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Abstract— The deep learning-based automatic recogni-
tion of the scanning or exposing region in medical imaging
automation is a promising new technique, which can de-
crease the heavy workload of the radiographers, optimize
imaging workflow and improve image quality. However,
there is little related research and practice in X-ray imaging.
In this paper, we focus on two key problems in X-ray
imaging automation: automatic recognition of the expo-
sure moment and the exposure region. Consequently, we
propose an automatic video analysis framework based on
the hybrid model, approaching real-time performance. The
framework consists of three interdependent components:
Body Structure Detection, Motion State Tracing, and Body
Modeling. Body Structure Detection disassembles the pa-
tient to obtain the corresponding body keypoints and body
Bboxes. Combining and analyzing the two different types
of body structure representations is to obtain rich spatial
location information about the patient body structure. Mo-
tion State Tracing focuses on the motion state analysis of
the exposure region to recognize the appropriate exposure
moment. The exposure region is calculated by Body Mod-
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eling when the exposure moment appears. A large-scale
dataset for X-ray examination scene is built to validate the
performance of the proposed method. Extensive experi-
ments demonstrate the superiority of the proposed method
in automatically recognizing the exposure moment and
exposure region. This paradigm provides the first method
that can enable automatically and accurately recognize the
exposure region in X-ray imaging without the help of the
radiographer.

Index Terms— X-ray imaging automation, exposure re-
gion recognition, computer vision, video analysis, deep
learning

I. INTRODUCTION

D IGITAL radiography (DR) is one of the most affordable
and frequently used medical imaging techniques, which

has the advantages of easy accessibility and economy [1].
Because of convenience and low radiation dose in clinical
routine compared to other imaging techniques, DR also is
regarded as a preliminary screening method for some diseases
[2], [3]. It can perform efficient body examinations, which
greatly facilitates the diagnosis and treatment of the clinically
serve and emergency patient [4], [5]. During an entire X-
ray imaging, the radiographers assist the patient to pose,
determine the exposure moment, identify the exposure region,
adjust the X-ray collimator range, check and verify, and finally
perform X-ray exposure. Usually, identifying the exposure
region is a very important procedure in X-ray imaging, which
is closely related to the radiation dose received by the patient.
Moreover, the radiographer needs to determine the appropriate
moment to successfully perform an exposure, which can avoid
image retakes caused by the motion artifacts and the position
errors [6], [7]. Avoiding image retakes is crucial to reducing
unnecessary radiation dose and inconvenience of the patient,
as well as in avoiding waste of medical resources for hospitals
[8]–[10]. In X-ray imaging, the two key procedures including
recognizing the exposure moment and the exposure region
tend to require costly and error-prone manual involvement.
It will be inspiring if the exposure moment and region can be
automatically and accurately recognized without the help of
the radiographer.

Deep learning is an effective method to improve the effec-
tiveness and efficiency of clinical care in recent years [11],
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(a)  Chest AP (b)  Chest PA

(c) Whole Spine AP
(d)      Whole 
LowerExtremity AP

Fig. 1. Most exposure regions of X-ray imaging protocols usually
consist of multiple or single incomplete body parts, and the exposure
regions of different X-ray imaging protocols usually have larger overlap-
ping areas. On given RGB images, the blue area indicates the standard
exposure region. The area extended by the dotted line on the right is the
corresponding X-ray radiographs.

[12]. With the ever-increasing demand for health care services
and the considerable drain on human resources, deep learning
has infiltrated the optimization of clinical workflows [13],
[14]. However, these optimizations almost usually focus on
the downstream workflows, including the disease analysis and
diagnosis [15], [16]. The upstream medical imaging workflows
remain mostly unexplored [17]. Therefore, deep learning may
facilitate automating the two key procedures in X-ray imaging,
thereby decreasing the heavy manual workload of the radiogra-
pher, reducing the non-essential radiation dose for the patient,
and optimizing imaging quality.

The deep learning-based automatic recognition of the scan-
ning or exposing region in medical imaging automation has
found relevant applications. U-HAPPY (United imaging Hu-
man Automatic PlanBbox for PulmonarY) is a successful
attempt at computed tomography (CT) imaging using deep
learning to automate pulmonary scanning [18]. It implements
the automatic recognition of some scanning parameters during
the pulmonary CT imaging. These parameters include the
scanning region of standard pulmonary CT imaging and the
moving distance of the scanning couch, etc. Another notable
example is an automated scanning workflow based on the
United imaging mobile CT platform [19]. Compared to U-
HAPPY [18], it can automatically identify whether the patient
is deemed ready using the motion analysis algorithm. Booijet
et al. [20] and Saltybaeva et al. [21] have calculated the
ISO-centering parameter in CT examination using the 3D
camera algorithm. The ISO-centering parameter is calculated
by the results of patient contour detection and guides the
CT table automatically to adjust so that the center of the
patient body region overlaps with the scanner ISO center.
Kagan Incetan et al. [22] has developed a safety system based
on an RGB-D camera to automate the patient positioning
process of digital rotational angiography (DRA) imaging. The
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Fig. 2. For the exposure region in X-ray imaging, there is giving a
comparison between conventional manual recognition and automatic
recognition. In the upstream workflow of X-ray imaging, using automated
methods will greatly reduce the workload of manual operation for the
radiographer.

developed algorithm determines collisions between the C-
arm and patient and the re-protocol algorithm identifies the
movement of the patient table required to ensure a collision-
free scan. Compared to scanning region recognition of CT or
DRA in imaging automation, it is more challenging for the
exposure region recognition in X-ray imaging. These chal-
lenges include: (1) X-ray examination involves more imaging
protocols compared to CT or DRA, which means that the
types of the exposure region that the algorithm needs to
recognize are diverse. (2) The most exposure region usually
consists of multiple (Fig.1 (c) and (d)) or single incomplete
body parts (Fig.1 (a) and (b)). Thus, this causes difficulty
in the area feature description and extraction. (3) Exposure
regions of some special imaging protocols need to distinguish
the left-right attribute. For single object detection methods,
if the exposure region of every imaging protocol is set to
different category Bboxes to conduct detection tasks, this is
not technically feasible. This is because the object detection
method cannot further recognize every specific instance in
these detected Bboxes with the left-right attribute. (4) The
exposure regions of different X-ray imaging protocols usually
have larger overlapping areas. Current human parsing methods
based on semantic segmentation [23], [24] usually can only
define only one semantic category for each pixel position
in the image. In this scene, because the semantics definition
problem of overlapping areas in the exposure region cannot be
solved, single semantic segmentation methods cannot handle
it. To overcome the aforementioned challenge, we propose a
robust framework based on the hybrid model to automatically
recognize the exposure moment and region.

In this paper, we make the following contributions:
• For the first time, we contribute a near-real-time video

analysis framework to automatically recognize the ex-
posure moment and region during the X-ray imaging.
The proposed framework has shown good recognition
performance in experiments, which hopefully helps to
decrease the radiographer workload and optimize X-ray
imaging workflow.

• To the best of our knowledge, neither the single seg-
mentation nor the object detection model can handle
well the exposure region recognition of various X-ray
imaging protocols. Therefore, we proposed a method
based on the hybrid model including the body keypoint

 
 

  ACCEPTED MANUSCRIPT / CLEAN COPY



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3172369, IEEE Journal of
Biomedical and Health Informatics

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

TABLE I
12 KINDS OF X-RAY IMAGING PROTOCOLS FOR STANDING OR LYING

EXAMINATION STATE IN OUR STUDY. AP MEANS ANTERIOR-POSTERIOR,
PA MEANS POSTERIOR-ANTERIOR AND LAT MEANS LATERAL.

protocol state basic Bboxstanding lying
Chest AP X X Btorso

Chest PA X Btorso

Chest LAT X X Btorso

TSpine AP X Btorso

TSpine LAT X Btorso

LSpine AP X Btorso

LSpine LAT X Btorso

Whole Spine AP X X Btorso

Whole Spine LAT X X Btorso

Whole LowerExtremity AP X X Bperson

L-Whole LowerExtremity LAT X X Bperson

R-Whole LowerExtremity LAT X X Bperson

detection model and object detection model to calculate
the exposure region.

• We constructed a large-scale dataset about the X-ray ex-
amination scene. The dataset includes a total of 6268 im-
ages which involves different 12 X-ray imaging protocols.
Each image has corresponding annotations containing 9
categories of body bounding Bbox (Bbox) and 21 body
keypoints. Currently, we are continuing to collect images
about more protocols to enrich the dataset and test the
robustness of the proposed framework. The dataset may
promote the related clinical research. Soon, dataset1 will
be uploaded and made available for the researchers.

II. MOTIVATION AND PROBLEM STATEMENT

1) Motivation: As illustrated in Fig.2, in the upstream work-
flow of conventional X-ray imaging, radiographers require to
artificially determine the exposue moment and region, and
adjust the X-ray collimator range. Using automated methods
instead of manual operation will greatly reduce the workload
for the radiographers in the process. Therefore, we focus on
the two key procedures in the upstream workflow of X-ray
imaging: determining the exposure moment and recognizing
the exposure region by an automated method without radiog-
rapher involvement.

2) Problem Statement: In this paper, we studied automatic
recognition under 12 lying or standing X-ray imaging proto-
cols (as listed in Table I). In these protocols, the exposure
regions also are diverse, the patient body postures are varied
during the examination. As illustrated in Fig.2, our goal is to
automatically and accurately recognize the exposure moment
and region without the involvement of the radiographers. To
design a robust framework that can be hopefully employed
in the clinical environment, several requirements should be
satisfied:
(1) Preferably, the framework should not be invasive and

introduce no extra radiation dose to the patient.
(2) In the X-ray examination, the motion state of the exposure

region should be always tracked. The framework should
have the approaching real-time performance so that the

1https://github.com/JiaRuiS/AVAF
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Fig. 3. The body Bbox annotations that need to be detected have
9 categories. The body keypoint annotations that need to be detected
have 21 categories.

appropriate exposure moment can be found in time.
Meanwhile, the approaching real-time performance also
helps the radiographer to find abnormal situations and
rapidly handle them.

(3) The accuracy of the exposure region recognition should
be high. This avoids imaging failures or unnecessary
radiation doses to the patient. Besides, the proposed
framework also can be compatible with more protocols
without making excessive modifications and sacrificing
accuracy.

To meet the aforementioned requirements, we proposed the
framework based on the hybrid model including body keypoint
detection and body part detection models. Especially, when
the framework runs, the information of the motion state or
abnormal situations are marked on each video frame and fed
back to the radiographer rapidly.

III. METHOD
The pipeline of our proposed framework is described in

Fig.4. The framework consists of three interdependent com-
ponents: (a) Body Structure Detection including Body Part
Detection and Body Keypoint Detection is designed to obtain
two complementary body structure representations for each
patient. (b) Motion State Tracking is utilized to analyze
the motion state of the exposure region, and recognize the
exposure moment. (c) Body Modeling is used to model the
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patient using the obtained two complementary body structure
representations. Finally, the exposure region can be calculated
directly.

A. Body Structure Detection

Body Structure Detection is designed to provide a basis for
calculating the exposure region, which consists of Body Part
Detection and Body Keypoint Detection. Body Part Detection
detects the body Bboxes of the patient based on the object
detection model. Body Keypoint Detection detects the body
keypoints of the patient based on the keypoint detection model.

The border definition of the exposure region is clarified
strictly by clinical norms. In the proposed method, the border
of the exposure region will be represented by the body Bboxes
and the body keypoints. Therefore, the number and category
of the body Bboxes and the body keypoints will be determined
by the categories of involved X-ray imaging protocols. In our
current study, the body Bboxes are designed into 9 categories,
and the body keypoints are designed into 21 categories.

1) Body Part Detection: As illustrated in Fig.3, for Body
Part Detection, the body Bboxes of 9 categories will be de-
tected: Bperson, Bhead, Btorso, Bupperarm, Bforearm, Bhand,
Bhead, Bshank, Bfoot. The pair Bboxes (eg. left upperarm
and right upperarm) should be classified further between
left or right. This is because it can provide more necessary
information to calculate the exposure region of these special
imaging protocols including L-Whole LowerExtremity LAT
and R-Whole LowerExtremity LAT. However, each instance
in the pair Bboxes is not further identified. This is because
object detection methods classify images in the form of area,
lack the perceptual ability for position relationships between
the Bboxes of different categories. Because the body keypoints
contain detailed instance information, Body Keypoint Detec-
tion is introduced to help solve the above problem. Especially,
Bperson represents the Bbox of the people and is used to locate
the patient during the X-ray imaging.

Detection model. In Body Part Detection, You Only Look
Once version 5 (YOLOv5) [25] is employed to detect the
body Bboxes of the aforementioned 9 categories. This choice
was inspired by a comparison study (TABLE III) that com-
prehensively compared the performance of recent state-of-the-
art (SOTA) object detection methods on the dataset. YOLOv5
follows the one-stage framework. It includes backbone part,
neck part, and detection head part. Backbone part extracts
multiscale features from the input image using fused Focus and
CSP [26] structure. Neck part strengthens the integration and
utilization of semantic features of different levels using FPN
[27] and PAN [28] methods. Detection head part performs the
final classification and regression to locate each body part. To
match detection categories for our task, the output size of the
detection head is adjusted to (80, 80, 52), (40, 40, 52), (20,
20, 52). In model training and testing, the size of all input
images is resized to 640×640.

2) Body Keypoint Detection: As illustrated in Fig.3, for
Body Keypoint Detection, the body keypoints of the 21
categories will be detected: Pnose, Plefteye, Prighteye,
Pleftear, Prightear, Pleftshoulder, Prightshoulder, Pleftelbow,

Prightelbow, Pleftwrist, Prightwrist, Plefthip, Prighthip,
Pleftknee, Prightknee, Pleftankle, Prightankle, Pneck, Pt9, Pl3,
Ppelvis. Compared to the body Bboxes, the body keypoint
contains more detailed instance information (eg. lefteye and
righteye). This is because the training and testing of pose
estimation method is based on the whole image. Therefore, the
spatial position relationship between different body keypoints
can be well obtained.

Detection model. In Body Keypoint Detection, Alpha pose
[29] is utilized to detect the body keypoints of the aforemen-
tioned 21 categories. This choice was inspired by a comparison
study (TABLE III) that comprehensively compared the per-
formance of several state-of-the-art pose estimation methods
on the dataset. Alpha pose follows the top-down framework.
VGG-based SSD-512 [30] detects the human Bboxes. Stacked
Hourglass model [31] with Symmetric Spatial Transformer
Network (SSTN) generates body keypoints for each given
human Bbox. Parametric Pose NMS (p-Pose NMS) eliminates
redundancy for the results of generated body keypoints to
obtain fined body keypoints. In this paper, to improve compu-
tational efficiency, Body Keypoint Detection only calculates
body keypoints for the patient. The human body Bbox of
the patient is obtained from Bperson predicted by Body Part
Detection. For Stacked Hourglass model, we used a smaller 4-
stack hourglass network and adjusted the number of predicted
heatmap channels to 21 to adapt to our task. In model training
and testing, the size of all input images is resized to 256×192.

B. Motion State Tracking

Motion State Tracking analyzes the motion state of the ex-
posure region and recognizes the appropriate exposure moment
during the X-ray imaging. As illustrated in Fig.4, Motion State
Tracking is performed in the form of several sub-processes.
Before the X-ray examination starts, the corresponding imag-
ing protocol will be selected by the radiographer. It will tell
the framework the category of the exposure region to be
recognized.

As illustrated in Fig.4, Body Part Detection is performed
firstly when Body Part Detection starts. In analysis 1, for each
given video frame, the number of the Bperson will be counted.
Thus, the number of people that have entered the area within
the field view of the camera can be determined. Body Part
Detection is only performed in Motion State Tracking stage.
Therefore, the exposure region cannot be calculated only using
body Bboxes. To analyze the motion state of the exposure
region, the basic body Bbox is set as an approximate substitute
to represent the exposure region. As listed in Table I, the basic
body Bbox is the category that has the largest intersection
over union (IoU) with the exposure region of the given X-ray
imaging protocol. For a given frame, Bbasic = {b1, b2, ..., bi}
represents the detection results for all basic Bboxes. The
position information of Flat Panel Radiation Detector (FPRD)
can be captured in real-time from the DR system. Thus, the
additional computational overhead for detecting the position
of FPRD can be avoided. The position of FPRD is defined
in the form of the smallest body Bbox containing the FPRD
and is set as ROIFPRD. Then, p is formulated to measure the
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Fig. 4. The pipeline of the proposed framework for automatic recognition of the exposure moment and region.

spatial position closeness of bi and ROIFPRD:

p =
|bi ∩ROIFPRD|
|ROIFPRD|

, (1)

where | · | is the number of pixels within the given area. Tr
is the threshold to measure whether ROIFPRD and bi are
close enough in the spatial position. When p > Tr, it indicates
that the given bi and ROIFPRD are close enough. Under the
circumstance, the patient is ready to start posing. However,
Bbasic possibly includes multiple elements. This is because
sometimes the family member will assist the patient to pose.
Meanwhile, there may be multiple bi that satisfies p > Tr.
Actually, there are existing only bi within ROIFPRD when the
assistance process ends. Thus, this does not affect recognizing
the exposure moment.

Next, the motion state of ROIFPRD will be used to analyze
to recognize the exposure moment. This is because ROIFPRD

will completely contain the exposure region, and the exposure
region of the current protocol stays in a static state. Therefore,
the motion states of bi and ROIFPRD stay synchronized
from starting posing to completing X-ray exposure. In this
process, N = {M,S} is used to describe the motion state
of ROIFPRD. Especially, the analysis of the motion state is
based on the computation for successive frames. Nf = {m, s}
is used to describe the motion state of the single frame. For
a given frame, s indicates the ROIFPRD stays in static,
and m indicates ROIFPRD stays in motional. Because N
always changes from M to S in the examination process, N
is initialized to M when the imaging starts. In analysis 3, N
is checked first:
• When N = M , Static State Discriminator is employed to

identify whether N conducts the conversion from M to S.
The dense optical flow method [32] is utilized to capture
the displacement field between continuous two frames.
To pursue real-time performance, each frame is down-
sampled before the displacement field calculation. The
matrix group D = {dx, dy} are the displacement fields
in the horizontal and vertical directions of ROIFPRD. o
describes motion intensity of the displacement field and
is formulated as:

o =

∑
i,j (dx(i, j) + dy(i, j))

|ROIFPRD| · t
, (2)

where i and j represent the (i, j)th pixel in ROIFPRD,
and t is the discriminating factor that determines whether
the single pixel of ROIFPRD has a certain degree of dis-
placement. To obtain the motion state of the given frame,
threshold Ts is used to measure the motion intensity.
When o < Ts, Nf = s. Otherwise, Nf = m. The criterion
of state conversion from M to S is based on successive
frames. Therefore, N is converted from M to S if Nf is
s in continuous k frames. In our previous experiment, we
found that sometimes some tiny image changes between
continuous frames caused wrong results of Body Part De-
tection. Therefore, state-refresh mechanism is designed to
avoid continuous impact from detection failure. With the
state-refresh mechanism, the conversion relation of Static
State Discriminator is formulated as:

N =

 M, n < k
S, n = k
M, n > r

, (3)
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Fig. 7. Every border of the exposure region is obtained directly from
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after Body Modeling. The green area indicates the calculated exposure
region for the given X-ray imaging protocol.

h =


h1, −45◦ 6 α<45◦

h2, 45◦ 6 α<135◦

h3, 135◦ 6 α<225◦

h4, 225◦ 6 α<315◦

, (9)

where h1 is the direction h generally toward the positive
half-axis of the x-axis in the plane coordinate system. The
rest direction can be deduced by analogy. Therefore, the
directionality information of the body Bboxes can be obtained.

The distance between center point of the body Bbox and the
line of the possible adjacent two body keypoints is computed
to obtain the left-rightness information of the body Bboxes.
The keypoint group is defined as Pg = {Pl1, P12, Pr1, Pr2},
which means the two pairs of body keypoints that are adjacent
the given body Bbox. Pl1 and Pl2 are the pair of the body
keypoints on the left side of the patient, and Pr1 and Pr2

are another pair on the right side. Each body Bbox with
the left-rightness can correspond to the only keypoint group.
As illustrated in Fig.6, Pcenter is the center coordinate of
the given Bbox. Dl is the distance from point Pcenter to
line Ll1−l2 connected by Pl1 and Pl2. Dr is the distance
from point Pcenter to line Lr1−r2 connected by Pr1 and Pr2.
Directionality of the each body Bbox is calculated according to
the size relationship between Dl and Dr: the body Bboxes of
left-rightness is left when Dl 6 Dr. Otherwise, left-rightness
is right. Therefore, the left-rightness information of the body
Bboxes can be obtained.

Meanwhile, the directionality and left-rightness of the body

Bboxes are determined. As presented in Fig.7, for the given
X-ray imaging protocol, each one in the four borders (top,
down, left, and right) of the exposure region can be obtained
directly from the body Bboxes or the body keypoints, or using
simple computation.

IV. EXPERIMENTAL RESULTS

A. Construction of Datasets

All experiment data were provided by the company of
United Imaging Healthcare (UIH) to validate the effectiveness
of the proposed method. These data were collected by simu-
lating the X-ray imaging process, but real exposure was not
performed. A large-scale dataset called the X-ray examination
scene dataset (XES) was constructed after data collection and
processing. The study (data collection and processing) was
approved by the institutional review board of UIH and was
adherent to the tenets of the Declaration of Helsinki.

Data collection. Raw data were obtained in video form.
And raw videos were collected on patient-level: each patient
simulated X-ray imaging processes of different protocols and
generated a corresponding video. Thus, the content of each
raw video only involves a single patient. These videos were
collected from 135 patients including 89 males and 46 females.
Among them, the age of patients ranged from 20 to 55 years
old, with an average age of 34 years. To ensure the algorithm
robustness, the collected data is diverse in the patients and the
collection environment. Therefore, the patients have different
dresses, body sizes, skin colors, and genders in the XES. The
environment diversity includes different examination rooms,
light intensities, source to image receptor distance (SID)
(SIDs are usually diverse between different protocols) in
the XES. To build a high-quality dataset, all high-resolution
videos were collected using the 2D camera (HIKVISION, DS-
2CD6424FWD-C1: 50Hz, 25fps, 1280 × 720 pixes) installed
on the uDR-WuKong. All collected videos are RGB modal
and obtained from September 2020 to November 2020.

Data processing. The constructed dataset consists of two
parts: Video part and Image part. For Video Part or Image
Part, the data split between Training-Validation (TV) set and
Test set is first on patient-level. After the split on patient-
level, each raw video in Video Part is divided into several
sub-videos with the X-ray imaging protocol as the base unit.
Thus, this ensures that there is no data overlap between the
TV set and Test set. Video part is divided into two subsets: TV
set (300 sub-videos) and Test set (392 sub-videos). Because
the Body Part Detection and the Body Keypoint Detection are
based on single image, the TV set of Video part is used to
generate Image part. The Test set of Video part is used to
test the entire performance of the proposed framework. In the
process of generating Image Part, each sub-video is sampled at
equal intervals. The adjacent frames in the sub-videos usually
play the same contribution to the model training because
they have almost no difference in the image. Therefore, the
similarity between frames evaluated by Hamming Distance
[33] is calculated to remove overmuch adjacent frames after
sampling to obtain Image Part. The two subsets of Image
part serve the training and testing of two different detection
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TABLE II
STATISTICS DISTRIBUTION FROM THE XES.

Positioning Video Part Image Part
TV set (S/L) Test set (S/L) TV set (S/L) Test set (S/L)

Chest AP 10/29 11/40 140/463 51/168
Chest PA 9/- 10/- 129/- 47/-

Chest LAT 11/24 12/33 148/389 54/141
TSpine AP -/10 -/14 -/187 -/68

TSpine LAT -/12 -/16 -/167 -/61
LSpine AP -/9 -/12 -/159 -/58

LSpine LAT -/10 -/13 -/144 -/52
Whole Spine AP 13/23 15/32 143/375 52/136

Whole Spine LAT 10/26 11/36 121/404 44/146
Whole LowerExtremity AP 16/29 19/40 206/551 75/199

L-Whole LowerExtremity LAT 11/19 13/26 130/315 47/114
R-Whole LowerExtremity LAT 8/21 10/29 107/322 39/116

Total 88/212 101/291 1124/3476 409/1259

models respectively. The first subset (TV set) is employed for
training and validation. The second subset (Test set) is used for
independent testing. As shown in Fig.3, each image of Image
Part has these annotations containing the body Bboxes of 9
categories and the body keypoints of 21 categories. All the
labels are annotated strictly by 10 experienced radiographers.
Then, a senior imaging expert with several years of experience
in X-ray imaging performed quality control on the annotated
dataset. The detailed statistics of the XES can be seen in Table
II. Especially, previous experiment results about the detection
models show: the model detection ability under the standing
imaging protocols is more capable than the lying imaging
protocols when using the same amount of training data.
Therefore, the extra data under the lying imaging protocols
are collected and supplemented to the XES.

B. Implementation details

The proposed framework is implemented and runs in the
following configured computer platform: CPU is Inter(R)
Core(TM) i5-8500K 3.00GHz, and GPU is NVIDIA GTX-
1660 super with 6G memory. The CUDA version is 10.0. Due
to the friendliness of PyTorch 1.5.1 [34], we first employed
it to respectively train the models of Body Part Detection
and Body Keypoint Detection on a single GPU, which the
adam optimizer [35] is utilized to optimize the two networks
separately in the training process. Then, the corresponding
version of LibTorch is used to convert the two trained models
into the codes of the C++ version to integrate. The resolution
of all input images is 720 × 1280.

Evaluation metrics. Quantitative and qualitative perfor-
mance evaluations of the proposed method are given in the
next two sub-sections. VOC2007 [36] and MSCOCO [37]
metrics are employed to evaluate the model of Body Part
Detection. Average precision (AP) indicates the detection pre-
cision of each category Bboxes, while mean average precision
(mAP ) shows the overall performance of all category Bboxes.
Two widespread IoU thresholds (0.5 and 0.75) are utilized
to obtain the corresponding mAP . The mAP (@0.5:0.95)
indicates the mean performance of mAP under different
IoU thresholds, in which the calculation interval between the
adjacent two mAP s is 0.05. Besides, mean precision (MP) and

mean recall (MR) also are utilized to evaluate the classification
performance. The MP and MR are defined by Eqs.(10)-(11):

MP =
1

c

c∑
i=1

TP

TP + FP
, (10)

MR =
1

c

c∑
i=1

TP

TP + FN
, (11)

where TP is the number of the correct detected samples. FP
is the number of erroneous detected samples. FN is the num-
ber of undetected ground truth samples. In the performance
evaluation of Body Part Detection, the correct detected body
Bbox samples satisfy following two conditions: (1) correct
classification and (2) IoU > 0.5. In the performance evaluation
of Body Keypoint Detection, the discrimination method of the
correct detected keypoint samples is consistent with the PCK
metrics in FLIC [38].

C. Result of Body Structure Detection
The proposed framework is based on the detection models

of the body part and body keypoint. To determine the actual
model in Body Part Detection and Body Keypoint Detection,
extensive comparison experiments are conducted. The method
with the best performance will be employed. The best results
are retained to achieve the performance of each method after
enough parameter adjustment experiments.

The performance of four recent SOTA methods of object
detection is compared in Table III, including YOLO V3 [39],
YOLO V5 [25], EfficientDet D0, and D1 [40]. All models
are pre-trained on the object detection dataset of MSCOCO
to obtain stronger feature extraction capabilities. Due to the
limitation of the computation resources, EfficientDet of only
D0 and D1 versions are evaluated. For all given methods,
YOLO V5 achieves the best performance in each metric. As
listed in Table IV, the detailed performance is evaluated for
each category body Bbox using YOLO V5. Corresponding
visual results also are given in the first line of Fig.8. Each
category body Bbox can be detected well by YOLO V5. The
detection of small objects (eg. hand) also shows a significant
effect. This depends on the high-quality XES and the good
method. Therefore, YOLO V5 is employed as the actual model
of Body Part Detection.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Method Body Part Detection Keypoint Detection
MP MR mAP50 mAP75 mAP (@0.5:0.95) MP MR

EfficientDet D0 82.5 76.2 85.6 65.4 57.9
EfficientDet D1 87.4 83.8 87.8 67.9 60.3

YOLO V3 97.3 79.1 87.1 79.4 78.6
YOLO V5 97.8 92.7 99.6 89.2 85.2

HRNet 89.2 86.6
Alpha pose 95.6 92.3

TABLE IV
DETECTION PERFORMANCE FOR EVERY CATEGORYTHE FROM YOLO V5

Person Head Torso Upperarm Forearm Hand Thigh Shank Foot mean
Precision 99.6 99.1 96.8 97.2 96.2 96.8 98.5 98.4 98.4 97.8

Recall 97.8 91.2 93.7 85.8 87.2 92.6 97.7 94.7 94.0 92.7
AP50 99.8 99.8 99.5 99.1 98.9 99.4 99.9 99.8 99.8 99.6

TABLE V
DETECTION PERFORMANCE FOR EVERY CATEGORYTHE FROM ALPHA POSE

Nose Eye Ear Shoulder Elbow Wrist Hip Knee Ankle Neck T9 L3 Pelvis mean
Precision 97.7 97.0 98.3 98.0 92.2 96.0 98.9 81.2 74.4 99.5 99.9 99.8 99.9 95.6

Recall 98.3 99.1 95.2 88.5 84.5 79.8 96.7 92.8 93.9 89.8 93.2 98.9 98.7 92.3

Fig. 8. Visual results of Body Part Detection and Body Keypoint Detection: the first line indicates the results of Body Part Detection, and the second
line indicates the results of Body Keypoint Detection.

The performance of two recent SOTA methods of pose
recognition is compared in Table III, including HRNet [41]
and Alpha pose [29]. All models are pre-trained on the
body keypoint detection dataset of MSCOCO. For all given
methods, Alpha pose achieves the best performance in each
metric. The patient Bboxes in the XES are utilized to locate
the patient during the model training. The patient Bboxes are
provided by Body Part Detection when inferring. As listed
in Table V, precision and recall of each category keypoint
are given using Alpha pose. Visual results of Body Keypoint
Detection also are shown in the second line of Fig.8. In our
previous experiments, each keypoint in pair (eg. left eye and
right eye) usually shows similar performance. Therefore, only
their average performance is given in Table V. For all given
methods, Alpha pose achieves the best performance in MP

and MR. Therefore, Alpha pose is employed as the actual
model of Body Keypoint Detection. A lot of research and
practice show the performance of pose recognition is closely
related to the human body occlusion and integrity in the image
[29], [42]–[45]. The SID is very small in some lying imaging
protocols, which causes the failure for detecting some body
parts. Therefore, the detection performance of the keypoints
on the body edge (eg. hip and ankle) is usually not as good
as other keypoints on the body center (eg. T9 and L3).

D. Result of Video Detection
As listed in Tables VI and VII, the performance of the

proposed framework for the recognition of the exposure
moment and region are evaluated. The evaluation is carried
out by three radiographers with extensive clinical experience.
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Fig. 9. Visual detection results for the standing X-ray imaging protocols. In each frame, the motion or abnormal states of the patient is marked in
red font. The recognized exposure region is indicated in the blue Bboxes.

TABLE VI
VIDEO DETECTION PERFORMANCE FOR THE EXPOSURE MOMENT AND

REGION IN THE STANDING X-RAY IMAGING PROTOCOLS

Exposure moment Exposure region
Precision 97.6 98.1

Recall 95.3 96.2

TABLE VII
VIDEO DETECTION PERFORMANCE FOR THE EXPOSURE MOMENT AND

REGION IN THE LYING X-RAY IMAGING PROTOCOLS

Exposure moment Exposure region
Precision 95.0 91.1

Recall 91.0 88.9

Then, two senior X-ray imaging experts with rich clinical
experience performed verification for evaluation. Precision and
recall were employed to evaluate the entire performance of
the proposed framework for detecting exposure moment and
region. Specifically, the evaluation of the exposure region
occurs only when the exposure moment appears. This is
because the framework will calculate the exposure region
only when the exposure moment appears. As can be seen in
Tables VI and VII, the proposed framework has achieved an
encouraging recognition performance for the standing or lying
imaging protocols. Besides, the framework is executed on a
GTX-1660 super GPU, which can achieve a frame rate of 10-
14 fps. This means the proposed framework can be in near
real-time only using the low-cost GPU.

As shown in Fig.9 and Fig.10, the visual results of the
proposed framework are given by detecting the different sub-
videos including the standing or lying imaging protocols. More
visual results of video detection are provided in https://
github.com/JiaRuiS/AVAF. As can be seen in Figs that

the exposure moment and region can be recognized accurately
under different X-ray imaging protocols. As described in
METHOD section, the motion state of the FPRD area in each
frame is divided into static or moving. Besides, the framework
also warns abnormal states of the patient. According to Motion
State Analysis, the framework gives the abnormal states that
may occur during X-ray examination can be classified. These
abnormal states follow: a) Nobody state indicates that the
patient has not yet entered the field view of the camera in the
X-ray examination room. b) No aim body part state indicates
that the patient has not entered the imaging area of FPRD. c)
Multi-aim body parts state indicates that multiple patients have
entered the imaging area of FPRD. Besides, complete state
indicates that the appropriate exposure moment has appeared
and the exposure region can be calculated.

E. Discussion
The proposed framework has solved the two key problems

in X-ray imaging automation, and the overall recognition per-
formance of the exposure moment and region is encouraging.
Besides, the proposed framework can provide timely feedback
on abnormal conditions to radiographers. This can improve the
work efficiency of the radiographers using guiding the patient
to perform corrective actions in the current imaging process.

However, some certain limitations still need to be improved.
Tables VI and VII present that although the proposed method
has shown an encouraging performance under different X-
ray imaging protocols. But the detection performance for
the lying imaging protocols is not as good as the standing
imaging protocols. The main reasons follow: (1) The exposure
moment recognition involves the motion state analysis for the
patient. The analysis process utilizes the optical flow method,
and the method is sensitive to threshold selection. During
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Fig. 10. Visual detection results for the lying X-ray imaging protocols. In each frame, the motion or abnormal states of the patient is marked in red
font. The recognized exposure region is indicated in the blue Bboxes.

the examination, different radiographers may use different
moving speeds to adjust the camera position and SID, so
there is no guarantee that the optical flow method can work
well in all different lying imaging protocols. (2) In standing
imaging protocols, the SID usually is fixed. Therefore, the
difference in image scale between different frames is smaller.
For the lying protocol, the frequent changes of the SID cause a
considerable scale diversity between frames. As we all know,
the scale diversity has always been a challenging problem
in computer vision [46]–[48]. Therefore, this brings a certain
degree of difficulty to the detection of the body keypoints or
body Bboxes. It may be lead to the wrong calculation for the
exposure region when an error occurs in Body Part Detection
or Body Keypoint Detection.

In our study, we also have tried to explore exposure region
recognition about X-ray imaging protocols of some single
body parts (only a single body part of the patient appears in
the images). Because of the detection performance limitation
of the keypoint detection model under such conditions, we
have not been able to carry out further research on these
imaging protocols. In the future, we will focus on the study of
these protocols, and make them compatible with the existing
framework.

V. CONCLUSION

In the paper, we propose a near-real-time video analysis
framework to solve two key problems in X-ray imaging au-
tomation: the automatic recognition of exposure moment and
exposure region. The framework includes three interdependent
components: Body Structure Detection, Motion State Tracing,
and Body Modeling. First, Body Structure Detection detects
the body keypoints and the body Bboxes of the patient. The

two different types of body structure representations are com-
bined to obtain more rich spatial location information about
the body structure. Second, Motion State Tracing analyzes
the motion state of the exposure region to recognize the
appropriate exposure moment. Finally, the exposure region
is calculated by Body Modeling when the exposure moment
appears. Extensive experiments demonstrate the superiority of
the proposed method in the automatic recognition of exposure
moment and exposure region. Besides, the framework can
also track the motion state of the exposure region, analyze
abnormal situations timely, and feed these information back
to the radiographers. Therefore, the proposed framework is
encouraging that it facilitates decreasing the radiographer
workload and optimizing the upstream workflow in conven-
tional X-ray imaging.

In future work, we will focus on the entire process of X-ray
imaging automation from automatic recognition of exposure
region to automatically realizing exposing for the patients, and
validate the influence of the method by comparing the impact
of manual imaging and automatic imaging on imaging quality.
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