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Abstract—A common problem of the virtualized cloud radio
access network architecture (C-RAN) is the compression of the
time-domain IQ samples before transmission over the fronthaul
link. Considering a multicarrier waveform such as OFDM, whose
IQ samples follow a quasi-Gaussian distribution, the conventional
Gaussian quantizer may be used as the optimal solution to the
compression problem. However, since the high peak-to-average
power ratio (PAPR) of OFDM signals remains a serious problem,
various techniques may be employed to reduce the time-domain
fluctuations of the IQ samples in the OFDM, resulting in a change
in its distribution. The latter fact makes the Gaussian quan-
tizer suboptimal. The literature lacks a performance analysis of
the conventional OFDM-based compression techniques when the
PAPR of the OFDM signal is reduced. Therefore, in this paper,
we study for the first time the impact of reducing the PAPR of
the OFDM signal before compression in the C-RAN architecture
through rate-distortion analysis. We consider clipping and tone
reservation PAPR reduction algorithms. The former is the sim-
plest PAPR reduction approach, while the latter is one of the
most effective algorithms used in broadcasting standards such as
DVB-T2 and ATSC 3.0. We first derive the distribution of the
PAPR-reduced OFDM IQ samples. This is used to optimize the
thresholds and codebook levels of a non-uniform scalar quan-
tizer and the number of quantization bits allocated for each
quantized level in the entropy coding stage, along with the MER
performance analysis. The simulation results show that the con-
ventional Gaussian-based compression techniques applied to a
PAPR-reduced signal is not very robust to the statistical changes
in the signal unless the signal distribution at the input of the
Gaussian quantizer is not significantly affected. However, a sig-
nificant gain is obtained when the quantizer is optimized with
respect to the true distribution of the PAPR-reduced IQ samples.

Index Terms—C-RAN, clipping, compression, quantization,
entropy coding, MER, OFDM, PAPR reduction, tone reservation,
DVB-T2, ATSC3.0.

I. INTRODUCTION

NEXT generation wireless networks have recently adopted
the promising architecture of the centralized Cloud Radio

Access Network (C-RAN). The C-RAN architecture is based
on splitting the base station functionalities into two parts,
the baseband unit, located in the cloud, and the remote
radio unit, located on transmission sites, and connecting them
by a fronthaul link responsible for conveying the digitized
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IQ samples [1], [2]. The fully centralized solution of such
an architecture implies moving the physical layer including
baseband processing and network layer functionalities to the
cloud [3]. It provides high flexibility, low maintenance and
operational cost. However, the huge bandwidth requirement for
the transmission of high-resolution IQ samples generated by
the baseband processing in the cloud remains a major problem
of this architecture. The classical approach is to use higher
bandwidth optical fibers to transport the IQ samples, but this
comes at a very high cost. Therefore, IQ data compression
before transmission over the capacity-constrained fronthaul
link is an attractive approach to reduce the data rate over the
fronthaul link for the C-RAN architecture.

Orthogonal frequency division multiplexing (OFDM) is the
most commonly used multicarrier modulation scheme in recent
standards, e.g., Long-term Evolution (LTE) [4], Digital Video
Broadcasting-Second Generation Terrestrial (DVB-T2) [5],
and Advanced Television Systems Committee 3.0 (ATSC3.0)
standard [6]. Therefore, recent studies mainly rely on exploit-
ing the statistical characteristics of the OFDM signal to reduce
the data rate on the fronthaul link.

In recent years, several data rate compression approaches
have been studied to represent the trade-off between achievable
compression performance, signal distortion, design complex-
ity and computational delay, which are summarized in [7], [8].
In [9], a non-uniform quantizer based on an iterative gradient
algorithm was proposed. In [10], a Lloyd-based non-uniform
quantizer and entropy coding were used to reduce the data
rate of the fronthaul link. Vector quantization combined with
decimation and block scaling was explored instead of scalar
quantization to take advantage of the temporal correlation
between IQ samples and increase the compression gain, but
at the cost of higher computational complexity [11], [12].
In [13], the correlation between samples is explored through
the well-known linear predictive coding to solve the complex-
ity problem posed by vector quantization. In [14], trellis coded
quantization has been implemented, which provides better
compression performance than scalar quantization and lower
computational cost than vector quantization. In [15], a discrete
cosine transform (DCT) based compression scheme has been
proposed. The DCT is a Fourier-dependent time-frequency
transform characterized by its strong energy compaction prop-
erty. Therefore, after DCT, the signal can be represented by
coefficients in the frequency-domain, which can be divided
into blocks of high and low frequency components. On this
basis, the conventional compression methods, e.g., Lloyd-Max
quantization and Huffman coding, are used to quantize and
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encode the high-frequency components with a smaller num-
ber of bits and the low-frequency components with more
bits. In general, quantization and entropy coding are the main
techniques to reduce the IQ data rate.

However, the addition of many subcarriers via the IFFT
results in a signal characterized by a high peak-to-average
power ratio (PAPR), which remains one of the main prob-
lems of the OFDM system. The high peak power of the signal
leads to severe performance degradation when the signal is
passed through a high power nonlinear amplifier. Many tech-
niques have been presented in the literature that are applied
to OFDM signal in the time-domain to reduce its PAPR,
e.g., [16, and references therein].

In this paper, clipping and tone reservation (TR) PAPR
reduction techniques are considered. Clipping is the simplest
technique for PAPR reduction that provides a high reduction
gain, although it results in signal distortion [17]. TR is an
efficient method for PAPR reduction that has been adopted
by several standards, e.g., DVB-T2 [5] and ATSC 3.0 [6],
and it gives an upper bound on the PAPR reduction without
distortion [18]. The concept of the TR algorithm is to dedi-
cate a subset of the subcarriers, called the peak reserved tones
(PRT), to change the OFDM signal distribution to another
with a lower PAPR. This subset of reserved tones is loaded
with complex values and added to the original signal, resulting
in a transmitted time-domain signal with reduced PAPR. The
symbols modulating the PRTs are the solutions of a convex
quadratically constrained quadratic problem (QCQP). Many
researchers have investigated a solution to the PRTs allocation
problem in a suboptimal but simpler way [19, and references
therein]. The major drawback of the optimal QCQP solution
of the TR algorithm is its high complexity. However, adopting
the C-RAN architecture increases the acceptability of the com-
plexity of the QCQP solution by moving the implementation
to the cloud.

Thanks to the central limit theorem, OFDM IQ samples are
generally assumed to be Gaussian distributed at the output of
the IFFT modulator. Therefore, the compression blocks, i.e.,
quantization and entropy coding, are optimized for a Gaussian
distribution. However, processing the OFDM signal in the
time-domain with a PAPR reduction technique changes the
distribution of the IQ samples. To the best of our knowl-
edge, no studies have been conducted on the robustness of
the Gaussian-optimized quantizer considering any of the PAPR
reduction techniques prior to compression, nor on the proposal
of an optimized quantizer for signals with modified distribu-
tion due to PAPR reduction techniques. In this context, we
have presented in a recent study the analytical analysis of the
optimized quantizer and entropy coding for OFDM signals
processed by the clipping algorithm [20]. In addition to our
previous work, we include the study for signals processed by
the QCQP algorithm. Hence, the contributions of this article
can be summarized as follows:

• The distribution of PAPR-reduced IQ samples is derived
and validated, taking into account clipping and TR
obtained with the optimal QCQP solution. These analysis
are based on recent studies that evaluate the amplitude
distribution of the PAPR-reduced OFDM signal in the

Fig. 1. Downlink system model of a C-RAN system.

case of clipping and TR-QCQP algorithms, [21] and [22],
respectively.

• The obtained IQ distribution is further exploited to
optimize the compression blocks, i.e., quantization and
entropy coding, and to obtain an asymptotic expression
for the modulation error ratio (MER), which reflects
the joint effect of PAPR reduction and quantization
operations.

• The robustness of a Gaussian-optimized quantizer to a
change in the signal distribution at its input is investi-
gated.

• Based on these analysis, we quantify the performance
gain in MER when using a quantizer optimized with
respect to the true distribution of PAPR-reduced IQ sam-
ples based on various tuning factors of the clipping and
TR-QCQP algorithms compared to the Gaussian-based
quantizer.

The remainder of this article is organized as follows. Section II
describes the system model and revisits the recent state of
the art, which evaluates the effect of PAPR reduction in
changing the amplitude distribution of the OFDM signal.
Section III details the analytical IQ distribution of the PAPR-
reduced signal in case of clipping and TR-QCQP, and they
are used optimize the compression techniques. Section IV
validates the accuracy of the theoretical findings through
numerical simulations. Moreover, the gain in MER achieved
by the PAPR-reduced optimized compression techniques is
highlighted. Conclusions are drawn in Section V.

II. SYSTEM MODEL

A. OFDM Transmission Chain

Let us consider the downlink OFDM transmission chain
depicted in Fig. 1. An OFDM system with Nfft subcarriers and
M-QAM modulation is considered. A PAPR reduction tech-
nique is applied to the OFDM signal in the time-domain at
the output of the IFFT modulator and then compressed before
being transmitted over the fronthaul link. Let, in the time-
domain, s ∈ C

Nfft×1 be the original complex OFDM baseband
signal vector, with its kth entry expressed as

s(k) = 1√
Nfft

Nfft−1∑

n=0

s̃(n)e
j2πk n

Nfft , ∀ k = [0, . . . ,Nfft − 1] (1)

where, s̃ = [s̃(0), . . . , s̃(Nfft − 1)]T ∈ C
Nfft×1 is a vector of

QAM symbols modulating the subcarriers. In Fig. 1, the vec-
tor zin ∈ C

Nfft×1 is the PAPR-reduced IQ samples before
the compression and zout ∈ C

Nfft×1 after the decompres-
sion. For Nfft sufficiently large, the real and imaginary parts
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Fig. 2. PDF of the amplitude of the time-domain signal with and without
clipping at Vmax = 7.

of a complex sample s(k), ∀k ∈ {0, . . . ,Nfft − 1}, denoted
by xs(k) = Re(s(k)) and ys(k) = Im(s(k)), respectively,
are zero-mean Gaussian distributed. Hence, its magnitude
rs(k) = |s(k)| is Rayleigh distributed and its phase θs(k) =
∠s(k) is uniformly distributed over [−π, π].

B. PAPR Reduction Techniques

1) Clipping: Clipping consists in limiting the high ampli-
tude peaks of the signal to a certain threshold Vmax without
affecting the phase of the signal. The clipped time-domain
signal zclip

in (k) is given by:

zclip
in (k) =

{
s(k), if |s(k)| < Vmax

Vmaxejθs , if |s(k)| ≥ Vmax.
(2)

The amplitude of the signal at the input of the clipper is
Rayleigh distributed

fRs(r) =
⎧
⎨

⎩
r
σ 2

ray
e
− r2

2σ2
ray , if r ≥ 0

0, otherwise,
(3)

where Rs is the random variable (RV) representing the ampli-
tude of the input signal and σray is its mode. The clipping

ratio is defined as � = V2
max

2σ 2
ray

. Clipping is applied on the sig-

nal amplitude as per (2) and it simply modifies the amplitude
distribution as reminded in the following lemma.

Lemma 1 [21]: The time-domain amplitude distribution of
the clipped PAPR-reduced signal, is expressed as follows:

fclip
Rin
(r) =

{
fRs(r), if r < Vmax

e−�δ(r − Vmax), if r = Vmax
(4)

where Rin is the RV representing the amplitude of the PAPR-
reduced signal, δ(r) is the Dirac distribution and e−� is
the probability that the amplitude of s exceeds Vmax, i.e.,∫∞

Vmax
fRs(r)dr = e−�.

Fig. 2 depicts both distributions fRs(r) and fclip
Rin
(r). Clipping

is simple but it may cause high signal distortion.
2) Tone Reservation: TR technique reduces the signal

PAPR by adding a time-domain peak cancelation signal c ∈
C

Nfft×1 to the original OFDM signal s. Thus, the tone-reserved

PAPR-reduced signal zTR
in is expressed as follows:

zTR
in (k) = s(k)+ c(k), ∀ k = [0, . . . ,Nfft − 1]. (5)

Let c̃ be the frequency-domain vector consisting of Nfft subcar-
riers composed of m tones reserved for peak reduction. These
tones belong to the subset B such that B = {k ∈ [0, . . . ,Nfft −
1] : s̃(k) = 0} and Bc = {k ∈ [0, . . . ,Nfft − 1] : c̃(k) = 0}.
Thus, s̃ and c̃ lie in disjoint frequency subspaces, which
ensures that the TR technique is a distortion-less process. The
concept of TR is to design an efficient algorithm capable of
computing the peak cancelation signal c in such a way that
there is a trade-off between PAPR reduction efficiency and
computational complexity.

The PAPR reduction efficiency of the TR algorithm is eval-
uated by two main tuning factors, namely the percentage of
subcarriers dedicated for PAPR reduction out of the total num-
ber of subcarriers, denoted by NPRT and the power allocated to
PRTs. Typically, standards such as DVB-T2 add a peak power
constraint to PRTs, denoted by PPRT, to limit the power dedi-
cated to PAPR reduction compared to the power of data tones,
denoted by Pdata. Let PPC be the power control in dB, which
denotes the difference between the maximum PRT power and
the average data power. Thus, the power constraint condition
can be mathematically expressed as follows [18]:

max
n∈β ‖c̃(n)‖2∞ ≤ �.Pdata, (6)

where ‖·‖∞ denotes the infinity norm, � = 10
PPC
10 and PPRT =

�.Pdata. The TR optimization problem can be formulated and
solved optimally as a QCQP convex problem defined as [18]:

min
c

τ

subject to ‖x + c‖2∞ ≤ τ, (7)

where τ is the maximum power of zin. For cases considering
a power constraint on the PRTs, as in DVB-T2 and ATSC3.0
for instance, (6) is added as an additional constraint to (7).
QCQP solution achieves the highest PAPR reduction level but
at a high computational complexity.

TR modifies the amplitude distribution of the OFDM signal.
The authors in [22] evaluated the amplitude distribution of the
tone-reserved signal solved by the optimal QCQP algorithm.
They have shown that it is possible to model the amplitude
distribution as a superposition of two separate modes, which
is stated in the following lemma.

Lemma 2 [22]: The time-domain amplitude distribution
of the tone-reserved PAPR-reduced signal, is expressed as
follows:

fQCQP
Rin

(r) = (1 − p) fRin1(r)+ p fRin2(r), (8)

where

fRin1(r) =
{

q fRay
R (r)

(
1 − FGEV

R (r)
)
, if r ≥ 0

0, if r < 0,
(9)

and

fRin2(r) =
{

fGEV
R (r), if r ∈ D2

0, otherwise
(10)
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Fig. 3. PDF of the amplitude of the time-domain signal with and without
TR-QCQP, with different power controls and NPRT = 1%.

where Rin1 and Rin2 are the RVs representing the samples
drawn from the first and the second modes, respectively, p is a
scaling parameter between the first and the second mode and
q is a normalization parameter that ensures

∫
fRin1(r)dr = 1.

fRay
R (r), FGEV

R (r) and fGEV
R (r) are the Rayleigh PDF, the gener-

alized extreme value (GEV) cumulative distribution function
(CDF) and the GEV PDF, defined respectively as follows:

fRay
R (r) =

⎧
⎨

⎩
r
σ 2

ray
e
− r2

2σ2
ray , if r ≥ 0

0, otherwise,
(11)

FGEV
R (r) =

{
e
−
(

1+k1

(
r−μ1
σ1

))−1/k1

, if r ∈ D1
0, otherwise,

(12)

and

fGEV
R (r) =

{ 1
σ2

t(r)k2+1e−t(r), if r ∈ D2

0, otherwise
(13)

with t(r) =
(

1 + k2

(
r − μ2

σ2

))−1/k2

, (14)

where σray is the standard deviation fitting the Rayleigh
distribution, μ1, σ1, k1 < 0, μ2, σ2 and k2 < 0 are respec-
tively the location, scale and shape parameters that fit the
GEV CDF FGEV

R (r) and the PDF fGEV
R (r), respectively and

D1 = ] − ∞, μ1 − σ1
k1

] and D2 = ] − ∞, μ2 − σ2
k2

] are their
respective domains.

The parameters of the Rayleigh and GEV distributions are
computed in [22] using probability weighted moments esti-
mation method. Fig. 3 shows the amplitude distributions of
the OFDM signal before and after TR-QCQP, i.e., fRs(r) and
fQCQP
Rin

(r), respectively. As already mentioned, the fQCQP
Rin

(r)
PDF can be modeled with a bimodal distribution whose param-
eters depend on the power control PPC. The QCQP algorithm
modifies the signal in such a way that the high amplitude sam-
ples has a lower probability to appear, compared to Rayleigh
distributed samples. By doing so, QCQP concentrates the high
amplitude samples to some levels that can be quantized with-
out additional distortion. This results in a bump at the tail of
the Rayleigh distribution, while the other samples still follow
a Rayleigh amplitude distribution.

C. Compression Techniques

1) Scalar Quantization: Each IQ sample is quantized sep-
arately to one of N quantization levels, each represented by R
quantization bits. The well-known Lloyd algorithm (LA) gives
a scalar N-level non-uniform quantizer (NUQ), optimized in
the sense of the minimum mean square error (MSE) for a
given distribution of samples [23]. According to LA, decision
thresholds ti, ∀ i = [1, . . . ,N − 1] are

ti = qi + qi+1

2
, (15)

where, t0 and tN are set to the minimum and maximum pos-
sible values of the signal, respectively. Quantization levels
qi, ∀ i = [1, . . . ,N], are the centroid of each decision region,
e.g., for the in-phase component

qi =
∫ ti

ti−1
xfX(x)dx

∫ ti
ti−1

fX(x)dx
, (16)

where fX(x) is the PDF associated to the in-phase component
x(k) = Re(zin(k)), ∀k, of the PAPR-reduced signal. The same
holds for the Quadrature-phase component.

2) Entropy Coding: Entropy coding (EC) is a lossless com-
pression technique. It generates variable length codewords by
assigning longer codewords to the lower probability levels
and shorter codewords to the higher probability levels. In this
paper, Huffman coding is used in order to reduce the amount of
bits transmitted over the fronthaul. It is a well-known, simple
method for practical implementation of entropy coding and
that approaches the Shannon’s source coding theorem [24].
Thus, the average codeword length assigned to the ith quan-
tization level can be represented with the information entropy
as

Lqi = −log2

∫ ti

ti−1

fX(x)dx. (17)

D. Performance Metrics

The Rate R, MER and signal to quantization and noise
ratio (SQNR) are the metrics used to evaluate the performance
of the model under study. In this context, R is defined as
the average number of bits required to represent a single IQ
sample.

1) MER: The MER gives a measure of the performance
of the system by comparing the actual location of a received
sample with its ideal location. It is defined as the ratio between
the power of the original signal and the distortion introduced to
the original signal. Therefore, the MER of the decompressed
signal is defined as

MER = E
[|S|2]

E
[|S − Zout|2

] , (18)

with E[.] is the expectation operator, S and Zout are the RVs
representing the IQ samples before the compression and after
decompression, respectively.
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2) SQNR: The SQNR is used to evaluate the performance
of the compression achieved by quantization, since EC is
indeed distortion-less. In this case, zin is considered as the
reference signal and the SQNR is defined as

SQNR = E
[|Zin|2

]

E
[|Zin − Zout|2

] , (19)

where Zin is the RV representing the PAPR-reduced samples.
In that perspective, the following facts need to be considered
for proper system evaluation.

• In case of clipping PAPR reduction technique, both clip-
ping and quantization operations contribute to system
performance degradation.

• In TR PAPR reduction technique, the received signal z̃out
is followed by removing the TR added signal, thanks to
the orthogonality between the data and the tone-reserved
signals in the frequency-domain. Thus, the distortion
induced to the OFDM signal is caused only by the quanti-
zation. Consequently, the MER can be evaluated between
s and zout after removing the added TR signal in the
frequency-domain or between the intermediate signals
zin and zout. We will consider the latter case, where the
system MER can be computed directly from (19), taking
into account only the quantization distortion.

• The MSE in the denominator of (19) indicates the
quantization distortion. Through our analytical analysis,
we consider the asymptotic (high bit-rate) quantization
distortion stated as follows.
Proposition 1 [25]: The asymptotic distortion-rate for-
mula for a non-uniform scalar quantizer is known as
“Panter and Dite formula” and stated as:

DLQ(R) ∼ 2−2R

12

(∫ ∞

−∞
3
√

fX(x)dx

)3

. (20)

where fX(x) is the PDF of the quantizer input signal, R =
log2(N) and N is the number of quantization levels.

III. ANALYTICAL STUDY OF THE OPTIMIZED

COMPRESSION TECHNIQUES FOR A PAPR-REDUCED

SIGNAL

The optimization of a Lloyd-based quantizer may be led
using either a known probabilistic distribution or an observed
long training sequence (TS) of data. The main drawbacks of
the latter is

• An N-level quantizer trained on a k-length TS requires
computing N.k distances and assigning k data points at
each iteration until convergence.

• A sufficiently long TS is essential so that the resulting
quantizer hopefully works well for future data.

• The algorithm must be repeated multiple times with
different initial TS to mitigate dependence.

Such intensive computations make Lloyd’s algorithm slow,
especially for large datasets. Therefore, prior knowledge of the
probabilistic description of the source is more efficient and
requires less computational complexity. On the other hand,
Huffman coding suffers from a deviation from the entropy
bound when the statistical property of the source is unknown.

Therefore, in this section, we first derive the distribution of
the PAPR-reduced IQ samples, i.e., fX(x) and fY(y) for the
In-phase and Quadrature-phase components, respectively. The
parameters of the NUQ and EC blocks for the new distribution
of the signal with reduced PAPR are analyzed and conse-
quently the joint effect of PAPR reduction and compression
distortion is modeled by MER analysis.

A. Distribution of the PAPR-Reduced IQ Samples

The conversion from polar to Cartesian coordinates of the
complex samples is such that (x, y) = ϕ(r, θ) with:

x = r cos θ r =
√

x2 + y2

y = r sin θθ = ϕ−1
2 (x, y), (21)

where ϕ : ζ �→ � is a one-to-one mapping from the polar
coordinates domain ζ to the Cartesian coordinates domain �
and ϕ−1

2 : � �→ [−π, π ] with:

ϕ−1
2 (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tan−1
( y

x

)
, if x > 0

tan−1
( y

x

) − π, if x < 0, y < 0
π − tan−1

( y
x

)
, if x < 0, y ≥ 0

π/2, if x = 0, y > 0
−π/2, if x = 0, y < 0.

(22)

According to the change of variables theorem, the joint PDF
of the couple (X,Y) is

fX,Y(x, y) = |J(x, y)|fRin,in(r(x, y), θ(x, y)), (23)

where |J(x, y)| is the modulus of the Jacobian of the mapping
ϕ computed as

|J(x, y)| =
∣∣∣∣∣

∣∣∣∣∣

∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣∣

∣∣∣∣∣ = 1√
x2 + y2

, ∀ (x, y) = (0, 0) (24)

As reminded in Section II-B, the considered PAPR reduction
techniques modify the signal amplitude without affecting the
phase. Thus, ∀k ∈ {0, . . . ,Nfft − 1}, rin(k) = |zin(k)| and
θin(k) = ∠zin(k) are samples drawn from two independent
random variables, i.e., Rin and in, respectively. Hence, the
joint PDF of (Rin,in) is the product of the marginal PDFs,
i.e., fRin,in(r, θ) = fRin(r)fin(θ).

1) Clipping: The respective domains of the polar and
Cartesian coordinates become ζ = [0,Vmax] × [−π, π ] and
� = ] − Vmax,Vmax[2, respectively. Using the amplitude dis-
tribution of the clipped signal in Lemma 1, the joint PDF of
the polar coordinates can be expressed as

fclip
Rin,in

(r, θ) =

⎧
⎪⎨

⎪⎩

r
2πσ 2

ray
e
− r2

2σ2
ray , if r < Vmax

e−�
2π δ(r − Vmax), if r = Vmax.

(25)

Thus, substituting (25) and (24) into (23), the marginal PDF
of the Cartesian coordinate of a clipped RV is obtained as

fclip
X (x) =

∫ Vmax

−Vmax

(
1

2πσ 2
ray

e
− x2+y2

2σ2
ray + e−�

2π
√

x2 + y2

× δ

(√
x2 + y2 − Vmax

))
dy. (26)
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Thus, a closed-form expression of the PDF of the clipped IQ
samples can be obtained as in the following theorem.

Theorem 1: The probability distribution of the clipped
PAPR-reduced IQ samples after IFFT, is expressed as follows:

fclip
X (x) = 1√

2πσ 2
ray

e
− −x2

2σ2
ray erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠

+ e−�

2π

1√
Vmax

2 − x2
, x ∈ ] − Vmax,Vmax[ (27)

where erf(u) = (2/
√
π)

∫ u
0 exp(−t2) dt is the error function.

Proof: Using the integral identity in [26, eq. (1), Sec. 3.321,
p. 336] and applying the change of variable z = √

x2 + y2, then
adequately rearranging the terms leads to the given distribution
of the In-phase component fclip

X (x).
From (27), one can check that without clipping, i.e., when

Vmax → ∞ and hence � → ∞, the second term vanishes and
the error function tends to one. This leads to the zero-mean
Gaussian distribution characterizing the OFDM signal.

2) TR With QCQP Solution: The respective domains of the
polar and Cartesian coordinates are ζ = [0,∞)× [−π, π ] and
� = R

2. The joint PDF fQCQP
Rin,in

(r, θ) is the product of the
amplitude distribution of the TR-QCQP signal in Lemma 2
and the phase distribution fQCQP

in
(θ) = 1

2π . Hence, Substituting
the joint PDF in (23) together with the Jacobian determinant
in (24), the marginal PDF of the Cartesian coordinate of the
tone-reserved RV is obtained from

fQCQP
X (x) =

∫ ∞

−∞
(1 − p)q

2πσ 2
ray

e
− x2+y2

2σ2
ray

(
1 − FGEV

R (r(x, y)
)

dy

︸ ︷︷ ︸
fX1 (x)

+
∫ ∞

−∞
p

2πσ2
√

x2 + y2
G(x, y)k2+1e−G(x,y)dy

︸ ︷︷ ︸
fX2 (x)

, (28)

where, FGEV
R (r(x, y)) = e

−
(

1+ k1
σ1

(√
x2+y2−μ1

))−1/k1

, (29)

and G(x, y) =
(

1 + k2

σ2

(√
x2 + y2 − μ2

))−1/k2

. (30)

where X1 and X2 are the RVs representing the samples drawn
from the first and the second mode of the In-phase Cartesian
distribution, respectively. Finally, one can show that the distri-
bution of the In-phase component, fQCQP

X (x),1 can be expressed
as in the following theorem.

Theorem 2: The probability distribution of the TR-QCQP
PAPR-reduced IQ samples after IFFT, is expressed as follows:

fQCQP
X (x) = fX1(x)+ fX2(x), x ∈ ] − d∗, d∗[ (31)

where

fX1(x) = (1 − p)q√
2πσray

e
− x2

2σ2
ray erf

⎛

⎝
√

r2
s − x2

√
2σ 2

ray

⎞

⎠ (32)

1The distribution of the Quadrature-phase component, fclip
Y (y) and

fQCQP
Y (y), derives from the same steps as in Theorems 1 and 2, respectively,

given that the phase is uniformly distributed.

with rs = μ1 + σ1

k1

(
(ln 2)−k1 − 1

)
(33)

and

fX2(x) = −p

π

∞∑

p1=0

p1∑

p2=0

ξ
[
�(k2(p1 + p2 + 1)+ 1, ψ1)

− �(k2(p1 + p2 + 1)+ 1, ψ2)
]
, (34)

with, ξ =
(− 1

2
p1

)(
p1

p2

)[
c

−(1+2p1)
2

1 cp1−p2
2 cp2

3

]
, (35)

and c1 = σ 2
2

k2
2

, c2 = 2μ2σ2

k2
− 2c1,

c3 = −c1 − c2 + μ2
2 − x2,

ψ1 =
[

1 + k2

σ2
(x − μ2)

]− 1
k2
,

ψ2 =
[

1 + k2

σ2

(√
x2 + d∗2 − μ2

)]− 1
k2
. (36)

and

d∗ = max

(
rs, μ2 − σ2

k2

)
. (37)

where �(u, v) = ∫∞
v e−ttu−1dt is the upper incomplete

Gamma function,
(r

k

)
is the generalized binomial coefficient

defined as
(r

k

) = (r)k
k! where, (r)k = ∏k−1

n=0(r − n) is the falling
factorial and p, q, σray, μ1, σ1, k1, μ2, σ2, and k2 are the fitted
parameters of the amplitude distribution fQCQP

Rin
(r) in Lemma 2.

Proof: See Appendix A.
We can see that the distribution of the TR-QCQP IQ samples

takes the form of a series expansion with gamma functions
and depends on the estimated fitted parameters of the GEV
and Rayleigh distributions, which model the amplitude of the
tone-reserved signal in Lemma 2.

B. Derivation of Optimized Quantizer and EC Parameters

Based on the PDF of the clipped PAPR-reduced IQ samples
in Theorem 1, the parameters of the optimized compression
techniques can be derived by injecting this PDF into (16)
and (17), as in the following proposition.

Proposition 2: The codebook quantization levels for the
real and imaginary parts of a clipped signal and the aver-
age codeword length assigned to each quantization level in
the entropy coder stage can be expressed by (38) and (39),
respectively, on the bottom of the next page, where Q(u) =
(1/

√
2π)

∫∞
u exp(−v2/2)dv is the Q-function.

Proof: Applying the adequate change of variables u =
V2

max − x2 and x = Vmax sin u for the numerator and the
denominator of (16), respectively, along with the integral iden-
tity in [26, eq. (1), Sec. 3.321, p. 336], qclip

i and Lclip
qi are

obtained.
Without clipping, i.e., when Vmax → ∞ and hence� → ∞,

the error function tends to one and the exponential term
in (38) and (39) tends to zero and we obtain the parameters
of a quantizer and an entropy encoder, optimized for a zero-
mean Gaussian distribution analyzed in [8]. The PDF of the
tone-reserved IQ samples obtained in Theorem 2 remains com-
plex because special functions with complex arguments are
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involved. Therefore, closed form expressions for the codebook
quantization levels and the average codeword length assigned
to each quantization level are unattainable for PAPR-reduced
signals with tone-reservation technique and they are com-
puted numerically by injecting fQCQP

X (x) into (16) and (17),
respectively.

C. Derivation of Asymptotic MER and SQNR

A closed-form expression of the MER and SQNR in (18)
and (19), respectively, can be evaluated asymptotically for the
clipping PAPR reduction technique based on Theorem 1 as
stated in the following lemma. In that case, the asymptotic
SQNR is only important to evaluate the distortion caused by
the quantizer.

Lemma 3: The asymptotic MER and SQNR expressions of
a compressed clipped OFDM signal, considering a scalar NUQ
and EC can be expressed by:

MERclip = Ps

DC + Dclip
LQ

= 2σ 2
ray

DC + Dclip
LQ

, (40)

and

SQNRclip = Pclip
zin

Dclip
LQ

, (41)

where DC, Dclip
LQ and Pclip

zin are the clipping distortion, asymp-
totic quantization distortion and the power of the complex
clipped IQ samples, given in (43), (44) and (44) on the bottom
of the page, respectively, where

a = 1√
2πσ 2

ray

erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠, b = 1

2σ 2
ray
, and c = e−�

2π
.

(42)

where 1F1 is the confluent hypergeometric function
[26, Sec. 9.18, p. 1019].

Proof: See Appendix B.
For TR-QCQP, the asymptotic MER of the compressed

tone-reserved OFDM signal can be computed numerically
from (18) based on the PDF of the tone-reserved IQ samples
fQCQP
X (x) in Theorem 2. The numerator of (18) is the aver-

age power of a complex tone-reserved IQ sample, denoted by
PQCQP

zin and is calculated from PQCQP
zin = 2

∫ d∗
−d∗ x2fQCQP

X (x)dx.
As shown earlier, quantization is the only source of distortion
for the TR PAPR reduction technique. Therefore, the denom-
inator of (18) is the quantization distortion asymptotically
computed from Proposition 1.

D. Complexity Analysis

The algorithmic complexity of the proposed optimized com-
pression techniques is the complexity of the Lloyd algorithm
for non-uniform scalar quantizer [23]. This algorithm is a two-
step iterative process satisfying the two optimality conditions
given in (15) and (16). Each iteration requires to compute N−1
decision thresholds and N quantization levels, with N = 2R, R
being the number of bits, hence the complexity of an iteration
is in O(N). Iterations continue until the algorithm converges,
i.e., when the quantization distortion does not improve any-
more. The computations of the decision thresholds (15) and
the codewords (16) depend on the PDF of the samples which is
a bit more complex than for a strictly Gaussian signal. Indeed,
for a clipped optimized quantizer, the quantization levels are
computed from Proposition 2 with (38). For the tone-reserved
optimized quantizer, quantization levels are numerically com-
puted using Theorem 2 in (16), which is far more complex
than computing a Gaussian quantizer. However, it is worth
noting that these implementations are moved to the cloud in a

qclip
i =

σray√
2π

erf

(
Vmax√
2σ 2

ray

)⎡

⎣e
− t2i−1

2σ2
ray − e

− t2i
2σ2

ray

⎤

⎦ + e−�
2π

[√
V2

max − t2i−1 −
√

V2
max − t2i

]

erf

(
Vmax√
2σ 2

ray

)[
Q
(

ti−1
σray

)
− Q

(
ti
σray

)]
+ e

− �

2σ2
ray

[
arcsin

(
ti−1
Vmax

)
− arcsin

(
ti

Vmax

)] (38)

Lclip
qi

= −log2

⎛

⎝erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠
[

Q

(
ti−1

σray

)
− Q

(
ti
σray

)]
+ e

− �

2σ2
ray

[
arcsin

(
ti−1

Vmax

)
− arcsin

(
ti

Vmax

)]⎞

⎠ (39)

DC = 2σ 2
ray�

(
2,

V2
max

2σ 2
ray

)
− 2

3
2 σrayVmax�

(
3

2
,

V2
max

2σ 2
ray

)
+ V2

maxe
− V2

max
2σ2

ray (43)

Dclip
LQ = 2−2R

6

⎡

⎣2 3
√

aVmax√
6bσ 2

ray

1F1

(
1

2
; 3

2
; −V2

max

6σ 2
ray

)
− 26cVmax

25
√

3σ 2
ray

3
√

a2
1F1

(
1

2
; 1; V2

max

3σ 2
ray

)⎤

⎦
3

(44)

Pclip
zin

= 2σ 2
ray√
π

erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠

⎡

⎣
√
π

2
erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠ − Vmax√
2σ 2

ray

e
− V2

max
2σ2

ray

⎤

⎦ + V2
max

4
e
− V2

max
2σ2

ray (45)
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Fig. 4. Simulated and analytical PDF of clipped PAPR-reduced IQ samples
for different clipping ratios �.

CRAN architecture in which the complexity is a less stringent
constraint than in radio heads.

IV. RESULTS ANALYSIS

This section validates through simulations the distributions
of the IQ samples obtained after clipping and tone-reservation
techniques derived in Theorems 1 and 2, respectively. These
expressions are then exploited to analyze the effect of reducing
the PAPR of the OFDM signal before compression in a C-
RAN architecture.

In our simulations, without loss of generality, we consider
an 8-MHz DVB-T2 frame structure with 64-QAM constella-
tions.2 The 32k FFT mode is considered for the analysis of the
clipping PAPR reduction technique with 32768 active subcar-
riers conveying the QAM symbols. On the other hand, only the
8k mode with 8192 subcarriers is considered for TR-QCQP
due to the prohibitive computational complexity of QCQP for
larger FFT sizes. It can be emphasised that an Nfft size of 8k
is sufficiently large to ensure the convergence of the real and
imaginary parts of the complex OFDM signal to a Gaussian
distribution. This ensures a fair comparison between the clip-
ping and TR analysis. In TR, when analyzing the impact of the
different power control PPC applied to PRT subcarriers com-
pared to data subcarriers, we set a percentage of dedicated
subcarriers NPRT = 1% and the PRT positions are those used
in the DVB-T2 frame structure. While, in case of a different
percentage of subcarriers dedicated for the TR algorithm NPRT,
we set a power control PPC = 10 dB and randomly generate
the positions of the PRTs.

A. Distribution of the PAPR-Reduced IQ Samples

1) Clipping: We start by validating the obtained clipped
PAPR-reduced IQ samples PDF in Theorem 1. Fig. 4 shows
the PDF for different clipping ratios of 2.6 dB, 4.5 dB, and

2Note that the order of the constellations has a very limited impact on
the distribution of the samples in the time-domain. Hence, simple 64-QAM
is used in the simulation instead of more sophisticated constellation such as
rotated 256-QAM, which is used in DVB-T2 and ATSC3.0 for instance.

Fig. 5. Simulated and analytical PDF of TR-QCQP PAPR-reduced IQ
samples, with and without power constraint and NPRT = 1%.

Fig. 6. Simulated and analytical PDF of TR-QCQP PAPR-reduced IQ
samples, with different percentages of reserved tones and PPC = 10 dB.

7 dB, respectively. The analytical curves perfectly match the
simulated ones, which validates the obtained statement in
Theorem 1. It is worth noting that the distribution of the
clipped IQ samples converges to a zero-mean Gaussian dis-
tribution when increasing the clipping threshold. Indeed, as
the clipping threshold increases, the distortion decreases as
expected from (27).

2) TR With QCQP Solution: We validate the distribution
of the TR-QCQP PAPR-reduced IQ samples expressed in
Theorem 2. Fig. 5 shows the analytical3 and the simulated IQ
PDF for a set of 1% PRT over the total number of subcarriers.
The power constraint applied to PRT subcarriers compared to
data subcarriers is set to 5, 10 dB or no constraint. Moreover,
in Fig. 6, the simulated and analytical PDF are shown for
different percentages of reserved tones over the total number
of subcarriers and with a power constraint PPC = 10 dB. It is
important to mention that the TR algorithm introduces a power
increase on reserved subcarriers compared to data subcarriers,
according to the power constraint defined in (6). Thus, in order
to ensure a fair comparison, the energy of the tone-reserved

3We use the fitted parameters of the amplitude distribution of the TR-QCQP
signal estimated in [22].
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PAPR-reduced signals is normalized to 1. Finally, our findings
in Theorem 2 are perfectly validated by Figures 5 and 6. For
our upcoming analysis, it is important to investigate how the
distribution of the tone-reserved IQ samples depends on the
tuning factors PPC and NPRT.

a) Impact of power control PPC: The distribution of
the signal before applying the tone-reservation algorithm is
Gaussian, as observed in Fig. 5. On the other hand, the PDF
after TR is a multimodal distribution with a major mode and
two minor modes taking the form of “shoulders” on each side
of the main mode. The probability of the minor modes is very
small compared to the main mode and depends on the value of
the power control PPC. The main mode still follows a Gaussian
distribution at small signal values, and the power assigned
to the PRTs allows the tail of the distribution to change as
follows. When additional power is added, the tail of the dis-
tribution decreases and the concentration of the minor mode
becomes more significant. More precisely, when no power con-
straint is applied, the tail of the distribution is reduced as much
as possible.

b) Impact of percentage of PRTs: The larger the number
of reserved tones, the more the PAPR is reduced. Therefore
and as previously, the tail of the distribution decreases, along
with the growth of the minor modes, when NPRT increases, as
observed in Fig. 6.

B. Distortion-Rate Analysis

In this section, we show the gain in the performance of the
lossy compression technique, i.e., quantization, resulting from
the change of the distribution of the OFDM signal when it is
subjected to a PAPR reduction technique. These analysis are
presented asymptotically based on Shannon distortion-rate the-
ory. Shannon gave a fundamental lower bound (SLB) for the
distortion-rate function, which indicates the minimum achiev-
able distortion for a given rate D∗(R) that should be considered
in any lossy compression technique. SLB for a stationary iden-
tical and independently distributed (i.i.d) source and MSE
distortion D is given by [27]

D∗(R) = 1

2πe
22h(X)2−2R, (46)

where e is the exponential and h(X) is the differential entropy
of an absolutely continuous RV X and is defined as

h(X) = −
∫

X
fX(x) log2 fX(x) dx. (47)

where X is the set denoting the support of RV X. Although the
distortion-rate function has a simple expression, it cannot be
evaluated analytically except in a few special cases. However,
it is well known that the Gaussian source maximizes the dif-
ferential entropy and hence the SLB for a given variance [27].
Therefore, for a RV X with a given variance σ 2, h(X) is upper
bounded by

h(X) ≤ hG(X) = 1

2
log2

(
2πeσ 2

)
, (48)

and the distortion-rate is in turn upper bounded as follows:

D∗(R) ≤ D∗
G(R) = σ 22−2R, (49)

Fig. 7. D∗
clip(R) and D∗

QCQP(R) functions for clipped and TR-QCQP PAPR-
reduced signals, at different � and PPC, respectively, bounded above by the
Gaussian distortion-rate function D∗

G(R).

where hG(X) is the differential entropy of a Gaussian random
variable with variance σ 2 and D∗

G(R) is SLB for a Gaussian
source.

Fig. 7 shows the distortion-rate Shannon bounds for clipped
signals with different clipping ratios, denoted D∗

clip(R), and
for tone-reserved signals with different power constraints,
denoted D∗

QCQP(R), together with the Gaussian upper bound
D∗

G(R). The Gaussian upper bound D∗
G(R) is plotted from (49),

while the distortion-rate functions D∗
clip(R) and D∗

QCQP(R)
are computed numerically using the corresponding PDFs in
Theorems 1 and 2, respectively, in (46).

It can be seen that the highest distortion results from the
Gaussian distribution. At low clipping ratios, the deviation
of D∗

clip(R) from the Gaussian D∗
G(R) is clearly seen. As the

clipping ratio increases and the signal converges to a zero-
mean Gaussian distributed signal, this deviation decreases.
Moreover, D∗

QCQP(R) is slightly lower than the Gaussian upper
limit. This is because the TR-QCQP algorithm preserves the
distribution of the OFDM signal except for a slight change
in the tail of the distribution. Indeed, when the power con-
trol PPC increases, the tail of the TR-QCQP PDF decreases
and the contribution of the minor modes increases. Therefore,
the D∗

QCQP(R) of a tone-reserved signal is farther from the
Gaussian upper bound.

In summary, to infer the gain obtained when the distribution
of the signal to be compressed is non-Gaussian, the relative
distortion reduction of the clipped and tone-reserved PAPR-
reduced IQ samples PDFs relative to the Gaussian PDF, i.e.,
D∗

G(R) − D∗
clip(R) and D∗

G(R) − D∗
QCQP(R), respectively, are

summarized in column 2 of Table I.
Moreover, for the sake of clarification and comparison,

Fig. 8 shows the asymptotic scalar quantization distortion
defined in Proposition 1, i.e., Panter and Dite formula for
Gaussian, for clipped and tone-reserved signals together with
their SLB. The asymptotic scalar quantization distortion is
calculated from the following closed-form expression for the
Gaussian signal, DG

LQ = π
√

3
2 σ 22−2R [28], derived in (44)

for the clipped signal and computed numerically for the
tone-reserved signal. The difference between the asymptotic
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TABLE I
DISTORTION REDUCTION FOR CLIPPED AND TR-QCQP SIGNALS,

RELATIVE TO THE GAUSSIAN-DISTRIBUTED SIGNAL AND THE

ASYMPTOTIC DIFFERENCE IN DISTORTION BETWEEN THE LLOYD

QUANTIZER AND SLB FOR EACH PDF

Fig. 8. Asymptotic distortion of Lloyd quantizer and SLB for clipped and
TR-QCQP PAPR-reduced signals, at different � and PPC, respectively, vs
resolution.

quantization distortion and SLB for each PDF is summarized
in column 3 of Table I. Obviously, the Lloyd quantizer can
achieve lower MSE, i.e., better performance by approach-
ing SLB for clipped and tone-reserved signals than for the
Gaussian signal.

C. Gaussian Quantizer Performance Evaluation

In this section, the robustness of Gaussian-optimized com-
pression techniques when applied to a PAPR-reduced signal
is evaluated. The results are given thanks to the SQNR to
highlight the effect of the quantization block.

1) Clipping: Fig. 9 shows the simulated SQNR w.r.t. the
clipping ratio � for different resolutions. The solid lines repre-
sent the optimal performance of the Gaussian quantizer applied
to a Gaussian OFDM signal. The dashed lines represent the
SQNR obtained when the Gaussian quantizer is applied to the
clipped IQ samples. We first conclude that applying a Gaussian
quantizer to a clipped signal results in a severe degradation of
the SQNR. Moreover, the performance loss increases as the
resolution of the quantizer increases. Finally, the higher the
clipping threshold �, the lower the performance loss, since the
distribution of clipped IQ samples converges to a zero-mean
Gaussian distribution. Therefore, the SQNR curves reach a
constant ceiling at high clipping thresholds.

2) TR With QCQP Solution: Fig. 10 shows the simulated
MER as a function of the resolution R for different values
of PPC and NPRT, respectively. The solid line represents the

Fig. 9. SQNR vs clipping ratio � of a Gaussian quantizer applied on a
clipped signal vs the resolution.

Fig. 10. MER vs resolution of a Gaussian quantizer applied to a TR-QCQP
signal. (a) different power constraints PPC and NPRT = 1%. (b) different
percentages of PRTs NPRT and PPC = 10 dB.

optimal performance of a Gaussian quantizer applied to a
Gaussian OFDM signal. The dashed lines represent the MER
obtained when the Gaussian quantizer is applied to the tone-
reserved PAPR-reduced IQ samples. We first note that using a
Gaussian quantizer on a tone-reserved signal does not lead
to any performance degradation, on the contrary, a slight
improvement in the MER performance is obtained compared
to the Gaussian case. Moreover, MER is getting better when
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Fig. 11. MSE per each quantization region for different power constraints.
(a) 4-level quantizer with 2 bits per sample. (b) 8-level quantizer with 3 bits
per sample.

increasing PPC or NPRT. This can be explained as follows
based on our previous analysis. The main mode follows the
Gaussian distribution. Therefore, the Gaussian codebook quan-
tization levels in this region is optimally adapted. On the other
hand, the tail of the distribution is reduced when increasing
PPC or NPRT which means that high amplitude values occur
with quasi-null probability, resulting in lower quantization dis-
tortion compared to purely Gaussian distributed samples. We
show the partial quantization distortion experienced by each
quantization region for 4 and 8 level quantizers in Fig. 11a)
and Fig. 11b), respectively. The quantization distortion of
tone-reserved signals is reduced on the first and last regions,
compared to the distortion on the OFDM signal, while they
are the same in other regions, since the distributions are quite
similar.

D. Comparison of Gaussian and Optimized Quantizers

Even though the Gaussian quantizer has been shown to
be very robust to the modification in the distribution of the
samples after PAPR reduction in some situations, this does
not mean that no gain can be expected from an optimized
quantizer. In this section, we therefore use the obtained distri-
bution of the PAPR-reduced IQ samples to study the gain in
system performance obtained by optimizing the compression
techniques.

1) Clipping: In Fig. 12, the analytical expression of the
MER provided in Lemma 3 is validated by plotting the ana-
lytical and simulated MER as a function of the clipping ratio �
for different resolutions. Due to the precision of the asymptotic
quantization distortion formula in Proposition 1, the analytical

Fig. 12. Simulated and analytical MER vs clipping ratio � of clipped
optimized compression techniques for different resolutions.

Fig. 13. MER of Gaussian and optimized compression techniques vs clipping
ratio � for different resolutions.

expression of MER at high resolutions agrees perfectly with
the simulation results, as long as R ≥ 4 [28]. Moreover, the dif-
ference between the theoretical and simulated MER does not
exceed 0.25 dB at low resolution, which validates the proposed
MER expression.

Fig. 13 shows the MER for both Gaussian and clipped opti-
mized compression techniques obtained from the proposed
analytical study as a function of the clipping ratio � for dif-
ferent resolutions. First, MER increases as the clipping ratio
increases and at high clipping ratios, only the quantization dis-
tortion affects the system performance. Second, the higher the
clipping ratio, the more the signal distribution approaches the
zero-mean Gaussian distribution. Thus, the two types of com-
pression techniques merge to achieve an upper bound that is
the MER when only the quantization distortion of a Gaussian-
distributed signal at a given rate is considered. This explains
the 6-dB gap between the different rates at high clipping ratios
and verifies the famous 6-dB quantization rule [29].

In conclusion, applying optimized compression techniques
to a clipped PAPR-reduced signal improves the performance
of the MER at low resolutions and low clipping ratios,
i.e., a highly clipped signal. However, compared to pure
Gaussian compression schemes, the degree of improvement
decreases when resolution increases, reaching about 0.02 dB
when an average of 7 bits per IQ sample is used. This can
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Fig. 14. Clipping PAPR-reduction and Gaussian quantizer MSEs vs clipping
ratio � for different resolutions.

Fig. 15. Simulated and asymptotic MER vs resolution of TR-QCQP
optimized compression techniques for different power constraints PPC.

be explained by exploring Fig. 14, where the clipping and
Gaussian quantization distortions are plotted separately for
different resolutions. It can be observed that although the
quantizer is not optimized for the clipped input signal, the
quantization distortion is negligible compared to the clipping
distortion at high rates. This is because a large number of
quantization levels in a finite quantization region effectively
reduces the quantization distortion to almost 0.006 even if it
is not an optimized quantizer. Thus, in both cases, clipping dis-
tortion becomes the only dominant fixed distortion compared
to quantization distortion.

2) TR With QCQP Solution: We confirm the asymptotic
MER numerically, using the obtained PDF of the TR-QCQP
IQ samples in Theorem 2. Fig. 15 compares the asymptotic
theoretical MER with the one obtained by simulations for dif-
ferent power constraints on the reserved tones. Theoretical
values are represented by bars bordered with dashed lines
while those obtained by simulations are bars bordered by solid
lines. They agree acceptably at the high rates. More precisely,
the deviation between the asymptotic and simulated results
is less than 0.18 dB for R ≥ 5. This validates our theoret-
ical findings in Theorem 2. Hence, we can use the derived
IQ PDF along with the estimated parameters of the amplitude
distribution in [22] to evaluate the performance of different

Fig. 16. MER of Gaussian and optimized compression techniques vs
resolution for different power constraints PPC and NPRT = 1%.

Fig. 17. MER of Gaussian and optimized compression techniques vs
resolution for different percentages of PRTs NPRT and PPC = 10 dB.

compression techniques without having to perform complex
and time consuming numerical simulations.

Figs. 16 and 17 show MER of both Gaussian and
tone-reserved optimized compression techniques obtained
by numerically integrating the IQ distribution obtained in
Theorem 2 as a function of resolution R for different PPC and
NPRT, respectively. A zoom on the high-rate region is also
included. It is found that optimizing the compression tech-
niques to the distribution of the tone-reserved signal improves
the MER performance at high resolutions. Moreover, the MER
performance gain increases significantly when the power con-
straint PPC or the percentage of reserved tones for TR NPRT
increases.

This can be explained by the fact that higher rates, i.e., a
larger number of quantization levels covering the finite quan-
tization region, reflect the ability of the optimized codebook
quantization levels to exploit the statistical changes in the tail
of the distribution. Indeed, the role of the optimized compres-
sion techniques becomes more efficient when the contribution
of the minor modes becomes more significant by increasing
the PPC or the NPRT. For example for a PPC = 10 dB and
a PRT ratio of 1%, as defined in the DVB-T2 specifications,
the optimized compression techniques improve the MER by
about 1.6 dB compared to the purely Gaussian compression
technique, when 7 bits per IQ sample are used in average.
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V. CONCLUSION

This paper investigated the effect of reducing the PAPR of
an OFDM signal in the time-domain before compression in a
C-RAN architecture. The analytical distributions of the PAPR-
reduced OFDM IQ samples have been derived and validated by
simulation analysis for both clipping and QCQP PAPR reduc-
tion techniques. The obtained IQ distributions were used to
optimize the codebook levels of a non-uniform scalar quan-
tizer and the average number of bits allocated by the entropy
encoder in addition to the analysis of the MER, modeling the
joint effect of PAPR reduction and quantization operations.

First, by analyzing the theoretical Shannon bound for the
obtained distributions of the clipped and tone-reserved sig-
nals, we show how the compression techniques take advantage
of changing the distribution of the signal to be compressed.
The simulation results have shown that the Gaussian-optimized
quantizer is not very robust when applied to a clipped signal.
Moreover, the gain of using an optimized quantizer consid-
ering the clipping operation is highlighted, especially in the
low-rate quantization region. However, the gain decreases sig-
nificantly in the high-rate region. While, in the case of the
TR-QCQP algorithm, the Gaussian quantizer works properly
when applied to a tone-reserved signal, because the distribu-
tion of the latter is close to a Gaussian one. However, we
show that the optimized quantizer based on the distribution of
the tone-reserved IQ samples fulfils a significant gain in the
high-rate quantization region, especially for a high number of
tones reserved for TR and high power constraint.

APPENDIX A
PROOF OF THEOREM 2

The multiplication of the Rayleigh distribution by the GEV
CDF in the amplitude distribution of the tone-reserved PAPR-
reduced signal fQCQP

Rin
(r) in Lemma 2 is complex to integrate.

Therefore, in [22], the authors propose a suitable approxima-
tion that has been numerically tested to ensure an appropriate
trade-off between the complexity of the expression and the
accuracy of the computations.

The approximation consists in replacing the GEV CDF in
fQCQP
Rin

(r) in Lemma 2 by a unit step function truncated at
rs = μ1 + σ1

k1
((ln 2)−k1 −1), i.e., u(r − rs). Thus, fRin1(r) in (8)

can be expressed by:

fRin1(r) =
{

q fRay
R (r)(1 − u(r − rs)), if r ∈ [0, rs]

0, otherwise,
(50)

Based on this approximation and remembering that fRin2(r)
is equal to a GEV distribution over [0, μ2 − σ2

k2
] and 0

elsewhere. The respective support of the amplitude distribu-
tion of the TR-QCQP signal is redefined over [0, d∗], where
d∗ = max (rs, μ2 − σ2

k2
). Thus, the evaluation of fX1(x) in (28)

can be developed as follows:

fX1(x) =
∫ d∗

−d∗
(1 − p)q

2πσ 2
ray

e
− x2+y2

2σ2
ray u

(
rs −

√
x2 + y2

)
dy. (51)

The unit step function redefines the integral over
[−√

r2
s − x2,

√
r2

s − x2]. Then, using the integral identity

in [26, eq. (1), Sec. 3.321, p. 336], fX1(x) can be expressed
as in Theorem 2.

In the same way, fX2(x) in (28) is evaluated from

fX2(x) = p

πσ2

∫ d∗

0

1√
x2 + y2

G(x, y)k2+1e−G(x,y)dy

︸ ︷︷ ︸
I

. (52)

Consider the change of variable ψ = G(x, y) in I, where
G(x, y) is in (30). Thus,

dψ

dy
= −y

σ2
√

x2 + y2

[
G(x, y)k2+1

]
,

y =
√(

μ2 + σ2

k2

(
ψ−k2 − 1

))2

− x2, (53)

and the integral limits are stated as

ψ1 =
[

1 + k2

σ2
(x − μ2)

]− 1
k2
, and

ψ2 =
[

1 + k2

σ2

(√
x2 + d∗2 − μ2

)]− 1
k2
. (54)

Hence, we get:

I = −σ2

∫ ψ2

ψ1

1
√(
μ2 + σ2

k2

(
ψ−k2 − 1

))2 − x2

e−ψdψ. (55)

Let us assume the following notations

c1 = σ 2
2

k2
2

, c2 = 2μ2σ2

k2
− 2c1, and c3 = μ2

2 − c1 − c2 − x2,

(56)

and with adequately rearranging the terms, I is stated as
follows

I = −σ2

∫ ψ2

ψ1

(
c1ψ

−2k2 + c2ψ
−k2 + c3

)− 1
2

︸ ︷︷ ︸
I1

e−ψdψ. (57)

Thus, using the generalized Newton multinomial theorem [30]
to expand I1, I1 can be developed as

I1 =
∞∑

p1=0

p1∑

p2=0

(− 1
2

p1

)(
p1

p2

)
c

−(1+2p1)
2

1 cp1−p2
2 cp2

3 ψ
k2(p1+p2+1),

(58)

Substituting I1 into I and using the integral property in [26,
eq. (2), Sec. 8.35, p. 899]. Together with filling I into (52)
and with further simplification of the expression, fX2(x) can
be expressed as in Theorem 2.

APPENDIX B
PROOF OF LEMMA 4

For the clipping PAPR reduction case, Ps is the power of
a complex Gaussian distributed signal with standard deviation
σray, Thus, Ps = 2σ 2

ray.

DC and Dclip
LQ are the powers of the clipping and quantiza-

tion distortions, respectively, which are considered statistically
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independent [31]. Let us first derive the clipping distortion DC

which can be computed as follows:

DC = E

[
|S − Zclip

in |2
]

= E

[
(Rs − Rin)

2
]
, (59)

Expanding the expectation operator and taking the clipping
definition (2) into consideration leads to

DC = E

[
(Rs − Rin)

2
]

=
∫ ∞

Vmax

(r − Vmax)
2fRs(r)dr. (60)

After expanding the squared term and using the integral iden-
tity in [26, eq. (9), Sec. 3.381, p. 346], Dc can be expressed
as in Lemma 3.

The asymptotic quantization distortion DLQ is derived from
“Panter and Dite formula” in Proposition 1. As already shown
in Section III-A, the in-phase and the Quadrature-phase of a
PAPR-reduced complex signal are identical at the input of the
quantizer. Therefore, the quantization distortion is the same
for both components and can be derived for complex samples
as follows:

Dclip
LQ = 2−2R

6

⎛

⎜⎜⎜⎝

∫ ∞

−∞
3
√

fclip
X (x)dx

︸ ︷︷ ︸
I

⎞

⎟⎟⎟⎠

3

. (61)

The evaluation of (61) using the PDF of the clipped IQ samples
given in Theorem 1 leads to the following integral derivation,

I =
∫ Vmax

−Vmax

⎛

⎝ 1√
2πσ 2

ray

e
− −x2

2σ2
ray erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠

+ e−�

2π

1√
Vmax

2 − x2

⎞

⎠

1
3

dx. (62)

Let us assume the following notations

a = 1√
2πσ 2

ray

erf

⎛

⎝ Vmax√
2σ 2

ray

⎞

⎠, b = 1

2σ 2
ray
, and c = e−�

2π
.

(63)

Thus, using the generalized Newton binomial theorem [30], I
can be developed as

I =
∫ Vmax

−Vmax

∞∑

k=0

( 1
3
k

)(
ae−bx2

) 1
3 −k

(
c√

V2
max − x2

)k

dx

=
∞∑

k=0

( 1
3
k

)∫ Vmax

−Vmax

(
ae−bx2

) 1
3 −k

ck

(√
V2

max − x2
)k

dx, (64)

Rearranging the terms in I leads to

I =
∞∑

k=0

( 1
3
k

)
cka

1−3k
3

∫ Vmax

−Vmax

e− b(1−3k)
3 x2

(√
V2

max − x2
)k

dx

︸ ︷︷ ︸
I1

. (65)

Thus, with proper variable substitution along with the integral
property in [26, eq. (1), Sec. 3.383, p. 347], I1 is solved as

I1 = 1

b
1−k

2

[
B

(
2 − k

2
,

1

2

)(
dV2

max

) 1−k
2

× 1F1

(
1

2
; 3 − k

2
;−dV2

max

)]
with, k ≤ 1, (66)

where d = b(1−3k)
6σ 2 . Finally, substituting I1 into I, filling I

into (61), and with further simplifications of the expression,
Dclip

LQ can finally be expressed as in Lemma 3.

Finally, Pclip
zin is the power of a complex clipped IQ sample,

computed with the distribution in Theorem 1, i.e.,

Pclip
zin

= 2
∫ Vmax

−Vmax

x2fclip
X (x) dx. (67)

Using the integral identity in [26, eq. (5), Sec. 3.321, p. 336]
for the exponential function, Pclip

zin is expressed as shown in
Lemma 3.

REFERENCES

[1] A. Checko et al., “Cloud RAN for mobile networks—A technology
overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,
1st Quart., 2014.

[2] A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you
should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5,
pp. 1077–1083, Mar. 1, 2015.

[3] I. Chih-Lin, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li, “Recent
progress on C-RAN centralization and cloudification,” IEEE Access,
vol. 2, pp. 1030–1039, 2014.

[4] “5G; procedures for the 5G system, version 15.2.0 release
15,” Eur. Telecommun. Stand. Inst., Sophia Antipolis, France,
Rep. 3GPP TS 23.502, Mar. 2019.

[5] Frame Structure Channel Coding and Modulation for a Second
Generation Digital Terrestrial Television Broadcasting System (DVB-
T2), V1.1.1, ETSI Standard EN 302755, Sep. 2009.

[6] ATSC Proposed Standard: Physical Layer Protocol, document S32-
230r56, Adv. Telev. Syst. Committee, Washington, DC, USA, 2016.

[7] J. Lee, E. Hyun, and J.-Y. Jung, “A simple and efficient IQ data compres-
sion method based on latency, EVM, and compression ratio analysis,”
IEEE Access, vol. 7, pp. 117436–117447, 2019.

[8] A. Shehata, M. Crussière, and P. Mary, “Analysis of baseband IQ data
compression methods for centralized RAN,” in Proc. IEEE 28th Eur.
Signal Process. Conf. (EUSIPCO), 2021, pp. 1762–1766.

[9] A. Vosoughi, M. Wu, and J. R. Cavallaro, “Baseband signal compres-
sion in wireless base stations,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), 2012, pp. 4505–4511.

[10] B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-a signal com-
pression on the CPRI interface,” Bell Labs Tech. J., vol. 18, no. 2,
pp. 117–133, 2013.

[11] H. Si, B. L. Ng, M. S. Rahman, and J. Zhang, “A novel and efficient
vector quantization based CPRI compression algorithm,” IEEE Trans.
Veh. Technol., vol. 66, no. 8, pp. 7061–7071, Aug. 2017.

[12] Y. Su, M. LiWang, L. Huang, X. Du, and N. Guizani, “Green commu-
nications for future vehicular networks: Data compression approaches,
opportunities, and challenges,” IEEE Netw., vol. 34, no. 6, pp. 184–190,
Nov./Dec. 2020.

[13] L. Ramalho, I. Freire, C. Lu, M. Berg, and A. Klautau, “Improved LPC-
based fronthaul compression with high rate adaptation resolution,” IEEE
Commun. Lett., vol. 22, no. 3, pp. 458–461, Mar. 2018.

[14] F. Brito, M. Berg, C. Lu, L. Ramalho, I. Sousa, and A. Klautau, “A
Fronthaul signal compression method based on trellis coded quantiza-
tion,” in Proc. IEEE Latin–Amer. Conf. Commun. (LATINCOM), 2019,
pp. 1–6.

[15] Y. Su, X. Lu, L. Huang, X. Du, and M. Guizani, “A novel DCT-
based compression scheme for 5G vehicular networks,” IEEE Trans.
Veh. Technol., vol. 68, no. 11, pp. 10872–10881, Nov. 2019.

[16] T. Jiang and Y. Wu, “An overview: Peak-to-average power ratio reduction
techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54, no. 2,
pp. 257–268, Jun. 2008.

  
ACCEPTED MANUSCRIPT / CLEAN COPY



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEHATA et al.: ANALYSIS OF COMPRESSING PAPR-REDUCED OFDM IQ SAMPLES 15

[17] Y.-C. Wang and Z.-Q. Luo, “Optimized iterative clipping and filtering
for PAPR reduction of OFDM signals,” IEEE Trans. Commun., vol. 59,
no. 1, pp. 33–37, Jan. 2011.

[18] J. Tellado and J. M. Cioffi, “Peak power reduction for multicarrier
transmission,” in Proc. IEEE GLOBECOM, vol. 99, 1998, pp. 5–9.

[19] Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction
in OFDM systems: A survey and taxonomy,” IEEE Commun. Surveys
Tuts., vol. 15, no. 4, pp. 1567–1592, 1st Quart., 2013.

[20] A. Shehata, P. Mary, and M. Crussière, “Compression of clipped OFDM
IQ samples for cloud radio access network,” in Proc. IEEE 32nd
Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2021,
pp. 777–782.

[21] A. Cheaito, M. Crussière, J.-F. Hélard, and Y. Louët, “Quantifying
the memory effects of power amplifiers: EVM closed-form derivations
of multicarrier signals,” IEEE Wireless Commun. Lett., vol. 6, no. 1,
pp. 34–37, Feb. 2017.

[22] M. El Hassan, M. Crussière, J.-F. Hélard, Y. Nasser, and O. Bazzi,
“EVM closed-form expression for OFDM signals with tone reservation-
based PAPR reduction,” IEEE Trans. Wireless Commun., vol. 19, no. 4,
pp. 2352–2366, Apr. 2020.

[23] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[24] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[25] P. Panter and W. Dite, “Quantization distortion in pulse-count modu-
lation with nonuniform spacing of levels,” Proc. IRE, vol. 39, no. 1,
pp. 44–48, 1951.

[26] A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products.
Amsterdam, The Netherlands: Elsevier, 2007.

[27] M. C. Thomas and A. T. Joy, Elements of Information Theory, vol. 3.
New York, NY, USA: Wiley, 1991, pp. 37–38.

[28] J. Makhoul, S. Roucos, and H. Gish, “Vector quantization in speech
coding,” Proc. IEEE, vol. 73, no. 11, pp. 1551–1588, Nov. 1985.

[29] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, vol. 159. New York, NY, USA: Springer, 2012.

[30] C.-S. Liu, “The essence of the generalized Newton binomial the-
orem,” Commun. Nonlinear Sci. Numer. Simulat., vol. 15, no. 10,
pp. 2766–2768, 2010.

[31] M. Bernhard, D. Rörich, T. Handte, and J. Speidel, “Analytical and
numerical studies of quantization effects in coherent optical OFDM
transmission with 100 Gbit/s and beyond,” in Proc. ITG Fachtagung
Photonische Netze, 2012, pp. 34–40.

Aya Shehata received the B.Sc. and M.Sc. degrees
in communication engineering from the German
University, Cairo, in 2014 and 2016. She is cur-
rently pursuing the Ph.D. degree in communication
and electronics with the Institute for Electronics and
Telecommunications, National Institute of Applied
Sciences, Rennes, France. Her research interests
include digital signal processing, source coding, and
multicarrier communication systems.

Philippe Mary (Member, IEEE) received the
Graduation degree in signal processing and digi-
tal communications from the University of Côte
d’Azur in 2004, France, the Ph.D. degree in elec-
trical engineering from the Institut National des
Sciences Appliquées de Lyon in 2008, France, and
the Habilitation à Diriger les Recherches from the
University of Rennes in 2018, France.

He has been an Associate Professor with INSA
Rennes and a Member of IETR Laboratory since
2009, France. During the Ph.D. degree, he was with

France Telecom R&D, Grenoble, France, and he worked on the analytical
performance study for mobile communications considering shadowing and
fading and multi-user detectors for wireless communications. In 2008, he held
a post-doctoral position with ETIS Laboratory, Cergy-Pontoise, France, dur-
ing 12 months and he was a Teaching Assistant with ENSEA and University
of Cergy-Pontoise. Since 2009, he has been leading and contributing to sev-
eral industrial and academic projects, and developed several collaborations
with various Universities. He also served in several international conference
technical program committees and he organized two international workshops
and one winter school on signal processing and information theory for IoT.
His research interests include signal processing for wireless communications
and information and communication theory.

Matthieu Crussiére received the M.Sc. and Ph.D.
degrees in electrical engineering from the National
Institute of Applied Sciences, Rennes, France, in
2002 and 2005, respectively.

In 2007, he joined the Department of
Telecommunications and Electronic Engineering
with INSA as an Associate Professor. From 2016
to 2021, he was the Head of the Signal and
Communication Research Team of the Electronics
and Telecommunications Institute of Rennes. In
2014, he started collaborations as an Associate

Researcher with the Institute of Research and Technology B-COM,
Rennes. Since 2021, he has been with the Head of the Electronics and
Telecommunications Engineering Department, INSA as a Full Professor
and holds a transverse research program with IETR about the evolution of
future communication systems towards mmWaves and sub-THz bands. His
first works were focused on the optimization of high-bit rate powerline
communications using hybrid multicarrier and spread-spectrum waveforms.
Then he developed an expertise in adaptive resource allocation, optimization
algorithms and system design for multicarrier and multiantenna systems. This
last years, he has developed various research axes around the optimization of
the physical layer of next generation mobile systems and networks (beyond
5G), mixing traditional signal processing approaches and deep learning
tools. He has authored or coauthored of more than 150 technical papers
in international conferences and journals and holds more than 10 patents.
He has been involved in several European and French National Research
Projects in the field of powerline communications, broadcasting systems,
ultra wideband, and mobile radio communications. His main research
interests lie in digital communications and signal processing techniques
applied to communication systems.

  
ACCEPTED MANUSCRIPT / CLEAN COPY


