder terms at each
step. Once again, this result could (and will) be expressed in terms of anisotropic Sobolev norms.
Yet, due to the absence of integration over time, this requires a refined version of the spaces
HN,−N/2(STd) with an additional regularity imposed in the direction of the vector field θ · ∂x.

In order to keep track of the comparison with negatively curved manifolds, such a result can be
viewed as a simple occurence of the emergence of quantum dynamics (through the half-wave group

(e±it
√
−∆)t∈R on the torus) in the long time dynamics of geodesic flows (i.e. (etV )t∈R on STd). This

phenomenon was recently exhibited by Faure and Tsujii in the general context of contact Anosov
flows [FT15, FT17b, FT17a, FT21]. See also [DFG15] for related results of Dyatlov, Faure and
Guillarmou in the particular case of geodesic flows on hyperbolic manifolds. Compared with the
results of Faure and Tsujii, we emphasize that our analysis heavily relies on the algebraic structure
of our flows as in the hyperbolic settings treated in [Rat87, DFG15]. Moreover, we are dealing
with completely integrable systems which have in some sense opposite behaviours compared with
the dynamical situations considered in all these references. In particular, due to the integrable
nature of our system, the asymptotic expansion in terms of the quantum propagator is polynomial
rather than exponential as in [FT21, Th. 1.2]. This is reminiscent to the much weaker mixing
properties of the geodesic flow in this situation.

2.5. Organization of the article. In Section 3, we review the necessary background on de Rham
currents and we fix some conventions that will be used all along this work. Among other things, we
reduce our analysis of e−tV to the study of certain oscillatory integrals. The reader only interested
in dynamical properties (correlations of functions), and not on the geometrical questions (e.g. in
relation with convex sets) may skip this section and consult directly Sections 4 and 5.

The analysis of these oscillatory integrals is a standard topic in harmonic analysis [Her62a,
Hör03, Ste93, DZ19a] and in Section 4, we rediscuss some of their properties and pay some attention
on the control of certain estimates in terms of the frequency parameter.

Then, in Section 5, we apply this analysis to define spaces with anisotropic Sobolev regularity, in
which we describe the asymptotic expansion of the operator e−tV ∗ as t→ +∞ acting on functions,
as in Theorem 2.5.

In Sections 6.1 and 7, we come back to the general forms/currents setting of the article, and
show how to define norms for which the operator χ̂(−iV ) is well defined and can be continued
when χ depends on some complex parameter s ∈ C as in Theorems 2.2 and 2.3.

In Section 8, we apply these results to particular currents to make the connection between
these kinds of operators and geometric zeta functions/Poincaré series, using the strategy initiated
in [DR21]. Along the way, we prove slightly more general versions of Theorems 1.2, 1.4, 1.6 and 1.7.

We conclude the proof of Theorem 1.3 in Section 9 by identifying the values of certain residues
using tools from convex geometry [Sch14].

Finally, in Section 10, we apply our approach to prove some equidistribution properties of
convex subsets under the action of the geodesic flow. The associated statements, that are variants
of earlier results due to Randol [Ran84], are not presented in the introduction and we refer the
reader directly to this section.

2.6. Comments on generalizations. The choice of the lattice 2πZd is somewhat arbitrary and
it makes the presentation slightly simpler. However, our analysis could be adapted to handle more
general flat tori of the form Rd/Γ where Γ is a lattice in Rd of maximal rank.

All along this work, we consider the case of the geodesic flow on STd. Yet our analysis could
handle more general flows of the form:

(x, θ) ∈ STd 7→ (x+ tx̃(θ), θ) ∈ STd,
where θ ∈ Sd−1 7→ x̃(θ) ∈ Rd is the parametrization of the boundary of a strictly convex compact
subset K by its outward normal, i.e. the inverse of the Gauss map. The key observation to
extend our analysis to these flows is that, for every ξ 6= 0 in Rd, the map θ ∈ Sd−1 7→ ξ · x̃(θ) has
only two critical points at θ = ±ξ/|ξ|. Moreover, these two points are nondegenerate thanks to
the strict convexity assumption, which allows to perform the stationary phase asymptotics of §4.
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From the geometric perspective of the introduction, this would correspond to the more general
setup where one considers dilations K 7→ TK, T > 0, of the arbitrary strictly convex subset
K [vdC20, Hla50, Her62b, Ran66, CdV77]. In fact, as it will be clear in our proof, our geometric
problem is related to the description of the lattice points in K1 −K2 + TBd (at least for a proper
choice of orientation), where Bd is the Euclidean unit ball of Rd centered at 0. The choice of Bd
(and thus of the geodesic flow) makes the presentation slightly easier.

3. Background on differential forms and currents

In view of defining our functional setup for the vector field V , we need to describe as precisely
as possible the long time behaviour of the geodesic flow etV acting on differential forms of STd.
More precisely, given (ϕ,ψ) ∈ Ω2d−1−k(STd)×Ωk(STd) (see §3.1 for a reminder of the definition),
we aim at describing the correlation function

(3.1) Cϕ,ψ(t) :=

∫
STd

ϕ ∧ e−tV ∗(ψ), as t→ +∞.

In this preliminary section, we review the notion of current [Sch66, Ch.IX] which plays the role of
distributions for differential forms. Among other things, we define their Fourier transform in the
setting of STd following [Sch66, Ch.IX, §6]. In particular, we fix some conventions that will be
used all along this work and we describe a few concrete examples that will be useful in view of our
applications to convex geometry. This preliminary analysis is then used to rewrite the correlation
function (3.1) using the Fourier decomposition of ϕ and ψ. This is the content of Lemma 3.15
which allows to reduce the problem to estimating some classical oscillatory integrals.

Remark 3.1. We note that we implicitely fix an orientation on Td by fixing the volume form
dx1 ∧ . . .∧ dxd which can be identified with the Lebesgue measure on Td. When we want to insist
on the fact that we view it as the Lebesgue measure, we will use the convention |dx| and we will
use the same convention to distinguish volume forms and measures on Rd, Sd−1 or R.

3.1. Differential forms. We begin with [Lee09, Ch. 8]:

Definition 3.2. A differential form on STd of degree 0 ≤ k ≤ 2d− 1 is a map which associates to
each point (x, θ) ∈ STd a k-linear form on Tx,θSTd which is alternating. We denote by ΛkT ∗STd
the set of alternating k-linear form on TSTd.

Let us be slightly more concrete. Given a subset I = {i1 < i2 < . . . < il} of {1, . . . , d}, recall
that dxI = dxi1 ∧ dxi2 . . . ∧ dxil denotes a differential form of degree |I| on Td (and thus on STd
by pullback). Similarly, we can define differential forms on Sd−1 as follows. For every θ ∈ Sd−1,
we can fix a direct orthonormal basis (e0(θ) = θ, e1(θ), . . . , ed−1(θ)) of Rd, depending smoothly on
θ in a small open set.

Remark 3.3. For instance, in the case d = 2, we can identify Sx0
T2 = S1 with R/2πZ via the

map θ̃ 7→ cos θ̃∂x + sin θ̃∂y. Then, we complete the vector e0(θ̃) = θ̃ by the vector e1(θ̃) =

− sin θ̃∂x + cos θ̃∂y.

To each 0 ≤ j ≤ d− 1, we can associate the 1-form

e∗j (θ, dθ) : v ∈ Rd 7→ v · ej(θ),

where · denotes the standard Euclidean inner product on Rd. For every subset J = {j1 < j2 <
. . . < jl} of {1, . . . , d− 1}, we define the |J |-form

e∗J(θ, dθ) = e∗j1(θ, dθ) ∧ e∗j2(θ, dθ) ∧ . . . ∧ e∗jl(θ, dθ).

Since TθSd−1 ' θ⊥ = e0(θ)⊥, this differential form of degree |J | ≤ d − 1 on Rd restricts to a
differential form on TθSd−1. We keep the same notation for the restriction to TθSd−1.

Let U be a small open set of Sd−1 so that we can pick the above orthonormal family (e1(θ), . . . , ed−1(θ))
depending in a smooth way on θ ∈ U . For every 0 ≤ m <∞ and 0 ≤ k ≤ 2d− 1, we then define
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the set Ωkm(Td × U) of (complex valued) differential forms of degree k and of class Cm as the set
of elements of the form

ψ(x, θ, dx, dθ) =
∑

I⊂{1,...,d}

∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

ψI,J(x, θ)dxI ∧ e∗J(θ, dθ),

where ψI,J(x, θ) ∈ Cm(Td × U,C).

Definition 3.4. An element in Ωkm(STd) = Ωkm(Td × Sd−1) is a section ψ : STd → ΛkT ∗STd,
whose restriction to Td × U belongs to Ωkm(Td × U) for any open set U ⊂ Sd−1 (and it suffices of
course to check this property for U belonging to a finite atlas of Sd−1).

In particular, elements in Ωkm(STd) can be written under the following form

ψ(x, θ, dx, dθ) =
∑

I⊂{1,...,d},|I|≤k

dxI ∧ ψI(x, θ, dθ),

where, given any (local) smooth orthonormal family θ 7→ (e1(θ), . . . , ed−1(θ)) as above, ψI can be
written as ∑

J⊂{1,...,d−1}

∑
|J|=k−|I|

ψI,J(x, θ)e∗J(θ, dθ),

with ψI,J(x, θ) ∈ Cm(Td×U,C). In the following and for smooth forms, we will use the convention

Ωk(Td × U) =
⋂
m≥0

Ωkm(Td × U), Ωk(STd) =
⋂
m≥0

Ωkm(STd).

Remark 3.5. The convention dx and dθ in the arguments of ψ ∈ Ωkm(STd) will always indicate
that we are considering differential forms in the x and θ variables.

3.2. Currents. For any k ∈ {0, . . . , 2d−1}, recall that Ωk(STd) has a natural structure of Fréchet
space since STd is compact. We now define the set of currents as the topological dual to differential
forms [Sch66, Ch.IX, §2].

Definition 3.6. The set of currents of degree 0 ≤ k ≤ 2d − 1 on STd is the topological dual of
Ω2d−1−k(STd) with respect to bilinear pairing

(ψ1, ψ2) ∈ Ωk(STd)× Ω2d−1−k(STd) 7→ 〈ψ1, ψ2〉 :=

∫
STd

ψ1 ∧ ψ2 ∈ C,

and the Fréchet topology of Ω2d−1−k(STd). We denote this set by D′k(STd).

More concretely, given any (small enough) open subset U of Sd−1 and given any smooth or-
thonormal family θ ∈ U 7→ (e1(θ), . . . , ed−1(θ)) as above, an element u in D′k(STd) can be written
inside Td × U as

u(x, θ, dx, dθ) =
∑

I⊂{1,...,d}

∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

uI,J(x, θ)dxI ∧ e∗J(θ, dθ),

where uI,J(x, θ) is a distribution on Td × U , i.e. an element in D′(Td × U,C) = D′0(Td × U,C).

Remark 3.7. Note that in the extremal cases k = 0, 2d− 1, the restriction to an open subset U is
not necessary in this discussion as there is a canonical volume form on STd – see §3.3.

3.3. Orientation conventions. In the following, we choose to orient Sd−1 with the d− 1 form

e∗1(θ, dθ) ∧ e∗2(θ, dθ) ∧ . . . ∧ e∗d−1(θ, dθ),

and STd with the 2d− 1-form

dx1 ∧ . . . ∧ dxd ∧ e∗1(θ, dθ) ∧ . . . ∧ e∗d−1(θ, dθ).

Note that e∗1(θ, dθ)∧e∗2(θ, dθ)∧. . .∧e∗d−1(θ, dθ) is independent of the choice of the orthonormal fam-
ily (e1(θ), . . . , ed−1(θ)) and that it can be identified with the canonical volume form VolSd−1(θ, dθ)
on Sd−1:

VolSd−1(θ, dθ) =

d∑
p=1

(−1)p+1θp

d∧
q=1,q 6=p

dθq, θ ∈ Sd−1.
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When we want to emphasize that we view it as a measure, we will write VolSd−1(θ, |dθ|).

Remark 3.8 (Orientation conventions for the sphere). If we denote by Bd := {θ ∈ Rd : |θ| ≤ 1},
the natural orientation on Bd is given by that on Rd. In spherical coordinates (r, θ), the current
of integration on Bd reads [Bd](r, θ, dr, dθ) = 1[0,1](r)dr so that

[Sd−1](r, θ, dr, dθ) = ∂[Bd](r, θ, dr, dθ) := −d[Bd](r, θ, dr, dθ) = δ0(r − 1)dr.

In particular, VolSd−1(θ, dθ) is the orientation on Sd−1 = ∂Bd induced by the one on Rd as〈
[Sd−1],VolSd−1

〉
=

∫
Rd

[Sd−1] ∧VolSd−1 > 0

(where VolSd−1 has been extended smoothly in a small neighborhood of Sd−1).

In the standard spherical coordinates (θ̃1, . . . , θ̃d−1) ∈ (0, π)d−2 × R/2πZ, this volume form
reads

VolSd−1(θ̃, dθ̃) = sind−2(θ̃1) . . . sin(θ̃d−2)dθ̃1 ∧ . . . ∧ dθ̃d−1.

The volume form VolSd−1(θ, dθ) can also be viewed as a volume form on STd via the pullback map
(x, θ) 7→ θ. For the sake of simplicity, we use the same convention for the volume form on Sd−1 or
for its pullback on STd.

3.4. Decomposition of currents in Fourier series. We now explain how to decompose cur-
rents in Fourier series in the first variable, and fix some conventions. Let u ∈ D′k(STd) and
U ⊂ Sd−1 an open set. One can decompose locally u in Td × U as

u(x, θ, dx, dθ) =
∑

I⊂{1,...,d}

∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

uI,J(x, θ)dxI ∧ e∗J(θ, dθ),

where uI,J(x, θ) ∈ D′(Td × U). Given ξ ∈ Zd, we can define the Fourier coefficient ûI,Jξ ∈ D′(U)
as follows

ûI,Jξ : ψ ∈ C∞c (U) 7→ 〈uI,J , e−ξψ〉 =

∫
STd

uI,J(x, θ)e−ξ(x)ψ(θ)|dx|VolSd−1(θ, |dθ|),

with

eξ(x) :=
eiξ·x

(2π)
d
2

.

This yields the following decomposition in Fourier series of u ∈ D′k(STd):

u(x, θ, dx, dθ) =
∑
ξ∈Zd

∑
I⊂{1,...,d}

∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

ûI,Jξ (θ)eξ(x)dxI ∧ e∗J(θ, dθ)

=
∑
ξ∈Zd

∑
I⊂{1,...,d}

eξ(x)dxI ∧

 ∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

ûI,Jξ (θ)e∗J(θ, dθ)

 .

In summary, we can decompose any current u in D′k(STd) as

(3.2) u(x, θ, dx, dθ) =
∑
ξ∈Zd

∑
I⊂{1,...,d}

eξ(x)dxI ∧ ûIξ(θ, dθ),

where each ûIξ is a current of degree k − |I| on Sd−1 and ûIξ = 0 if |I| > k. For the sake of
compactness, we also set

π
(k)
ξ (u)(θ, dx, dθ) :=

∑
I⊂{1,...,d}

dxI ∧ ûIξ(θ, dθ),

and
Π

(k)
ξ (u)(x, θ, dx, dθ) :=

∑
I⊂{1,...,d}

eξ(x)dxI ∧ ûIξ(θ, dθ) = eξ(x)π
(k)
ξ (u)(θ, dx, dθ).

These operators are projectors in the sense that

(3.3) ∀ξ, ξ′ ∈ Zd, Π
(k)
ξ Π

(k)
ξ′ = δξ,ξ′Π

(k)
ξ ,
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where δξ,ξ′ is the Kronecker symbol. These conventions allow to decompose any element u ∈
D′k(STd) as follows

u =
∑
ξ∈Zd

Π
(k)
ξ (u) =

∑
ξ∈Zd

π
(k)
ξ (u)eξ.

Definition 3.9. Suppose that we are given a Sobolev or Hölder type norm ‖.‖B(Sd) on some

Banach space B(Sd) continuously included in

d−1⊕
l=0

D′l(Sd−1).

If we identify π
(k)
ξ (u) with some vector valued distribution (ûIξ)I⊂{1,...,k} on Sd−1, we then define

‖π(k)
ξ (u)‖B(Sd−1) := sup

{
‖ûIξ‖B(Sd−1) : I ⊂ {1, . . . , d}, |I| ≤ k

}
.

Similarly, for some open set U of Sd−1, we set

‖π(k)
ξ (u)‖B(U) := sup

{
‖ûIξ‖B(U) : I ⊂ {1, . . . , d}, |I| ≤ k

}
.

3.5. Fundamental examples of currents of integration. We now discuss an important exam-
ple of current in view of our analysis. In the sequel, [0] denotes the equivalence class of 0 mod 2πZd.
We introduce the following current of degree d on Td:

δ2πZd(x, dx) :=
1

(2π)
d
2

∑
ξ∈Zd

eξ(x)dx1 ∧ . . . ∧ dxd,

acting on functions f ∈ C∞(Td) by 〈δ2πZd(x, dx), f〉 = f([0]). We will also use the notation

(3.4) δ[0](x) =
1

(2π)
d
2

∑
ξ∈Zd

eξ(x),

so that we can write

(3.5) δ2πZd(x, dx) = δ[0](x)dx1 ∧ . . . ∧ dxd.

If we view this current as a current7 on STd via the pullback by the map (x, θ) ∈ STd 7→ x ∈ Td,
then it is in fact the current of integration on the fiber S[0]Td viewed as a submanifold of dimension

d − 1. We can now slightly modify this example by fixing a smooth map x̃ : Sd−1 → Rd so that
we can set

(3.6) [N ] := δ[0](x− x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ∈ D′d(STd).

Note that this is the current of integration on the d− 1 dimensional submanifold

N := {(x̃(θ), θ) : θ ∈ Sd−1} ⊂ Td × Sd−1

that we have oriented with VolSd−1(θ, dθ) [DR18, Cor. D.4]. This is typically the kind of currents
to which we will apply e−tV ∗ in Section 8. See (8.10) and Lemma 8.9 for instance.

Thanks to (3.4), we have the following Fourier decomposition

[N ](x, θ, dx, dθ) = δ0(x− x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ∈ D′d(STd)

=
1

(2π)
d
2

∑
ξ∈Zd

eξ(x)e−iξ·x̃(θ)
d∧
i=1

d (xi − x̃i(θ)) ∈ D′d(STd).

7Again, we use the same notation for the current on the base and its pullback on STd. We keep this convention
for simplicity and we will in fact mostly consider the pullback in the following.
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Thus, for every ξ ∈ Zd, one finds using the conventions of §3.4:

(3.7) π
(d)
ξ ([N ])(θ, dx, dθ) = eξ(−x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ∈ Ωd(STd).

3.6. Action by pullback. If we fix a smooth map x̃ : Sd−1 → Rd, then we can define a translation
map on STd:

Tx̃ : (x, θ) ∈ STd 7→ (x+ x̃(θ), θ) ∈ STd.(3.8)

We can think of the above transport map as generated by the flow Ttx̃ = etx̃(θ).∂x : STd 7→ STd, t ∈
R of the vector field x̃(θ).∂x. In section 9, we will make a crucial use of the above map to transport
the cotangent fiber S[0]Td into the normal bundle N := {(x̃(θ), θ) : θ ∈ Sd−1} ⊂ Td × Sd−1 when
x̃ is the parametrization by the normal.

Remark 3.10. An important example for our analysis will be of course given by the action of the
geodesic flow, that is to say etV = Tt Id where Id = IdSd−1 (or equivalently x̃(θ) = θ). Yet, we will
also need to consider more general translation maps when dealing with example (3.6).

Such a diffeomorphism acts on currents by pullback in the following way. Write locally

u(x, θ, dx, dθ) =
∑

I⊂{1,...,d}

∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

uI,J(x, θ)dxI ∧ e∗J(θ, dθ),

for some u ∈ D′k(STd). The action by pullback on u is defined as

(T∗x̃u)(x, θ, dx, dθ)

=
∑

I⊂{1,...,d}

∑
J⊂{1,...,d−1}

∑
|I|+|J|=k

uI,J(x+ x̃(θ), θ)

 |I|∧
l=1

d (xil + x̃il(θ))

 ∧ e∗J(θ, dθ).

For instance, this allows to rewrite example (3.6) as

(3.9) δ0(x− x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) = T∗−x̃ (δ2πZd) (x, θ, dx, dθ) = T∗−x̃[S[0]Td] = [Tx̃(S[0]Td)].

This can be explained visually as follows, we start from the cotangent fiber S[0]Td and transporting
this fiber by the flow x̃.∂θ yields the integration current [N ] on the submanifold N . We also record
the following useful property regarding the projectors Πξ:

(3.10) T∗x̃Π
(k)
ξ (u)(x, θ, dx, dθ) = eξ(x)eiξ·x̃(θ)π

(k)
ξ (u)(θ, dx+ dx̃(θ), dθ).

Finally, we close this preliminary section with two useful lemmas. We let V be the operator
acting as the Lie derivative along V on differential forms. The first lemma concerns the expansion
rate of the geodesic flow on the torus, and will be useful when computing geometric quantities
appearing in our analysis (like mixed volumes).

Lemma 3.11. Setting ω := ιV (dx1∧· · ·∧dxd) ∈ Ωd−1(STd), then the form e−tVω is a polynomial
of degree d− 1 in t with coefficients in Ωd−1(STd), with leading coefficient

1

(d− 1)!
Vd−1ω = VolSd−1(θ, dθ).

Proof. We start from

ω =

d∑
j=1

θj(dx1 ∧ · · · ∧ dxd)(∂xj ) =

d∑
j=1

(−1)j+1θj dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxd,

from which we deduce that

e−tVω =

d∑
j=1

(−1)j+1θj d(x1 − tθ1) ∧ · · · ∧ ̂d(xj − tθj) ∧ · · · ∧ d(xd − tθd)
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is a polynomial of degree d− 1 in t, whence the first statement. As a consequence, we have

e−tVω =

d−1∑
k=0

1

k!

(
− tV

)k
ω,

where the leading order coefficient in t is thus (−1)d−1

(d−1)! Vd−1ω. Identifying with the leading order

in the previous computation yields

Vd−1ω

(d− 1)!
=

d∑
j=1

(−1)j+1θj dθ1 ∧ · · · ∧ d̂θj ∧ · · · ∧ dθd = ιθ·∂θ (dθ1 ∧ · · · ∧ dθd) = VolSd−1(θ, dθ),

which concludes the proof of the lemma. �

The second lemma concerns commutation properties.

Lemma 3.12. Let x̃ : Sd−1 → Rd be a smooth map and Tx̃ defined by (3.8), then one has

T∗x̃V = VT∗x̃,(3.11)

ιV T∗x̃ = T∗x̃ιV .(3.12)

Proof. First notice that etV Tx̃(x, θ) = (x+ x̃(θ) + tθ, θ) = Tx̃e
tV (x, θ), from which (3.11) follows.

Next, due to the specific forms of the operators T∗x̃, it is sufficient to verify (3.12) on the smooth
forms dxI with I ⊂ {1, . . . , d}. To that aim, we write

ιV T∗x̃(dxI) = ιV

(
l∧

m=1

d(xim + x̃im(θ))

)

=

l∑
m=1

(−1)l+1θim

l∧
m′=1,m′ 6=m

d(xim′ + x̃im′ (θ))

= T∗x̃

 l∑
m=1

(−1)l+1θim

l∧
m′=1,m′ 6=m

dxim′


= T∗x̃ιV (dxI).

�

3.7. Transport equations on differential forms. We set

H1(Td,R) :=

β :=

d∑
j=1

βjdxj : (β1, . . . , βd) ∈ Rd
 .

Given u0 ∈ D′k(STd), we can verify that

u(t) := e−itβ0(V )e−tV ∗(u0)

solves the transfort equation

∂tu = −Vu− iβ0(V )u, u(t = 0) = u0,

where we recall that V = dιV + ιV d is the Lie derivative along the geodesic vector field. Equiva-
lently, the transport equation can be written as

(3.13) ∂tu = −Vβ0
u, Vβ0

:= (d+ iβ0∧)ιV + ιV (d+ iβ0∧).

More generally, we can fix8 β ∈ Ω1
R(Td) such that dβ = 0. Recall that any such 1-form can be

written as β0 + df where f ∈ C∞(Td,R). Hence, we also define the twisted Lie derivative for such
a general closed 1-form β,

Vβ := (d+ iβ∧)ιV + ιV (d+ iβ∧),

8The index R means that the coefficients of the form are real valued.
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and consider the corresponding transport equation (3.13). Yet, we note that it is “conjugated” to
the transport equation induced by β0 ∈ H1(Td,R) as

(3.14) Vβ = e−ifVβ0
eif .

Intuitively, the reader should think that we are doing weighted transport. We transport some
differential form by the flow and simultaneously, we multiply the the differential form by the
integral of β0 along the transport path.

Finally, we also record the following a priori estimate:

Lemma 3.13. Let β ∈ Ω1
R(Td) such that dβ = 0. Let χ ∈ C∞(R) such that td−1χ(t) ∈ L1(R).

Then, for every 0 ≤ k ≤ 2d− 1,

χ̂(−iVβ) : ψ ∈ Ωk0(STd) 7→
∫
R
χ(t)e−tVβ (ψ)|dt| ∈ Ωk0(STd)

is a bounded operator.

Proof. This follows from the fact that for any k–form ψ ∈ Ωk(STd), we have the polynomial bound
‖e−tVβψ‖L∞ = O(td−1) which comes from the definition of the flow exactly like in the proof of
Lemma 3.11. �

Remark 3.14. Note that there is a slight abuse of notations when writing χ̂(−iVβ) as the operator
−iVβ is not selfadjoint even on L2-spaces (except if k = 0 or 2d − 1). Yet, this convention from
functional calculus is convenient and we will use it in the following except when it may create
some confusions with the standard spectral Theorem [Ste09, § 12.7].

3.8. Correlation function for differential forms. We can now describe the correlation func-
tion Cϕ,ψ(t) defined in (3.1) using our Fourier decomposition. In fact, slightly more generally
than (3.1), we want to fix a smooth map x̃ : Sd−1 → Rd and some element β0 ∈ H1(Td,R) and to
describe

Cϕ,T∗−x̃(ψ)(t, β0) :=

∫
STd

ϕ ∧ e−tVβ0 T∗−x̃(ψ),(3.15)

as t → +∞ in terms of ϕ, ψ and the map x̃ which will be needed later in our applications to
convex geometry. The element β0 plays the role of magnetic potential. Here, ϕ and ψ are two
differential forms on STd of respective degree k1 and k2 such that k1 + k2 = 2d − 1, and Tx̃ is
defined in (3.8). We shall also use at some points that, for every smooth map x̃ : Sd−1 → Rd,

(3.16)

∫
STd

ϕ ∧ e−tVβ0 T∗−x̃(ψ) =

∫
STd

etV−β0 T∗x̃(ϕ) ∧ ψ,

as a consequence of the change of variable formula and of the commutation of etV−β0 and Tx̃.
With the above conventions, we can make things slightly more concrete using Fourier series.
Following §3.4, we write

(3.17) ϕ(x, θ, dx, dθ) =
∑
ξ∈Zd

eξ(x)π
(k1)
ξ (ϕ) (θ, dx, dθ) .

We collect in the following lemma several useful properties of Cϕ,T∗−x̃(ψ)(t, β0).

Lemma 3.15. Using the above conventions, one has, for every (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd),
and t ∈ R,

Cϕ,T∗−x̃(ψ)(t, β0) =

min{k1,k2}∑
l=0

Clϕ,T∗−x̃(ψ)(t, β0) with(3.18)

Clϕ,T∗−x̃(ψ)(t, β0) =
tl

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·θeiξ·x̃(θ)B
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, dθ)(3.19)

and

(3.20) B
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSTd(θ, dx, dθ) := (−1)lπ

(k1)
ξ (ϕ) (θ, dx, dθ) ∧VlT∗−x̃π

(k2)
−ξ (ψ) (θ, dx, dθ) .
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Moreover, for every m ∈ Z+ (resp. s ∈ R), one can find some constant Cm > 0 (resp. Cs > 0)
(depending also on d, x̃) such that, for every open set U ⊂ Sd−1, for every ξ ∈ Zd, for every
k1 + k2 = 2d− 1, for every 0 ≤ l ≤ min{k2, k1} and for every (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd),

(3.21)
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
Wm,1(U)

≤ Cm
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
Hm(U)

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
Hm(U)

,

resp.

(3.22)
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
L1(Sd−1)

≤ Cs
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
Hs(Sd−1)

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
H−s(Sd−1)

,

where Wm,1(U) is the Sobolev norm of order m and exponent p = 1 and where Hm(U) = Wm,2(U)
is the Sobolev norm of order m (and exponent p = 2) on differential forms on the set U .

The decomposition of the dynamical correlator C in terms of Fourier series and in powers of t
introduced in the above Lemma will play a crucial role in the sequel, especially for our applications
for convex geometry.

Proof. According to (3.17) applied to ψ and to (3.10), we may first expand

(3.23) (e−tVβ0 T∗−x̃ψ)(x, θ, dx, dθ) =

min{k2,d−1}∑
l=0

(−1)ltl

l!

∑
ξ∈Zd

eξ(x)e−it(ξ+β0)·θe−iξ·x̃(θ)

×Vl ◦T∗−x̃ ◦ π
(k2)
ξ (ψ) (θ, dx, dθ) .

Hence, using (3.17) applied to ϕ, (3.11), (3.23) and (3.16), one has

Cϕ,T∗−x̃(ψ)(t, β0) =

min{k1,k2}∑
l=0

tl

l!

∑
ξ∈Zd

∫
Sd−1

eiξ·x̃(θ)eit(ξ−β0)·θB
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, dθ),

where B
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSTd(θ, dx, dθ) is given by (3.20). This readily yields (3.18)–(3.19).

Finally, estimate (3.21) and (3.22) follow from the fact that the coefficients B
(k2,l)
x̃,ξ (ϕ,ψ) depend

in a bilinear way on (π
(k1)
ξ (ϕ), π

(k2)
−ξ (ψ)), together with the Cauchy-Schwarz inequality. �

According to Lemma 3.15, understanding the properties of the correlation function as t→ +∞
amounts to describe the behaviour of the integrals

(3.24) IF (ξ − β0, t) :=

∫
Sd−1

ei(ξ−β0).(tθ+x̃(θ))eiβ0·x̃(θ)F (θ) VolSd−1(θ, |dθ|),

as t→ +∞, where ξ ∈ Zd \ {0}, where β0 plays the role of the magnetic potential and where F is
a smooth function. In view of applications, one needs to make this asymptotic description with a
uniform control in terms of the Wm,1-norm of F and of ξ ∈ Zd.
Remark 3.16. The extra oscillating term eiξ·x̃(θ) makes things slightly more involved than when
one treats the case of dilating convex sets as for instance in [Hla50, Her62b, Ran66]. Indeed, in
that setup, the parameter t is also in factor of ξ · x̃(θ) which allows to deal with t|ξ| as a large
parameter. Despite this technical issue, the strategy to analyze these integrals remains the same.
See Section 4 below.

Remark 3.17. In the case where k1 = 2d− 1 and k2 = 0, one has

ϕ(x, θ, dx, dθ) =
∑
ξ∈Zd

ϕ̂ξ(θ)eξ(x)dx1 ∧ . . . dxd ∧VolSd−1(θ, dθ),

and
ψ(x, θ, dx, dθ) =

∑
ξ∈Zd

ψ̂ξ(θ)eξ(x).

Hence, one gets the simpler expression

Cϕ,T∗−x̃(ψ)(t, β0) =
∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·θeiξ·x̃(θ)ϕ̂ξ(θ)ψ̂−ξ(θ) VolSd−1(θ, |dθ|)
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4. Asymptotics of oscillatory integrals

In view of describing the long time asymptotics of the correlation function (or integrated versions
of it), we need to describe with some accuracy the oscillatory integrals appearing in Lemma 3.15.
More precisely, we want to study the behaviour as t→ +∞ (and for ξ− β0 6= 0) of the oscillatory
integral IF (ξ − β0, t) (3.24), where β0 ∈ Rd, F ∈ C∞(Sd−1,C) and x̃ ∈ C∞(Sd−1,R). Estimating
these kind of integrals as t→ +∞ is a classical topic in harmonic analysis. See [Her62a, Lit63] for a
rough estimate, and [Hör03, Th. 7.7.14], [Ste93, Section VIII-3, p347] and [DZ19a, Th. 3.38, p140]
for fine asymptotic expansions. The only additional difficulty compared with these references is
that we need to have a good control in terms of |ξ|. Thus, we need to pay a little attention to
the extra term eiξ·x̃(θ) when revisiting the classical stationary phase arguments used to describe
these integrals: this is the content of the present section. There is a subtle competition between
the large times t and the large momenta |ξ| which is what we deal with in the next Lemmas. As
usual, we split these oscillatory integrals in two parts: one corresponding to nonstationary points
and one corresponding to stationary ones.

4.1. Splitting the oscillatory integral. We first define cutoff functions that will be used all
along the paper and that we will fix once and for all in Lemma 4.4.

Definition 4.1. We let (χj)j∈{−1,0,1} be any smooth partition of unity of the closed interval
[−1, 1] such that χ1 is equal to one in a neighborhood of 1, supp(χ1) ⊂ (0, 1], χ−1(s) = χ1(−s),
and supp(χ0) ⊂ (−1, 1).

We shall make a ξ–dependent partition of unity of the sphere θ ∈ Sd−1 by letting

χj

(
θ · ξ − β0

|ξ − β0|

)
, j ∈ {−1, 0, 1}, ξ 6= β0,

that is to say, for j = ±1, localization near the poles ± ξ−β0

|ξ−β0| , and for j = 0, localization near the

equator
(
ξ−β0

|ξ−β0|

)⊥
.

We split the integral IF defined in (3.24) accordingly as

IF (ξ − β0, t) = I
(−1)
F (ξ − β0, t) + I

(0)
F (ξ − β0, t) + I

(1)
F (ξ − β0, t), with(4.1)

I
(j)
F (ξ − β0, t) :=

∫
Sd−1

χj

(
θ · ξ − β0

|ξ − β0|

)
ei(ξ−β0)·(tθ+x̃(θ))eiβ0·x̃(θ)F (θ) VolSd−1(θ, |dθ|).(4.2)

We denote by (e1, . . . , ed) the canonical basis of Rd. We first rewrite ξ − β0 as ξ − β0 = λω with

λ = |ξ − β0| 6= 0 and ω = ξ−β0

|ξ−β0| ∈ Sd−1, and let

R : ω 3 Sd−1 → R(ω) = Rω ∈ SO(d)

be so that ω = Rωed. We then make a change of variable in the integral, setting θ′ = R−1
ω θ = RTωθ,

and obtain

IF (λω, t) =

∫
Sd−1

eiλR(ω)ed·(tθ+x̃(θ))eiβ0·x̃(θ)F (θ) VolSd−1(θ, |dθ|)

=

∫
Sd−1

eiλed·(tθ
′+R−1

ω x̃(Rωθ
′))eiβ0·x̃(Rωθ

′)F (Rωθ
′) VolSd−1(θ′, |dθ′|)

where we used the invariance of VolSd−1 under SO(d). The above splitting (4.1) of IF into three
pieces now reads

IF (λω, t) = I
(−1)
F (λω, t) + I

(0)
F (λω, t) + I

(1)
F (λω, t), with(4.3)

I
(j)
F (λω, t) =

∫
Sd−1

χj(θ
′ · ed)eiλed·(tθ

′+R−1
ω x̃(Rωθ

′))eiβ0·x̃(Rωθ
′)F (Rωθ

′) VolSd−1(θ′, |dθ′|),(4.4)

and we study each piece separately. To state our results, we also define, for η ∈ Rd \ {0},

Cj(η) :=

{
θ ∈ Sd−1 such that θ · η

|η|
∈ supp(χj)

}
, for j = −1, 0, 1.(4.5)
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These are three closed subsets of the sphere. According to the above properties of the cutoff
functions χj , we have, for all η ∈ Rd \ {0},

C−1(η) ∪C0(η) ∪C1(η) = Sd−1,

C±1(η) is a neighborhood of ± η
|η| in Sd−1, and C0(η) is a neighborhood of

(
η
|η|

)⊥
in Sd−1. We

also notice that these three sets only depend on η
|η| = ω, whence Cj(η) = Cj(

η
|η| ) = Cj(ω).

4.2. Nonstationary points. We start with the integral I
(0)
F for which we will use the following

lemma.

Lemma 4.2 (Non-stationary points). We set

I0[X, f ](λ, t) :=

∫
Sd−1

χ0(θ · ed)eiλed·(tθ+X(θ))f(θ) VolSd−1(θ, |dθ|).

For all χ0 ∈ C∞c (−1, 1), there exists C(χ0) > 0 such that for all N ∈ N, there is a nondecreasing
function r 7→ CN (r) > 0 such that for all X ∈ CN+1(Sd−1), t > C(χ0)‖dX‖L∞(C0(ed)), λ > 0,

f ∈ CN (Sd−1), we have

I0[X, f ](λ, t) := (iλt)−N
∫
Sd−1

eiλed·(tθ+X(θ))LN,t (χ0(θ · ed)f(θ)) VolSd−1(θ, |dθ|)(4.6)

where LN,t is a differential operator of order N on Sd−1 with smooth coefficients depending only on
X and t and such that for all ψ ∈ CN (Sd−1), for all θ ∈ C0(ed), and all t ≥ C(χ0)‖dX‖L∞(C0(ed))

we have

|(LN,tψ)(θ)| ≤ CN
(‖X‖WN+1,∞(C0(ed))

t

) ∑
|α|≤N

|∇αθψ(θ)|

 .(4.7)

In particular,

|I0[X, f ](λ, t)| ≤ CN
(‖X‖WN+1,∞(C0(ed))

t

)
(λt)−N‖f‖WN,1(C0(ed)).

Recall that θ ∈ C0(ed) iff θ · ed ∈ supp(χ0). Again, this kind of estimates is classical and the
only novelty here is the explicit control in terms of the various parameters involved which will be
obtained by a careful inspection of the usual arguments.

We now apply this lemma to

X(θ′) = R−1
ω x̃(Rωθ

′) and f(θ′) = eiβ0·x̃(Rωθ
′)F (Rωθ

′),

remarking that

‖X‖WN+1,∞(C0(ed)) ≤ CN‖x̃‖WN+1,∞(C0(ω)),∑
|α|≤N

|∇αθ f(θ′)| ≤ CN‖x̃‖WN,∞(C0(ω))

 ∑
|γ|≤N

|∇γθF | (Rωθ
′)

 , for all θ ∈ C0(ed),

‖f‖WN,1(C0(ed)) ≤ CN‖x̃‖WN,∞(C0(ω))‖F‖WN,1(C0(ω)),

uniformly in the variable ω ∈ Sd−1. Denoting LωN,t = R−1∗
ω ◦LN,t◦R∗ω, we thus obtain the following

corollary.

Corollary 4.3 (Nonstationary points). For all χ0 ∈ C∞c (−1, 1), there exists C(χ0) > 0 such that
for all N ∈ N, there is a nondecreasing function r 7→ CN (r) > 0 such that for all x̃ ∈ CN+1(Sd−1),
t > C(χ0)‖dx̃‖L∞(Sd−1), ω ∈ Sd−1, λ > 0 and F ∈ CN (Sd−1), we have

I
(0)
F (λω, t) = (iλt)−N

∫
Sd−1

eiλω·(tθ+x̃(θ))LωN,t
(
χ0 (θ · ω) eiβ0·x̃(θ)F (θ)

)
VolSd−1(θ, |dθ|),
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or equivalently for ξ ∈ Rd \ {β0},

(4.8) (i|ξ − β0|t)NI(0)
F (ξ − β0, t)

=

∫
Sd−1

ei(ξ−β0)·(tθ+x̃(θ))L
ξ−β0
|ξ−β0|
N,t

(
χ0

(
θ · ξ − β0

|ξ − β0|

)
eiβ0·x̃(θ)F (θ)

)
VolSd−1(θ, |dθ|),

where LωN,t is a differential operator of order N on Sd−1 with smooth coefficients only depending

on X,ω and t and such that for all ψ ∈ CN (Sd−1), for all ω ∈ Sd−1, for all θ ∈ C0(ω), and all
t ≥ C(χ0)‖dx̃‖L∞(Sd−1) we have

∣∣(LωN,tψ)(θ)
∣∣ ≤ CN (‖x̃‖WN+1,∞(C0(ω))

t

) ∑
|α|≤N

|∇αθψ(θ)|

 .

In particular,

|I(0)
F (λω, t)| ≤ CN

(‖x̃‖WN+1,∞(C0(ω))

t

)
(λt)−N‖F‖WN,1(C0(ω)),

or equivalently, for ξ ∈ Rd \ {β0}

|I(0)
F (ξ − β0, t)| ≤ CN

(‖x̃‖WN+1,∞(C0(ξ−β0))

t

)
(|ξ − β0|t)−N‖F‖WN,1(C0(ξ−β0)).

Proof of Lemma 4.2. We denote by P± := ±ed = (0, . . . , 0,±1) the north/south poles and, near
the support of θ 7→ χ0(θ · ed), we parametrize the sphere by the height xd = θ · ed, yielding the
diffeomorphism

(−1, 1)× Sd−2 → Sd−1 \ {P+, P−} ⊂ Rd
(xd, θ

′) 7→
(√

1− x2
d θ
′, xd

)
.

The spherical volume measure in these coordinates is given by

VolSd−1(θ, |dθ|) = (1− x2
d)

d−3
2 VolSd−2(θ′, |dθ′|)|dxd|.

Writing z = xd for short, and recalling that supp(χ0) ⊂ (−1, 1), we have

I0[X, f ](λ, t)

:=

∫
Sd−2

∫ 1

−1

χ0(z) exp

iλ
tz + ed ·X(

√
1− z2θ′, z)︸ ︷︷ ︸

=ϕ(z,θ′,t)


 f(

√
1− z2θ′, z)(1−z2)

d−3
2 |dz|VolSd−2(θ′, |dθ′|)

We write ϕ(z, θ′, t) = z + t−1ed ·X(
√

1− z2θ′, z) and notice that

∂zϕ(z, θ′, t) = 1 + t−1ed · dX(
√

1− z2θ′, z) ·
(
− zθ′√

1− z2
, 1

)
.

As a consequence, observing that
∣∣∣(− zθ′√

1−z2
, 1
)∣∣∣ =

√
z2|θ′|2
1−z2 + 1 = 1√

1−z2
, we have

∂zϕ(z, θ′, t) ≥ 1− t−1

√
1− z2

|dX(
√

1− z2θ′, z)|,

where |dX(θ)| is the norm of linear maps TθSd−1 → Rd (endowed with their respective Euclidean
structures).

Setting

K :=
1

2
sup

{
1√

1− z2
|dX(

√
1− z2θ′, z)|, θ′ ∈ Sd−2, z ∈ supp(χ0)

}
,(4.9)

we have K ≤ C(χ0)‖dX‖L∞(supp(χ0)) <∞ since supp(χ0) ⊂ (−1, 1). We deduce that

(4.10) ∂zϕ(z, θ′, t) ≥ 1/2 for all t ≥ K, θ′ ∈ Sd−2, z ∈ supp(χ0).
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Next, we use that ∂z

(
eiλtϕ(z,θ′,t)

)
= iλt∂zϕ(z, θ′, t)eiλtϕ(z,θ′,t). Setting L = 1

∂zϕ(z,θ′,t)∂z and

integrating N times by parts in the variable z, we deduce that, for all N ∈ N,

(4.11) I0[X, f ](λ, t) :=

(iλt)−N
∫
Sd−2

∫ 1

−1

eiλtϕ(z,θ′,t)(LT
)N (

χ0(z)f(
√

1− z2θ′, z)(1− z2)
d−3

2

)
|dz|VolSd−2(θ′, |dθ′|),

where LTψ(z, θ′, t) = −∂z
(

1
∂zϕ(z,θ′,t)ψ(z, θ′)

)
. We now set, in these coordinates

LN,tψ(z, θ′) := (LT
)N (

χ̃0(z)ψ(
√

1− z2θ′, z)(1− z2)
d−3

2

) (
1− z2

)− d−3
2 ,

where χ̃0 has supp(χ̃0) ⊂ (−1, 1) and χ̃0 = 1 in a neighborhood of supp(χ0) has the same support
properties as χ0 (see Definition 4.1). With this definition, pulling (4.11) back to the sphere
yields (4.6).

Next, using (4.10), we thus obtain by induction that there exists some nondecreasing function
r 7→ CN (r) > 0 (depending only on N) such that for all t ≥ K, θ′ ∈ Sd−2 and z ∈ supp(χ0),

∣∣(LT )Nψ(z, θ′, t)
∣∣ ≤ CN (‖ϕ‖WN+1,∞)

 N∑
j=0

∣∣∂jzψ(z, θ′, t)
∣∣ .

Pulling this formula back to the sphere implies the existence of a nondecreasing function r 7→
CN (r) > 0 such that for all X ∈ CN+1(Sd−1), t ≥ K with K = K(χ0, dX) defined by (4.9), λ ≥ 1
and f ∈ CN (Sd−1), the pointwise bound (4.7) holds.

Finally, applying this in (4.11) yields

|I0[X, f ](λ, t)| ≤ CN
(‖X‖WN+1,∞(supp(χ0))

t

)
(λt)−N‖f‖WN,1(supp(χ0))

which concludes the proof of the lemma. �

4.3. Stationary points. We now turn to the terms I
(±1)
F and need the following lemma, which

is again more or less classical (asymptotics of the Fourier transform of the surface measure on the
sphere).

Lemma 4.4 (Stationary points). We set

I±1[u](µ) :=

∫
Sd−1

χ±1(θ · ed)eiµed·θu(θ)dVolSd−1(θ),

For all χ1 ∈ C∞([−1, 1]) which is compactly supported in a small enough neighborhood9 of 1 and
equal to one on a slightly smaller neighborhood of 1, with χ−1(s) = χ1(−s), and for all N ∈ N∗,
there exists CN > 0 such that we have, for all µ > 0 and all u ∈W 2N+d,1(Sd−1) ⊂ C2N+1(Sd−1)∣∣∣∣∣∣I±1[u](µ)− e±iµe∓iπ4 (d−1)

(
2π

µ

) d−1
2

N−1∑
j=0

µ−j
(
L±j u

)
(±ed)

∣∣∣∣∣∣
≤ CNµ−(N+ d−1

2 )‖u‖W 2N+d,1(supp(χ±1)),

where supp(χ±1) means θ is such that θ · ed ∈ supp(χ±1) and where L±j is a differential operator

of order 2j on Sd−1 (depending only on the geometry of Sd−1), with L±0 = 1.

Remark 4.5. For the sake of simplicity, we do not write the explicit expression of the operators
L±j but the proof provides such an expression.

9As we shall in the proof, the size of the neighborhood depends only on the geometry of the sphere.



28 NGUYEN VIET DANG, MATTHIEU LÉAUTAUD, AND GABRIEL RIVIÈRE

Recalling the definitions of I
(±1)
F in (4.4), we want to apply this Lemma with µ = λt = |ξ−β0|t >

0 and

u(θ) = eiλed·R
−1
ω x̃(Rωθ)eiβ0·x̃(Rωθ)F (Rωθ) = eiξ·x̃(Rωθ)F (Rωθ).

The remainder term can be roughly estimated, for all ξ ∈ Rd \ {β0}, as

‖u‖Wk,1(supp(χ±1)) = ‖eiξ·x̃(Rωθ)F (Rωθ)‖Wk,1(supp(χ±1))

≤ ‖eiξ·x̃(·)F‖Wk,1(C±1(ξ−β0))

≤ Ck‖eiξ·x̃(·)‖Wk,∞(C±1(ξ−β0))‖F‖Wk,1(C±1(ξ−β0))

≤ Ck,β0 max
{

1, |ξ − β0|k‖x̃‖kWk,∞(C±1(ξ−β0))

}
‖F‖Wk,1(C±1(ξ−β0))

Concerning the terms in the sum, we have

L±j u(θ)(±ed) = L±j

(
eiξ·x̃(Rωθ)F (Rωθ)

)
(±ed) = L±

j, ξ|ξ|
(eiξ·x̃(·)F )(± ξ

|ξ|
)

where L±j,ω = R−1∗
ω ◦ L±j ◦R∗ω and L±0 = 1. Hence, we deduce the following corollary:

Corollary 4.6. For all χ1 ∈ C∞([−1, 1]) compactly supported in a small enough neighborhood of
1 and equal to one on a slightly smaller neighborhood of 1, with χ−1(s) = χ1(−s), and for all
N ∈ N∗, we have, for all t > 0, ξ ∈ Rd \ {β0}, x̃ ∈ C2N+d(Sd−1) and all F ∈ C2N+d(C±1(ξ − β0)),

I
(±1)
F (ξ − β0, t)

= e±it|ξ−β0|e∓i
π
4 (d−1)

(
2π

t|ξ − β0|

) d−1
2

N−1∑
j=0

1

(t|ξ − β0|)j
L±
j,
ξ−β0
|ξ−β0|

(eiξ·x̃(·)F )

(
± ξ − β0

|ξ − β0|

)

+ON,β0(1)
max

{
1, ‖x̃‖2N+d

W 2N+d,∞(C±1(ξ−β0))
|ξ − β0|2N+d

}
(t|ξ − β0|)N+ d−1

2

‖F‖W 2N+d,1(C±1(ξ)),

where the constant in the remainder ON,β0
(1) depends only on N and the cutoff functions and

where L±j,ω = R−1∗
ω ◦ L±j ◦R∗ω with L±j the differential operator from Lemma 4.4.

Remark 4.7. We note that the growth in |ξ| is a priori quite bad (except if x̃ = 0, which is e.g. the
case when studying dynamical correlations for functions, see Section 5 below) and we will have to
pay attention to this problem in the upcoming sections. For instance, this reads, for N = 1 and
for a constant C depending on x̃,∣∣∣∣∣I(±1)

F (ξ − β0, t)− eit|ξ−β0|e−i
π
4 (d−1)

(
2π

t|ξ|

) d−1
2

e
iξ·x̃

(
ξ−β0
|ξ−β0|

)
F

(
ξ − β0

|ξ − β0|

)∣∣∣∣∣
≤ C |ξ − β0|2+d

(t|ξ − β0|)1+ d−1
2

‖F‖W 2+d,1(C1(ξ)).

Again, the proof of Lemma 4.4 is classical. As it is rather short, we recall it in order to keep
track of the constant in the remainder terms and also to record the explicit expressions for the
operators L±j .

Proof of Lemma 4.4. We denote by x′ = (x1, . . . , xd−1), with xj = θ · ej the coordinates along
(e1, . . . , ed−1), and xd = θ · ed the coordinate along ed.

Near the support of θ 7→ χ±1(θ · ed), we may parametrize the upper/lower half-sphere by the
coordinate x′:

BRd−1(0, 1) → {x ∈ Sd−1,±xd > 0}
x′ 7→

(
x′,±

√
1− |x′|2

)
.

Setting ϕ(x′) =
√

1− |x′|2, we have on supp(χ±1), xd = ±ϕ(x′). Moreover, we have

∇ϕ(x′) =
−x′√

1− |x′|2
,



LENGTH ORTHOSPECTRUM OF CONVEX BODIES ON FLAT TORI 29

from which we infer that the surface measure reads

VolSd−1(θ, |dθ|) =
√

1 + |∇ϕ(x′)|2|dx′| = |dx′|
ϕ(x′)

.

Moreover, given the properties of χ±1, in these parametrizations, the function

χ̃ : x′ 7→ χ±1(θ · ed) = χ±1(±
√

1− |x′|2)

does not depend on ±, it is equal to 1 in a neighborhood of 0 and its support verifies

supp(χ̃) ⊂ BRd−1(0, 1) = {x′ ∈ Rd−1, |x′| < 1} ⊂ Rd−1.

As a consequence, we deduce that

I±1[u](µ) =

∫
Rd−1

e±iµϕ(x′)χ̃(x′)u(x′,±ϕ(x′))
|dx′|
ϕ(x′)

The phase function ϕ(x′) admits 0 as a unique stationary point with ϕ(0) = 1 and

∂i∂jϕ(x) = −δij(1− |x′|2)−1/2 − xixj(1− |x′|2)−3/2 =⇒ Hessϕ(0) = −IdRd−1 ,

with determinant det(Hessϕ(0)) = (−1)d−1 and signature sgn(Hessϕ(0)) = −(d − 1). Follow-
ing [Zwo12, p.42], we write

ϕ(x′) = 1− |x
′|2

2
ψ(x′), with ψ(x′) := 2

∫ 1

0

(1− τ)(1 + 2τ2|x′|2)

(1− τ2|x′|2)
3
2

dτ.

Noting that ψ(x′) > 0 on the support of χ̃′ and up to taking χ̃ supported10 close enough to 0, we

can make the change of variables y = ϕ1(x′) :=
√
ψ(x′)x′ in our integral:

I±1[u](µ) = ei±µ
∫
Rd−1

e∓iµ|y|
2

χ̃ ◦ ϕ−1
1 (y)u(ϕ−1

1 (y),±ϕ(ϕ−1
1 (y)))

|Jac(ϕ−1
1 )(y)||dy|

ϕ(ϕ−1
1 (y))

.

Setting

Lj(v) :=
1

(2)jj!
∆j
y

(
|Jac(ϕ−1

1 )(y)|
ϕ(ϕ−1

1 (y))
v(ϕ−1

1 (y))

)
,

the standard stationary phase estimate (see11 e.g. [Zwo12, Th.3.13-16, p.46-49]) then reads∣∣∣∣∣∣I±1[u](µ)− e±iµe∓iπ4 (d−1)

(
2π

µ

) d−1
2

N−1∑
j=0

e∓
ijπ
2 µ−j

(
Lju(·,±ϕ(·))

)
(0)

∣∣∣∣∣∣
≤ CNµ−(N+ d−1

2 )‖u‖W 2N+d,1(supp(χ̃)).

Recalling that u(·,±ϕ(·))(0) = u(±ed) and pulling this back to the sphere yields the sought result
(up to changing the name of the operators Lj). �

5. Asymptotics of twisted dynamical correlations

In this section, as a first application of these fine stationary phase asymptotics, we give an
accurate description of the correlation function as t→ +∞. See Theorem 5.5 for a precise state-
ment. As a byproduct, this shows how anisotropic Sobolev norms naturally appear when studying
analytical properties of geodesic flows and it also proves Theorem 2.5 from the introduction.

10Thus, χ1 is supported close enough to 1.
11Strictly speaking the statement of Th.3.16 in that reference involves the C2N+d-norm. Yet, inspecting the

proof (namely, step 3 in the proof of p.43 together with the proof of Lemma 3.5(ii)), one finds a control by the
W 2N+d,1-norm.
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For the sake of simplicity, we restrict ourselves to the case where k1 = 2d − 1, k2 = 0 and
x̃(θ) = 0. Namely, we fix two smooth functions ϕ and ψ in C∞(STd) and we want to analyze the
behaviour as t→ +∞ of

C̃ϕ,ψ(t, β0) :=

∫
STd

ϕ(x, θ)e−tVβ0 (ψ)(x, θ)|dx|VolSd−1(θ, |dθ|)

=

∫
STd

e−itθ·β0ϕ(x, θ)ψ(x− tθ, θ)|dx|VolSd−1(θ, |dθ|)

where β0 ∈ H1(Td,R) ' Rd. According to Remark 3.17, this can be rewritten as

C̃ϕ,ψ(t, β0) =
∑
ξ∈Zd

∫
Sd−1

ϕ̂ξ(θ)ψ̂−ξ(θ)e
it(ξ−β0)·θ VolSd−1(θ, |dθ|),

where

ϕ(x, θ) =
∑
ξ∈Zd

ϕ̂ξ(θ)eξ(x), and ψ(x, θ) =
∑
ξ∈Zd

ψ̂ξ(θ)eξ(x).

We will now implement the decomposition (4.1)-(4.2) together with Corollaries 4.3 and 4.6 in order

to analyze the asymptotic expansion of C̃ϕ,ψ(t, β0) as t→ +∞.

Remark 5.1. Modulo some tedious work, the analysis could be extended to the more general
framework of Lemma 3.15 except that the terms in the asymptotic expansion will be slightly less
explicit.

First, we write

C̃ϕ,ψ(t, β0) = Eβ0(ϕ,ψ) +
∑

ξ∈Zd\{β0}

∫
Sd−1

ϕ̂ξ(θ)ψ̂−ξ(θ)e
it(ξ−β0)·θ VolSd−1(θ, |dθ|),

where

(5.1) Eβ0
(ϕ,ψ) :=

∫
Sd−1

ϕ̂β0
(θ)ψ̂−β0

(θ) VolSd−1(θ, |dθ|), if β0 ∈ Zd,

and Eβ0
(ϕ,ψ) = 0 otherwise.

5.1. Anisotropic Sobolev spaces of distributions, splitting the correlation function. We
decompose these correlations further by writing

C̃ϕ,ψ(t, β0) = Eβ0
(ϕ,ψ) + C̃−1

ϕ,ψ(t) + C̃0
ϕ,ψ(t) + C̃1

ϕ,ψ(t), with, for j ∈ {−1, 0, 1},(5.2)

C̃
j
ϕ,ψ(t) :=

∑
ξ∈Zd\{β0}

∫
Sd−1

χj

(
θ · ξ − β0

|ξ − β0|

)
ϕ̂ξ(θ)ψ̂−ξ(θ)e

it(ξ−β0)·θ VolSd−1(θ, |dθ|),

where the χj are the cutoff functions defined in §4.1 and Eβ0
(ϕ,ψ) is defined in (5.1).

We first consider the term C̃0(t). Applying Corollary 4.3 to x̃ = 0 and F = ϕ̂ξψ̂−ξ combined with

the Cauchy-Schwarz inequality ‖ϕ̂ξψ̂−ξ‖WN,1(C0(ξ−β0))) 6 ‖ϕ̂ξ‖HN (C0(ξ−β0))‖ψ̂−ξ‖HN (C0(ξ−β0)),
we have the following statement:

Lemma 5.2. For all χ0 ∈ C∞c (−1, 1) and for all N ∈ N, there is CN > 0 such that for every
t > 0, every β0 ∈ Rd, and every ϕ,ψ ∈ C∞(STd), we have

∣∣∣C̃0(t)
∣∣∣ ≤ CN t−N ∑

ξ∈Zd\{β0}

‖ϕ̂ξ‖HN (C0(ξ−β0))

∥∥∥ψ̂−ξ∥∥∥
HN (C0(ξ−β0))

|ξ − β0|N
.

We now consider the terms C±1(t). Applying similarly Corollary 4.6 to x̃(θ) = 0 and F = ϕ̂ξψ̂−ξ,
we have the following statement:
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Lemma 5.3. For all χ1 ∈ C∞([−1, 1]) compactly supported in a small enough neighborhood of
1 and equal to one on a slightly smaller neighborhood of 1, with χ−1(s) = χ1(−s), and for all
N ∈ N∗, we have for every β0 ∈ Rd,

C̃±1(t) =
∑

ξ∈Zd\{β0}

e±it|ξ−β0|e∓i
π
4 (d−1)

(
2π

t|ξ − β0|

) d−1
2

×
N−1∑
j=0

1

(t|ξ − β0|)j
L±
j,
ξ−β0
|ξ−β0|

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0

|ξ − β0|

)

+ON
(
t−N−

d−1
2

) ∑
ξ∈Zd\{β0}

‖ϕ̂ξ‖H2N+d(C±1(ξ−β0))

∥∥∥ψ̂−ξ∥∥∥
H2N+d(C±1(ξ−β0))

|ξ − β0|N+ d−1
2

,

as t→ +∞, where the constant in the remainder ON (t−N−
d−1

2 ) depends also on β0 ∈ Rd.

The above decomposition motivates the following definition of anisotropic Sobolev norms.

Definition 5.4 (Anisotropic Sobolev spaces). Let γ ∈ Rd and let (s0, s1, N0, N1) be an element
in Z2

+ × R2. For every ϕ(x, θ) =
∑
ξ ϕ̂ξ(θ)eξ(x) ∈ C∞(STd), we define the following anisotropic

Sobolev norms:

‖ϕ‖2
Hs0,N0,s1,N1
γ

:=
∑
ξ∈Zd
〈ξ〉2N0 ‖ϕ̂ξ‖2Hs0 (C0(ξ−γ)) +

∑
ξ∈Zd,±

〈ξ〉2N1 ‖ϕ̂ξ‖2Hs1 (C±1(ξ−γ)) .

In our applications, these norms are used for γ = ±β0. The geometric content of these
anisotropic norms is discussed in Section 5.3 below.

5.2. Asymptotics of the correlation function. Now, combining this definition with the re-
duction made in §5.1, we find

Theorem 5.5 (Asymptotics of twisted correlations). Let β0 ∈ H1(Td,R) and let N ∈ Z∗+. For

every ϕ(x, θ) =
∑
ξ∈Zd ϕ̂ξ(θ)eξ(x) and ψ(x, θ) =

∑
ξ∈Zd ψ̂ξ(θ)eξ(x) in C∞(STd), one has

C̃ϕ,ψ(t, β0) :=

∫
STd

e−itβ0·θϕ(x, θ)ψ ◦ e−tV (x, θ)|dx|VolSd−1(θ, |dθ|)− Eβ0
(ϕ,ψ)

= (2π)
d−1

2

N−1∑
j=0

∑
ξ∈Zd\{β0},±

e±i(t|ξ−β0|−π4 (d−1))

(t|ξ − β0|)j+
d−1

2

L±
j,
ξ−β0
|ξ−β0|

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0

|ξ − β0|

)

+ON,ϕ,ψ
(

1

tN+ d−1
2

)
,

where Eβ0
(ϕ,ψ) was defined in (5.1), L±j,ω is the differential operator of degree 2j appearing in

Corollary 4.6 and, for every integer s0 ≥ N + d the constant in the remainder is controlled by

CN,s0 ‖ϕ‖
H
s0,−

s0
2
,2N+d,−N

2
− d−1

4
β0

‖ψ‖
H
s0,−

s0
2
,2N+d,−N

2
− d−1

4
−β0

with CN > 0 depending only on d, N , s0, β0 and the cutoff functions (χj)j∈{0,1} used in §4.

Theorem 2.5 from the introduction is a direct consequence of this result by taking β0 = 0 and
N = 1. See also below for a more detailed connection with the Laplacian. Recalling from the proof
of Lemma 4.4 that the operators L±j can be computed explicitly (up to some tedious work), this
theorem provides an explicit asymptotic of the twisted correlation function for smooth observables.
Besides that, another interesting feature of this theorem is that it illustrates how anisotropic
Sobolev norms naturally appears when studying the asymptotic behaviour of the geodesic flow on
the torus. This is particularly clear in the case of the remainder while for the term in the asymptotic
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expansion, one can remark that, using the standard Sobolev inequalities [Eva10, §5.6.3],∣∣∣∣L±j, ξ−β0
|ξ−β0|

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0

|ξ − β0|

)∣∣∣∣ ≤ Cj‖ϕ̂ξ‖C2j(C±1(ξ−β0))‖ψ̂−ξ‖C2j(C±1(ξ−β0
))

≤ C̃j‖ϕ̂ξ‖H2j+d(C±1(ξ−β0))‖ψ̂−ξ‖H2j+d(C±1(ξ−β0)).

Hence, each term in the sum over j is controlled by some anisotropic Sobolev semi-norm (that
depends on j). In summary, test functions can have a priori arbitrarily large polynomial growth
in |ξ| away from the direction of ξ − β0. Close to ξ − β0, the situations is not as good and one
needs to have moderate growth in |ξ| to ensure the convergence of the sums.

5.2.1. Further comments. Let us now comment a little bit more Theorem 5.5. First, we emphasize
that our strategy can be viewed as an analogue on flat tori of the strategy used by Ratner [Rat87]
to describe the asymptotic behaviour of the correlation function for the geodesic flow on hyperbolic
manifolds. Like in this reference, we use tools from harmonic analysis to describe accurately the
correlations and we end up naturally with anisotropic Sobolev norms (see e.g. [Rat87, Th.1] for
the use of spaces with anisotropic Hölder regularity). As in [Rat87, Cor.1], it is interesting to
look at the case where ϕ and ψ do not depend on θ. In that case, the asymptotic expansion of
Theorem 5.5 reads as follows

C̃ϕ,ψ(t, β0) :=

∫
STd

e−itβ0(θ)ϕ(x)ψ(x− tθ)|dx|VolSd−1(θ, |dθ|)

=
2π

d−1
2 δZd,β0

Γ
(
d−1

2

) (∫
Td
ϕ(x)e−β0

(x)|dx|
)(∫

Td
ψ(x)eβ0

(x)|dx|
)

+ (2π)
d−1

2

N−1∑
j=0

∑
ξ∈Z\{β0},±

c±j (ξ − β0)
e±i(t|ξ−β0|−π4 (d−1))

(t|ξ − β0|)j+
d−1

2

ϕ̂ξψ̂−ξ

+ ON,ϕ,ψ
(

1

tN+ d−1
2

)
,

where δZd,β0
= 1 if β0 ∈ Zd and δZd,β0

= 0 otherwise and where the coefficients c±j (ξ− β0) depend

only on the geometry of Sd−1 and are uniformly bounded in terms of ξ. In particular, we can verify
that the term of degree j is controlled by the following quantity (up to some constant depending
only on j and d)

 ∑
ξ∈Zd\{β0}

|ξ − β0|−j−
d−1

2 |ϕ̂ξ|2
 1

2
 ∑
ξ∈Zd\{β0}

|ξ + β0|−j−
d−1

2 |ψ̂ξ|2
 1

2

≤ Cβ0
‖ϕ‖L2‖ψ‖L2 .

The same bound would hold on the remainder term. Hence, L2 is the natural space to consider
when considering observables depending only on x as in the case of hyperbolic manifolds [Rat87,
Cor.1]. See also [HR17, Prop. 2.1] for related results on Birkhoff averages in the case of flat tori.

5.2.2. Relation with the magnetic Laplacian. When the observables ϕ,ψ depend only on x and
not on θ, the above discussion can also be understood differently if we make the connection with
the magnetic Laplacian

∆β0 :=

d∑
j=1

(
∂xj + iβ0,j

)2
.
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Indeed, if we rewrite according to [Ste93, Eq.(25),p.347]

C̃ϕ,ψ(t, β0) :=

∫
STd

e−itβ0·θϕ(x)ψ(x− tθ)|dx|VolSd−1(θ, |dθ|)

=
∑
ξ∈Zd

ϕ̂ξψ̂−ξ

∫
Sd−1

eit(ξ−β0)·θ VolSd−1(θ, |dθ|)

= 2π
∑
ξ∈Zd

ϕ̂−ξψ̂ξ(t|ξ + β0|)
2−d

2 J d−2
2

(2πt|ξ + β0|)

= 2π

∫
Td
ϕ(x)

(
t
√
−∆β0

) 2−d
2

J d−2
2

(
2πt
√
−∆β0

)
ψ(x)|dx|,

where Jν is the standard Bessel function of the first kind. In particular, if we denote by Π :
(x, θ) ∈ STd 7→ x ∈ Td the canonical projection, we obtain the following relation between the
twisted geodesic flow and the magnetic Laplacian

(5.3) Π∗e
it(iV−β0(V ))Π∗ = 2π

(
t
√
−∆β0

) 2−d
2

J d−2
2

(
2πt
√
−∆β0

)
.

For observables depending also on the θ variable, the expressions are slightly less explicit. Yet,
as in Theorem 2.5, we can for instance consider the first term in the asymptotic expansion of
Theorem 5.5, which is given by

(2π)
d−1

2

∑
ξ∈Zd\{β0},±

e±i(t|ξ−β0|−π4 (d−1))

(t|ξ − β0|)
d−1

2

(
ϕ̂ξψ̂−ξ

)(
± ξ − β0

|ξ − β0|

)

= (2π)
d−1

2

∑
ξ∈Zd\{β0},±

e±i(t|ξ+β0|−π4 (d−1))

(t|ξ + β0|)
d−1

2

(
ϕ̂−ξψ̂ξ

)(
∓ ξ + β0

|ξ + β0|

)
.

If we introduce the following map

Π±β0
(ϕ) :=

∑
ξ∈Zd\{−β0}

ϕ̂ξ

(
± ξ + β0

|ξ + β0|

)
eξ,

then the (first term) asymptotic expansion of C̃ϕ,ψ(t, β0) in Theorem 5.5 can be rewritten, modulo

Oϕ,ψ
(

1

t1+ d−1
2

)
, as

C̃ϕ,ψ(t, β0) =

(
2π

t

) d−1
2 ∑
±
e∓

iπ(d−1)
4

∫
Td

(
e±it
√
−∆−β0

(−∆−β0)
d−1

4

◦Π±−β0
(ϕ)

)
(x)Π∓β0

(ψ)(x)|dx|

=

(
2π

t

) d−1
2 ∑
±
e∓

iπ(d−1)
4

∫
Td

Π±−β0
(ϕ)(x)

(
e±it
√
−∆β0

(−∆β0
)
d−1

4

◦Π∓β0
(ψ)

)
(x)|dx|,(5.4)

after having used the Plancherel Theorem. Similarly, all the terms in the asymptotic expansion
can be written in the same fashion except that the expression will be slightly more involved.

5.3. Geometry of the anisotropic Sobolev norms. In this section, we review a few facts from
Riemannian geometry [Rug07] that are useful to understand the geometric picture behind these
norms.

5.3.1. Decomposition of the tangent space of STd. The tangent space to a point (x, θ) ∈ STd
decomposes in a way which is adapted to the dynamical features of our problem. First, we write

Tx,θSTd ' TxTd × TθSd−1.

Given θ ∈ Sd−1, we consider as in Section 3.1 an orthonormal family (e1(θ), . . . , ed−1(θ)) such that

det (θ, e1(θ), . . . , ed−1(θ)) > 0.



34 NGUYEN VIET DANG, MATTHIEU LÉAUTAUD, AND GABRIEL RIVIÈRE

At a given point (x, θ) ∈ STd, we define the horizontal space as

Hx,θ := SpanTxTd(e1(θ), . . . , ed−1(θ))× {0} ⊂ TxTd × {0} ⊂ Tx,θ(STd).

Similarly, we introduce the vertical space

Vx,θ := {0} × SpanTθSd−1(e1(θ), . . . , ed−1(θ)) = {0} × TθSd−1 ⊂ Tx,θ(STd).

Note that V(x, θ) is the tangent space to the submanifold SxTd, or equivalently the kernel of the
tangent map of Π : (x, θ) ∈ STd 7→ x ∈ Td. Letting V (x, θ) = θ · ∂x ' θ ∈ TxTd × {0}, one has
then

Tx,θSTd = RV (x, θ)⊕Hx,θ ⊕ Vx,θ.

In the terminology of symplectic geometry, Hx,θ⊕Vx,θ is the kernel of the Liouville (contact) form
α(x, θ, dx, dθ) := θ · dx. This decomposition of the tangent space allows to write the following nice
expression of the tangent map D(etV ) at a point (x, θ):

(5.5) [D(etV )(x, θ)]RV (x,θ)⊕Hx,θ⊕Vx,θ =

 1 0 0
0 Id tId
0 0 Id

 .

Remark 5.6. Every vector in Hx,θ ⊕ Vx,θ tends to the horizontal bundle under the tangent map
as t → ±∞. In fact, in the case of flat tori, the stable and unstable bundles12 coincide and are
equal to the horizontal bundle [Rug07, Ch. 3, §1.3]. See Figure 2.

Figure 2. Action of the tangent map on the kernel of the contact form.

Remark 5.7. We will denote by E∗0 = Rα ⊂ T ∗STd the annihilator of H⊕V, by H∗ ⊂ T ∗STd the
annihilator of RV ⊕V and by V∗ ⊂ T ∗STd the annihilator of RV ⊕H. The action of the tangent
map on T ∗STd reads

(5.6) [D(etV )(x, θ)T ]−1
Rα(x,θ)⊕H∗x,θ⊕V

∗
x,θ

=

 1 0 0
0 Id 0
0 −tId Id

 .

12Such bundles are well defined on manifolds without conjugate points, e.g. non positively curved manifolds.
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5.3.2. Geometric interpretation of the anisotropic seminorms. With that geometric description at
hand, we can give a rough geometric interpretation of our anisotropic spaces using the notion of
pseudodifferential operators [Hör85]. Usually, Sobolev spaces are designed using the quantization
of a symbol of the form (1 + |(ξ,Θ)|2x,θ)

s
2 where (x, θ, ξ,Θ) is an element in T ∗STd and s is

the Sobolev regularity. Here, due to the explicit structure of the problem, we did not write
exactly things in that fashion. Yet, our spaces would in principle correspond to replace s by
a function s(x, θ, ξ,Θ) whose values depend on the directions in T ∗STd and thus to work with
anisotropic symbols. More precisely, taking γ = 0 for simplicity, we would in fact require using
this pseudodifferential approach that

• near E∗0 , the symbol is given by (1 + |ξ|2)
N1
2 (1 + |Θ|2θ)

s1
2 . Thus, we are roughly requiring

a Sobolev regularity N1 along E∗0 .

• near H∗ ⊕ V∗, the symbol is given by (1 + |ξ|2)
N0
2 (1 + |Θ|2θ)

s0
2 . In particular, on V∗, this

correspond to a Sobolev regularity of order s0 while on H∗, the Sobolev regularity is N0.

See Figure 3.

Figure 3. Sobolev regularity in the cotangent picture.

6. Anisotropic spaces of currents

In Lemma 3.13, we saw that, for β0 ∈ H1(Td,R) and for a smooth function χ : R → R with
enough decay at infinity, the operator

χ̂(−iVβ0
) :=

∫
R
χ(t)e−tVβ0 |dt|

is bounded when acting on the space of continuous differential forms. Now we aim at describing
anisotropic Sobolev spaces adapted to the dynamics of the geodesic flow on which χ̂(−iVβ0

) will
still extend continuously.

6.1. Anisotropic Sobolev spaces. Motivated by the norms of Definition 5.4 appearing in the
description of the correlation function, we introduce the following spaces of currents.

Definition 6.1 (Anisotropic Sobolev spaces of currents). Let β0 ∈ H1(Td,R), let 0 ≤ k ≤ 2d− 1
and let (s0, s1, N0, N1) in Z2

+ × R2. We define the following anisotropic Sobolev norm:

‖ϕ‖2
Hs0,N0,s1,N1
k,β0

:=
∑
ξ∈Zd
〈ξ〉2N0

∥∥∥π(k)
ξ (ϕ)

∥∥∥2

Hs0 (C0(ξ−β0))
+

∑
ξ∈Zd,±

〈ξ〉2N1

∥∥∥π(k)
ξ (ϕ)

∥∥∥2

Hs1 (C±1(ξ−β0))
,
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where 〈η〉 := (1 + |η|2)
1
2 and where the Sobolev norms Hs on forms are understood in the sense

of Remark 3.9. We define the space Hs0,N0,s1,N1

k,β0
to be the completion of Ωk(STd) for this norm.

As above, we note that these norms depend implicitely on the cutoff functions used in §4.1.
In particular, the conic neighborhood C±1(ω) can be chosen arbitrarily close to ω ∈ Sd−1 but it
cannot be too large in order to apply Lemma 4.4. Using these spaces, one gets

Theorem 6.2. Let 0 ≤ k ≤ 2d− 1, M,N be elements in Z+, β0 ∈ H1(Td,R) and χ ∈ C∞c (R∗+).
Then,

χ̂(−iVβ0
) : HM,−M/2,0,−N/2

k,−β0
→ (HM,−M/2,0,−N/2

2d+1−k,β0
)′

defines a continuous linear map, where (HM,−M/2,0,N/2
2d+1−k,β0

)′ ⊂ D′k(STd) is the topological dual of

HM,−M/2,0,N/2
2d+1−k,β0

.

Compared with the spaces appearing when describing the asymptotics of the correlation func-
tion, we now require that test currents are regular enough along the vertical space V while they
can be singular along the horizontal space RV ⊕H. See Figure 3 with s0 = M , N0 = −M/2 and
N1 = −N/2.

6.2. Mapping properties. For later applications to counting orthogeodesics, we also fix a smooth
map

x̃ : Sd−1 → Rd,
and our goal is to study more generally the analytical properties of the operator:

χ̂(−iVβ0
)T∗−x̃ :=

∫
R
χ(t)e−tVβ0 T∗−x̃|dt|,

under appropriate assumptions on χ. To that aim, we fix 0 ≤ k1, k2 ≤ 2d − 1 and two smooth
forms (ϕ,ψ) ∈ Ωk1(STd)×Ωk2(STd) (with k1 +k2 = 2d−1). Hence, for χ with enough regularity,
we want to study the properties of

(6.1)

∫
STd

ϕ ∧ χ̂(−iVβ0
)T∗−x̃(ψ) =

∫
R
χ(t)Cϕ,T∗−x̃(ψ)(t, β0)|dt|

in terms of the anisotropic Sobolev norms we have just introduced. In order to state the main
technical result of this section, let us introduce the following definition:

Definition 6.3. Let p ∈ R and let N ∈ Z+. We say that χ is (N, p)-admissible if χ ∈ C∞(R+)
and if it satisfies the following properties:

• the support of χ does not contain 0,
• for every 0 ≤ m ≤ N ,

lim
t→+∞

dm

dtm
(tpχ(t)) = 0,

• t 7→ tpχ(t) ∈ L1(R+).

This definition obviously includes the case of smooth compactly supported functions on R∗+ and
Theorem 6.2 is actually a corollary of the much more precise statement:

Theorem 6.4. Let k1 + k2 = 2d − 1, let β0 ∈ H1(Td,R) and let M,N be elements in Z+.
There exists a constant CM,N > 0 such that for all (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd) and for all
χ which is (N, p)-admissible (for every 0 ≤ p ≤ min{k1, k2}) and which satisfies13 suppχ ⊂(
C(χ0)‖dx̃‖L∞(Sd−1),∞

)
, one has∫

R
χ(t)Cϕ,T∗−x̃(ψ)(t, β0)|dt| =

min{k1,k2}∑
l=0

J(l)
χ (ϕ,ψ),(6.2)

13The constant is the one from Lemma 4.2.
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where, for all 0 ≤ l ≤ min{k1, k2},∣∣∣∣∣J(l)
χ (ϕ,ψ)−

E
(l)
β0

l!

∫
R
χ(t)tl|dt|

∣∣∣∣∣
≤ CM,N max

{
‖χ(t)tl−M‖L1(R+),

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

}
‖ϕ‖H1

‖ψ‖H2

with H1 := HM,−M/2,0,−N/2
k1,β0

and H2 := HM,−M/2,0,−N/2
k2,−β0

defined by Definition 6.1 and with

E
(l)
β0

=

∫
Sd−1

eiβ0·x̃(θ)B
(k2,l)
x̃,β0

(ϕ,ψ)(θ) VolSd−1(θ, dθ) if β0 ∈ H1(Td,Z), E
(l)
β0

= 0 otherwise,(6.3)

where the explicit expression for B
(k2,l)
x̃,β0

is given by (3.20).

The function χ0 appearing in this Theorem is the one from Definition 4.1 and we recall that
each function χj implicitely appears in the definition of the anisotropic spaces. Before entering the
details of the proof, we start with the following observation which follows from a direct integration
by parts argument:

Lemma 6.5. Suppose that χ is (N, p)-admissible. Then, for every λ 6= 0, one has∣∣∣∣∣
∫
R+

tpχ(t)e−itλ|dt|

∣∣∣∣∣ ≤ |λ|−N
∥∥∥∥ dNdtN (tpχ(t))

∥∥∥∥
L1(R+)

.

This lemma will allow us to gain a decay in |ξ| that is lacking in the region where the phase
is stationary. In other words, it will allow us to take observables that may be singular along the
direction of V while for the correlation function we required to have some regularity along V ; that
is to say, we can now choose N1 � −1 in Figure 3. Henceforth, in the proof of Theorem 6.4, we
only make use of the non-stationary phase estimate of Corollary 4.3 and do not rely on stationary
phase estimates of Corollary 4.6.

Proof of Theorem 6.4. According to Lemma 3.15, we start from the decomposition (3.18)–(3.19)
of the dynamical correlator C according to the various homogeneity in the variable t. Integrating
the expression of Clϕ,T∗−x̃(ψ)(t, β0) in (3.18) against χ(t) will then yield (6.2) with

J(l)
χ (ϕ,ψ) =

∫
R
χ(t)Clϕ,T∗−x̃(ψ)(t, β0)|dt|.(6.4)

We decompose Clϕ,T∗−x̃(ψ)(t, β0) further by writing

Clϕ,T∗−x̃(ψ)(t, β0) =
tl

l!
E

(l)
β0

+
tl

l!
C(l,−1)(t) +

tl

l!
C(l,0)(t) +

tl

l!
C(l,1)(t), with, for j ∈ {−1, 0, 1},(6.5)

E
(l)
β0

=

∫
Sd−1

eiβ0·x̃(θ)B
(k2,l)
x̃,β0

(ϕ,ψ)(θ) VolSd−1(θ, dθ) if β0 ∈ H1(Td,Z) ' Zd,

E
(l)
β0

= 0 otherwise,

and

C(l,j)(t) =
∑

ξ∈Zd\{β0}

∫
Sd−1

χj

(
θ · ξ − β0

|ξ − β0|

)
eit(ξ−β0)·θeiξ·x̃(θ)B

(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, dθ),

where the functions χj were introduced in Definition 4.1. Note that E
(l)
β0

concerns the Fourier

coefficient ξ = β0 (in the case β0 ∈ Zd and it vanishes otherwise). The above decomposition
indexed by j = −1, 0, 1 corresponds to the different integration regions of Sd−1 on which we study
the oscillatory integral. Moreover, it is a time invariant quantity.
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We now compute each term in (6.5). The first term is nothing but∫
R
χ(t)

tl

l!
E

(l)
β0
|dt| =

E
(l)
β0

l!

∫
R
χ(t)tl|dt|.(6.6)

We next consider the term involving C(l,0)(t). Applying Corollary 4.3 to the function F (θ) =

B
(k2,l)
x̃,ξ (ϕ,ψ)(θ), we have the following statement: there exists C(χ0) > 0 (independent of x̃) such

that for all M ∈ Z+, there is CM > 0 (depending on the map x̃ : Sd−1 7→ Rd) such that for all
t > C(χ0)‖dx̃‖L∞(Sd−1), |ξ| ≥ 1, (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd), we have∣∣∣C(l,0)(t)

∣∣∣ ≤ ∑
ξ∈Zd\{β0}

CM
1

(|ξ − β0|t)M
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)(·)
∥∥∥
WM,1(C0(ξ−β0))

.

According to (3.21), this implies for every k1 + k2 = 2d− 1, for every 0 ≤ l ≤ min{k1, k2} and for
every (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd),∣∣∣C(l,0)(t)

∣∣∣ ≤ CM
tM

∑
ξ∈Zd\{β0}

1

|ξ − β0|M
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
HM (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HM (C0(ξ−β0))

.

We thus obtain, if suppχ ⊂
(
C(χ0)‖dx̃‖L∞(Sd−1),∞

)
, that∣∣∣∣∫

R
χ(t)

tl

l!
C(l,0)(t)|dt|

∣∣∣∣
≤ CM‖χ(t)tl−M‖L1(R+)

∑
ξ∈Zd\{β0}

1

|ξ − β0|M
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
HM (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HM (C0(ξ−β0))

.

(6.7)

For the remaining two terms, we write∫
R
χ(t)

tl

l!
C(l,±1)(t)|dt| =

∑
ξ∈Zd\{β0}

∫
Sd−1

(∫
R
χ(t)

tl

l!
eit(ξ−β0)·θ|dt|

)

× χ±1

(
θ · ξ − β0

|ξ − β0|

)
eiξ·x̃(θ)B

(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, dθ).

We then remark from the properties of χ±1 in Definition 4.1 that s ∈ supp(χ±1) =⇒ |s| ≥ ε0 > 0.

Lemma 6.5 then implies that for (θ, ξ) in suppχ±1

(
θ · ξ−β0

|ξ−β0|

)
:∣∣∣∣∫

R
χ(t)tleit(ξ−β0)·θ|dt|

∣∣∣∣ ≤ 1

|(ξ − β0) · θ|N

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

≤ 1

|ε0(ξ − β0)|N

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

.

Coming back to our problem, we can derive the estimate∣∣∣∣∫
R
χ(t)

tl

l!
C(l,±1)(t)|dt|

∣∣∣∣
≤ CN

∥∥∥∥ dNdtN (tlχ)
∥∥∥∥
L1(R+)

∑
ξ∈Zd\{β0}

1

|(ξ − β0)|N
‖B(k2,l)

x̃,ξ (ϕ,ψ)(θ)‖L1(C±1(ξ−β0))

≤ CN
∥∥∥∥ dNdtN (tlχ)

∥∥∥∥
L1(R+)

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
L2(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
L2(C±1(ξ−β0))

|(ξ − β0)|N

Combining this together with (6.6) and (6.7) in (6.4)–(6.5), and recalling the definition of the

norm H := HM,−M/2,0,−N/2
k,β0

in Definition 6.1, we have obtained the expected bound. �
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7. Mellin and Laplace transforms

We will now apply the results of Section 4 to two examples which, besides their own interest,
will be instrumental in our description of zeta functions associated to the length orthospectrum.
All along this section, we will take χ∞ to be a smooth function on R satisfying the following
properties

(7.1) ∃T0 ≥ 1, ∃t0 > 0, such that supp(χ∞) ⊂ [T0,∞) and χ∞(t) = 1 for t ≥ T0 + t0.

Typically, for our applications, we will in fact work with nondecreasing functions of this type. We
now aim at refining the results of Section 6.1 when the function χ depends on some extra complex
parameter, e.g.

χLs (t) := χ∞(t)e−st and χMs (t) := χ∞(t)t−s,

where s ∈ C has large enough real part. Equivalently, this amounts to study the Laplace and the
Mellin transforms of χ∞(t)e−tVβ0 :

(7.2) χ̂Ls (−iVβ0
) :=

∫ ∞
0

e−stχ∞(t)e−tVβ0 |dt| and χ̂Ms (−iVβ0
) :=

∫ ∞
1

t−sχ∞(t)e−tVβ0 |dt|.

Note that, for Re(s) large enough, we are in the setting of application of Theorem 6.4. Hence, for
such s, these operators are well defined on the anisotropic Sobolev spaces we have introduced in
Section 6.1. Our goal is to show that these operators in fact extend to appropriate subsets of the
complex plane when considered on these spaces. See Theorems 7.4 and 7.8 for precise statements.

This section is divided in two main parts corresponding respectively to the analysis of χ̂Ms (−iVβ0)

(§7.1) and to the one of χ̂Ls (−iVβ0
) (§7.2).

Remark 7.1. Besides applications to Poincaré series, note that the Laplace transform appears
naturally when studying the resolvent of Vβ0

. In fact, one has

(s+ Vβ0
)−1 :=

∫ +∞

0

e−ste−tVβ0 |dt| =
∫ +∞

0

(1− χ∞(t))e−ste−tVβ0 |dt|+ χ̂Ls (−iVβ0
),

which defines a bounded operator from Ωk(STd) to D′k(STd) for Re(s) large enough. Note that
the first integral on the right hand side is over a compact interval. Hence, this part extends holo-
morphically to the whole complex plane as an operator from Ωk(STd) to Ωk(STd). Equivalently,
understanding the extension of the resolvent amounts to understand the continuation of χ̂Ls (−iV ).
The same remarks hold for the integral∫ +∞

1

t−se−tVβ0 |dt|.

We refer to Section 7.3 below for precise statements. A refined analysis of the resolvent when
k = 0 and in the case of analytic regularity will be discussed in [DGBLR22].

7.1. Mellin transform. We begin with the case of the Mellin transform which is slightly easier
to handle as it only requires nonstationary phase estimates.

7.1.1. A preliminary lemma. In that case, the analysis relies on the following elementary lemma:

Lemma 7.2. Let T0 ≥ 1 and φ ∈ C∞(R) be such that supp(φ) ⊂ [T0,+∞) and φ is constant near
infinity. Then, the following hold:

(1) For any λ ∈ R, the function

fφ,λ(s) :=

∫
R
φ(t)t−seiλt|dt|

is a well-defined holomorphic function for Re(s) > 1 satisfying

|fφ,λ(s)| ≤ ‖φ‖L∞(R)
T
−(Re(s)−1)
0

Re(s)− 1
, for s ∈ C,Re(s) > 1.
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(2) If φ is compactly supported, fφ,λ is actually defined on the whole complex plane and defines
an entire function on C such that

|fφ,λ(s)| ≤ Cφ
T
−Re(s)
0

〈Re(s)〉
, for s ∈ C.

(3) If λ = 0 and φ = 1 in a neighborhood of +∞, then fφ,0 extends to C as a meromorphic
function with a single simple pole at s = 1 whose residue is equal to 1. Moreover,

fφ,0(s) =
fφ′,0(s− 1)

s− 1
, for all s ∈ C \ {1}.(7.3)

(4) If λ 6= 0 and φ = 1 in a neighborhood of +∞, then fφ,λ extends to C as an entire function.
Moreover, this extended function satisfies, for all m ∈ N∗ and all s ∈ C,

fφ,λ(s) =
1

(iλ)m

m−1∑
j=0

(
m
j

)
(−1)m−jPj(s)fφ(m−j),λ(s+ j) +

Pm(s)

(iλ)m
fφ,λ(s+m),(7.4)

where

Pj(s) =

j−1∏
k=0

(s+ k), for j ∈ Z∗+, and P0(s) = 1,(7.5)

and, for all m ∈ Z+, there is a constant Cφ,m > 0 such that for all λ 6= 0,

|fφ,λ(s)| ≤ Cφ,m
〈|s|〉m

|λ|m
T
−Re(s)+1
0

Re(s) +m− 1
, for Re(s) > −(m− 1).(7.6)

Proof. Item 1 follows from the rough estimate |φ(t)t−seiλt| ≤ ‖φ‖L∞t−Re(s). In case suppφ ⊂
[T0, T1], this yields in particular the estimate

(7.7) |fφ,λ(s)| ≤ ‖φ‖L∞
∫ T1

T0

t−Re(s)|dt| = T
−Re(s)+1
0 − T−Re(s)+1

1

Re(s)− 1
,

which, combined with holomorphy under the integral, provides a proof of Item 2. Item 3 consists
in proving (7.3) for Re(s) > 1 by an integration by parts, and then observing that fφ′,0 is an entire
function, whence the right hand-side of (7.3) has the sought properties. The result for all s ∈ C
follows from analytic continuation and the residue is fφ′,0(0) =

∫
R φ
′(t)dt = φ(+∞)− φ(0) = 1.

The proof of Item 4 (in case λ 6= 0) also consists in proving first (7.4) for Re(s) > 1 by
integration by parts. After m integrations by parts, one finds for Re(s) > 1

fφ,λ(s) =

(
−1

iλ

)m ∫
R
∂mt (φ(t)t−s)eiλt|dt|.

The Leibniz formula together with the fact that (t−s)(j) = (−1)jPj(s)t
−s−j then implies (7.4) for

Re(s) > 1.
Next, we observe that the first term on the right hand-side of (7.4) is an entire function (as

φ(m−j) is compactly supported for j ≤ m−1) and the second term is holomorphic on the half space
Re(s) > −m+ 1. Hence, for all m ∈ N∗, the right hand-side of (7.4) is a holomorphic function on
Re(s) > −m+1, and all these functions coincide with fφ,λ(s) on Re(s) > −m+1. As a consequence
of analytic continuation, for any m ∈ N, fφ,λ can be extended uniquely to a holomorphic function
on Re(s) > −m+ 1 (still denoted fφ,λ), which satisfies (7.4) on Re(s) > −m+ 1.

To prove the estimate, we use (7.4) and write

|λ|m|fφ,λ(s)| ≤
m−1∑
j=0

(
m
j

)
|Pj(s)||fφ(m−j),λ(s+ j)|+ |Pm(s)||fφ,λ(s+m)|.
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Taking 1 ≤ T0 < T1 such that supp(φ′) ⊂ [T0, T1] and using item 1 together with (7.7), we deduce

|λ|m|fφ,λ(s)| ≤ Cm
m−1∑
j=0

〈|s|〉j‖φ(m−j)‖L∞
∫ T1

T0

t−Re(s)−j |dt|

+ Cm〈|s|〉m‖φ‖L∞(R)
T
−(Re(s)+m−1)
0

Re(s) +m− 1
,

from which the statement follows. �

7.1.2. Meromorphic continuation of χ̂Ms (−iVβ0). Before discussing the meromorphic continua-
tion, let us first clarify its holomorphic properties on Re(s) > d:

Proposition 7.3. Let χ∞ be a function verifying assumption (7.1), let β0 ∈ H1(Td,R) and let
x̃ : Sd−1 → Rd be a smooth function.

Then, for all (ϕ,ψ) ∈ Ωk1(STd)× Ωk2(STd) with k1 + k2 = 2d− 1, the function

(7.8) s 7→M(ϕ,ψ)(s) :=

∫
STd

ϕ ∧ χ̂Ms (−iVβ0)T∗−x̃(ψ)

is holomorphic on Re(s) > min{k1, k2}+ 1 and it satisfies∣∣M(ϕ,ψ)(s)
∣∣ ≤ C T

−(Re(s)−min{k1,k2}−1)
0

Re(s)−min{k1, k2} − 1
‖ϕ‖L2(STd)‖ψ‖L2(STd).(7.9)

Note that in this expression, min{k1, k2}+1 can be always be replaced by d (but it downgrades
the statement).

Proof. Recalling (6.1), we use again Lemma 3.15 and the decomposition (3.18)–(3.19). Integrat-
ing (3.18)–(3.19) against χ∞(t)t−s then yields

M(ϕ,ψ)(s) =

∫
STd

ϕ ∧ χ̂Ms (−iVβ0
)T∗−x̃(ψ) =

min{k1,k2}∑
l=0

M
(l)
(ϕ,ψ)(s),(7.10)

with

M
(l)
(ϕ,ψ)(s) =

∫ ∞
1

χ∞(t)t−sClϕ,T∗−x̃(ψ)(t, β0)|dt|.(7.11)

We then notice that the index l is bounded by l ≤ min{k1, k2} ≤ d− 1, and that∣∣∣Clϕ,T∗−x̃(ψ)(t, β0)
∣∣∣ =

∣∣∣∣∣∣ t
l

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·θeiξ·x̃(θ)B
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, |dθ|)

∣∣∣∣∣∣
≤ tl

l!

∑
ξ∈Zd

∫
Sd−1

∣∣∣B(k2,l)
x̃,ξ (ϕ,ψ)(θ)

∣∣∣VolSd−1(θ, |dθ|)

≤ Ctl‖ϕ‖L2(STd)‖ψ‖L2(STd)(7.12)

according to (3.21). We deduce that∣∣∣χ∞(t)t−sClϕ,T∗−x̃(ψ)(t, β0)
∣∣∣ ≤ Cχ∞(t)tl−s‖ϕ‖L2(STd)‖ψ‖L2(STd).

Recalling that l ≤ min{k1, k2}, (7.11) then implies holomorphy of M
(l)
(ϕ,ψ) in Re(s) > l+ 1 (and in

particular in Re(s) > min{k1, k2}+ 1). Item 1 in Lemma 7.2 finally yields∣∣∣M(l)
(ϕ,ψ)(s)

∣∣∣ ≤ T
−(Re(s)−min{k1,k2}−1)
0

Re(s)−min{k1, k2} − 1
C‖ϕ‖L2(STd)‖ψ‖L2(STd),

from which we infer (7.9) thanks to (7.10). �

We now turn to our main statement on these regularized Mellin transforms.
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Theorem 7.4. Let χ∞ be a function verifying assumption (7.1), let β0 ∈ H1(Td,R) and let
x̃ : Sd−1 → Rd be a smooth function. Suppose in addition that T0 ≥ C(χ0)‖dx̃‖L∞(Sd−1) where
T0 ≥ 1 is the constant appearing in (7.1) and C(χ0) > 0 the one from Corollary 4.3. Set

E
(l)
β0

:=

∫
Sd−1

eiβ0·x̃(θ)B
(k2,l)
x̃,β0

(ϕ,ψ)(θ) VolSd−1(θ, |dθ|), if β0 ∈ H1(Td,Z),

and E
(l)
β0

= 0 otherwise. Then, using the conventions of Proposition 7.3, for any N ∈ Z∗+,

there exists CN > 0 such that, for every couple (ϕ,ψ) in HN,−N/2,0,−N/2k1,β0
×HN,−N/2,0,−N/2k2,−β0

with
k1 + k2 = 2d− 1, the function

M(ϕ,ψ)(s)−
min{k1,k2}∑

l=0

1

l!

E
(l)
β0

s− l − 1
,

originally defined on Re(s) > min{k1, k2} + 1 extends holomorphically to the half-plane Re(s) >
−N + min{k1, k2}+ 1 with∣∣∣∣∣∣M(ϕ,ψ)(s)−

min{k1,k2}∑
l=0

1

l!

E
(l)
β0

s− l − 1

∣∣∣∣∣∣
≤ CN 〈|s|〉N

Re(s)−min{k1, k2} − 1 +N
‖ϕ‖HN,−N/2,0,−N/2k1,β0

‖ψ‖HN,−N/2,0,−N/2k2,−β0

.

The proof is very close to that of Theorem 6.4 and we just need to pay attention to the
dependence on the parameter s ∈ C. Combined with Proposition 7.9, this proves Theorem 2.2
from the introduction by picking β0 = 0, k1 = 2d− 1 and k2 = 0.

Proof. By bilinearity of the considered mappings with respect to (ϕ,ψ) and by density, it is
sufficient to prove these analytical estimates when (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd). As in the
proof of Proposition 7.3, we can decompose Clϕ,T∗−x̃(ψ)(t, β0) using (6.5). Then, we are left with

describing the terms M
(l)
(ϕ,ψ)(s) in (7.11) that can be decomposed accordingly as

M
(l)
(ϕ,ψ)(s) = M

(l,E)
(ϕ,ψ)(s) + M

(l,−1)
(ϕ,ψ) (s) + M

(l,0)
(ϕ,ψ)(s) + M

(l,1)
(ϕ,ψ)(s),(7.13)

with

M
(l,E)
(ϕ,ψ)(s) =

∫
R
χ∞(t)t−s

tl

l!
E

(l)
β0
|dt|, and

M
(l,j)
(ϕ,ψ)(s) =

∫
R
χ∞(t)t−s

tl

l!
C(l,j)(t)|dt|, for j ∈ {−1, 0, 1}.

We now study each of these terms separately.

Firstly, as supp(χ∞) ⊂ [1,∞), we have

M
(l,E)
(ϕ,ψ)(s) = E

(l)
β0

1

l!

∫ ∞
1

χ∞(t)t−s+l|dt| = 1

l!

E
(l)
β0

s− l − 1
+
E

(l)
β0

l!

∫ ∞
1

(1− χ∞(t))t−s+l|dt|,(7.14)

where the second term on the right-hand side of the equation is an entire function. Hence, this
term has the claimed properties.

Secondly, we consider the term with M
(l,0)
(ϕ,ψ)(s) and proceed as in the proof of Theorem 6.4.

According to Corollary 4.3, we have, for t > C(χ0)‖dx̃‖L∞(Sd−1)

C(l,0)(t) =
∑

ξ∈Zd\{β0}

∫
Sd−1

χ0

(
θ · ξ − β0

|ξ − β0|

)
eit(ξ−β0)·θeiξ·x̃(θ)B

(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, |dθ|)

=
∑

ξ∈Zd\{β0}

(i|ξ − β0|t)−N
∫
Sd−1

F (t, ξ, θ) VolSd−1(θ, |dθ|),
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with

F (t, ξ, θ) = ei(ξ−β0)·(tθ+x̃(θ))L
ξ−β0
|ξ−β0|
N,t

(
χ0

(
θ · ξ − β0

|ξ − β0|

)
eiβ0·x̃(θ)B

(k2,l)
x̃,ξ (ϕ,ψ)(θ)

)
,

and, for all ω ∈ Sd−1, for all θ ∈ C0(ω), and all t > C(χ0)‖dx̃‖L∞(Sd−1),

∣∣(LωN,tψ)(θ)
∣∣ ≤ CN (‖x̃‖WN+1,∞(C0(ω))

t

) ∑
|α|≤N

|∇αθψ(θ)|

 .

Coming back to M
(l,0)
(ϕ,ψ)(s), we have

M
(l,0)
(ϕ,ψ)(s) =

∫
R
χ∞(t)t−s

tl

l!
C(l,0)(t)|dt|

=

∫
R

∑
ξ∈Zd\{β0}

∫
Sd−1

χ∞(t)t−s
tl

l!
(i|ξ − β0|t)−NF (t, ξ, θ) VolSd−1(θ, |dθ|)|dt|,

where, as supp(χ∞) ⊂ [T0,+∞) with T0 ≥ max{1, C(χ0)‖dx̃‖L∞(Sd−1)}, one has∣∣∣∣χ∞(t)t−s
tl

l!
(i|ξ − β0|t)−NF (t, ξ, θ)

∣∣∣∣
≤ χ∞(t)t−Re(s)+l−N |ξ − β0|−NCN

(‖x̃‖WN+1,∞(C0(ω))

t

) ∑
|α|≤N

∣∣∣∇αθB(k2,l)
x̃,ξ (ϕ,ψ)(θ)

∣∣∣
 ,

uniformly for t ≥ max{1, C(χ0)‖dx̃‖L∞(Sd−1)}, ξ ∈ Rd \{β0} and θ ∈ C0(ξ−β0). We deduce from

that bound and from (3.21) the holomorphy of the term M
(l,0)
(ϕ,ψ)(s) in Re(s) > −N + l+ 1 together

with the estimate∣∣∣M(l,0)
(ϕ,ψ)(s)

∣∣∣
≤ CN‖χ∞(t)tl−Re(s)−N‖L1(R+)

∑
ξ∈Zd\{β0}

1

|ξ − β0|N
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
W 1,N (C0(ξ−β0))

≤ CN‖χ∞(t)tl−Re(s)−N‖L1(R+)

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN (C0(ξ−β0))

|ξ − β0|N

≤ CN
T
−(Re(s)+N−l−1)
0

Re(s) +N − l − 1

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN (C0(ξ−β0))

|ξ − β0|N
.(7.15)

Thirdly, we consider the two terms M
(l,±1)
(ϕ,ψ) (s) and proceed as in the proof of Theorem 6.4 (i.e.

take advantage of the integration over time). We write

M
(l,±1)
(ϕ,ψ) (s) =

∑
ξ∈Zd\{β0}

∫
Sd−1

(∫
R
χ∞(t)t−s

tl

l!
eit(ξ−β0)·θ|dt|

)

× χ±1

(
θ · ξ − β0

|ξ − β0|

)
eiξ·x̃(θ)B

(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, |dθ|).

We then remark from the properties of χ±1 in Definition 4.1 that σ ∈ supp(χ±1) =⇒ |σ| ≥ ε0 > 0

from which we infer that |θ · (ξ − β0)| ≥ ε0|ξ − β0| for (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
.

Item 4 in Lemma 7.2 then implies that the integral∫
R
χ∞(t)t−s

tl

l!
eit(ξ−β0)·θ|dt| = 1

l!
fχ∞,(ξ−β0)·θ(s− l)
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extends as an entire function in s for any given (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
. According

to (7.6), it satisfies in addition, for any m ∈ Z∗+,

|fχ∞,(ξ−β0)·θ(s− l)| ≤ Cχ∞,m
〈|s|〉m

εm0 |ξ − β0|m
T
−Re(s)+l+1
0

Re(s)− l +m− 1
, for Re(s) > −m+ l + 1.

Coming back to M
(l,±1)
(ϕ,ψ) (s), we find that it is holomorphic in Re(s) > −m + l + 1 together with

the estimate∣∣∣M(l,±1)
(ϕ,ψ) (s)

∣∣∣ .m 〈|s|〉mT−Re(s)+l+1
0

Re(s)− l +m− 1

∑
ξ∈Zd\{β0}

1

|ξ − β0|m
‖B(k2,l)

x̃,ξ (ϕ,ψ)(θ)‖L1(C±1(ξ−β0))

.m
〈|s|〉mT−Re(s)+l+1

0

Re(s)− l +m− 1

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
L2(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
L2(C±1(ξ−β0))

|ξ − β0|m
.

Finally, combining this together with (7.15) (and the statement preceding this estimate), and
choosing m = N , we have obtained in the decomposition (7.13) that the function

M
(l)
(ϕ,ψ)(s)−M

(l,E)
(ϕ,ψ)(s) = M

(l,−1)
(ϕ,ψ) (s) + M

(l,0)
(ϕ,ψ)(s) + M

(l,1)
(ϕ,ψ)(s)

is a holomorphic function in Re(s) > −N+ l+1. As long as T0 ≥ max{1, C(χ0)‖dx̃‖L∞(Sd−1)} and

recalling the definition of the norm HN,−N/2,0,−N/2k,±β0
in Definition 6.1, we end up with the estimate∣∣∣M(l)

(ϕ,ψ)(s)−M
(l,E)
(ϕ,ψ)(s)

∣∣∣ ≤ CN 〈|s|〉NT−Re(s)+l+1
0

Re(s)− l +N − 1
‖ϕ‖HN,−N/2,0,−N/2k1,β0

‖ψ‖HN,−N/2,0,−N/2k2,−β0

.

Coming back to the decomposition (7.10), recalling that l ≤ min{k1, k2}, and implementing the

value of M
(l,E)
(ϕ,ψ)(s) in (7.14) concludes the proof of the theorem. �

7.2. Laplace transform. Here and in the whole section, we write

C+ := {z ∈ C,Re(z) ≥ 0} ,

and we say that a function is in Ck(C+) if it is the restriction in C+ of a function in Ck(C).
In this part, we are going to use the notion of distributions obtained as boundary values of
holomorphic functions [Hör03, Th. 3.1.11] in the most elementary way. We state a proposition
which characterizes those distributions which arise as boundary values from the upper or lower
half–plane of holomorphic functions:

Proposition 7.5. Let T ∈ S ′(R) be a tempered distribution supported in R∗±. Then, there exists
a holomorphic function F (z) on the half plane H∓ = {(x∓ iy) : y > 0} such that

T̂ = lim
ε→0+

F (.∓ iε) in S ′(R),

and we shall write T̂ = F (.∓ i0). Furthermore, F (x∓ iy) is the Fourier transform of T (x)e∓yx.
Conversely, if we are given a holomorphic function F on H∓, such that there exists C,N and some
polynomial P such that ∀y > 0:

|F (x∓ iy)| 6 C|P (x∓ iy)|
(
1 + y−N

)
then the following limit

T̂ = lim
y→0+

F (.∓ iy)

exists in S ′(R) and it is the Fourier transform of a distribution T carried on R∗±.
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This is a particular case of a more general result valid on Rd and described in [RS75, Thm
IX.16 p. 23]. Given λ < 0, we can now give the fundamental example of such boundary values
together with their Fourier transform. Namely, if we consider

T (x) :=
2πe∓iλ

π
2

Γ(−λ)
1R∗+(±x)|x|−1−λ,

where 1R∗+ is the indicator of the positive reals, then the Fourier transform T̂ (ξ) is given by

(ξ ∓ i0)λ [GS, p. 360]. The function 1R∗+(±x)|x|−1−λ is in L1
loc(R) and bounded polynomially.

Hence it defines a tempered distribution for all λ < 0. In the litterature, one can also find the
notation ξ−1−λ

∓ =
(
1[0,+∞)(∓ξ)|ξ|−1−λ) [GS, §3.2, p. 48]. We shall use the above proposition to

describe the singularities of our Poincaré series.
The useful analogue to Lemma 7.2 is the following elementary result:

Lemma 7.6. Let T1 > T0 > 0 and φ ∈ C∞(R) be such that supp(φ) ⊂ [T0,+∞) and φ = 1 on
[T1 +∞). Then, the following hold:

(1) For any α ∈ R, the function

Fφ,α(z) :=

∫
R+

φ(t)t−αe−zt|dt|, for Re(z) > 0,

defines a holomorphic function in Re(z) > 0 which satisfies

|Fφ,α(z)| ≤ Cφ,α, for z ∈ C+ and extends continuously to this set, if α > 1,

|Fφ,α(z)| ≤ Cφ,α
Re(z)1−α , for z ∈ C,Re(z) > 0, if α < 1,

|Fφ,1(z)| ≤ Cφ,1(| ln Re(z)|+ 1), for z ∈ C,Re(z) > 0, if α = 1.

(2) ∂kzFφ,α(z) = (−1)kFφ,α−k(z) for all k ∈ Z+, z ∈ C,Re(z) > 0, and Fφ,α ∈ Ck(C+) for all
k ∈ Z+ such that α− k > 1.

(3) If α < 1, the function Fφ,α can be extended to C\R− (and even to C\{0} if α ∈ Z−) as a

holomorphic function satisfying Fφ,α(z) = Γ(1−α)
z1−α +Hα(z) where Hα is an entire function

such that, for all k ≥ 0, |∂kzHα(z)| ≤ Cφ,α,k(e−T1 Re(z) + 1) on C, for some Cφ,α,k > 0.
Moreover, we have the following identity which holds in S ′(R):

lim
x→0+

Fφ,α(x+ iy) =
Γ(1− α)ei

π
2 (α−1)

(y − i0)1−α +Hα(iy)(7.16)

(4) If α = 1, the function Fφ,1 can be extended to the cut plane C \ R− as a holomorphic
function satisfying Fφ,1(z) = − log(z) + H1(z) where log is the principal determination
of the logarithm and H1 is an entire function such that, for all k ≥ 0, |∂kzH1(z)| ≤
Cφ,k(e−T1 Re(z) + 1) on C, for some Cφ,α,k > 0. Moreover, we have the following identity
which holds in S ′(R):

lim
x→0+

Fφ,α(x+ iy) = − log(y − i0)− π

2
+H1(iy).(7.17)

(5) For all β ∈ R,m ∈ Z∗+,

Fφ,β(z) =
1

zm
Eβ,m(z) + (−1)m

Pm(β)

zm
Fφ,β+m(z),(7.18)

where Pj(β) is defined in (7.5) and Eβ,m(z) is an entire function such that

(7.19) |Eβ,m(z)| ≤ Cφ,β,m(e−T1 Re(z) + 1), z ∈ C.

(6) if α > 1, α /∈ Z+, the function Fφ,α can be extended to the cut plane C\R− as a holomorphic
function satisfying Fφ,α(z) = π

sin(πα)Γ(α)z
α−1 +Hα(z) where Hα is an entire function such

that, for all k ≥ 0, |∂kzHα(z)| ≤ Cφ,α,k〈|z|〉bαc(e−T1 Re(z) + 1) on C, for some Cφ,α,k > 0.

Moreover, extended by the value zero at zero, we have Fφ,α ∈ Cbαc−1(C+).
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(7) if α = n ∈ Z∗+, n > 2, the function Fφ,n can be extended to the cut plane C \ R− as a

holomorphic function satisfying Fφ,n(z) = (−1)n

n! zn−1 log(z)+Hn(z) where Hn is an entire

function such that, for all k ≥ 0, |∂kzHn(z)| ≤ Cφ,n,k〈|z|〉n−1(e−T1 Re(z) + 1) on C, for
some Cφ,n,k > 0. Moreover, extended by the value zero at zero and for n ≥ 2, we have

Fφ,n ∈ Cn−2(C+).

Proof. Let us first prove Item 1. The statement for α > 1 follows from a crude bound and
continuity under the integral. For α < 1, we have

|Fφ,α(z)| ≤ ‖φ‖∞
∫ ∞
T0

t−αe−Re(z)t|dt| = ‖φ‖∞Re(z)1−α
∫ ∞
T0 Re(z)

σ−αe−σ|dσ|

≤ ‖φ‖∞Re(z)1−α
∫ ∞

0

σ−αe−σ|dσ|,

which is the sought estimate. In the case α = 1, we have

|Fφ,1(z)| ≤ ‖φ‖∞
∫ ∞
T0

t−1e−Re(z)t|dt| = ‖φ‖∞
∫ ∞
T0 Re(z)

σ−1e−σ|dσ|

≤ ‖φ‖∞
∫ 1

T0 Re(z)

σ−1|dσ|+ ‖φ‖∞
∫ ∞

1

e−σ|dσ| = −‖φ‖∞ ln(T0 Re(z)) + ‖φ‖∞e−1.

Item 2 is a straightforward consequence of Item 1 and differentiation under the integral.

For Item 3, we first notice that for γ := −α > −1 and z ∈ R∗+, we have

Fφ,−γ =

∫ ∞
0

tγe−zt|dt|+
∫ ∞

0

(φ(t)− 1)tγe−zt|dt|

=
1

zγ+1

∫ ∞
0

σγe−σ|dσ|+
∫ ∞

0

(φ(t)− 1)tγe−zt|dt|.

The last integral is an entire function satisfying the sought bound and the result follows from
analytic continuation, where the cut plane C\R− is chosen arbitrarily. These bounds give exactly
the necessary moderate growth assumption so that the distributional limit Fφ,α(iy + 0) exists by
Proposition 7.5.

To prove Item 4, we differentiate Fφ,1 in Re(z) > 0 to obtain

∂zFφ,1(z) = −
∫ ∞

0

φ(t)e−ztdt = −
∫ ∞

0

e−ztdt+

∫ ∞
0

(1− φ(t))e−ztdt

= −1

z
+

∫ ∞
0

(1− φ(t))e−ztdt.

Integrating this equation on the segment [1, z] for Re(z) > 0 implies

Fφ,1(z)− Fφ,1(1) = − log(z) +

∫ ∞
0

(1− φ(t))

∫ z

1

e−stdsdt,

whence, for Re(z) > 0,

Fφ,1(z) = − log(z) +

∫ ∞
0

φ(t)t−1e−tdt+

∫ ∞
0

(1− φ(t))e−
1+z

2 t sinh
(
z−1

2 t
)

t
dt.

The right hand side continues holomorphically to C \ R−, the last integral being on the compact

set [0, T1]. Using now that sinh(a + ib) = sinh a cos b + i cosh a sin b, we have | sinh(t(a+ib))
t | ≤

| sinh(ta)
t |+ cosh(ta) ≤ 2 cosh(ta) ≤ e|ta|, whence∣∣∣∣∣
∫ ∞

0

(1− φ(t))e−
1+z

2 t sinh
(
z−1

2 t
)

t
dt

∣∣∣∣∣
≤ Cφ

∫ T1

0

e−
1+Re(z)

2 te
|Re(z)−1|

2 tdt = Cφ

(
eT1A − 1

A

) ∣∣∣
A=
|Re(z)−1|−(Re(z)+1)

2

,
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which implies the sought estimate. The distributional limit again follows from Proposition 7.5 and
the bound from item 1.

Item 5 is proved as in Lemma 7.2 and consists in integrating by parts m times to obtain, for
Re(z) > 0,

Fφ,α(z) =

∫ ∞
0

(
1

z

d

dt

)m
(φ(t)t−α)e−zt|dt|,

and then expanding with the Leibniz formula. We obtain the formula (7.18) with

Eα,m(z) =

m−1∑
j=0

(−1)j
(
m
j

)
Pj(α)Fφ(m−j),α+j(z),

and the estimate (7.19) follows from the fact that |Fφ(m−j),α(z)| ≤ Cφ,α(e−T1 Re(z) + 1) for z ∈ C
if m− j > 0 since φ(m−j) is compactly supported in R∗+.

Item 6 is a consequence of Items 3 and 5 for m = bαc ∈ Z+ and β = α − bαc ∈ (0, 1).
From (7.18), we obtain

Fφ,α(z) = Fφ,β+m(z) = (−1)m
zm

Pm(β)
Fφ,β(z)− (−1)m

Pm(β)
Eβ,m(z)

= (−1)m
zm

Pm(β)

(
Γ(1− β)

z1−β +Hβ(z)

)
− (−1)m

Pm(β)
Eβ,m(z),

where we have used Item 3 in the second line. We further notice from Γ(z + 1) = zΓ(z) that

Pm(β) = Γ(β+m)
Γ(β) (see (7.5)) whence

Fφ,α(z) = (−1)mzm+β−1 Γ(1− β)Γ(β)

Γ(β +m)
+

(−1)mzm

Pm(β)
Hβ(z)− (−1)m

Pm(β)
Eβ,m(z),

and hence the sought formula recalling Γ(1− β)Γ(β) = π
sin(πβ) = (−1)m π

sin(π(m+β)) .

Item 7 is a consequence of Items 4 and 5 taken for β = 1 and m = n − 1, and the fact that
Pn−1(1) = n!. �

7.2.1. Meromorphic continuation of χ̂Ls (−iVβ0
). Before discussing the meromorphic continuation,

let us first clarify its holomorphic properties on Re(s) > 0:

Proposition 7.7. Let χ∞ be a function verifying assumption (7.1), let β0 ∈ H1(Td,R) and
let x̃ : Sd−1 → Rd be a smooth function. Then, for all (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd) with
k1 + k2 = 2d− 1, the function

(7.20) s 7→ L(ϕ,ψ)(s) :=

∫
STd

ϕ ∧ χ̂Ls (−iVβ0
)T∗−x̃(ψ)

is holomorphic on Re(s) > 0 and it satisfies∣∣L(ϕ,ψ)(s)
∣∣ ≤ C

Re(s)min{k1,k2}+1
‖ϕ‖L2(STd)‖ψ‖L2(STd).(7.21)

Recall that min{k1, k2} ≤ d− 1 so that the latter estimate can always be roughly bounded by
C

Re(s)d
.

Proof. We start with (6.1) and we use again Lemma 3.15 to write

Cϕ,T∗−x̃(ψ)(t, β0) =

min{k1,k2}∑
l=0

Clϕ,T∗−x̃(ψ)(t, β0)

with

Clϕ,T∗−x̃(ψ)(t, β0) =
tl

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·θeiξ·x̃(θ)B
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, |dθ|).
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Integrating against χ∞(t)e−st then yields

L(ϕ,ψ)(s) =

∫
STd

ϕ ∧ χ̂Ms (−iVβ0)T∗−x̃(ψ) =

min{k1,k2}∑
l=0

L
(l)
(ϕ,ψ)(s),(7.22)

with

L
(l)
(ϕ,ψ)(s) =

∫
R
χ∞(t)e−stClϕ,T∗−x̃(ψ)(t, β0)|dt|.(7.23)

According to (7.12), we have∣∣∣Clϕ,T∗−x̃(ψ)(t, β0)
∣∣∣ ≤ Ctl‖ϕ‖L2(STd)‖ψ‖L2(STd),

which according to (7.23) implies holomorphy of L(l)
(ϕ,ψ) in Re(s) > 0. We further deduce that

∣∣∣L(l)
(ϕ,ψ)(s)

∣∣∣ ≤ ∫
R

∣∣∣χ∞(t)e−stClϕ,T∗−x̃(ψ)(t, β0)
∣∣∣ |dt|
≤ C

∫
R

∣∣χ∞(t)tle−st
∣∣ |dt|‖ϕ‖L2(STd)‖ψ‖L2(STd).

Recalling that l ≤ min{k1, k2}, Item 1 in Lemma 7.6 then yields, as Re(s)→ 0+,∣∣∣L(l)
(ϕ,ψ)(s)

∣∣∣ ≤ C

Re(s)1+min{k1,k2}
‖ϕ‖L2(STd)‖ψ‖L2(STd),

from which we infer (7.21) thanks to (7.22). �

We now turn to our main statement on these regularized Laplace transforms. Lemma 7.6 leads
us to introduce the functions

Fα(z) :=


Γ(1− α)

z1−α , if α < 1,

(−1)n

n!
zn−1 log(z), if α = n ∈ Z+,
π

sin(πα)Γ(α)
zα−1, if α > 1, α /∈ Z+,

(7.24)

these functions are considered as holomorphic functions on the plane C \R− (except if α ∈ Z∗− in
which case Fα is holomorphic in C∗). We also associate the corresponding distributions obtained
as boundary values that is still denoted by Fα:

Fα(iy + 0) :=



Γ(1− α)ei
π
2 (α−1)

(y − i0)1−α , if α < 1,

(−1)nei
π
2 (n−1)

n!
yn−1

(
log(y − i0) +

π

2

)
, if α = n ∈ Z+,

π

sin(πα)Γ(α)
ei
π
2 (α−1)yα−1, if α > 1, α /∈ Z+,

(7.25)

Both will describe the singularities of the Laplace transform of correlators up to the imaginary
axis. For a given α ∈ R, Fα is essentially the Laplace transform of t−α (near t = +∞).

We also denote

CΛ

+ :=
{
s ∈ C+, | Im(s)| ≤ Λ

}
= {s ∈ C,Re(z) ≥ 0, | Im(s)| ≤ Λ} ,

and explain how the Laplace transform extends to this set.

Theorem 7.8. Suppose that the assumptions of Theorem 7.4 on x̃, χ∞ and T0 are satisfied.
Given N,N0 ∈ Z2

+,m ≥ 0,Λ ≥ 1, and (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd) with k1 + k2 = 2d − 1, we
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define, for all s ∈ C with Re(s) > 0,

R
(N,Λ)
(ϕ,ψ) (s) := L(ϕ,ψ)(s)−

min{k1,k2}∑
l=0

E
(l)
β0

sl+1

−
min{k1,k2}∑

l=0

∑
±

N−1∑
j=0

∑
0<|ξ−β0|≤2Λ

F d−1
2 +j−l

(
s∓ i|ξ − β0|

)
l!|ξ − β0|

d−1
2 +j

P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)
,(7.26)

where E
(l)
β0

is defined in (6.3), Fα in (7.24), and, letting L±j,ω being that of Corollary 4.6, with

P±j,l,ξ[ϕ,ψ] (ω) = e∓i
π
4 (d−1)(2π)

d−1
2 L±j,ω(eiξ·x̃(·)B

(k2,l)
x̃,ξ (ϕ,ψ)) (ω) , ω ∈ Sd−1.(7.27)

Both sides of the equation 7.26 extend for s = x + iy when x → 0+ as tempered distributions of
the variable y where Fα is defined in (7.25).

For any N,N0 ∈ Z2
+ such that

k := k(N0, N) = min

{
N0, N +

⌈
d− 1

2

⌉}
−min{k1, k2} − 2 > 0,

and for any m ≥ 0, there exists C = CN0,N,m > 0 such that for any Λ ≥ 1 and for every

(ϕ,ψ) ∈ HN0,−N0/2,2N+d,−m
k1,β0

× HN0,−N0/2,2N+d,−m
k2,β0

with k1 + k2 = 2d − 1 the function R
(N,Λ)
(ϕ,ψ)

originally defined for Re(s) > 0, extends as a function R
(N,Λ)
(ϕ,ψ) ∈ C

k(CΛ

+) for k = k(N0, N) with∥∥∥R(N,Λ)
(ϕ,ψ)

∥∥∥
Ck(CΛ

+)
≤ CΛ2m+N+ d+1

2 ‖ϕ‖HN0,−N0/2,2N+d,−m
k1,β0

‖ϕ‖HN0,−N0/2,2N+d,−m
k2,−β0

,(7.28)

using the notation of Definition 6.1.

In particular, this theorem states that for (ϕ,ψ) ∈ Ωk1(STd) × Ωk2(STd), the Laplace trans-
form L(ϕ,ψ)(s) extends as a C∞ function in a neighborhood in C+ of any point z0 ∈ iR \
(±i
√

Sp(−∆−β0))14, where ∆−β0 = (∂x − iβ0)2 is the magnetic Laplacian acting on functions

on Td. This follows from the fact that bookkeeping the regularities in the proof below, we
may choose the regularity exponent k = inf(N0 − 2 − inf(k1, k2), N − 2 − inf(k1, k2) + d−1

2 )
and we see that k → +∞ when N,N0 → +∞. Moreover, when Re(s) > 0 goes to zero, then
y 7→ L(ϕ,ψ)(iy+0) makes sense as a tempered distribution obtained as boundary value of holomor-

phic function and our Theorem describes its singularity near any point in ±
√

Sp(−∆β0
) explicitly

in terms of the distributions Fα in (7.25). In particular, if d is odd, (7.26) gives an expansion
of the limit Laplace transform limx→0+ L(ϕ,ψ)(x + iy) in terms of the distributions 1

(y−i0−zj)m

and (y − zj)n log(y − i0 − zj), for zj ∈ ±
√

Sp(−∆β0
) and m,n ∈ Z+,m ≤ min{k1, k2} − d−1

2 .
If d is even, (7.26) is an expansion of the limit Laplace transform in terms of the distributions

1
(y−i0−zj)m/2

for zj ∈ ±
√

Sp(−∆β0) and m ∈ Z,m ≤ 2 min{k1, k2}−d+ 1. The coefficients in this

expansion are explicit; recall for instance that L±0,ω = 1. Note also that in (7.28) the regularity

of the resolvent up to the imaginary axis, given by the index k(N0, N), depends explicitly on the
anisotropic Sobolev regularity HN0,−N0/2,2N+d,−m/2 of the currents (ϕ,ψ). The bigger N0, N are,
the better the regularity of this background remainder term is.

Note finally that in case x̃ = 0 (and when computing the resolvent acting on functions), the
proof simplifies slightly and the estimate (7.28) of the remainder is better behaved in terms of
spaces and powers of Λ. As far as the proof is concerned, it is worth noticing that, as opposed to
the proofs of Theorems 6.4 and 7.4, we do actually make use of both non-stationary and
stationary phase estimates of Corollaries 4.3 and 4.6.

Proof of Theorem 7.8 . As in the proof of Proposition 7.7, we consider (ϕ,ψ) ∈ Ωk1(STd) ×
Ωk2(STd) and decompose Cϕ,T∗−x̃(ψ)(t, β0) as a sum of Clϕ,T∗−x̃(ψ)(t, β0) according to (3.18)–(3.19).

14Again this can be equivalently rephrased in terms of the spectrum of ∆β0
instead of that of ∆−β0

if we change

variables ξ → −ξ as in (5.4).
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Then decomposing Clϕ,T∗−x̃(ψ)(t, β0) according to (6.5), we are left with describing the terms

L
(l)
(ϕ,ψ)(s) in (7.22)–(7.23), which we again decompose accordingly as

L
(l)
(ϕ,ψ)(s) = L

(l,E)
(ϕ,ψ)(s) + L

(l,−1)
(ϕ,ψ) (s) + L

(l,0)
(ϕ,ψ)(s) + L

(l,1)
(ϕ,ψ)(s),(7.29)

with

L
(l,E)
(ϕ,ψ)(s) =

∫ ∞
0

χ∞(t)e−st
tl

l!
E

(l)
β0
|dt|, and

L
(l,j)
(ϕ,ψ)(s) =

∫ ∞
0

χ∞(t)e−st
tl

l!
C(l,j)(t)|dt|, for j ∈ {−1, 0, 1}.(7.30)

We now study each of these terms separately.

Firstly, we have using Item 3 of Lemma 7.6

L
(l,E)
(ϕ,ψ)(s) = E

(l)
β0

1

l!

∫ ∞
0

χ∞(t)tle−st|dt| =
E

(l)
β0

l!
Fχ∞,−l(s) =

E
(l)
β0

sl+1
+
E

(l)
β0

l!
H−l(s)(7.31)

where H−l is an entire function such that |∂ksH−l(s)| ≤ Cχ∞,−l,k(e−T1 Re(s) + 1) on C.

Secondly, we consider the term with L
(l,0)
(ϕ,ψ)(s) and proceed as in the proof of Theorem 6.4. The

index j = 0 means that we consider a good term in the nonstationary phase region. According to
Corollary 4.3, we have, for t ≥ C(χ0)‖dx̃‖L∞(Sd−1), all N ∈ Z+,

|C(l,0)(t)| ≤ CN
∑

ξ∈Zd\{β0}

(|ξ − β0|t)−N‖B(k2,l)
x̃,ξ (ϕ,ψ)‖WN,1(C0(ξ−β0)).

We now use that supp(χ∞) ⊂ [T0,+∞) with T0 ≥ max{1, C(χ0)‖dx̃‖L∞(Sd−1)}. Integrating

in (7.30), using Item 1 in Lemma 7.6, we deduce that L
(l,0)
(ϕ,ψ)(s) extends as a function in C∞(C+)

with∣∣∣∂ksL(l,0)
(ϕ,ψ)(s)

∣∣∣ ≤ CN0

∫ ∞
0

χ∞(t)tl+kt−N0e−Re(s)t|dt|
∑

ξ∈Zd\{β0}

‖B(k2,l)
x̃,ξ (ϕ,ψ)‖WN0,1(C0(ξ−β0))

|ξ − β0|N0

≤ CN0,k

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN0 (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN0 (C0(ξ−β0))

|ξ − β0|N0
,(7.32)

uniformly on Re(s) ≥ 0, as soon as N0 − k − l > 1. Recalling that l ≤ min{k1, k2}, this holds for
all N0, k such that N0 > k + min{k1, k2}+ 1.

Thirdly, we consider the term with L
(l,±1)
(ϕ,ψ) (s). According to (7.30) and the expression of

C(l,±1)(t) in (6.5), we have

L
(l,±1)
(ϕ,ψ) (s) =

∑
ξ∈Zd\{β0}

∫
Sd−1

(∫
R
χ∞(t)

tl

l!
e−steit(ξ−β0)·θ|dt|

)

× χ±1

(
θ · ξ − β0

|ξ − β0|

)
eiξ·x̃(θ)B

(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, |dθ|).

An extra decomposition in large and small Fourier modes.
Given Λ > 0, we recall that we always assume | Im(s)| ≤ Λ, and we split (further) this expression

according to

L
(l,±1)
(ϕ,ψ) (s) = L

(l,±1)
≤ (s) + L

(l,±1)
> (s), with

L
(l,±1)
≤ (s) :=

∑
ξ∈Zd,0<|ξ−β0|≤2Λ

· · · , and L
(l,±1)
> (s) :=

∑
ξ∈Zd,|ξ−β0|>2Λ

· · · .
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In other words, we decomposed the sum
∑
ξ into an infinite sum over large Fourier modes (i.e.

|ξ| far from |s|) and into a finite sum over small Fourier modes. We will apply stationary phase
estimates only to the finite sum and use integration by parts with the infinite sum to get decay in

ξ. Let us first consider the good term L
(l,±1)
> (s). Recalling the properties of χ±1 in Definition 4.1,

we have σ ∈ supp(χ±1) =⇒ |σ| ≥ ε0 > 0 with ε0 < 1/2, from which we infer that |θ · (ξ − β0)| ≥
ε0|ξ − β0| for (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
. For | Im(s)| ≤ Λ, and (θ, ξ) in the support

of χ±1

(
θ · ξ−β0

|ξ−β0|

)
and such that |ξ − β0| > 2Λ, we thus have a lower bound on the phase factor:

|s− i(ξ − β0) · θ| ≥ | Im(s)− (ξ − β0) · θ| ≥ (1− ε0)|ξ − β0| − | Im(s)| ≥ (1/2− ε0)|ξ − β0|.
According to Items 1, 2 and 5 of Lemma 7.6 applied with z = s − i(ξ − β0) · θ, α = −l and
β = −(l + k), we deduce that for any m, k ∈ Z+,∣∣∣∣∂ks ∫

R
χ∞(t)

tl

l!
e−steit(ξ−β0)·θ|dt|

∣∣∣∣ ≤ Cm,k
|s− i(ξ − β0)|m

≤ Cm,k
|ξ − β0|m

,

uniformly in Λ > 0, Re(s) ≥ 0, | Im(s)| ≤ Λ, |ξ−β0| > 2Λ, (θ, ξ) in the support of χ±1

(
θ · ξ−β0

|ξ−β0|

)
.

Moreover, this integral extends as a function in C∞(CΛ

+). As a consequence, L
(l,±1)
> also extends

as a function in C∞(CΛ

+) with, for s ∈ CΛ

+,∣∣∣∂ksL(l,±1)
> (s)

∣∣∣ ≤ Cm,k ∑
ξ∈Zd,|ξ−β0|>2Λ

1

|ξ − β0|m
∥∥∥B(k2,l)

x̃,ξ (ϕ,ψ)
∥∥∥
L1(C±1(ξ−β0))

≤ Cm,k
∑

ξ∈Zd,|ξ−β0|>2Λ

1

|ξ − β0|m
∥∥∥π(k1)

ξ (ϕ)
∥∥∥
L2(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
L2(C±1(ξ−β0))

.(7.33)

We next consider the term L
(l,±1)
≤ (s), which we rewrite as

L
(l,±1)
≤ (s) :=

∑
ξ∈Zd,0<|ξ−β0|≤2Λ

∫
R
χ∞(t)

tl

l!
e−stI

(±1)

B
(k2,l)

x̃,ξ (ϕ,ψ)
(ξ − β0, t)|dt|,(7.34)

where I
(±1)
F (ξ − β0, t) is defined in (4.2). We then use the asymptotic expansion in Corollary 4.6

which yields, with P±j,l,ξ[ϕ,ψ] defined in (7.27),

I
(±1)

B
(k2,l)

x̃,ξ (ϕ,ψ)
(ξ − β0, t) =

N−1∑
j=0

e±it|ξ−β0|

(t|ξ − β0|)
d−1

2 +j
P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)
+
R±N [ϕ,ψ](ξ, t)

tN+ d−1
2

,

where

|R±N [ϕ,ψ](ξ, t)| ≤ CN |ξ − β0|N+ d+1
2 ‖B(k2,l)

x̃,ξ (ϕ,ψ)‖W 2N+d,1(C±1(ξ−β0))(7.35)

(except if x̃ = 0, in which case this remainder is much better behaved in terms of ξ and it is not
necessary to split this again). Note that when x̃ is non zero, the remainder in the stationary phase
estimates has good decay properties in the t variable but not in ξ, but this is not of our concern
since the extra decomposition involves only a finite sum

∑
|ξ−β0|62Λ. Coming back to (7.34), we

have obtained

L
(l,±1)
≤ (s) =

c±d
l!

N−1∑
j=0

Tj(s) + RN (s),(7.36)

where

T±j (s) =
∑

ξ∈Zd,0<|ξ−β0|≤2Λ

(∫
R+

χ∞(t)
e−st±it|ξ−β0|

t
d−1

2 +j−l
|dt|

)
1

|ξ − β0|
d−1

2 +j
P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)
,

R±N (s) =
∑

ξ∈Zd,0<|ξ−β0|≤2Λ

∫
R+

χ∞(t)
R±N [ϕ,ψ](ξ, t)

tN+ d−1
2 −l

e−st|dt|.
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According to Items 1 and 2 of Lemma 7.6 and the uniform in t estimate in (7.35), R±N extends as

a function in Ck(CΛ

+) as soon as N + d−1
2 − l − k > 1 (which, recalling l ≤ min{k1, k2}, holds for

all l if N, k are such that N > k + min{k1, k2}+ 1− d−1
2 ), with the estimate for m ≥ 0

(7.37)
∣∣∂ksR±N (s)

∣∣ ≤ CN,k ∑
ξ∈Zd,0<|ξ−β0|≤2Λ

|ξ − β0|N+ d+1
2 ‖B(k2,l)

x̃,ξ (ϕ,ψ)‖W 2N+d,1(C±1(ξ))

≤ CN,m,kΛ2m+N+ d+1
2

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
H2N+d(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
H2N+d(C±1(ξ−β0))

|ξ − β0|2m
.

Then, we have

T±j (s) =
∑

ξ∈Zd,0<|ξ−β0|≤2Λ

Fχ∞, d−1
2 +j−l

(
s∓ i|ξ − β0|

) 1

|ξ − β0|
d−1

2 +j
P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)
,

where the singularity of s 7→ Fχ∞, d−1
2 +j−l

(
s ∓ i|ξ − β0|

)
near s = ±i|ξ − β0| is described in

Items 3-4-6-7 of Lemma 7.6, namely:

Fχ∞, d−1
2 +j−l(z) = F d−1

2 +j−l(z) +H d−1
2 +j−l(z),

with Fα defined in (7.24), and Hα are entire functions whose derivatives are uniformly bounded by

a constant times 〈z〉 d−1
2 on Re(s) ≥ −1. Moreover, the terms T±j (s) have a limit limx→0+ T±j (x+iy)

in S ′ since the terms Fα have boundary value distributions by Lemma 7.6 defined by (7.25). This
allows us to rewrite Tj(s) as

T±j (s) =
∑

ξ∈Zd,0<|ξ−β0|≤2Λ

F d−1
2 +j−l

(
s∓ i|ξ − β0|

) 1

|ξ − β0|
d−1

2 +j
P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)
+ R̃±j [ϕ,ψ](s),

where

R̃±j [ϕ,ψ](s) =
∑

ξ∈Zd,0<|ξ−β0|≤2Λ

H d−1
2 +j−l

(
s∓ i|ξ − β0|

) 1

|ξ − β0|
d−1

2 +j
P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)
.

The function R̃±j is holomorphic on Re(s) > −1. Moreover, recalling (7.27), the fact that the

operators L±
j,
ξ−β0
|ξ−β0|

are of order 2j, and using a Sobolev embedding, this can be estimated as

follows, for s ∈ CΛ

+ ∩ {|Re(s)| ≤ 1},

∣∣∣∂ks R̃±j [ϕ,ψ](s)
∣∣∣ .k 〈Λ〉 d−1

2

∑
ξ∈Zd,0<|ξ−β0|≤2Λ

∣∣∣∣L±j, ξ−β0
|ξ−β0|

(eiξ·x̃(·)B
(k2,l)
x̃,ξ (ϕ,ψ))

(
± ξ−β0

|ξ−β0|

)∣∣∣∣
|ξ − β0|

d−1
2 +j

.k 〈Λ〉
d−1

2

∑
ξ∈Zd,0<|ξ−β0|≤2Λ

∥∥∥eiξ·x̃(·)B
(k2,l)
x̃,ξ (ϕ,ψ)

∥∥∥
W 2j,∞(C±1(ξ−β0))

|ξ − β0|
d−1

2 +j

.k 〈Λ〉
d−1

2

∑
ξ∈Zd,0<|ξ−β0|≤2Λ

〈ξ〉2j

|ξ − β0|
d−1

2 +j

∥∥∥B(k2,l)
x̃,ξ (ϕ,ψ)

∥∥∥
W 2j+d,1(C±1(ξ−β0))

,

which can be bounded one more time using the Cauchy-Schwarz inequality in terms of the norms
of ϕ and ψ. This yields actually a better bound than the estimate (7.37) we already have on R±N .

Coming back to the definition of L
(l)
(ϕ,ψ) in (7.29) and collecting (7.31), (7.32), (7.33), (7.36),

(7.37) together with the last three lines, we obtain that if N + d−1
2 − l − k > 1, N0 − k − l > 1,
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and m ≥ 0 , then the function

R
(l,N)
(ϕ,ψ)(s) := L

(l)
(ϕ,ψ)(s)−

E
(l)
β0

sl+1

−
∑
±

N−1∑
j=0

∑
ξ∈Zd,0<|ξ−β0|≤2Λ

1

l!

F d−1
2 +j−l

(
s∓ i|ξ − β0|

)
|ξ − β0|

d−1
2 +j

P±j,l,ξ[ϕ,ψ]

(
± ξ − β0

|ξ − β0|

)

extends as R
(l,N)
(ϕ,ψ) ∈ C

k(CΛ

+) with, for s ∈ CΛ

+ with Re(s) ≤ 1,

∣∣∣∂ksR(l,N)
(ϕ,ψ)(s)

∣∣∣ ≤ CN0,k

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
HN0 (C0(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
HN0 (C0(ξ+β0))

|ξ − β0|N0

+ CN,m,kΛ2m+N+ d+1
2

∑
ξ∈Zd\{β0}

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
H2N+d(C±1(ξ−β0))

∥∥∥π(k2)
−ξ (ψ)

∥∥∥
H2N+d(C±1(ξ+β0))

|ξ − β0|2m

≤ CN0,N,m,kΛ2m+N+ d+1
2 ‖ϕ‖HN0,−N0/2,2N+d,−m

k1,β0

‖ϕ‖HN0,−N0/2,2N+d,−m
k2,−β0

,

where we have used the notation of Definition 6.1. When collecting all terms in (7.22)–(7.23) this

includes the statement of the theorem as R
(N,Λ)
(ϕ,ψ) (s) =

∑min{k1,k2}
l=0 R

(l,N)
(ϕ,ψ)(s). �

7.3. Terms near zero in the Mellin and Laplace transforms. To conclude the proofs of
Theorems 2.2 and 2.3 (together with their generalization to the case of forms/currents) it remains
to describe the properties of the part of the integrals involving χ0 = 1− χ∞:

Proposition 7.9. Let T1 ≥ 1, assume that χ0 ∈ C∞c (R) has supp(χ0) ⊂ [−T1, T1], and let
σ,N ∈ R. Consider the operator functions

AM : s 7→
∫ ∞

1

t−sχ0(t)e−tVβ0 |dt| and AL : s 7→
∫ ∞

0

e−stχ0(t)e−tVβ0 |dt|.

Then, there exists C > 0 such that for all (k1, k2) with k1 + k2 = 2d − 1, for every (ϕ,ψ) ∈
Hσ,N,σ,Nk1,β0

×H−σ,−N,−σ,−Nk2,−β0
,

AM,ϕ,ψ : s 7→
∫
STd

ϕ ∧AM(s)T∗−x̃(ψ), AL,ϕ,ψ : s 7→
∫
STd

ϕ ∧AL(s)T∗−x̃(ψ)

are entire functions satisfying for all s ∈ C,

|AM,ϕ,ψ(s)| ≤ CT
−Re(s)+d
1 + 1

〈Re(s)〉
‖ϕ‖Hσ,N,σ,Nk1,β0

‖ψ‖H−σ,−N,−σ,−Nk2,−β0

,

|AL,ϕ,ψ(s)| ≤ C e
−T1 Re(s) + 1

〈Re(s)〉
‖ϕ‖Hσ,N,σ,Nk1,β0

‖ψ‖H−σ,−N,−σ,−Nk2,−β0

.

Proof. We prove the result for AM,ϕ,ψ(s); the proof for AL,ϕ,ψ(s) being the same. We start with
the same decomposition as in (7.10)-(7.11), namely

AM,ϕ,ψ(s) =

min{k1,k2}∑
l=0

A
(l)
M,ϕ,ψ(s), with

A
(l)
M,ϕ,ψ(s) =

∫ ∞
1

χ0(t)t−sClϕ,T∗−x̃(ψ)(t, β0)|dt|

=

∫ ∞
1

χ0(t)t−s
tl

l!

∑
ξ∈Zd

∫
Sd−1

eit(ξ−β0)·θeiξ·x̃(θ)B
(k2,l)
x̃,ξ (ϕ,ψ)(θ) VolSd−1(θ, |dθ|)|dt|,
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which is an entire function as χ0 is compactly supported in R. We also have the rough bound∣∣∣A(l)
M,ϕ,ψ(s)

∣∣∣ ≤ Cl ∫ ∞
1

|χ0(t)|t−Re(s)+l
∑
ξ∈Zd

∫
Sd−1

∣∣∣B(k2,l)
x̃,ξ (ϕ,ψ)(θ)

∣∣∣VolSd−1(θ, |dθ|)|dt|.

The conclusion of the proposition follows∣∣∣A(l)
M,ϕ,ψ(s)

∣∣∣ ≤ CT−Re(s)+l+1
1 + 1

〈Re(s)〉
∑
ξ∈Zd
〈ξ〉N

∥∥∥π(k1)
ξ (ϕ)

∥∥∥
Hσ(Sd−1)

〈ξ〉−N
∥∥∥π(k2)
−ξ (ψ)

∥∥∥
H−σ(Sd−1)

,

where we have used (3.22), and the Cauchy-Schwarz inequality. �

8. Counting orthogeodesics

Now that we have given a precise description of the analytical properties of the geodesic vector
field, we are in position to derive, essentially as corollaries of this sharp analysis, the expected
properties of generalized Epstein zeta functions and Poincaré series, as well as some asymptotics
of counting functions. We follow the strategy of [DR21, §4]. Before that, we begin by introducing
a few conventions on convex sets of Rd in §8.1. Then, we introduce the notion of admissible man-
ifolds of Td and describe their geometric properties and their corresponding zeta functions in §8.2
and §8.3. In §8.4, following [DR21, §4], we define current of integration on their normal bundles
and we establish the connection between our zeta type functions and the analytical quantities ap-
pearing in the previous sections. Finally, in §8.5 to §8.8, we prove Theorems 1.2, 1.4, 1.6 and 1.7
from the introduction as well as the asymptotic formula (1.1).

8.1. Normal bundles to convex sets. Let K be a compact and convex subset of Rd with
smooth boundary ∂K. As for the case of Sd−1 discussed in §3.3, the boundary ∂K of a smooth
convex body K is naturally oriented by the outward normal. We define the unit normal bundle to
∂K as

N(∂K) :=
{

(x, θ) ∈ ∂K × Sd−1 : ∀v ∈ Tx∂K, θ · v = 0
}
.

Except when K is reduced to a point, this submanifold of Rd×Sd−1 has two connected components
and, in that case, we introduce the direct normal bundle to K as

N+(K) := {(x, θ) ∈ N(∂K) : θ is pointing outward K} ,

and the indirect normal bundle to K as N−(K) := N(∂K) \ N+(K). In the case where K is
reduced to a point, we set N+(K) = N(∂K) = N−(K).

Remark 8.1. Recall that the shape operator of the smooth hypersurface ∂K is the map

S(x) : v ∈ Tx∂K 7→ ∇vθ ∈ Tx∂K,

where x ∈ ∂K 7→ θ(x) ∈ N+,x(∂K) ⊂ Sd−1 and where ∇ is the (standard) covariant derivative
in Rd [Lee09, §4.2]. In particular, S(x) is the selfadjoint map associated with the second funda-
mental form of Σ and it is invertible if and only if ∂K has nonvanishing Gauss curvature [Lee09,
Def. 4.24]. If K is a stricly convex body (not reduced to a point), then ∂K has all its sectional
curvatures [Lee09, p.557] positive by definition (and thus nonvanishing Gaussian curvature). This
is equivalent to saying that all the eigenvalues of the shape operator are non zero and have the
same sign thanks to the Gauss curvature equation [Lee09, Eq. 4.10, p. 172].

If we suppose that K is strictly convex, then the Gauss map

(8.1) G : (x, θ) ∈ N+(K) 7→ θ ∈ Sd−1

is a diffeomorphism and there exists a smooth map xK : Sd−1 → Rd such that G−1(θ) = (xK(θ), θ).
The map xK is the inverse Gauss map. Note that this remains true when K = {x0} by letting
xK(θ) = x0. In both cases, it is natural to say that we can parametrize the convex set by the
normal.
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8.2. Admissible submanifolds. Recall that we denote by p : Rd → Td the map that associates
to a point x ∈ Rd its equivalence class [x] ∈ Td. In the following, we will need the following
admissibility property:

Definition 8.2. We say that Σ ⊂ Td is admissible if there exists a strictly convex and compact
subset K ⊂ Rd with smooth boundary such that

p(∂K) = Σ,

where ∂K = K \ K̊.

This definition includes the case where Σ is reduced to a point. We also observe that the
map p : ∂K → Td is a smooth immersion but it is not necessarily injective, i.e. Σ may have
selfintersection points. Using the inverse of the Gauss map (8.1), one can then define the unit
normal bundle to Σ as

N(Σ) :=
{

(x̃(θ) := p ◦ xK(θ),±θ) : θ ∈ Sd−1
}
.

As above, one can also introduce the direct normal bundle to Σ:

(8.2) N+(Σ) :=
{

(x̃(θ) := p ◦ xK(θ), θ) : θ ∈ Sd−1
}
,

and the indirect normal bundle

N−(Σ) :=
{

(x̃(θ) := p ◦ xK(θ),−θ) : θ ∈ Sd−1
}
.

Even if Σ is not a proper submanifold (as it may have selfintersection points), N(Σ) and N±(Σ)
are smooth, compact and embedded submanifolds of Td × Sd−1. Using the conventions of §5.3.1,
one has

Lemma 8.3. Let Σ ⊂ Td be admissible. Then, for every (x, θ) = (x̃(θ), θ) ∈ N±(Σ),

Tx̃(θ),θN+(Σ) =
{

(Dx̃(θ)v, v) : v ∈ Vx̃(θ),θ

}
⊂ RV (x̃(θ), θ)⊕Hx̃(θ),θ ⊕ Vx̃(θ),θ,(8.3)

Tx,θN±(Σ) ⊂ Hx,θ ⊕ Vx,θ,(8.4)

Tx,θSTd = RV (x, θ)⊕Hx,θ ⊕ Tx,θN±(Σ).(8.5)

In the terminology of symplectic geometry, (8.4) says thatN±(Σ) is a Legendrian submanifold as
its tangent space lies in the kernel of the Liouville contact form. Property (8.5) is a transversality
property, see Figure 4. It says that our unit normal bundle is never tangent to the horizontal
bundle inside STd. Recalling Remark 5.6, the horizontal bundle coincides with the stable and
unstable bundles in the case of flat tori. Hence, Property (8.5) agrees with the transversality
assumption appearing in Margulis’ works on Anosov flows [Mar04, Ch. 7].

Proof of Lemma 8.3. We start proving (8.4) and only discuss the case of N+(Σ) (the other case
can be handled similarly). We recall that N+(Σ) is defined in (8.2). In particular, the tangent
set to a point (x̃(θ), θ) is given by (8.3). Thus, in order to prove (8.4), we need to check that
Dx̃(θ)v ⊥ V (x̃(θ), θ) for every v ∈ Vx̃(θ),θ. To see this, we only need to discuss the case where
Dx̃(θ)v 6= 0. By construction, this means that DxK(θ)v 6= 0. By definition, such a vector is an
element in TxK(θ)∂K and thus orthogonal to θ · ∂x which is the outward normal to ∂K at xK(θ).
This implies that Dx̃(θ)v is orthogonal to V (x̃(θ), θ), hence the conclusion (8.4).

Finally, using the decomposition of the tangent space (8.3) one more time, these Legendrian
submanifolds verify the transversality property (8.5). �

8.3. Epstein zeta functions and Poincaré series for admissible submanifolds. Let now
Σ1 and Σ2 be two admissible subsets of Td and let σ1 and σ2 be two elements in {±}. Our goal in
the present section is to describe the set of times t ∈ R+ such that Nσ1

(Σ1) ∩ etV (Nσ2
(Σ2)) 6= ∅.

To this aim, we define, for t > 0,

Et(Σ1,Σ2) := Nσ1(Σ1) ∩ etV (Nσ2(Σ2)) ⊂ STd.(8.6)

Note that the orientations σi are implicit in this notation.
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Figure 4. Tangent space to N(Σ).

8.3.1. A priori bounds on the number of intersection points. The first basic statement concerns
finiteness of Et(Σ1,Σ2) together with the set of times t for which Et(Σ1,Σ2) is nonempty.

Lemma 8.4. There exists some T0 > 0 such that, for every t ≥ T0, Et(Σ1,Σ2) is a (possibly
empty) finite set. Moreover, setting

mΣ1,Σ2
(t) := ] Et(Σ1,Σ2) <∞, t ≥ T0,

for any [a, b] ⊂ [T0,+∞),

{t ∈ [a, b] : Et(Σ1,Σ2) 6= ∅} = {t ∈ [a, b] : mΣ1,Σ2
(t) 6= 0},

is as well a finite set.

Note that Lemma 1.1 is then a reformulation of Lemma 8.4. The above Lemma means that
after some time T0, all possible intersections are transverse and thus our counting problem is
well–posed. We can easily visualize this property as follows. When pushing a convex hypersurface
∂K1 by the geodesic flow, the reader has to imagine that, after some time T0, it will have all its
sectional curvatures (in the cover Rd it behaves more and more like a flat hypersurface) strictly
less than the sectional curvatures of ∂K2. This implies that the intersections occuring in STd of
the corresponding normal bundles will become transverse right after T0.

Proof of Lemma 8.4. Given t0 ∈ R+, one can always find some ε > 0 such that⋃
t∈(t0−ε,t0+ε)

etV (Nσ2
(Σ2))

is a smooth submanifold (with boundary) of dimension d inside STd. Moreover, thanks to (8.5)
and to (5.5), we know that, for t0 large enough, one can find ε > 0 such that, for every (x, θ) ∈
Nσ1

(Σ1) ∩ ∪t∈(t0−ε,t0+ε)e
tV (Nσ2

(Σ2)),

(8.7) Tx,θSTd = Tx,θNσ1
(Σ1)⊕ Tx,θ

(
∪t∈(t0−ε,t0+ε)e

tV (Nσ2
(Σ2))

)
.

In other words, the two submanifolds are transversal and, by compactness, they intersect at
only finitely many points. Note that the transversal intersection implies that the boundary of
∪t∈(t0−ε,t0+ε)e

tV (Nσ2
(Σ2)) does not meet Nσ1

(Σ1). �
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We now provide with an a priori polynomial upper bound on mΣ1,Σ2
(t). This is essential to

ensure our Epstein functions and Poincaré series have non empty convergence domains.

Lemma 8.5. Let Σ1 and Σ2 be two admissible subsets of Td. Then, for T0 as in Lemma 8.4,
there is C0 > 0 such that, for every T ≥ T0,∑

T≤t≤T+1

mΣ1,Σ2
(t) ≤ C0T

d−1.

In particular, as T → +∞, ∑
T0≤t≤T

mΣ1,Σ2
(t) = O(T d).

Proof. In order to obtain such an upper bound, it is more convenient to lift the problem to Rd
and to recall that the lift of Σj is by definition the smooth boundary of a compact and strictly
convex set. As a consequence, we have for any t > 0

mΣ1,Σ2
(t) = ] Et(Σ1,Σ2) = ] Et(∂K1, ∂K2),

where

Et(∂K1, ∂K2) :=
{

(x, θ) ∈ Nσ1(∂K1 + 2πZd) : (x− tθ, θ) ∈ Nσ2(∂K2)
}
⊂ SRd.

Recalling that, when lifting the problem to Rd,
N±(∂Kj) :=

{
(x̃j(θ), σjθ) : θ ∈ Sd−1

}
=
{

(x̃j(σjθ), θ) : θ ∈ Sd−1
}
,

we notice that
(x, θ) ∈ Et(∂K1, ∂K2) =⇒ tθ + x̃1(σ1θ)− x̃2(σ2θ) ∈ 2πZd,

whence

] Et(∂K1, ∂K2) = ]

{
θ ∈ Sd−1 : t

(
θ +

x̃1(σ1θ)− x̃2(σ2θ)

t

)
∈ 2πZd

}
.

For t ≥ 1, we have
∣∣∣ x̃1(σ1θ)−x̃2(σ2θ)

t

∣∣∣ ≤ C0 so that∑
T≤t≤T+1

] Et(∂K1, ∂K2) ≤ ]
(
2πZd ∩ CT

)
≤ C VolRd(CT ), with CT = B(0, T+1+C0)\B(0, T−C0).

We finally deduce that, for T0 > 0 as in Lemma 8.4,∑
T≤t≤T+1

mΣ1,Σ2
(t) =

∑
T≤t≤T+1

] Et(∂K1, ∂K2) ≤ CT d−1, T ≥ T0,

which concludes the proof of the lemma. �

8.3.2. Generalized Epstein zeta functions and Poincaré series. We fix T0 > 0 large enough to
ensure that Lemma 8.4 (and thus 8.5) apply. We also fix β = β0 + df with β0 ∈ H1(Td,R). In
particular, for such a T0 and such a β, we can define, for Re(s) > d, the generalized Epstein zeta
function as

ζβ(K2,K1, s) :=
∑

t>T0:Et(Σ1,Σ2)6=∅

t−s

 ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0
−t β(V )(x+sθ,θ)|ds|

 ,(8.8)

where Et(Σ1,Σ2) is defined in (8.6) and is a finite set according to Lemma 8.4. Lemma 8.5 ensures
that this defines a holomorphic function in {Re(s) > d}.

Similarly, for Re(s) > 0, we define the generalized Poincaré series as

Zβ(K2,K1, s) :=
∑

t>T0:Et(Σ1,Σ2) 6=∅

e−st

 ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0
−t β(V )(x+sθ,θ)|ds|

 .(8.9)

Again Lemma 8.5 shows that this defines a holomorphic function in {Re(s) > 0}.

Remark 8.6. Except for the role of K1 and K2 that are reversed compared with the introduction,
these two functions are exactly the two series defined in (1.2) and (1.4) in the introduction.
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8.4. Currents of integration on admissible subsets. From this point on, we shall always
suppose that Σ is admissible in the sense of Definition 8.2. We can choose to orient the submanifold
N±(Σ) with the volume form VolSd−1(θ, dθ). Once we have fixed an orientation on N±(Σ), we can
define the current of integration [N±(Σ)] on this (d− 1)-submanifold [Sch66, p.326-327], i.e.

∀ψ ∈ Ωd−1(STd), 〈[N±(Σ)], ψ〉 :=

∫
N±(Σ)

ψ.

This is the de Rham current of integration on the normal bundle associated to our convex set.
Its expression in the Gauss coordinates (8.2) is given by (3.6) thanks to our choice of orientation
of N±(Σ). More precisely, one has

[N+(Σ)](x, θ, dx, dθ) = δ0(x− x̃(θ))

d∧
i=1

d (xi − x̃i(θ)) ,

and

[N−(Σ)](x, θ, dx, dθ) = δ0(x− x̃(−θ))
d∧
i=1

d (xi − x̃i(−θ)) .

In any case, this is a current of degree d, i.e. an element of D′d(STd). Finally, we recall from (3.5)
that, in Fourier series, one has the following representation:

(8.10) [N±(Σ)](x, dx, θ, dθ) =
1

(2π)
d
2

∑
ξ∈Zd

eξ(x− x̃(±θ))
d∧
i=1

d (xi − x̃i(±θ)) .

Remark 8.7. In the case where Σ is reduced to a point x0, one has in fact the simple expression:

[Sx0
Td] = [N±(x0)] = δ0(x− x0)dx1 ∧ . . . ∧ dxd = δ2πZd(x− x0, dx).

8.4.1. Wavefront sets of the currents of integration. The following lemma studies the wavefront
set of this current in view of pairing two such objects.

Lemma 8.8. For any admissible subset Σ of Td, we have
(8.11)
WF([N±(Σ)])∩T ∗(x,θ)ST

d = E∗0 (x̃(±θ), θ)⊕
{(

0, ξ,∓(dx̃(±θ))T ξ
)

: ξ ∈ H∗
}
⊂ (E∗0 ⊕H∗ ⊕ V∗) (x̃(±θ), θ).

Moreover, for any conical neighborhood Γ of E∗0 ⊕ V∗, there exists T0 > 0 such that, for every
T ≥ T0, the wavefront set of e−TV ∗[N±(Σ)] = [eTV (N±(Σ))] satisfies

WF
(
e−TV ∗[N±(Σ)]

)
⊂ {(x, θ; ξ) ∈ T ∗STd : e−TV (x, θ) ∈ N±(Σ), ξ ∈ Γ(x, θ)}.(8.12)

In particular, if Σ1 and Σ2 are two admissible subsets and if σ1, σ2 ∈ {±}, then one can find
T0 > 0 such that, for every T ≥ T0,

WF ([Nσ1
(Σ1)]) ∩WF

(
e−TV ∗[Nσ2

(Σ2)]
)
⊂ E∗0 .(8.13)

Proof. The wavefront set of the current [N±(Σ)] is given according to [Hör03, Th. 8.1.5]15 by the
conormal bundle to N±(Σ), namely

N ∗(N±(Σ)) :=
{

(x, θ; ξ) ∈ T ∗STd \ 0 : (x, θ) ∈ N±(Σ), ∀v ∈ Tx,θN±(Σ), ξ(v) = 0
}
.

In particular, thanks to (8.4), the fiber N ∗(x,θ)(N±(Σ)) ⊂ T ∗(x,θ)ST
d over (x; θ) always contains the

annihilator E∗0 (x, θ) of H ⊕ V(x, θ). Using the description of Tx,θN+(Σ) in (8.3) in the coordi-
nates (8.2), this wavefront set can in fact be identified as

N ∗(x,θ)(N±(Σ)) = E∗0 (x̃(±θ), θ)⊕
{(

0, ξ,∓(dx̃(±θ))T ξ
)

: ξ ∈ H∗
}
⊂ (E∗0 ⊕H∗ ⊕ V∗) (x̃(±θ), θ),

whence the first statement (8.11). Hence, thanks to (5.6) and to [Hör03, Th. 8.2.4] (see also [BDH16,
Prop. 5.1]), we deduce the second statement (8.12). The last statement (8.13) follows from the first
by choosing Γ some sufficiently small conical neighborhood of E∗0⊕V∗ so that (WF ([Nσ1

(Σ1)]) ∩ Γ) ⊂
E∗0 . �

15The proof in that reference is given for a linear space and it can be transfered to submanifolds through a local
chart thanks to [Hör03, Th. 8.2.4]. See Example 8.2.5 in that reference.
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8.4.2. Representation of truncated series using currents. Our goal is to use our fine analysis of
the geodesic vector field to study the continuation of these series beyond their natural halfplane
of definition. As in [DR21, Prop. 4.10], one starts with the following result, relating the above
discrete sums on intersection points between two submanifolds with the geodesic flow acting on
currents.

Lemma 8.9. Let Σ1 and Σ2 be two admissible subsets of Td and let σ1 and σ2 be elements in
{±}. Let β = β0 + df be a closed one-form with β0 ∈ H1(Td,R) and f ∈ C∞(Td,R). There
exists T0 > 0 large enough such that, for every T ≥ T0, one can find t0 > 0 such that, for every
χ ∈ C∞c ((T − t0,+∞)),

IT (χ) := (−1)d−1

∫
STd

[Nσ1(Σ1)] ∧
∫
R
χ(t)e−tVβ ιV ([Nσ2(Σ2)])|dt|

is well defined and is equal to

∑
t>T−t0:Et(Σ1,Σ2)6=∅

χ(t)

 ∑
(x,θ)∈Et(Σ1,Σ2)

εt(x)e−i
∫ 0
−t β(V )(x+τθ,θ)|dτ |

 ,

where εt(x) = 1 if

T(x,θ)Nσ1(Σ1)⊕ RV (x, θ)⊕D(etV )(e−tV (x, θ))
(
Te−tV (x,θ)Nσ2(Σ2)

)
,

has the same orientation as STd and εt(x) = −1 otherwise.

This result follows from [DR21, Lemma 4.11] together with Lemma 8.8. Here, [N±(Σ1)] is an
element in D′d(STd) and

∫
R χ(t)e−tV ιV ([N+(Σ2)])|dt| is an element in D′d−1(STd). The key point

in the argument of [DR21] is that the wavefront sets of these two currents are disjoint so that we
can take their wedge product. Here, the wavefront set of [Nσ1

(Σ1)] is given by (8.11) while the
wavefront set of

∫
R χ(t)e−tV ιV ([Nσ2

(Σ2)])|dt| is contained in a small conical neighborhood of V∗
thanks to Lemma 8.8 and to the integration over time. See [DR21, Lemma 4.11] for more details.
We would like to emphasize that the fact that this lemma states that the dynamical correlator

IT : t 7→ (−1)d−1

∫
STd

[Nσ1
(Σ1)] ∧ e−tVβ ιV ([Nσ2

(Σ2)])

is in fact a distribution of the variable t which writes as a weighted sum of δ. The reader
should think of the distribution IT as some kind of weighted counting measure and the Laplace
transform of IT is nothing but the Poincaré series.

In order to make the connection with the above series, we need to clarify the values of εt(x) in
our case:

Lemma 8.10. There exists T0 > 0 such that, for every t ≥ T0, εt(x) = 1.

Proof. Recall that we oriented N±(Σ1) with the d−1-form VolSd−1(θ, dθ), or equivalently with the
polyvector (e1(θ) · ∂θ)∧ . . .∧ (ed(θ) · ∂θ) where (θ, e1(θ), . . . , ed(θ)) is a direct orthonormal basis of
Rd. The same holds true for Σ2 but we need to take into account the action of the tangent map
as given by (5.5) which transforms this polyvector into

(e1(θ) · ∂θ + te1(θ) · ∂x) ∧ . . . ∧ (ed(θ) · ∂θ + ted(θ) · ∂x) .

Finally, RV (x) is oriented through the vector θ · ∂x and it yields the following orientation

td−1 (e1(θ) · ∂θ) ∧ . . . ∧ (ed(θ) · ∂θ) ∧ θ · ∂x ∧ (e1(θ) · ∂x) ∧ . . . ∧ (ed(θ) · ∂x) ,

which is the same as the orientation on STd up to the factor (−1)d(d−1) = 1. �

Letting x̃±j (θ) = x̃j(±θ), we derive the following corollary.
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Corollary 8.11. There is T0 > 0 and t0 ∈ (0, T0) such that for every χ ∈ C∞c ((T0− t0,+∞)) with
χ = 1 on [T0,+∞), we have

(8.14)
∑

t>T0−t0

χ(t)

 ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0
−t β(V )(x+τθ,θ)|dτ |


= (−1)d−1

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧

∫
R
χ(t)

(
e−tVβ0 T∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|,

where we recall that the notation (δ2πZd) stands for a current of degree d.

We now recognize in the right hand-side the quantities that we studied in Sections 4 to 7.

Proof. According to Lemma 8.10, for T0 > 0 large enough and recalling (3.14), one deduces from
Lemma 8.9 that, for every χ ∈ C∞c ((T0 − t0,+∞)),

(8.15)
∑

t>T0−t0

χ(t)

 ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0
−t β(V )(x+τθ,θ)|dτ |


= (−1)d−1

∫
STd

e−if [Nσ1(Σ1)] ∧
∫
R
χ(t)e−tVβ0 ιV (eif [Nσ2(Σ2)])|dt|.

Thanks to (8.10), we can write, for j = 1, 2,

e±if [Nσj (Σj)] = e±if(x)T∗−x̃σjj
(δ2πZd) = e±if(x̃

σj
j )T∗−x̃σjj

(δ2πZd).

Combined with (3.11) and (3.12) in Lemma 3.12 , this allows to rewrite (8.15) as (8.14). �

8.5. Asymptotic of the counting function. As a first application of this construction, we will
refine the a priori bounds obtained in Lemma 8.5 and prove formula (1.1) from the introduction.
Namely, we fix two admissible submanifolds Σ1,Σ2 ⊂ Td and σ1, σ2 ∈ {±}. We want to compute
a precise asymptotic formula for∑

T0≤t≤T

mΣ1,Σ2(t) =
∑

T0≤t≤T

]
(
Nσ1(Σ1) ∩ etV (Nσ2(Σ2))

)
.

Theorem 8.12. Let Σ1,Σ2 ⊂ Td be two admissible submanifolds, let σ1, σ2 ∈ {±}. Then, there
exists T0 > 0 such that, as T → +∞∑

T0≤t≤T

] Et(Σ1,Σ2) =
π
d
2 T d

(2π)dΓ
(
d
2 + 1

) +O(T d−1).

Even if it may not be the simplest manner to prove such a result, this discussion illustrates how
our current-theoretical approach to this problem can be implemented. An interesting question
would be to understand how the remainder term depends on Σ1 and Σ2. See [vdC20, Hla50,
Her62b, Ran66, CdV77] for such results in the context of dilations of convex subsets. We do
not pursue this here and we rather focus on the application of this approach to zeta functions
associated with our families of orthogeodesics.

Proof. First fix T0 > 0 large enough so that all the above lemmas apply. In order to study this
quantity, we take β = 0 in (8.14) and we choose appropriate cutoff functions χ approximating
the characteristic function of the interval [T0, T ]. More precisely, we fix T > 0 (large enough)
and t0 > 0 (small enough). We define two smooth cutoffs functions χ±T ∈ C∞c (R, [0, 1]) with the
following properties:

• χ+
T is equal to 1 on [T0, T ], it is compactly supported on (T0−t0, T+t0), it is nonincreasing

on [T, T + t0].
• χ−T is equal to 1 on [T0 +t0, T−t0], it is compactly supported on (T0, T ), it is nonincreasing

on [T − t0, T ].



LENGTH ORTHOSPECTRUM OF CONVEX BODIES ON FLAT TORI 61

With such functions at hand, one has

(8.16)
∑

t>T0−t0

χ−T (t)mΣ1,Σ2
(t) ≤

∑
T0≤t≤T

mΣ1,Σ2
(t) ≤

∑
t>T0−t0

χ+
T (t)mΣ1,Σ2

(t).

Hence, thanks to (8.14), we have to study∑
t>T0−t0

χ±T (t)mΣ1,Σ2
(t) = (−1)d−1

∫
STd

δ2πZd ∧
∫
R
χ±T (t)

(
e−tVT∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|,

which can be analyzed using Theorem 6.4. Indeed, the cutoff functions χ±T are compactly supported
which implies that they satisfy the assumption of this Theorem. We just have to pay some attention
to their dependence in T as T → +∞. More precisely, we need to apply this Theorem with k1 = d,
k2 = d− 1 and

ϕ = δ2πZd , ψ = ιV (δ2πZd).

We have

ϕ ∈ H+∞,− d2−,+∞,−
d
2−

d,0 :=
⋂

ε∈(0,1]

H
1
ε ,−

d
2−ε,

1
ε ,−

d
2−ε

d,0 , and ψ ∈ H+∞,− d2−,+∞,−
d
2−

d−1,0 .(8.17)

Thus, we are left with analyzing the size of the different integrals involving χ±T . First, for 0 ≤ l ≤
d− 1, one has

T l+1

l + 1
+O(1) ≤

∫
R
χ+
T (t)tl|dt| ≤ (T + t0)l+1

l + 1
+O(1),

and
(T − t0)l+1

l + 1
+O(1) ≤

∫
R
χ−T (t)tl|dt| ≤ T l+1

l + 1
+O(1),

where the constants in the remainders are independent of T . Similarly, we can treat the re-
mainder terms involving terms of the type ‖(χ±T,δtl)(2d+1)‖L1(R+) = O(T d−1). Finally, the term

‖χ±T,δtl−(2d+1)‖L1(R+) is bounded uniformly in terms of T . Gathering these bounds, we find that∫
STd

δ2πZd ∧
∫
R
χ±T (t)

(
e−tVT∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|

=
T d

d!

∫
Sd−1

B
(d−1,d−1)

x̃
σ2
2 −x̃

σ1
1 ,0

(δ2πZd , ιV (δ2πZd))VolSd−1(θ, dθ) +O(T d−1).

Recall now that B
(d−1,d−1)

x̃
σ2
2 −x̃

σ1
1 ,0

(δ2πZd , ιV (δ2πZd)) is defined in (3.20) as

B
(d−1,d−1)

x̃
σ2
2 −x̃

σ1
1 ,0

(δ2πZd , ιV (δ2πZd))VolSTd(θ, dx, dθ)

= (−1)d−1π
(d)
0 (δ2πZd) ∧T∗

x̃
σ1
1 −x̃

σ2
2

Vd−1π
(d−1)
0 (ιV (δ2πZd))

= (−1)d−1(2π)−d(d− 1)!VolSTd(θ, dx, dθ),

after having used (3.4)–(3.5) together with Lemma 3.11. Inserting this expression in the above

calculation and recalling that Vol(Sd−1) = 2πd/2

Γ(d/2) = dπd/2

Γ(d/2+1) concludes the proof of the theorem.

�

8.6. Continuation of generalized Epstein zeta functions. We now aim at proving The-
orem 1.2. Using the conventions of this paragraph, this amounts to studying the meromorphic
properties of the generalized Epstein zeta function defined in (8.8). As an application of Lemma 8.5,
it defines a holomorphic function on {Re(s) > d} and we want to understand its possible exten-
sion beyond the threshold Re(s) > d. To that aim, the first step is to use Lemma 8.9 to interpret
ζΣ1,Σ2,T0

(s) as the Mellin transform of a correlation function of appropriate currents, and then
make use of Theorem 7.4.
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Lemma 8.13. There is T ∗0 > 0 such that for all T0 > T ∗0 , one can find χ∞ verifying assump-
tion (7.1) with t0 > 0 small enough such that

ζβ(K2,K1, s) = (−1)d−1

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂Ms (−iVβ0

) T∗
x̃
σ1
1 −x̃

σ2
2
ιV (δ2πZd)|dt|,(8.18)

where χ̂Ms (−iVβ0
) was defined in (7.2).

In a more compact manner and using the conventions of Theorem 7.4 with x̃ = x̃σ2
2 − x̃

σ1
1 , the

right hand-side of (8.18) can be rewritten as

M(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ

2πZd ,ιV (δ
2πZd )

)(s)
=

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂Ms (−iVβ0

) T∗
x̃
σ1
1 −x̃

σ2
2
ιV (δ2πZd)|dt|.

Proof. First, we fix a smooth nondecreasing function χ∞ which is equal to 1 on [T0 + t0,∞) and to
0 on (−∞, T0] for some small enough t0 > 0 to ensure that mΣ1,Σ2

(t) = 0 for all t ∈ (T0, T0 + t0].
We also fix a smooth function χ ∈ C∞c ((−2, 2), [0, 1]) such that

∀t ∈ R,
∑
j∈Z

χ(t+ j) = 1.

We let χ∞,j(t) := χ∞(t)χ(t+ j). Using (8.14), this leads to the following decomposition

(8.19) ζβ(K2,K1, s) =
∑
j∈Z

∑
t>T0

χ∞,j(t)t
−s

 ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0
−t β(V )(x+τθ,θ)|dτ |


= (−1)d−1

∑
j∈Z

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧

∫
R
χ∞,j(t)t

−s
(
e−tVβ0 T∗

x̃
σ1
1 −x̃

σ2
2

)
ιV (δ2πZd)|dt|.

We now fix some N large enough in order to apply Theorem 6.4 (with N = M) to x̃ = x̃2 − x̃1,
to k1 = d, k2 = d− 1, and to the currents

ϕ = ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∈ D′d(STd), and ψ = ιV (δ2πZd) ∈ D′d−1(STd).

In order to apply this theorem, we have (in practice) to split the sum over j into a finite sum and
an infinite one corresponding to the cutoff functions χ∞(t)χ(t + j) in the range of application of
this statement. We also have to control the growth of several integrals, namely for 0 ≤ l ≤ d− 1
and for Re(s) large enough,∫

R
χ∞(t)χ(t+ j)t−s+l|dt| = O(j−s+l),

∫
R
χ∞(t)χ(t+ j)t−s+l−N |dt| = O(j−s+l−N ),

and ∫
R

∣∣∣∣ dNdtN (χ∞(t)χ(t+ j)t−s+l
)∣∣∣∣ |dt| = O(j−s+l).

These bounds allow to apply Theorem 6.4 for Re(s) large enough and thus the sums under con-
sideration converge in the anisotropic Sobolev spaces of Section 6.1 as long as N is large enough
to have ϕ and ψ in that space. �

The next step is to make use of Theorem 7.4 to deduce the meromorphic continuation.

Theorem 8.14. If β0 /∈ Zd, the function ζβ(K2,K1, s) extends holomorphically to the whole
complex plane. If β0 ∈ Zd, the function extends meromorphically to the whole complex plane with
(at most) simple poles at s = 1, . . . , d whose residues are given by

(8.20) Ress=`(ζβ(K2,K1, s)) =
(−1)d−1

(`− 1)!
E

(`−1)
β0

, for ` ∈ {1, . . . , d},

with

(8.21) E
(`−1)
β0

=
(−1)d+`

(2π)2d

∫
STd

e
i
∫
x̃
σ1
1 (θ)→x̃σ2

2 (θ)
β
dx1∧. . .∧dxd∧ιV V`−1T∗

x̃
σ1
1 −x̃

σ2
2

(dx1 ∧ . . . ∧ dxd) .
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Recall that, for β0 = 0, we used the convention that E
(`)
0 = 0 for every 1 ≤ ` ≤ d. This

lemma proves in particular Theorem 1.2 as a particular case (see Remark 8.6). In order to prove
Theorem 1.3, we are left with giving an expression of these residues in terms of geometric quantities
associated with our convex subsets. This will be the topic of Section 9.

Remark 8.15. Before getting to this, let us already observe that the residue at s = d can be written
explicitly as

1

(2π)d

∫
Sd−1

e
i
∫
x̃
σ1
1 (θ)→x̃σ2

2 (θ)
β
VolSd−1(θ, |dθ|).

Moreover, if x̃σ1
1 = x̃σ2

2 or if Σ1 and Σ2 are both points, all these residues vanish except for the
one at s = d which is equal to

de
i
∫
x̃
σ1
1 →x̃

σ2
2
β

2dπ
d
2 Γ
(
d
2 + 1

) .
In that case, we recall that the lengths of the geodesic arcs joining Σ1 to Σ2 are given explicitly
by (|2πξ + x̃σ2

2 − x̃
σ1
1 |)ξ∈Zd so that we end up with the classical Epstein zeta function [Eps03].

Proof of Theorem 8.14. Given (8.18), we are now in position to apply Theorem 7.4 to

ϕ = ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∈ H

+∞,− d2−,+∞,−
d
2−

d,β0
, and ψ = ιV (δ2πZd) ∈ H+∞,− d2−,+∞,−

d
2−

d−1,−β0
,

(8.22)

where the notation is taken from (8.17). Up to increasing slightly the value of T0 to be in the
setup of Theorem 7.4, this result applies for all N > d/2. This theorem implies that for β0 /∈ Zd,
the function ζΣ1,Σ2,T0

(s) extends holomorphically to the whole complex plane (as E
(l)
β0

= 0 in

that case). When β0 ∈ Zd, Theorem 7.4 implies that the function extends meromorphically to
the whole complex plane with possibly some simple poles at s = 1, . . . , d. Moreover, together
with (8.18), we deduce that if β0 ∈ Zd, then

Ress=l+1(ζβ(K2,K1, s)) =
(−1)d−1

l!
E

(l)
β0
, for l ∈ {0, . . . , d− 1},

with

E
(l)
β0

=

∫
Sd−1

eiβ0·(x̃
σ2
2 (θ)−x̃σ1

1 (θ))B
(d−1,l)

x̃
σ2
2 −x̃

σ1
1 ,β0

(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

)
(θ) VolSd−1(θ, |dθ|),

where the bilinear operator B is defined in (3.20). From the expression of B, one can verify that

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 )) can be put in factor so that, in the resulting exponential, we obtain a term

β0 · (x̃σ2
2 (θ)− x̃σ1

1 (θ)) + f(x̃σ2
2 )− f(x̃σ1

1 ) =

∫
x̃
σ1
1 (θ)→x̃σ2

2 (θ)

β,

which is independent of the choice of the path between x̃σ1
1 (θ) and x̃σ2

2 (θ) modulo 2πZ. Therefore,
the residue at s = ` := l + 1 ∈ {1, . . . , d} is given by

E
(`−1)
β0

=

∫
Sd−1

e
i
∫
x̃
σ1
1 (θ)→x̃σ2

2 (θ)
β
B

(d−1,`−1)

x̃
σ2
2 −x̃

σ1
1 ,β0

(δ2πZd , ιV (δ2πZd)) (θ) VolSd−1(θ, |dθ|).

Using expression (3.20) together with (3.12) in Lemma 3.12, we finally obtain

(8.23) E
(`−1)
β0

=
(−1)`−1

(2π)d

∫
STd

e
i
∫
x̃
σ1
1 (θ)→x̃σ2

2 (θ)
β
dx1 ∧ . . . ∧ dxd ∧ ιV V`−1T∗

x̃
σ1
1 −x̃

σ2
2

(δ2πZd) .

for 1 ≤ ` ≤ d. The latter can be rewriten as (8.21) when recalling (3.4)–(3.5). �
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8.7. Continuation of generalized Poincaré series. We now turn to the proof of Theorem 1.4
which amounts to study the properties of the generalized Poincaré series defined in (8.9). Arguing
as in Lemma 8.13 with e−st instead of t−s, we can make use of Theorem 6.4 and Lemma 8.9 to
interpret Zβ(K2,K1, s) as the Laplace transform of a correlation function of appropriate currents.

Lemma 8.16. There is T ∗0 > 0 such that for all T0 > T ∗0 , one can find χ∞ verifying assump-
tion (7.1) with t0 > 0 small enough such that

Zβ(K2,K1, s) = (−1)d−1

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂Ls (−iVβ0

) T∗
x̃
σ1
1 −x̃

σ2
2
ιV (δ2πZd).(8.24)

Again, using the conventions of Theorem 7.8 with x̃ = x̃σ2
2 − x̃

σ1
1 , the right-hand side can be

rewritten as

L(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ

2πZd ,ιV (δ
2πZd )

)(s)
=

∫
STd

ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))δ2πZd ∧ χ̂Ls (−iVβ0

) T∗
x̃
σ1
1 −x̃

σ2
2
ιV (δ2πZd)

We are thus in position to apply Theorem 7.8.

Theorem 8.17. Setting

Sβ0 = {±i|ξ − β0|, ξ ∈ Zd},(8.25)

the following statements hold:

(1) Zβ(K2,K1, s) extends as a function in C∞(C+\Sβ0) and the limit limx→0+ Zβ(K2,K1, x+
iy) exists in S ′(R) as boundary value of holomorphic function,

(2) if β0 ∈ Zd (i.e. 0 ∈ Sβ0
), then

Zβ(K2,K1, s)−
d∑
`=1

E
(`−1)
β0

s`

is a C∞ function in a neighborhood of zero in C+ where E
(`−1)
β0

is given by (8.23). The

limit limx→0+ Zβ(K2,K1, x + iy) −
∑d
`=1

E
(`−1)
β0

(x+iy)`
exists as a smooth function near y = 0.

In case β0 /∈ Zd, then Zβ(K2,K1, s) is itself a C∞ function in a neighborhood of zero in

C+.
(3) There exist constants Cj,`−1(ξ, β0) for every ` ∈ {1, . . . , d} and j ∈ Z+, such that for any

ir±0 = ±i|ξ0 − β0| ∈ Sβ0 \ {0}, the function

Zβ(K2,K1, s)−
d∑
`=1

N−1∑
j=0

 ∑
ξ∈Zd,|ξ−β0|=|r±0 |

1

(`− 1)!
C±j,`−1

(
ξ, β0

)F d−1
2 +j+1−`

(
s− ir±0

)
,(8.26)

extends as a CN−1−d d+1
2 e function in a neighborhood of ir±0 in C+.

Moreover, the most singular term in this expansion near ir±0 is given by (j = 0 and
` = d)

(−1)d−1e∓i
π
4 (d−1)F− d−1

2

(
s− ir±0

)
(2π)

d+1
2 |r±0 |

d−1
2

×

 ∑
ξ∈Zd,|ξ−β0|=|r±0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(
± ξ−β0
|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(
± ξ−β0
|ξ−β0|

) .

Recall that for α ∈ R, the distribution Fα is defined in (7.25) and it is essentially the Laplace
transform of t−α (near t = +∞).
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Note the important fact that the difference

lim
x→0+

Zβ(K2,K1, x+ iy)−
d∑
`=1

N−1∑
j=0

 ∑
ξ∈Zd,|ξ−β0|=|r±0 |

1

(`− 1)!
C±j,`−1

(
ξ, β0

)F d−1
2 +j+1−`

(
x+ iy − ir±0

)
,

(8.27)

viewed as tempered distributions in S ′(R) of the variable y is an element in CN−1−d d+1
2 e near

y = r±0 . Here we view the difference as a distribution obtained as boundary values of holomorphic
functions.

Proof. We apply Theorem 7.8 to x̃ = x̃σ2
2 − x̃

σ1
1 and to the currents ϕ,ψ in (8.22). Theorem 7.8

thus applies to all N0 > d,N > 0,m > d/2 and Item 1 readily follows. As for Item 2, Theorem 7.8

implies the expected result after recalling the definition of E
(l)
β0

.

We next prove Item 3. We fix a point r±0 := ±|ξ0−β0| such that ir±0 = ±i|ξ0−β0| ∈ Sβ0
\ {0},

and describe Zβ(K2,K1, s) near ir±0 . Theorem 7.8, taken for N0 > d large enough (compared to
N), implies that

Zβ(K2,K1, s)−
d−1∑
l=0

N−1∑
j=0

 ∑
ξ∈Zd,|ξ−β0|=|r±0 |

1

l!
C±j,l
(
ξ, β0

)F d−1
2 +j−l

(
s− ir±0

)
,

extends as a Ck function in a neighborhood of ir±0 in C+, where

k = N +

⌈
d− 1

2

⌉
−min{k1, k2} − 2 = N − 1−

⌈
d+ 1

2

⌉
,

(recall that min{k1, k2} = d− 1 here) and

C±j,l(ξ, β0) =
1

|ξ0 − β0|
d−1

2 +j
P±j,l,ξ

[
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

](
± ξ − β0

|ξ − β0|

)
.(8.28)

Now, recalling the definition of Fα in (7.24), we notice that the most singular term in the expan-
sion (8.26) is for l = d− 1 and j = 0, and is given by ∑

ξ∈Zd,|ξ−β0|=|r±0 |

1

(d− 1)!
C±0,d−1

(
ξ, β0

)F− d−1
2

(
s− ir±0

)
.(8.29)

We now compute it explicitly. We first compute C±0,l(ω) according to the definition of P±j,l,ξ
in (7.27), recalling from Lemma 4.4 and Corollary 4.6 that L±0,∓ω = 1, as

(8.30) P±0,l,ξ

[
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

]
(±ω)

= e∓i
π
4 (d−1)(2π)

d−1
2 eiξ·x̃(ω)B

(d−1,l)
x̃,ξ

(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

)
(±ω) .

Finally, the expression of B
(d−1,l)
x̃,ξ is given in (3.20) and writes for l = d− 1,

B
(d−1,d−1)
x̃,ξ

(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

)
(θ) VolSTd(θ, dx, dθ)

= (−1)d−1ei(f(x̃
σ2
2 )−f(x̃

σ1
1 ))π

(d)
ξ (δ2πZd) (θ, dx, dθ) ∧Vd−1T∗−x̃π

(d−1)
−ξ (ιV (δ2πZd)) (θ, dx, dθ) .

According to (3.4)–(3.5), we have π
(d)
ξ (δ2πZd) = 1

(2π)d/2
dx1 ∧ · · · ∧ dxd together with

π
(d−1)
−ξ (ιV (δ2πZd)) =

1

(2π)d/2
ιV (dx1 ∧ · · · ∧ dxd).
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Thanks to Lemmas 3.12 and 3.11, we then deduce

Vd−1T∗−x̃π
(d−1)
−ξ (ιV (δ2πZd)) (θ, dx, dθ) =

1

(2π)d/2
T∗−x̃V

d−1 (ιV (dx1 ∧ · · · ∧ dxd))

=
(d− 1)!

(2π)d/2
T∗−x̃ VolSd−1(θ, dθ)

=
(d− 1)!

(2π)d/2
VolSd−1(θ, dθ).

Combining the above three lines, we have obtained that

B
(d−1,d−1)
x̃,ξ

(
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))δ2πZd , ιV (δ2πZd)

)
(θ) =

(−1)d−1(d− 1)!

(2π)d
ei(f(x̃

σ2
2 )−f(x̃

σ1
1 ))(θ).

Coming back to (8.28)–(8.29)–(8.30), this concludes the proof of the statement in Item 3. �

8.8. A summation formula in the spirit of Guinand–Meyer. We now turn to the proof
of Theorem 1.7. Repeating the above arguments for certain variations of Poincaré series, we can
in fact deduce a summation formula in the spirit of the recent results on crystalline measures by
Meyer [Mey16]. More precisely, we set

Z̃β(K2,K1, s) :=
∑

t>T0:Et(Σ1,Σ2)6=∅

e−st

t
d−1

2

 ∑
(x,θ)∈Et(Σ1,Σ2)

e−i
∫ 0
−t β(V )(x+τθ,θ)|dτ |

 ,(8.31)

and we emphasize that this function depends on the choice of orientation (σ1, σ2) even if we
drop this dependence for the moment. As for Poincaré series, the limit as x → 0+ of y 7→
Z̃β(K2,K1, x+ iy) exists as a tempered distribution on R thanks to Lemma 8.5. Arguing as in the
proof of Theorem 8.17, one can verify that the singular support of this distribution is the same as
for limx→0+ Zβ(K2,K1, x+ iy) but the singularity are slightly simpler due to the renormalization

factor t−
d−1

2 . More precisely, using the conventions of this Theorem, one finds that, near y = r+
0 ,

limx→0+ Z̃β(K2,K1, x+ iy) is equal to

lim
x→0+

(−1)d−1e−i
π
4 (d−1)

(2π)
d+1

2 |r+
0 |

d−1
2 (x+ iy − ir+

0 )
×

 ∑
ξ∈Zd,|ξ−β0|=|r+

0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(
ξ−β0
|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(
ξ−β0
|ξ−β0|

) ,

modulo some remainder belonging to Lp((r+
0 − δ, r+

0 + δ)) for some positive δ and for every

1 ≤ p <∞. Similarly, one has, near y = r+
0 , limx→0+ Z̃β(K2,K1, x− iy) is equal to

lim
x→0+

(−1)d−1ei
π
4 (d−1)

(2π)
d+1

2 |r+
0 |

d−1
2 (x− iy + ir+

0 )
×

 ∑
ξ∈Zd,|ξ−β0|=|r+

0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(
− ξ−β0
|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(
− ξ−β0
|ξ−β0|

) ,

modulo some remainder belonging to Lp((r+
0 − δ, r+

0 + δ)) for every 1 ≤ p < ∞. Recalling
from [Hör03, Eq. (3.2.11), p.72] that

lim
x→0+

(
1

y + ix
− 1

y − ix

)
= −2iπδ0(y),

we finally find that, near y = r+
0 , the tempered distribution16

lim
x→0+

(
ei
π
4 (d−1)Z̃σ2,σ1

β (K2,K1, x+ iy) + e−i
π
4 (d−1)Z̃−σ2,−σ1

β (K2,K1, x− iy)
)

is equal to

(−1)d−1δ0(y − r+
0 )

(2π)
d−1

2 |r+
0 |

d−1
2

×

 ∑
ξ∈Zd,|ξ−β0|=|r+

0 |

e
iξ·(x̃σ2

2 −x̃
σ1
1 )
(
ξ−β0
|ξ−β0|

)
e
i(f(x̃

σ2
2 )−f(x̃

σ1
1 ))
(
ξ−β0
|ξ−β0|

)+OLp(1).

16We restablish the dependence in the orientation to get the expected cancellation.
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The same discussion of course holds near y = r−0 . Hence, if β0 /∈ H1(Td,Z), one finds that the
distribution

ei
π
4 (d−1)Z̃σ2,σ1

β (K2,K1, iy) + e−i
π
4 (d−1)Z̃−σ2,−σ1

β (K2,K1,−iy)

is a combination of Dirac masses modulo some Lploc remainder which proves Theorem 1.7.

8.9. The case when K1,K2 are points. In this section we finally discuss the particular case
where the convex sets are reduced to points (or to balls). In that case, the proofs are simpler and
lead to very explicit formulas with connection to the magnetic Laplacian.

8.9.1. Meromorphic continuation of Poincaré series.

Proposition 8.18. Assume K1 := {x} and K2 := {y} where x, y ∈ Rd are two points and
β = β0 + df is a closed real valued one-form such that [β] = β0 ∈ H1(Td,R) ' Rd. Then we have

(8.32)
∑

γ∈Px,y

ei
∫
γ
βδ(t− `(γ)) = 2πt

d
2 ei(f(y)−f(x))

J d−2
2

(
2πt
√
−∆β0

)
(√
−∆β0

) d−2
2

(x, y) in D′(R∗+).

If moreover x 6= y, then (8.32) also holds in D′((−t0,∞)) for some small enough t0 > 0, and we
have

(8.33) Zβ(x, y, s) = 2dπ
d−1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))s(s2 − 4π2∆β0)−

d+1
2 (x, y), Re(s) > 0.

Recall that in the right hand-side of (8.33), (s2−4π2∆β0)−
d+1

2 (x, y) denotes the Schwartz kernel

of the operator (s2 − 4π2∆β0)−
d+1

2 taken at the point (x, y). The proof relies on the fact that the

twisted counting measure
∑
γ e

i
∫
γ
βδ(t− `(γ)) has an explicit relation with the Schwartz kernel of

Π∗e
−t(V+iβ0(V ))Π∗ (acting on functions) at (x, y).

Proof. On the one hand, by a direct calculation, one has

Π∗e
−t(V+iβ0(V ))Π∗(x, y) =

1

(2π)d

∑
ξ∈Zd

eiξ·(y−x)

∫
Sd−1

eit(ξ−β0)·θVolSd−1(θ, dθ).

On the other hand, one can make use of Lemma 8.9 (applied either for x 6= y or for t > 0) to write
the twisted counting measure when K2 = {x} and K1 = {y}. This yields that this is equal to the
previous quantity up to a normalization factor:∑

γ∈Px,y

ei
∫
γ
βδ(t− `(γ)) = ei(f(y)−f(x))td−1Π∗e

−t(V+iβ0(V ))Π∗(x, y) in D′(R∗+).

In particular, according to (5.3), one has (8.32). Note that, as soon as x 6= y, the formula (8.32)
still makes sense in D′((−t0,∞)) for some small enough t0 > 0. For x 6= y, we can then make the
Laplace transform of this equality:∑

γ∈Px,y

ei
∫
γ
βe−s`(γ) = 2πei(f(y)−f(x))

∫ ∞
0

t
d
2

J d−2
2

(
2πt
√
−∆β0

)
(√
−∆β0

) d−2
2

(x, y)e−st|dt|.

We now recall that, for every ν > −1 and for every a ∈ R,∫ ∞
0

e−sttν+1Jν(at)|dt| = 2ν+1π−
1
2 Γ

(
ν +

3

2

)
aνs(s2 + a2)−ν−

3
2 , Re(s) > 0,

see e.g. [EMOT54, Table 8, line (8) p 182]. Combining the last two lines, we obtain∑
γ∈Px,y

ei
∫
γ
βe−s`(γ) = 2dπ

d−1
2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))s(s2 − 4π2∆β0

)−
d+1

2 (x, y),

which is the sought result. �
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In particular, using the spectral properties of the operator ∆β0
, we can directly recover Theo-

rem 1.4 from the introduction in that case. Precisely, one has, for x 6= y,

(8.34) Zβ(x, y, s) = π−
d+1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))s

∑
ξ∈Zd

eiξ·(x−y)

(s2 + 4π2|ξ + β0|2)
d+1

2

.

We can even be slightly more precise as we can verify that

• if d is odd, this expression has a meromorphic extension to C with poles located at
Sp
(
±i
√
−∆β0

)
;

• if d is even, this expression has a meromorphic extension for instance to

(8.35) C \
{
iλ+ R−, λ ∈ ±Sp

(√
−∆β0

)
\ {0}

}
,

due to the presence, in this case, of squareroot singularities at the points of Sp
(
±i
√
−∆β0

)
\

{0}. Note that the only possible pole in the region described in (8.35) is then at 0 and
that it only occurs if β0 ∈ Zd.

Finally, when the convex sets K1 and K2 are two round balls, i.e. K1 = B(x, r1) and K1 =
B(y, r2), with x 6= y and small enough radii r1 and r2, the Poincaré series is slightly modified by
a factor e−s(r1+r2) and the above formula yields

(8.36) Zβ(K1,K2, s) = π−
d+1

2 Γ

(
d+ 1

2

)
ei(f(y)−f(x))se−s(r2+r1)

∑
ξ∈Zd

eiξ·(x−y)

(s2 + 4π2|ξ + β0|2)
d+1

2

,

where we have taken (σ1, σ2) = (+,−) for the (implicit) choice of orientations of the two balls.

8.9.2. A Guinand-Meyer formula when d is odd. Let us now discuss a variant of Theorem 1.7
when K1 := {x} and K2 := {y} are reduced to points that are distinct. Following [Mey16, Th. 5],
we define, for x 6= y,

(8.37) µGM (t) :=
∑

γ∈Px,y

ei
∫
γ
β

`(γ)
(δ(t− `(γ))− δ(t+ `(γ))) ,

which is a Radon measure in S ′(R) carried by a discrete and locally finite set of R. Note that
compared to the twisted counting measure in (8.32), µGM is symmetrized and renormalized by
t−1. In particular, this is not the same renormalization as in Theorem 1.7 except if d = 3.

Proposition 8.19. Assume that d is odd, that x 6= y and that β0 /∈ H1(Td,Z) ' Zd. Then, the
Fourier transform of µGM in (8.37) is given by

µ̂GM (τ) = i(−1)
d−3

2 2dπ
d+1

2 ei(f(y)−f(x))

×
∑
ξ∈Zd

(
δ(

d−3
2 )(τ − 2π|ξ + β0|)

(τ + 2π|ξ + β0|)
d−1

2

+
δ(

d−3
2 )(τ + 2π|ξ + β0|)

(τ − 2π|ξ + β0|)
d−1

2

)
.

The assumption β0 /∈ H1(Td,Z) ' Zd implies that the continuation of the Laplace transform
of µGM has no pole at s = 0 while the assumption d odd ensures that the Poincaré series extends
meromorphically to C with poles located on the imaginary axis. When d = 3, this proposition
recovers [Mey16, Th. 5] and, for d ≥ 5, it corresponds to the more general statement from [LR21,
Corollary 2.4]. In particular, if d = 3, µGM is a crystalline measure: a measure in S ′(R) carried
by a discrete and locally finite set of R with Fourier transform having the same properties. In
odd dimension d 6= 3, µ̂GM is no longer a crystalline measure since its Fourier transform is not a
measure (but a distribution of order d−3

2 ). Following [LR21], one says that the measure µGM is
a crystalline distribution, i.e. a distribution in S ′(R) carried by a discrete and locally finite set of
R with Fourier transform having the same properties. Compared to the measure in Theorem 1.7,
µ̂GM has the drawback of not being a measure here. However, it has the advantage to be carried
by a discrete and locally finite set of R (i.e. there is no absolutely continuous remainder r as in
Theorem 1.7).
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Proof. Dividing (8.32) by t (which we may since x 6= y), we obtain∑
γ∈Px,y

ei
∫
γ
β

`(γ)
δ(t− `(γ)) = 2πt

d−2
2 ei(f(y)−f(x))

J d−2
2

(
2πt
√
−∆β0

)
(√
−∆β0

) d−2
2

(x, y).

Taking the Laplace transform, one finds that, for Re(s) > 0,∑
γ∈Px,y

ei
∫
γ
β

`(γ)
e−s`(γ) = 2πei(f(y)−f(x))

∫ ∞
0

e−stt
d−2

2

J d−2
2

(
2πt
√
−∆β0

)
(√
−∆β0

) d−2
2

(x, y)|dt|.

Recalling that, for every ν > −1/2 and for every a ∈ R,∫ ∞
0

e−sttνJν(at)|dt| = 2νπ−
1
2 Γ

(
ν +

1

2

)
aν(s2 + a2)−ν−

1
2 , Re(s) > 0,

see e.g. [EMOT54, Table 8, line (7) p 182], we deduce that

(8.38)
∑

γ∈Px,y

ei
∫
γ
β

`(γ)
e−s`(γ) = 2d−1π

d−1
2 Γ

(
d− 1

2

)
ei(f(y)−f(x))(s2 − 4π4∆β0

)−
d−1

2 (x, y).

Recalling the definition of µGM in (8.37), its Fourier transform is given by

µ̂GM (τ) =
∑

γ∈Px,y

ei
∫
γ
β

`(γ)

(
e−iτ`(γ) − eiτ`(γ)

)
= lim
α→0+

∑
γ∈Px,y

ei
∫
γ
β

`(γ)

(
e−(iτ+α)`(γ) − e−(−iτ+α)`(γ)

)
.

This is an odd distribution and, according to (8.38), it is smooth near τ = 0 since β0 /∈ Zd.
Next, from (8.38), one knows that

µ̂GM (τ) = 2d−1π
d−1

2 Γ

(
d− 1

2

)
ei(f(y)−f(x))

× lim
α→0+

(
((iτ + α)2 − 4π4∆β0)−

d−1
2 − ((−iτ + α)2 − 4π4∆β0)−

d−1
2

)
(x, y).

As µ̂GM is odd and smooth near 0, we just need to understand this distribution for τ > 0. To do
that, we write that, for λ > 0 and τ > 0,

lim
α→0+

(
((iτ + α)2 + λ2)−

d−1
2 − ((−iτ + α)2 + λ2)−

d−1
2

)
=

1

(τ + λ)
d−1

2

lim
α→0+

(
(τ − λ− iα)−

d−1
2 − (τ − λ+ iα)−

d−1
2

)
.

Implementing [Hör03, Eq. (3.2.11), p.72] one more time, one finds

lim
α→0+

(
((iτ + α)2 + λ2)−

d−1
2 − ((−iτ + α)2 + λ2)−

d−1
2

)
=

(−1)
d−3

2 2iπ

Γ
(
d−1

2

)
(τ + λ)

d−1
2

δ(
d−3

2 )(τ − λ).

We can now rewrite µ̂GM (τ) using this formula. It yields, for τ > 0,

µ̂GM (τ) = i(−1)
d−3

2 2dπ
d+1

2 ei(f(y)−f(x))
∑
ξ∈Zd

1

(τ + 2π|ξ + β0|)
d−1

2

δ(
d−3

2 )(τ − 2π|ξ + β0|).

Recalling that µ̂GM is smooth near 0 and odd, this completely determines the Fourier transform
and concludes the proof of the propotition. �

Remark 8.20. Recall that in Theorem 1.7, we are rather interested (in the more general setting of
two convex sets) by a renormalized version of (8.37), namely

µ̃GM (t) := e
iπ
4 (d−1)

∑
γ∈Px,y

ei
∫
γ
β

`(γ)
d−1

2

δ(t− `(γ)) + e−
iπ
4 (d−1)

∑
γ∈Px,y

ei
∫
γ
β

`(γ)
d−1

2

δ(t+ `(γ)).
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In particular, when d = 5, one has

̂̃µGM (τ) = −
∑

γ∈Px,y

ei
∫
γ
β

`(γ)2

(
eiτ`(γ) + e−iτ`(γ)

)
, ̂̃µ′GM (τ) = µ̂GM (τ),

and, thanks to Proposition 8.19, the remainder r in Theorem 1.7 is not identically 0 (as r′(τ) is a
combination of Dirac distributions). A similar remark holds for d ≥ 5.

9. Geometric interpretation of the residues

In this Section, we aim at computing somehow explicitly the residues appearing in (8.23) in
terms of geometric quantities. We will always suppose in the following that β = 0 which will make
the content of this residue more geometric. Along the way, we will prove Theorem 1.3 from the
introduction.

Before giving a geometric interpretation of these residues, recall that the admissible manifolds
Σ1 and Σ2 used to define our generalized Epstein zeta functions are constructed from two compact
and strictly convex subsets K1 and K2 of Rd with smooth boundaries ∂K1 and ∂K2 (possibly
reduced to a point). The submanifolds Σi are parametrized through the inverse Gauss map
x̃i : Sd−1 → Td (using the convention that ∂Ki is oriented using the outward normal vector to
Ki). In order to take the various possibilities for our orthospectrum (outward or inward pointing
geodesics), we introduced orientation parameters σi ∈ {±} and we have set

x̃σii (θ) = x̃i(σiθ).

When σi = + (resp. σi = −), it means that Σi = p(∂Ki) is oriented using the outward (resp.
inward) normal vector to Ki.

9.1. Some simple cases. In Remark 8.15, we saw that the residue at s = d for the Epstein zeta
function has an explicit expression. Let us now discuss a couple of other simple cases that do not
require to introduce definitions from convex geometry.

9.1.1. The case d = 2. When d = 2, the residue at s = 1 reads

Ress=1 (ζ0(K2,K1, s)) = − 1

(2π)4

∫
T2×S1

dx1 ∧ dx2 ∧T∗
x̃
σ1
1 −x̃

σ2
2
ιV (dx1 ∧ dx2)

= − 1

(2π)4

∫
T2×S1

dx1 ∧ dx2 ∧T∗
x̃
σ1
1 −x̃

σ2
2

(θ1dx2 − θ2dx1)

= − 1

(2π)4

∫
T2×S1

dx1 ∧ dx2 ∧
(
θ1dx̃

σ1
1,2 − θ2dx̃

σ1
1,1

)
+

1

(2π)4

∫
T2×S1

dx1 ∧ dx2 ∧
(
θ1dx̃

σ2
2,2 − θ2dx̃

σ2
2,1

)
= − 1

(2π)2

∫
S1

(
θ1dx̃

σ1
1,2 − θ2dx̃

σ1
1,1

)
+

1

(2π)2

∫
S1

(
θ1dx̃

σ2
2,2 − θ2dx̃

σ2
2,1

)
,

where we wrote x̃σii (θ) = (x̃σii,1(θ), x̃σii,2(θ)) ∈ T2. Recalling that x̃i(θ) = p(xi(θ)) is the projection

on T2 of the boundary curve for Ki, this can equivalently be rewritten as

Ress=1 (ζ0(K2,K1, s)) = − 1

(2π)2

∫
S1

(
θ1dx

σ1
1,2 − θ2dx

σ1
1,1

)
+

1

(2π)2

∫
S1

(
θ1dx

σ2
2,2 − θ2dx

σ2
2,1

)
.

Hence, we recognize the volume forms of ∂K1 and ∂K2 which are either oriented with the outward
(σi = +) or inward (σi = −) normal vector to the convex set. Hence,

(9.1) Ress=1 (ζ0(K2,K1, s)) =
1

(2π)2
(σ2Vol(∂K2)− σ1Vol(∂K1)) .
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9.1.2. The case where Σ2 is reduced to a point. We now discuss the residue at s = 1 when Σ2 is
reduced to a point and when d ≥ 2. In that case, following the same lines as for d = 2, the residue
can be written as

Ress=1 (ζ0(K2,K1, s)) =
(−1)d−1

(2π)2d

∫
STd

dx1 ∧ . . . ∧ dxd ∧ ιV T∗
x̃
σ1
1

(dx1 ∧ . . . ∧ dxd)

=
(−1)d−1

(2π)d

∫
Sd−1

d∑
l=1

(−1)l+1θldx
σ1
1,1 ∧ . . . ∧ d̂x

σ1

1,l ∧ . . . ∧ dx
σ1

1,d.

One more time, as θ is the normal to ∂K1 at x1(θ), we recognize the volume form on ∂K1 endowed
with orientation induced by σ1. Therefore, when σ1 = + and up to the factor (2π)d, we find that
this is equal to (−1)d−1Vol(∂K1). When σ1 = −, we find Vol(∂K1). In a more compact way, we
write

(9.2) Ress=1 (ζ0(K2,K1, s)) =
(−1)

(1σ11)(d−1)
2

(2π)d
Vol(∂K1).

9.2. Volumes in convex geometry. In this paragraph, we suppose that σ1 = − and that
σ2 = +. Equivalently, it means that we consider geodesic arcs that go from Σ2 to Σ1 and that
point outside K2 and inward K1 (when lifted to Rd). Let 1 ≤ ` ≤ d. Thanks to (8.20)–(8.21), we

now compute the coefficients E
(`−1)
0 or equivalently the residues

Ress=` (ζ0(K2,K1, s)) =
(−1)`+d

(2π)2d(`− 1)!

∫
STd

dx1 ∧ . . . ∧ dxd ∧T∗
x̃−1 −x̃

+
2
ιV V`−1 (dx1 ∧ . . . ∧ dxd) .

It will be more convenient to lift this expression as an integral on Rd × Sd−1. To do that, we
introduce the following vector fields on Rd × Sd−1:

V +
Ki

:= xi(θ) · ∂x, V −Ki := xi(−θ) · ∂x and V := θ · ∂x,

where we recall that θ ∈ Sd−1 7→ xi(θ) ∈ Rd is the inverse Gauss map associated with the convex

Ki (used to define Σi). We denote by etV
±
K the corresponding flows on SRd. We also observe

that V is just the geodesic vector field on SRd and that it could be written as V +
Bd

with these

conventions (where Bd is the unit ball of Rd). Finally, one has

V +
−Ki = −V −Ki ,

and thus we will drop the exponents ± and just write VK = V +
K .

With these notations at hand, the residue at s = ` can be rewritten as

Ress=` (ζ0(K2,K1, s))

=
(−1)`+d

(2π)d(`− 1)!

∫
SRd

δR
d

0 (x)dx1 ∧ . . . ∧ dxd ∧ e−V−K1
∗e−VK2

∗ιV V`−1 (dx1 ∧ . . . ∧ dxd) .

Observe now that∫
SRd

[S0Rd] ∧ e−V−K1
∗e−VK2

∗ιV e
−tV ∗ (dx1 ∧ . . . ∧ dxd)

=

d∑
`=1

(−t)`−1

(`− 1)!

∫
SRd

[S0Rd] ∧ e−V−K1
∗e−VK2

∗ιV V`−1 (dx1 ∧ . . . ∧ dxd) ,

where [S0Rd] = δR
d

0 (x)dx1 ∧ . . . ∧ dxd is the current of integration on S0Rd := {0} × Sd−1. In
particular, one has
(9.3)

(−1)d−1

(2π)d

∫
SRd

[S0Rd] ∧ e−(V−K1
+VK2

+VtBd )∗ιV (dx1 ∧ . . . ∧ dxd) =

d∑
`=1

t`−1 Ress=` (ζ0(K2,K1, s)) .

We now aim at expressing the left hand side of (9.3) in terms of the intrinsic volumes appearing
in Steiner’s formula (1.3).
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9.2.1. A reminder on convex geometry. Let K be a compact and convex subset of Rd (not necessar-
ily strictly convex or with a smooth boundary). Following [Sch14, §1.7], we define the supporting
hyperplane to K with exterior normal v ∈ Rd \ {0} as

H(K, v) :=

{
w ∈ Rd : v · w = max

x∈K
v · x

}
.

Note that the maximum in this definition is necessarily attained at a point x0 ∈ ∂K. In particular,
if a point x lies in H(K, v) ∩K, then it belongs to ∂K. For such a point, v is called an outward
normal vector of K at x. Then, the normal bundle Nx(K) to K at the point x consists into the
collection of all the outward normal vectors of K at x together with the zero vector [Sch14, §2.2].

Remark 9.1. Note that for strictly convex smooth domains, as considered in the present article,
Nx(K) is a one-dimensional cone. This is not necessarily the case for general convex sets, see for
instance K := {(x, y) ∈ R2

+ : x+y ≤ 1} where the reader can convince himself that, at the vertices
of the square, the normal bundle contains subcones of the tangent fiber.

In that manner, we can extend the definition given in §8.1 to any compact and convex subset
of Rd:

N+(K) :=
⋃
x∈K
{(x, v) : v ∈ Nx(K)} ∩ Sd−1.

Given two compact and convex subsets K and L of Rd, one has according to [Sch14, Th. 2.2.1]

(9.4) ∀(x, y) ∈ K × L, Nx+y(K + L) = Nx(K) ∩Ny(L)

In particular, if K and L are two strictly convex bodies with smooth boundaries Nx+y(K + L) is
not reduced to 0 if and only if the outward unit normal vectors at x ∈ ∂K and y ∈ ∂L coincide.
We may summarize the formula for the normal bundle of the sum of two strictly convex subsets
as

(9.5) N (K + L) = {(x+ y; ξ); (x; ξ) ∈ N(K), (y; ξ) ∈ N(L)},
where we only take the outgoing normals.

9.2.2. Back to computing residues. Thanks to (9.4), we deduce the following fact of independent
interest

Lemma 9.2. Let K1,K2 be two smooth strictly convex subsets of Rd whose boundaries ∂K1, ∂K2

are parametrized by their outward normals through the maps x̃1, x̃2 : Sd−1 7→ Rd. Then, the
Minkowski sum K1 +K2 is such that its boundary ∂ (K1 +K2) is parametrized by the sum:

x̃1 + x̃2 : Sd−1 7→ Rd.

In particular, the boundary of the compact convex set K2 −K1 + tBd is parametrized by the
map θ ∈ Sd−1 7→ x2(θ)− x1(−θ) + tθ ∈ Rd. Therefore, we can rewrite (9.3) as

1

(2π)d

∫
SRd

[S0Rd] ∧ e−VK2−K1+tBd
∗ιV (dx1 ∧ . . . ∧ dxd) = (−1)d−1

d∑
`=1

t`−1 Ress=` (ζ0(K2,K1, s)) ,

or equivalently,

1

(2π)d

∫
SRd

eVK2−K1+tBd
∗[S0Rd] ∧ ιV (dx1 ∧ . . . ∧ dxd) = (−1)d−1

d∑
`=1

t`−1 Ress=` (ζ0(K2,K1, s)) .

Intertwining the place of ιV in the integral, we find

d∑
`=1

t`−1 Ress=` (ζ0(K2,K1, s)) =
1

(2π)d

∫
SRd

ιV
(
eVK2−K1+tBd

∗[S0Rd]
)
∧ dx1 ∧ . . . ∧ dxd.

Write now that

eVK2−K1+tBd
∗[S0Rd] = δ0(x+ x2(θ)− x1(−θ) + tθ)

d∧
j=1

d (xj + x2,j(θ)− x1,j(−θ) + tθj) ,
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where θ is the normal to K2 − K1 + tBd at the point x2(θ) − x1(−θ) + tθ. Hence, as in the
preliminary examples, we can recognize the volume form of ∂(K2 −K1 + tBd) and we obtain

d∑
`=1

t`−1 Ress=` (ζ0(K2,K1, s))

=
1

(2π)d

∫
Rd×∂(K2−K1+tBd)

δR
d

0 (x− y)dVol∂(K2−K1+tBd)(y, dy) ∧ dx1 ∧ . . . ∧ dxd,

which implies

d∑
`=1

t`−1 Ress=` (ζ0(K2,K1, s)) =
1

(2π)d
Vol (∂(K2 −K1 + tBd)) .

In particular, by the Minkowski-Steiner formula, one finds

d∑
`=1

t`−1 Ress=`+1 (ζ0(K2,K1, s)) =
1

(2π)d
d

dt
VolRd (K2 −K1 + tBd) .

Remark 9.3. Observe that we implicitely proved through this calculation that the volume K2 −
K1 + tBd is a polynomial in t, or equivalently Steiner’s formula (1.3) for such (strictly) convex
subsets.

According to (1.3), this last quantity can be expressed in terms of the intrinsic volumes of the
convex sets under consideration and we end up with:

Proposition 9.4. Let K1 and K2 be two stricly convex subsets17 of Rd, let σ1 = + and σ2 = −
and let T0 > 0 be large enough to have the meromorphic extension of ζ0(K2,K1, s). Then, one
has, for every 1 ≤ ` ≤ d,

Ress=` (ζ0(K2,K1, s)) =
`

(2π)d
π
`
2

Γ
(
`
2 + 1

)Vd−` (K2 −K1) .

This concludes the proof of Theorem 1.3.

Remark 9.5. Recall that 2Vd−1 (K2 −K1) = Vol(∂(K2 −K1)).

10. Equidistribution of the boundary of convex bodies

In this final section, we revisit the equidistribution results of Section 5 when convex subsets are
involved as in Section 8. More precisely, in all this section, we fix a strictly convex subset K of Rd
which has a smooth boundary ∂K. Recall that we implicitely allow K to be reduced to a point
x0. Following §8.1, the smooth map xK : θ ∈ Sd−1 → Rd parametrizes the boundary ∂K by its
ouward normal vector θ ∈ Sd−1. We then define the strictly convex subset

∀t ≥ 0, Kt := K + tBd,

whose boundary ∂Kt is parametrized as follows

∂Kt :=
{
xK(θ) + tθ : θ ∈ Sd−1

}
,

thanks to §9.2.1. Our goal is to decribe the distribution of this submanifold modulo 2πZd, i.e. the
distribution as t→ +∞ of

(10.1) Σt := p(∂Kt),

where we recall that p : Rd → Td is the canonical projection. Our main result in that direction
reads:

17Recall that we denote by Σi the corresponding admissible submanifolds on Td.
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Theorem 10.1. Let K be a strictly convex subset of Rd which has a smooth boundary ∂K. Then,
for every f ∈ C∞(Td), one has

1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx) =

∫
Td
f(x)

|dx|
(2π)d

+O
(
‖f‖H2d+1(Td)t

− d−1
2

)
, as t→ +∞,

where Σt is the image of ∂Kt on Td as defined in (10.1), VolΣt is the volume measure18 on Σt
induced by the Euclidean structure on Td and the constant in the remainder only depends on d
and K.

This Theorem is a variant of a classical result due to Randol [Ran84] who considered the
equidistribution of ∂(tK) instead of ∂(K+ tBd). See also [Str89] for further generalizations in the
Euclidean setting and [EM93] in the context of Lie groups. The proof of Theorem 10.1 is given
in Section 10.2.1 below. In the case where K is reduced to a point, we can get a slightly better
remainder – see (10.8) below. See also Remark 10.4 below for more details on the remainder.

As stated in Theorem 10.1, the explicit dependence in f of the remainder also allows us to
consider the case where the test function f is a characteristic function. Indeed, let U be some
open set of Td with smooth boundary. Given δ > 0, one can fix two smooth functions fδ,± on Td
such that

• 0 ≤ fδ,± ≤ 1,
• fδ,− ≤ 1U ≤ fδ,+,
• ‖fδ,±‖Ck = O(δ−k) for every k ≥ 0,
•
∫
Td fδ,±(x)|dx| = VolTd(U) +O(δ).

One has then

1

Vol(Σt)

∫
Σt

fδ,−(x) VolΣt(x, dx) ≤ Vol(Σt ∩ U)

Vol(Σt)
≤ 1

Vol(Σt)

∫
Σt

fδ,+(x) VolΣt(x, dx).

Using Theorem 10.1, it yields

Vol(Σt ∩ U)

Vol(Σt)
=

VolTd(U)

(2π)d
+O(δ) +O(t−

d−1
2 δ−(2d+1)),

from which we infer by taking δ = t−
d−1

4(d+1) that

Vol(Σt ∩ U)

Vol(Σt)
=

VolTd(U)

(2π)d
+O

(
t−

d−1
4(d+1)

)
.

For a nice enough subset U satisfying some convexity assumption, and in the case where K is
a point (i.e. Σt is the projection on Td of a sphere of Rd radius t), then one can be even more
precise:

Theorem 10.2. Suppose that the assumption of Theorem 10.1 are satisfied and that K is reduced
to a point x0. Then, for any open set U of Td whose boundary ∂U is a smooth, connected, compact
and embedded submanifold all of whose sectional curvatures are positive, the function

R(t) := t
d−1

2

(
Vol(Σt ∩ U)

Vol(Σt)
− VolTd(U)

(2π)d

)
satisfies the following properties

• its singular support is contained in the set of times t such that Σt is tangent to ∂U ;

• for every s > 0, ‖
(
1− ∂2

t

)−s
R‖L∞(R+) 6 CU,s < +∞.

This result provides with an accurate analysis of the remainder in our equidistribution statement
when one considers projections of large spheres on Td and when measured with particular test
functions (namely characteristic functions of convex open sets). The proof of Theorem 10.2 is
given in Section 10.2.2 below. Together with the proof of Theorem 10.1 (and actually with all
results presented in this article), it relies on lifting the problem to STd. The end of Section 10 is
devoted to the proofs of Theorems 10.1 and 10.2.

18In particular, Vol(Σt) =
∫
Σt

VolΣt (x, dx).



LENGTH ORTHOSPECTRUM OF CONVEX BODIES ON FLAT TORI 75

10.1. Lifting the problem to the unit tangent bundle. As before, this problem takes natu-
rally place in the unit normal bundle of the torus. Hence, we reformulate things in terms of the
normal bundle N+(Σ0) of the admissible subset Σ0 ⊂ Td:

Lemma 10.3. Under the assumptions of Theorem 10.1 and for any smooth function f , one has∫
STd

ιV e
−tV[N+(Σ0)] ∧ f(x)dx1 ∧ . . . ∧ dxd = (−1)d−1

∫
Σt

f(x) VolΣt(x, dx).

where N+(Σ0) was defined in §8.2.

The volume form

PK(t, θ)VolSd−1(θ, dθ) :=

d∑
`=1

(−1)`+1θ`
∧
j 6=`

d (x̃j(θ) + tθj)(10.2)

will appear at several stages of our proof. Remark that, as θ is the outward unit normal to ∂Kt at
xK(θ) + tθ, PK(t, θ)VolSd−1(θ, dθ) is the volume form on ∂Kt induced by the Euclidean structure
on Rd. We also note that

(10.3) PK(t, θ) = td−1 + ad−2(θ)td−2 + . . .+ a0(θ),

is a polynomial whose coefficients depend implicitely on K. For simplicity of the expressions in
the upcoming proof, we set ad−1 = 1. When K is reduced to a point, aj(θ) vanishes for every
0 ≤ j ≤ d− 2. More generally, when K is a Euclidean ball of radius r ≥ 0 centered at a point of

Rd, one has a` = rd−1−`(d−1)!
`!(d−1−`)! for every 0 ≤ ` ≤ d− 2.

Proof. In order to prove this Lemma, we proceed as in Section 9 and recognize the natural volume
form on Σ0. We first note that

e−tV[N+(Σ0)] = δ0(x− x̃(θ)− tθ)
d∧
j=1

d (xj − x̃j(θ)− tθj) = [N+(Σt)].

where x̃(θ) = p(xK(θ)) is the boundary map of Σ0 as in §8.2. After letting y = xK(θ) + tθ and
recalling (10.2) one has∫

STd
ιV e
−tV[N+(Σ0)] ∧ f(x)dx1 ∧ . . . ∧ dxd

= (−1)d−1

∫
Td×∂Kt

f(x)δ2πZd(x− y)Vol∂Kt(y, dy) ∧ dx1 ∧ . . . ∧ dxd,

from which the Lemma follows �

10.2. Equidistribution properties. This paragraph is devoted to the proofs of Theorems 10.1
and 10.2.

10.2.1. Proof of Theorem 10.1. In order to prove this theorem, we shall start from∫
STd

ιV e
−tV[N+(Σ0)] ∧ f(x)dx1 ∧ . . . ∧ dxd

and reexpress it in terms of the oscillatory integrals of Section 4 following the analysis of Section 3.
Then, we will be able to implement the arguments of Section 5 up to some (minor) modifications
needed to handle the lack of regularity of [N+(Σ0)] (and possibly of f). For the moment, we make
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the assumption that f is smooth so that∫
STd

ιV e
−tV[N+(Σ0)] ∧ f(x)dx1 ∧ . . . ∧ dxd

=
∑
ξ∈Zd

f̂ξ

∫
STd

eix·ξ

(2π)
d
2

ιV e
−tV[N+(Σ0)] ∧ dx1 ∧ . . . ∧ dxd

=
(−1)d−1Vol(Σt)

(2π)d

∫
Td
f(x)|dx|+

∑
ξ 6=0

f̂ξ

∫
STd

eix·ξ

(2π)
d
2

ιV e
−tV[N+(Σ0)] ∧ dx1 ∧ . . . ∧ dxd

where we used Lemma 10.3 to rewrite the Fourier coefficient ξ = 0. Recalling (3.6) and (10.3),
this can be rewritten as∫

STd
ιV e
−tV[N+(Σ0)] ∧ f(x)dx1 ∧ . . . ∧ dxd =

(−1)d−1Vol(Σt)

(2π)d

∫
Td
f(x)|dx|

+
(−1)d−1

(2π)
d
2

∑
ξ 6=0

f̂ξ

∫
Sd−1

eiξ·(xK(θ)+tθ)PK(t, θ)VolSd−1(θ, dθ).

Hence, according to Lemma 10.3, one has

(10.4)
1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx)−
∫
Td
f(x)

|dx|
(2π)d

=
1

(2π)
d
2 Vol(Σt)

d−1∑
`=0

t`
∑
ξ 6=0

f̂ξ

∫
Sd−1

eiξ·(xK(θ)+tθ)a`(θ)VolSd−1(θ, dθ).

We recognize the oscillatory integrals studied in Section 4. In particular, given f ∈ C∞(Td), one
can make use of Corollaries 4.3 and 4.6 to derive

1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx) =

∫
Td
f(x)

|dx|
(2π)d

+Of (t−
d−1

2 ).

We can in fact be rather precise about the dependence in f . Applying Corollary 4.3 with N = d
and Corollary 4.6 with N = 1, one finds that, for every 0 ≤ ` ≤ d− 1, one has∣∣∣∣∫

Sd−1

eiξ·(xK(θ)+tθ)a`(θ)VolSd−1(θ, dθ)

∣∣∣∣ ≤ C`|ξ| 3d+1
2 t−

d−1
2 .

Hence, one finds∣∣∣∣ 1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx)−
∫
Td
f(x)

|dx|
(2π)d

∣∣∣∣ ≤ C‖f‖H2d+1(Td)t
− d−1

2 .

This proves Theorem 10.1.

Remark 10.4. As in Section 5 and for any f ∈ C∞(Td), we could in fact get an asymptotic
expansion at any order in t by using the full asymptotic expansion given in Corollary 4.6 in order
to describe the asymptotics of the integral∫

Sd−1

eiξ·(xK(θ)+tθ)a`(θ)VolSd−1(θ, dθ).

Finally, revisiting the above argument, one can in fact prove the following result, which considers
the asymptotic distribution of the normal cycle [N+(Σ0)] subject to the geodesic flow on the torus.

Proposition 10.5 (Asymptotic distribution of the normal cycle). Suppose that Σ0 is admissible
in the sense of §8.2. Then, as t→ +∞, one has

t−d+1e−tV[N+(Σ0)] =
(−1)d−1

(2π)
d
2

d∑
`=1

dθ1 ∧ . . . ∧ dθ`−1 ∧ dx` ∧ dθ`+1 ∧ . . . ∧ dθd +OD′d(STd)(t
−1).

Again, we could in fact write the full asymptotic expansion in powers of t−
1
2 using the full

strength of Corollaries 4.3 and 4.6. We do not write this asymptotics for concision and readability.
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10.2.2. The case K = {x0}: proof of Theorem 10.2. Let us now be slightly more precise in the
case where K is reduced to a point x0. In that case, equality (10.4) reads

(10.5)
1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx) =

∫
Td
f(x)

|dx|
(2π)d

+
Γ
(
d
2

)
2(2π)dπ

d
2

∑
ξ 6=0

f̂ξe
iξ·x0

∫
Sd−1

eitξ·θVolSd−1(θ, dθ).

According to Corollaries 4.3 and 4.6, one has

(10.6)

∫
Sd−1

eitξ·θVolSd−1(θ, dθ) = 2

(
2π

t|ξ|

) d−1
2

cos
(
t|ξ| − π

4
(d− 1)

)
+O((t|ξ|)−

d+1
2 ),

from which we infer, for every s > 0,

(10.7)
1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx) =

∫
Td
f(x)

|dx|
(2π)d

+
Γ
(
d
2

)
t
d−1

2 (2π)
d+1

2 π
d
2

∑
ξ 6=0

|ξ|−
d−1

2 cos
(
t|ξ| − π

4
(d− 1)

)
f̂ξe

iξ·x0 +Os
(
‖f‖

H−
1
2

+s(Td)
t−

d+1
2

)
.

We note that the sum is absolutely convergent for f ∈ H 1
2 +s(Td) as soon as s > 0 so that when

K = {x0}, one finds, for every s > 0,

(10.8)
1

Vol(Σt)

∫
Σt

f(x) VolΣt(x, dx) =

∫
Td
f(x)

|dx|
(2π)d

+Os
(
‖f‖

H
1
2

+s(Td)
t−

d−1
2

)
We can also record from (10.5) and from Plancherel formula the following result on average over
x0 ∈ Td:

Proposition 10.6. There exists a constant Cd > 0, such that, for every f ∈ C∞(Td) and for
every t ≥ 1, one has∫

Td

∣∣∣∣∣ 1

Vol(Σt(x0))

∫
Σt(x0)

f(x) VolΣt(x0)(x, dx)−
∫
Td
f(x)

|dx|
(2π)d

∣∣∣∣∣
2

dx0 ≤
Cd
td−1

∑
ξ 6=0

|ξ|−d+1|f̂ξ|2,

where Σt(x0) is the projection on Td of the Euclidean sphere of radius t centered at x0.

Hence, averaging in x0 allows to decrease the regularity needed on f to ensure convergence by

replacing the H1/2+s norm in (10.8) by the H−
d−1

2 -norm. In particular, if f is the characteristic
function of some (small) open set U , then f ∈ L2(Td) and the righthand side of the above inequality
is convergent, i.e. ∫

Td

∣∣∣∣Vol(Σt(x0) ∩ U)

Vol(Σt(x0))
− VolTd(U)

(2π)d

∣∣∣∣2 dx0 = O(t−d+1).

One can be even more precise on the regularity of the map

ΦU : (t, x0) ∈ [1,∞)× Td 7→ t
d−1

2

(
Vol(Σt(x0) ∩ U)

Vol(Σt(x0))
− VolTd(U)

(2π)d

)
if one makes extra assumptions on the regularity of ∂U . For instance, recall the following conse-
quence of Herz asymptotic formula:

Lemma 10.7. If U is some open set whose boundary ∂U is a smooth, compact and embedded
submanifold of Td and such that the sectional curvatures of ∂U are positive everywhere (so that
U , viewed as a subset of Rd, is a strictly convex set), then the characteristic function f := 1U
verifies

(10.9) |f̂ξ| = O(|ξ|−
d+1

2 ).
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Proof. The proof uses the Stokes Theorem combined with Littman’s Theorem19 [Lit63]. More
precisely, the Gauss-Green formula, one writes, for every 1 ≤ j ≤ d,

−iξj
∫
U

e−ix·ξ|dx| =
∫
∂U

e−iy·ξnj(y)Vol∂U (y, |dy|),

where nj(y) is the j-th component of the outward normal vector n(y) at y ∈ ∂U . Multiplying this
equality by ξj and summing over j, one finds

−i|ξ|2
∫
U

e−ix·ξ|dx| =
∫
∂U

e−iy·ξξ · n(y)Vol∂U (y|dy|).

Thus, using the strict convexity of ∂U , one can apply Littman’s formula [Ste93, §VIII.3.1] on the
decay of the Fourier transform of surface measures and it yields the expected result. �

Hence, equation (10.5) together with the Fourier decay bound (10.9) imply the existence for
every s > 0 of a constant Cs,U > 0 such that

‖(1−∆x)−sΦU‖L∞([1,∞)×Td) ≤ Cs,U .

It now remains to discuss the regularity of ΦU (t, x0) in t with x0 being fixed: this amounts to
study the remainder term R(t) in Theorem 10.2. Using equation (10.5) one more time, the Fourier
decay bound (10.9) together with (10.6) to control the remainder term in equation (10.5) and the
fact that (1− ∂2

t )−s cos(t|ξ| − π
4 (d− 1)) = O(〈ξ〉−2s) for every s > 0, one finds the existence of a

constant C̃s,U > 0 such that

∀x0 ∈ Td, ‖(1− ∂2
t )−sΦU (., x0)‖L∞([1,∞)) ≤ C̃s,U ,

which proves the third item of Theorem 10.2. It remains to discuss the local regularity of the
remainder term R = ΦU (., x0) defined in Theorem 10.2. To that aim, we can apply Lemma 10.3
to f = 1U by density and we find

Vol(Σt(x0) ∩ U) = (−1)d−1

∫
STd

ιV e
−tV[Sx0

Td] ∧ 1U (x)dx1 ∧ . . . ∧ dxd

= td−1

∫
STd

1U (x)δ0(x− x0 − tθ)VolSd−1(θ, dθ) ∧ dx1 ∧ . . . ∧ dxd

= td−1

∫
Sd−1

∑
ξ∈Zd

1U (x0 + 2πξ + tθ)VolSd−1(θ, dθ),

where, in the last equality, we identify U with a strictly convex subset of Rd and x0 with one of
its representative in Rd. Hence, one has

Vol (Σt(x0) ∩ U)

Vol (Σt(x0))
=

Γ
(
d
2

)
2π

d
2

∫
Sd−1

∑
ξ∈Zd

1U (x0 + tθ + 2πξ)Vold−1(θ, dθ).

Note that, as in §8.4, the wavefront set of the function f̃(y) =
∑
ξ∈Zd 1U (y+x0 +2πξ) is contained

in ⋃
ξ∈Zd

{
(y, η) ∈ (∂U − x0 − 2πξ)× ((Rd)∗ \ {0}) : ∀v ∈ Ty∂U, η(v) = 0

}
.

Now we pullback the function f̃ through the map κ : (t, θ) ∈ R>0 × Sd−1 7→ tθ ∈ Rd. By the

pullback Theorem of Hörmander [Hör03, Th. 8.2.4], f̃ ◦ κ has wavefront set inside
t, θ;

 d∑
j=1

ηjθj

 dt,

d∑
j=1

tηjdθj

 s.t. (tθ, η) ∈WF
(
f̃
) .

19In the case we are interested in (strictly convex subsets), the result can also be found in the works of
Hlawka [Hla50] and Herz [Her62a].
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Since

Vol (Σt(x0) ∩ U)

Vol (Σt(x0))
=

∫
Sd−1

∑
ξ∈Zd

1U (tθ + x0 + 2πξ)VolSd−1(θ, dθ) =

∫
Sd−1

f̃ ◦ κ(t, θ)VolSd−1(θ, dθ),

and thanks to the pushforward Theorem [Hör03, Th. 8.2.12], the map t 7→ Vol(Σt(x0)∩U)
Vol(Σt(x0)) has its

wavefront set inside

{(t, τ) ∈ R+ × R∗ : (t, θ; τ, 0) ∈WF(f̃ ◦ κ)}

=
{

(t, τ) ∈ R+ × R∗ : ∃θ ∈ Sd−1 such that tθ ∈ Σ̃(x0), τθ ⊥ TtθΣ̃(x0)
}
.

where
Σ̃(x0) :=

⋃
ξ∈Zd

(∂U − x0 − 2πξ).

In particular, this allows to bound the singular support of both functions Vol(Σt(x0)∩U)
Vol(Σt(x0)) and R(t)

appearing in Theorem 10.2. Geometrically speaking, we are saying that R is smooth outside
the set of times where the sphere tSd−1 is tangent to ∪ξ∈Zd (∂U − x0 − 2πξ). Arguing as at the
beginning of §8.3, one can verify that these singularities form a discrete subset for t large enough:

Lemma 10.8. There exists T0 > 0 such that, for every t > T0, the set of times t when the scaled
sphere tSd−1 is tangent to ∪ξ∈Zd (∂U − x0 − 2πξ) is locally finite and the tangency occurs at a

finite number of points of tSd−1.

Appendix A. Another formula for zeta functions

We now briefly explain how to prove (2.1) without appealing the theory of De Rham currents
and how it may slightly simplify the exposition of the proofs of Theorems 1.2, 1.3 and 1.4. Yet,
this would be at the expense of loosing the dynamical pictures behind these results and thus the
relation of these results with our other (more clearly dynamical) applications. Recall also that
this formula only holds a priori for a specific choice of orientations for K1 and K2 while our
current theoretic approach allows to handle any orientation convention and to easily implement
exponential weights in our zeta functions.

First, from §8.1, ∂K1 and ∂K2 can be parametrized by their outward normal vector θ ∈ Sd−1

through the maps xKj : Sd−1 → Rd, j ∈ {1, 2}. Moreover, according to §9.2.1, the maps

θ 7→ xK1
(θ)− xK2

(−θ) + tθ

parametrize the boundary of the convex set K1−K2 + tBd for every 0 ≤ t ≤ T. Let us now remark
that γ belongs to PK1,K2 with 0 < `(γ) = t ≤ T if and only if there exist θ ∈ Sd−1 and ξ ∈ Zd
such that

xK2
(−θ) = xK1

(θ) + tθ − 2πξ.

Equivalently, it means that there exists ξ ∈ Zd such that 2πξ belongs to ∂(K1 −K2 + tθ). Hence,
elements γ in PK1,K2 are in one-to-one correspondance with the set

2πZd ∩ (K1 −K2 + TBd) \ (K1 −K2) .

Now observe that the restriction of the Lebesgue measure to the set (K1 −K2 + TBd)\(K2 −K1)
can be disintegrated as follows ∫ T

0

δ∂(K1−K2+tBd)(x, |dx|)|dt|,

so that

] {γ ∈ PK1,K2
: 0 ≤ `(γ) ≤ T} =

∫
Rd
δ[0](x)

∫ T

0

δ∂(K1−K2+tBd)(x, |dx|)|dt|,

with δ[0] defined in (2.2). Similarly, if we weight the Lebesgue measure with χ(t) on each sublevel
∂(K1 − K2 + tθ), we derive formula (2.1) from the introduction. Now, in order to prove our
theorems on convex geometry from this formula, one would need to decompose δ[0](x) according

to (2.2) and to make sense of the right side after this decomposition for the functions t−s and e−st.
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For Re(s) large enough, this is not a problem through a direct calculation. Then, one would need
to make the meromorphic continuation of the right hand side through the natural threshold. This
could be achieved by reducing to the oscillatory integrals of Section 4 (through the parametrization
of K1−K2+tBd by θ as in Sections 8 and 9) and by arguing as in Section 7 with the simplifications
that we only deal with δ functions rather than general test functions (as in §8.6 and 8.7). Thus, the
analytical difficulties would remain exactly the same through this approach. The main advantage
would be that the fact that the residues involve the intrinsic volume would be more direct (from
the analysis of the Fourier mode 0).
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Astérisque, (375):ix+222, 2015.
[FT17a] F. Faure and M. Tsujii. Fractal Weyl law for the Ruelle spectrum of Anosov flows. 2017. Preprint

arXiv:1706.09307.

[FT17b] F. Faure and M. Tsujii. The semiclassical zeta function for geodesic flows on negatively curved mani-
folds. Invent. Math., 208(3):851–998, 2017.

[FT21] F. Faure and M. Tsujii. Microlocal analysis of contact Anosov flows and band structure of the Ruelle

spectrum. 2021. Preprint arXiv:2102.11196.
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[Mar04] G.A. Margulis. On some aspects of the theory of Anosov systems. Springer Monographs in Mathe-
matics. Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic

flows, Translated from the Russian by Valentina Vladimirovna Szulikowska.
[McS91] G. McShane. A remarkable identity for lengths of curves. ProQuest LLC, Ann Arbor, MI, 1991. Thesis

(Ph.D.)–University of Warwick (United Kingdom).

[McS98] G. McShane. Simple geodesics and a series constant over Teichmuller space. Invent. Math., 132(3):607–
632, 1998.

[Med21] A. Meddane. A Morse complex for axiom A flows. 2021. Preprint arXiv:2107.08875.

[Mey16] Y. Meyer. Measures with locally finite support and spectrum. Proc. Natl. Acad. Sci. USA,
113(12):3152–3158, 2016.

[Mey22] Y. Meyer. Mesures cristallines et applications, d’après p. kurasov, a. olevskii, p. sarnak et m. viazovska.
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Ensaios Matemáticos [Mathematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro,
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44322 Nantes Cedex 03, France

Institut Universitaire de France, Paris, France

E-mail address: gabriel.riviere@univ-nantes.fr


	1. Introduction
	1.1. Epstein zeta functions in convex geometry
	1.2. Poincaré series in convex geometry
	1.3. Application to Poisson type formulas
	1.4. Related results

	2. Analytical results: a functional setup for the geodesic vector field
	2.1. Lifting the problem to the unit tangent bundle
	2.2. Defining a proper functional framework for the geodesic flow
	2.3. Anisotropic Sobolev spaces
	2.4. Emergence of quantum dynamics
	2.5. Organization of the article
	2.6. Comments on generalizations

	3. Background on differential forms and currents
	3.1. Differential forms
	3.2. Currents
	3.3. Orientation conventions
	3.4. Decomposition of currents in Fourier series
	3.5. Fundamental examples of currents of integration
	3.6. Action by pullback
	3.7. Transport equations on differential forms
	3.8. Correlation function for differential forms

	4. Asymptotics of oscillatory integrals
	4.1. Splitting the oscillatory integral
	4.2. Nonstationary points
	4.3. Stationary points

	5. Asymptotics of twisted dynamical correlations
	5.1. Anisotropic Sobolev spaces of distributions, splitting the correlation function
	5.2. Asymptotics of the correlation function
	5.3. Geometry of the anisotropic Sobolev norms

	6. Anisotropic spaces of currents
	6.1. Anisotropic Sobolev spaces
	6.2. Mapping properties

	7. Mellin and Laplace transforms
	7.1. Mellin transform
	7.2. Laplace transform
	7.3. Terms near zero in the Mellin and Laplace transforms

	8. Counting orthogeodesics
	8.1. Normal bundles to convex sets
	8.2. Admissible submanifolds
	8.3. Epstein zeta functions and Poincaré series for admissible submanifolds
	8.4. Currents of integration on admissible subsets
	8.5. Asymptotic of the counting function
	8.6. Continuation of generalized Epstein zeta functions
	8.7. Continuation of generalized Poincaré series
	8.8. A summation formula in the spirit of Guinand–Meyer
	8.9. The case when K1,K2 are points

	9. Geometric interpretation of the residues
	9.1. Some simple cases
	9.2. Volumes in convex geometry

	10. Equidistribution of the boundary of convex bodies
	10.1. Lifting the problem to the unit tangent bundle
	10.2. Equidistribution properties

	Appendix A. Another formula for zeta functions
	Acknowledgements
	References

