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Decentralized Adaptive Spectrum Learning in
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Information
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Abstract—In the Internet of Things (IoT) context such as Low
Power Wide Area Network (LPWAN), it is essential to reduce
the packet losses, e.g., to save energy. Decentralized artificial
intelligence techniques have been proposed to combat radio
collisions, but the approach here is extended to deal additionally
with the channel propagation effects. In this article, a Quality
of Channel Allocation (QoC-A) learning technique based on
bandit algorithms is proposed in order to choose the transmission
channel. This aims to reduce the effect of the propagation
impairments between the radio channels while using the Effective
Signal Power (ESP) as a quality metric. In addition, a Discounted
QoC-A (DQoC-A) algorithm is proposed to adapt rapidly to
any abrupt change in the channels’ conditions. An experimental
campaign on a real IoT device is carried out to demonstrate the
low complexity and efficiency of these proposed decentralized
algorithms. In the given results, QoC-A outperforms the classical
UCB policy with a more accelerated learning process. On the
other hand, the feasibility of using the DQoC-A in non-stationary
scenarios is illustrated by its rapid convergence when abrupt
changes in the channels’ conditions occur. At the end of the
process, these proposed learning techniques give 4.1 and 2.4 times
fewer packet losses than the traditional ones with a random
channel assignment scheme, in the stationary and non-stationary
scenarios, respectively.

Index Terms—IoT, LPWAN, LoRa, Packet Loss Rate, RSSI,
Effective Signal Power, Measurement, Smart City, Spectrum
Allocation, Machine Learning, Reinforcement Learning, UCB.

I. INTRODUCTION

A. Background

INTERNET of Things (IoT) has been utilized in a wide
range of domains, such as smart city, health monitoring,

livestock, surveillance, etc [1], [2], [3]. For some IoT
applications, the characteristics of large coverage, low power
consumption and a low-cost deployment network are required,
which could be fulfilled using Low Power Wide Area Network
(LPWAN). For providing these capabilities, LoRaWAN (Long
Range Wide Area Network) is considered as the leading
technology that is based on a Chirp Spread-Spectrum (CSS)
solution and operating in unlicensed bands, i.e. 868MHz in
Europe and 915MHz in the USA. Hence, it can interconnect
low-cost and mostly battery-powered devices over long ranges
to the gateway [4].

The authors are with Univ Rennes, CNRS, IETR - UMR 6164, F-35000,
Rennes, France (e-mail: {ahmed.abdelghany, bernard.uguen, christophe.moy,
dominique.lemur}@univ-rennes1.fr).

As LoRaWAN protocol has no exclusive rights in these
unlicensed bands [5], also called Industrial, Scientific and
Medical (ISM) application bands, channel impairments may
occur on the link between the end node and the gateway,
reducing the reliability of communications in these networks
[6]. Consequently, packet loss will be the weak point of
these networks as it degrades the performance of the entire
network in the long term. These packet losses may occur
either due to collisions as depicted in [7], or propagation
effects as manifested in [8], [9] and [10]. Serious outcomes
are caused by this transmission failure that may affect various
IoT applications, in particular those using the acknowledged
messaging mode for the important sensor data. If the end node
does not receive the Acknowledgment (ACK) packet, the end
node will retransmit the data packet. However, extra energy
consumption is required by this retransmission that impacts
the battery life of the end node devices plus occupying an
additional spectrum and raising the interfering level.

B. Related Works and Motivation

Recently, many works are proposing different solutions for
reducing the packet loss rate. For example, in [11] the authors
propose DyLoRa, a dynamic LoRa transmission control
system to improve energy efficiency, as an alternative to the
state-of-the-art LoRaWAN Adaptive Data Rate (ADR). Thus,
the idea of DyLoRa is to adjust the transmission parameters,
i.e. transmission power and Spreading Factor (SF), among
different environments. Moreover, a Collision Avoidance
Resource Allocation (CARA) algorithm is proposed in [12]
with the objective of increasing the system capacity by
mitigating packet losses from the collisions. However, these
previous works are either centralized approaches (on the
network side), hence, they do not consider the different
interference conditions in the proximity of each end node
which is located in a specific area. Or, they are imposing
changes on the IoT protocol with extra packet transmissions
and time synchronization between the end nodes, as depicted
in Table I.

While in [13] and [14], the first implementation of a
decentralized spectrum learning for IoT wireless networks is
proposed in order to mitigate radio collisions without changing
anything to LoRaWAN protocol. Moreover, they can be used
in addition to conventional ADR techniques. They propose
to use a learning algorithm on LoRa devices that can cope
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with spectrum scarcity which could occur in unlicensed bands.
Nevertheless, this learning algorithm does not exploit the
channel quality at each frequency band on the end node side
to accelerate the learning process. This decentralized approach
could be extended, which was just to avoid collisions to the
management of channel quality too. Hence, the channel quality
is estimated from the channel parameters, i.e. SNR (Signal-
to-Noise Ratio), Received Signal Strength Indicator (RSSI)
and Effective Signal Power (ESP), which are considered as
one of the main factors affecting the packet loss rate [8],
[9]. Moreover, these channel parameters could be obtained on
the end node side for implementing a decentralized approach,
thanks to the reciprocity between the uplink and downlink
Channel State Information (CSI).

C. Contributions

The main contributions of this article are threefold as
follows:

• A Quality of Channel Allocation (QoC-A) algorithm is
proposed by extending the classical Upper Confidence
Bounds (UCB) technique to deal with the channel
propagation effects besides collisions. This proposed
decentralized machine learning algorithm takes into
account the quality of the channel in addition to the
traditional binary reward. Subsequently, it reduces the
packet losses by learning a proper frequency allocation
scheme that averts using a channel with poor propagation
conditions and then accelerates the learning process.

• ESP is utilized instead of RSSI as the channel quality
indicator, to overcome the RSSI limitation as discussed
in [8].

• A Discounted QoC-A (DQoC-A) algorithm is proposed
in order to tackle situations where the channels’
conditions are non-stationary on a long-term basis.
Here, this adaptive algorithm fulfills the necessity of
introducing a specific mechanism for forgetting the
outdated channels’ states. Based on that, the CSI shape
evolution which happens when an end node moves
from one place to another is typically the kind of non-
stationary behavior that is addressed by this algorithm.
Another non-stationary scenario could occur when the
end node exhibits a changing environment model, for
example, if it is placed in a road where there are moving
cars and objects. These moving obstacles may introduce
a temporal evolution of the CSI shape between the
morning and night period [15].

On the other hand, the proposed reinforcement learning
algorithms could be embedded at the IoT end node side with
low hardware extra cost in terms of processing power, memory
footprint, etc. Hence, in a real network deployment within
the university campus in Rennes, these algorithms are imple-
mented inside an end node device and executed in different
scenarios, i.e. stationary and non-stationary. Consequently, the

whole results from the experiment are extensively evaluated
among the proposed reinforcement learning algorithms against
the UCB policy as well as the traditional scheme with random
frequency allocation. Moreover, important remarks are given
for adjusting the algorithms’ configurations based on the
properties of each of the potential IoT applications.

D. Organization

The remainder of this article is organized as follows.
Section II presents the main factors of the packet losses.
Section III provides sufficient detail about the system model
of the proposed algorithm. The proposed algorithms are then
illustrated in Section IV. While Section V shows the ex-
perimental architecture and network configuration used for
the measurement campaign. In Section VI, the experimental
results of the proposed algorithms are tested through the
different scenarios. Additional remarks are given for adjusting
the algorithms’ configurations in Section VII. Finally, the work
is concluded in Section VIII. A list of key acronyms used
throughout this article is presented in Table II.

II. KEY FACTORS OF PACKET LOSS

Packet losses are the main drawback for IoT [16]. Hence,
packet losses cause many retransmissions at the cost of a lower
battery lifetime of the end nodes and may lead to an increase of
the RF (Radio Frequency) contention level. Even worse, a total
failure of the IoT service could happen, either because end
nodes can not succeed in sending any data to the gateway or
because all their energy is consumed much faster than expected
due to the multiple repetitions of the transmission. Without
loss of generality, LoRaWAN is used as an example in this
article but any other IoT protocol could be utilized. Thus, the
major sources of the packet loss are described in the following
subsections, as shown in Figure 1.

IoT device

Shadowing
Electronic device

Another IoT device

Gateway

ISM device

Fig. 1: An envisioned IoT network with the potential factors
of the packet losses.

A. Packet collision

Channel contention occurs when multiple devices attempt
to send data over the same channel simultaneously [7], [14].
Whereas the end nodes are uncoordinated, the packet trans-
mission is initiated by the end node, not the network. Hence,
the traditional LoRa device does not check if the channel is
preempted by other devices before transmitting a packet, so
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TABLE I: Main distinctive characteristics of different solutions for LoRa

Algorithm Decentralized No synchronization among the end nodes Utilizing the channel quality information
DyLoRa [11] 7 3 3
CARA [12] 7 7 7
UCB [13] 3 3 7
QoC-A & DQoC-A 3 3 3

TABLE II: ACRONYMS

AcknowledgmentACK
Adaptive Data RateADR
Artificial IntelligenceAI
Application ServerAS
Collision Avoidance Resource AllocationCARA
Channel State InformationCSI
Chirp Spread SpectrumCSS
Discounted Quality of Channel AllocationDQoC-A
Dynamic LoRaDyLoRa
Effective Signal PowerESP
Internet of ThingsIoT
Industrial, Scientific and MedicalISM
Low Power Wide Area NetworksLPWAN
Long Range Wide Area NetworkLoRaWAN
LoRa Network ServerLNS
Multi-Armed BanditMAB
Opportunistic Spectrum AccessOSA
Over-The-Air-ActivationOTAA
Packet Delivery RatePDR
Quality of Channel AllocationQoC-A
Radio FrequencyRF
Received Signal Strength IndicatorRSSI
Signal-to-Noise RatioSNR
Spreading FactorSF
Upper Confidence BoundsUCB

it may cause packet collision. Additionally, the IoT networks
are superposed with no coordination between them. So, these
collisions could also occur no matter whether the interfered
signal is from other end nodes of the same network or the
surrounding IoT networks, using the same IoT standard or not.
Moreover, interference could occur from other radio signals
present in the ISM bands which are not IoT signals, so
they can be considered “jammers” by definition. Last but not
least, electromagnetic radiations could disturb the end nodes
due to the proximity of other electronic devices suffering
from leakage radiations, for instance, this could happen in an
industrial environment.

B. Channel factors

The end node can be located far away from the gateway,
especially in LPWAN networks, which causes shadowing
and signal attenuation across the transmission range [17].
Packet transmission success is closely related to the channel
state, indeed, a channel facing bad propagation conditions has
the same effect as caused by collisions. These propagation
conditions are directly determined by the channel parameters
which are SNR, RSSI and ESP. SNR is the ratio of signal
power to the measured noise power. Consequently, the higher
SNR is, the smaller the noise mixed in the signal, and the
easier it is to separate the effective signal. RSSI is a relative
value of signal power measured by the end node or the
gateway at its receiving end. However, ESP is a more reliable
parameter as it overcomes the RSSI limitation, especially at

low SNR (< 0 dB) as depicted in [8] and [9].

Without loss of generality, ESP is computed as:

ESPdBm = RSSIdBm + SNRdB − 10 log10(1 + 10
SNRdB

10 ).
(1)

In general, ESP value decays with the shadowing effect and
increase of distance, in particular for the long transmission
range, as in most IoT applications. Due to the low transmission
power, i.e. maximum transmit power of the LoRa signal is
14 dBm, and the large propagation attenuation, this value is
usually negative in dBm. Furthermore, these channel param-
eter values depend on the specific environmental conditions
around each end node, hence, each CSI is different from one
location to another.

III. SYSTEM MODEL

The proposed learning approach can help IoT devices to
reduce packet losses due to both weak channel propagation
conditions and also collisions. That for, the proposed approach
is inspired from [13] and [14] where a solution to radio
collisions is proposed, while imposing no change on the
IoT protocols, as, for instance, LoRaWAN. Employing the
acknowledged messaging mode is the only required condition
to utilize the proposed solution. Based on the investigation
in [8], the underlying hypothesis is that the channels’ Packet
Delivery Rate (PDR) is not equally balanced across the K
different frequency bands an IoT device can use. In other
words, some channels are less attenuated than others. These
channel conditions are possibly be predicted online in time
and space in a decentralized manner (on the end node side).
As the end nodes may be quite far away from the gateways
and suffer from different jamming and channel conditions, it
is much more efficient to implement a spectrum allocation
approach on the end node side than on a centralized unit.
While taking into consideration that no extra processing can
be afforded at the end node where every Watt is counted at
transmission to save energy.

To be compatible with the constraint of low complexity
of the end node hardware, a kind of Artificial Intelligence
(AI) algorithm is considered [18]. This proposed approach
is based on reinforcement learning algorithms which have
been introduced by the machine learning community [19]
and first proposed for cognitive radio communications more
than 10 years ago [20]. It is also experimentally validated
on real radio signals for cognitive radio and especially for
Opportunistic Spectrum Access (OSA) in [21]. As asserted
for OSA, Multi-Armed Bandit (MAB) problem can be
utilized to model the IoT spectrum access issue [13]. Thus,
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reinforcement learning is based on a feedback loop that gives
a success/failure measure of the action. In the IoT context,
a binary reward, i.e. 1|0 for the presence|absence of the
ACK packet which is sent by the gateway to the end node,
is considered, as shown in Figure 2. If a message has been
successfully transmitted from the end node to the gateway
on the uplink channel, as well as the ACK message has
been successfully transmitted from the gateway and received
by the end node on the same channel in the downlink, a
reward of “1” is given plus the channel parameters, i.e. SNR,
RSSI and ESP, are estimated to optimize and accelerate the
learning process as illustrated in the following sections. While
a reward of “0” means that packet loss has happened either
on uplink or downlink so that ACK has not been received
by the end node. Maximizing the PDR is the main target, or
equivalently, maximizing its cumulated reward. This proposed
approach can adapt to any other IoT protocol, moreover, it
has the following main advantages:

• Coordination between the end nodes is not necessary.
Therefore, no extra retransmission, no data to be added
into the uplink or downlink packet. While the content of
the ACK packet isn’t changed.

• The very low processing and memory overhead of
both the implementation and execution of the proposed
approach [13]. Consequently, it is possible to execute
the proposed algorithm in the end node devices whose
complexity is negligible in terms of processing, hardware,
memory as well as energy consumption overhead.

• The strong mathematical proof of convergence of
the Bandit algorithms [22], [23]. Thanks to the good
matching between models and reality, these proofs are
verified in real radio conditions [21].

• Rapid convergence of the proposed learning techniques
in real experiments [24].

• Thanks to the reinforcement learning concept, any prior
training isn’t needed. This proposed algorithm can
efficiently start learning from scratch.

• These proposed learning algorithms’ results will always
outperform the given state-of-the-art ones with random
frequency allocation [24].

IV. PROPOSED REINFORCEMENT LEARNING TECHNIQUES

Bandit algorithms are used at the end node side to handle
IoT wireless spectrum issues. While LoRaWAN is the
considered example, a simple ALOHA-based protocol is
the utilized communications between the end nodes and the
gateway. Whenever the end nodes decide, they can transmit
their packets in one of the K ≥ 2 channels which are
predefined in frequency fi. As stated in the previous section,
the channel conditions in unlicensed ISM bands suffer in

Gateway

Uplink packet
at channel i

ACK packet
at channel i

Reward = 1 

Reward = 0 

Reward = 0 

Fig. 2: An end node sends a packet with the acknowledged
messaging mode, whereas the reward value depends on the
presence|absence of the ACK packet.

particular from propagation conditions and interference which
are different from one place to another. Even in one place,
these channel conditions are very often unevenly distributed
over the K different channels.

From the point of view of a single end node in the
network, it has to choose one channel (or arm), denoted as
i ∈ {1, ...,K}, every step index n when it sends a packet to the
gateway, then, it starts to wait for a fixed delay (one second in
LoRaWAN) in the same channel i for receiving an ACK packet
from the gateway, as shown in Figure 2. But due to propagation
issues, the message sent by the end node to the gateway,
or the ACK sent by the gateway to the end node, could be
lost. Hence, selecting the channel i at packet index n yields a
random feedback, i.e. the binary reward ri(n) and the channel
quality gi(n). Maximizing the transmission success rate of the
end node or, equivalently, maximizing the cumulative reward
is the main target. Sequence of rewards drawn from a given
arm i is assumed to be i.i.d., consequently, this problem is
considered as a “stochastic” MAB [23]. A player (here, an
end node) has to try all arms (here, channels), a sufficient
number of times to get a robust estimate of their qualities,
while not selecting the worst arms too much. This requires
tackling the so-called exploration-exploitation dilemma to be
able to progressively focus on the best arm i.e., the arm with
the largest average reward, using the proposed algorithms in
the following subsections.

A. UCB Algorithm

Exploiting the channel with the highest estimated mean
by selecting it at each time could be a first naive solution,
however, this “greedy” approach is known to fail dramatically
[19]. Thus, the selection of arms is highly dependent on the
first draws with this greedy policy. For example, if the first
transmission in one channel succeeds and the first one on
the other channel fails, the end node will never use the other
channel again, even it is the best one and has the best chan-
nel conditions on average. While Upper Confidence Bounds
(UCB) algorithm instead is adding an extra exploration term
to the empirical mean, which can be viewed as a confidence
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bound [23]. At each end node, the number of times the channel
i is selected up-to packet index n ≥ 1 is calculated as:

Ti(n) =
n∑

m=1

1A(m)=i ∀i, (2)

where A(m) ∈ {1, ...,K} is a discrete action which corre-
sponds to the chosen channel index at packet index m. Hence,
the empirical mean estimation of the successful transmissions
obtained in channel i by selecting it up to packet index n, is
denoted by the mean reward as:

Ri(n) =
1

Ti(n)

n∑
m=1

ri(m)1A(m)=i ∀i. (3)

Subsequently, the upper confidence bound Bi(n) of the chan-
nel i is denoted by the sum of the empirical mean and a
confidence term as:

Bi(n) = Ri(n) + α

√
lnn

Ti(n)
, (4)

where the exploration factor α is recommended by the the-
ory to be ≥ 0.25 [25]. At this point, the maximum upper
confidence bound Bi(n) is chosen by the end node to decide
the next channel for sending the packet, thus, the next action
A(n+ 1) is obtained by choosing the best channel as:

A(n+ 1) = argmax
i

(Bi(n)). (5)

For each end node, the packet index n corresponds to the
total number of transmitted packets from the beginning. As
time is not slotted, this packet index n isn’t shared across
different end nodes. Every end node implements its own UCB
algorithm independently, which can be described as follows in
Algorithm 1.

Data: K, [α]
Result: A(n+ 1)
for n = 1 to ∞ do

if n < K then
Initialize policy by trying each channel for at

least one time.
A(n+ 1) = n+ 1

else
Ti(n) =

∑n
m=1 1A(m)=i ∀i

Ri(n) =
1

Ti(n)

∑n
m=1 ri(m)1A(m)=i ∀i

Bi(n) = Ri(n) + α
√

lnn
Ti(n)

A(n+ 1) = argmax
i

(Bi(n))

end
end

Algorithm 1: UCB policy as depicted in [23].

B. QoC-A Algorithm

As mentioned in the previous sections, there is a strong
dependency between the PDR and the channel quality. Hence,
a Quality of Channel Allocation (QoC-A) policy is proposed to

find the channel which is optimal in terms of both quality and
probability of receiving the ACK packet [26]. As first stated
in Algorithm 2, all the channels are explored at least once to
acquire the initial binary reward and their channel qualities. At
the final step, Algorithm 2 returns the channel index A(n+1)
which has to be used in the next packet index. Again, Ti(n)
defines the number of times channel i has been utilized up
to packet index n. After n ≥ K steps, the term Bi(n), i.e.
corresponding to the score of the i − th channel at packet n,
are updated as [26]:

Bi(n) = Ri(n) +Qi(n) + α

√
lnn

Ti(n)
, (6)

where Ri(n) denotes the exploitation term, or equivalently
the empirical mean of the states (ACK packet received or
not) of the i − th channel at packet index n. While the
bias term α

√
lnn
Ti(n)

forces to explore the other channels,
if the scheme leads to a channel whose average rewards
degrades. Furthermore, the quality term Qi(n) defines the
quality information of the channel i which can be calculated
as:

Qi(n) = β(
Gi(n)

Gmax(n)
− 1)

lnn

Ti(n)
(7)

with

Gi(n) =
1

Ti(n)

Ti(n)∑
k=1

gi(k) (8)

and
Gmax(n) = max

i
Gi(n), (9)

where Gi(n) is the empirical mean of quality observations
gi(n) collected from channel i and Gmax(n) is the maximum
expected quality value within the set of channels. Moreover,
the new parameter β forces the algorithm to give some
weight to the quality term Qi(n) in the score computation,
whereas the parameter α forces the exploration of other
channels to check their probability of receiving the ACK
packet. Such a formulation tends to select a channel with
the highest quality and probability to be acknowledged. For
instance, if Gi(n) = Gmax(n), the term Qi(n) will be equal
to zero. While if the average quality of channel i is less than
the average quality of the best channel (Gi(n) < Gmax(n)),
the value of Qi(n) will be negative and then the score term
Bi(n) will decrease. Accordingly, channel i will be less
likely to be selected.

An important contribution of this article compared to the
previous works in the cognitive radio field [26], is that the
quality observation gi(n) is the channel quality, i.e. ESP
in linear scale, of the ACK packet. On the contrary, the
channel parameters are obtained from a sensing phase before
sending the packet in the OSA context, as the “listen-before-
talk” model in [27], which consumes power. It also worth
mentioning that ESP is the used parameter that is obtained as
a function of SNR, thus, it has an enlarged range when the
SNR is very low, unlike the RSSI which has a limitation as
detailed in Section II. Accordingly, this proposed algorithm is

 
 

  
ACCEPTED MANUSCRIPT / CLEAN COPY



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3167016, IEEE Internet of
Things Journal

6

simple to implement and to use in practice, even on embed-
ded microprocessors with limited computation and memory
capabilities as detailed in the following sections.

Data: K, [α, β]
Result: A(n+ 1)
for n = 1 to ∞ do

if n < K then
Initialize policy by trying each channel for at

least one time.
A(n+ 1) = n+ 1

else
Ti(n) =

∑n
m=1 1A(m)=i ∀i

Ri(n) =
1

Ti(n)

∑n
m=1 ri(m)1A(m)=i ∀i

Gi(n) =
1

Ti(n)

∑Ti(n)
k=1 gi(k)

Gmax(n) = maxiGi(n)

Qi(n) = β( Gi(n)
Gmax(n)

− 1) lnn
Ti(n)

Bi(n) = Ri(n) +Qi(n) + α
√

lnn
Ti(n)

A(n+ 1) = argmax
i

(Bi(n))

end
end

Algorithm 2: QoC-A policy.

C. DQoC-A Algorithm

In many IoT applications, the end node could be in a
non-stationary scenario, for instance, when it moves across
different locations whose CSI shapes are different. Based on
that, the probability of receiving the ACK packet and the
quality of each channel are likely to experience changes in
time, which exhibits the limitation of the aforementioned
MAB algorithms. Although the convergence of these
algorithms is very fast, however, the stationarity of the
environment is required. Resetting the learning algorithm
from time to time can be a simple solution, however, it
may fail to determine when the propagation conditions
change as the acquired reward distribution evolves with time
occasionally.

In this article, a Discounted QoC-A (DQoC-A) algorithm
is proposed to learn on the same channel conditions, i.e.
quality and the probability of receiving the ACK packet, as
the previous QoC-A but in non-stationary scenarios [28].
Since the confidence interval of the standard QoC-A policy
becomes tighter when time goes up, it is not appropriated
for the non-stationary environment as stated before. While
the motivation for the DQoC-A policy is to find an optimal
channel in the case of changing environments, with less
exploration. Therefore, discount factors (λ and λg) are
considered for the DQoC-A to guaranty the adaptiveness of
DQoC-A policy in a non-stationary environment, as stated
in Algorithm 3. The idea behind the inclusion of these
discount factors (λ and λg) is to give more weight to recent
observations compared to the ones acquired in the past.
A remarkable contribution of this article compared to the
previous work in [28], is that two different discount factors (λ

and λg) are considered rather than using one. Thus, λ and λg
should have different values as they are used to average two
different distributions, which are the binomial distribution of
the binary reward ri(n) and the log-normal distribution of
the channel quality gi(n), respectively.

Based on that, this proposed DQoC-A policy learns a
channel that is optimal in terms of the probability of receiving
the ACK packet and quality in a gradual manner. As with QoC-
A policy, an end node employing DQoC-A policy first starts to
explore all channels at least once initially. After n ≥ K steps,
it updates the scoring term Bi(n), however, each term in the
equation is adapted to take into account the non-stationary
hypothesis as:

Bi(n) = Ri(n) +Qi(n) + α

√
lnW (n)

Ni(n)
, (10)

where Ni(n) is the discounted number of times channel i has
been used up to packet index n, and W (n) is the total dis-
counted time. Contrary to QoC-A policy, the empirical mean
of rewards Ri(n) and channel quality Gi(n) are estimated
by taking into account the discount factors (0 < λ < 1
and 0 < λg < 1), as shown in Algorithm 3. While the
coefficients α and β, are the same as in the QoC-A policy,
to weight exploration for the probability of receiving the
ACK packet and channel quality, respectively. Furthermore,
a relative comparison between the three policies is depicted in
Table III.

Data: K, [α, β, λ, λg]
Result: A(n+ 1)
for n = 1 to ∞ do

if n < K then
Initialize policy by trying each channel for at
least one time.
A(n+ 1) = n+ 1

else
Ni(n) =

∑n
m=1 λ

n−m
1A(m)=i ∀i

W (n) =
∑K

i=1Ni(n)
Ri(n) =

1
Ni(n)

∑n
m=1 λ

n−mri(m)1A(m)=i ∀i
Ngi(n) =

∑n
m=1 λ

n−m
g 1A(m)=i ∀i

Gi(n) =
1

Ngi(n)

∑n
m=1 λ

n−m
g gi(m)1A(m)=i ∀i

Gmax(n) = maxiGi(n)

Qi(n) = β( Gi(n)
Gmax(n)

− 1) lnW (n)
Ni(n)

Bi(n) = Ri(n) +Qi(n) + α
√

lnW (n)
Ni(n)

A(n+ 1) = argmax
i

(Bi(n))

end
end

Algorithm 3: DQoC-A policy.

V. EXPERIMENT SETUP

Comparing the proposed algorithms against the state-of-
the-art method with random frequency allocation in real
conditions of operation, is the main target of the experiment.
This is done by setting the LoRaWAN configuration as
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TABLE III: Comparison of the implemented policies

Algorithm Node mobility condition Complexity Preconfigured parameter Online parameter
UCB Stationary O(K) K, [α] Binary reward
QoC-A Stationary O(K) K, [α, β] Binary reward + ESP
DQoC-A Stationary | Non-stationary O(K) K, [α, β, λ, λg ] Binary reward + ESP

presented in Table IV, but it could be done with any other
IoT standard, as soon as it uses acknowledged messaging.
A Tektelic KONA Macro Gateway is used whose antenna is
fixed on the roof of the university building [29], as shown
in Figure 3a and 3b. While the end node is implemented
using a Pycom card, i.e. programmed in the MicroPython
language, composed of an Expansion Board and a LoPy 4
module which can support LoRa wireless connectivity [30],
as shown in Figure 3c.

TABLE IV: LoRaWAN configuration

LoRaWAN Parameter Value
Modulation technique LoRa (based on CSS)
SF 7
Coding rate 4/5
Bandwidth W 125 kHz
Transmission power 14dBm
Number of channels K 8

Center frequency fi
{867.1, 867.3, 867.5, 867.7, 867.9, 868.1,

868.3, 868.5} MHz

First, the network is joined with an Over-The-Air-Activation
(OTAA). Then, the proposed algorithms are executed sequen-
tially at each step index n inside the Pycom node. An uplink
packet is transmitted at the channel i which is chosen by
the algorithm, then the node waits about 10 seconds before
sending the next packet to respect the duty cycle. By default,
the gateway attempts to send one acknowledgment at the same
channel i and center frequency fi as the message transmitted.
Subsequently, the node writes the information of the last
received downlink packet (packet number, ESP, etc.) to the
payload of the next uplink packet. In this experiment, there
is no retransmission attempt if the node does not receive the
acknowledgment packet. For analyzing purposes only in this
experiment, a desktop computer that runs a Python program
is used as an Application Server (AS) which is connected
with the LoRa Network Server (LNS) through the internet.
This computer receives data from the LNS, as well as LoRa
metadata with all parameters of the LoRaWAN transmission
(fi, SF, W , RSSI, SNR, etc.). Those data are analyzed as
detailed in the following sections. Moreover, they are provided
to the research community on this online repository [31].

VI. MEASUREMENT RESULTS

The scope of this section is to compare the aforementioned
learning policies against the state-of-the-art ones with random
frequency allocation that is considered as the reference. For
emulating the state-of-the-art frequency allocation, a uniform
Round-Robin algorithm is executed that simply transmits the
packets sequentially at each frequency band fi across the
packet index n. Furthermore, the experiments are performed

(a) Position of the
gateway monopole
antenna fixed on the
roof of the IETR lab.

(b) The gateway con-
nected to the antenna
cable.

(c) The packaged Py-
com device is fixed on
a rod and connected
to a battery inside a
building.

Fig. 3: Views from the end node and gateway sites.

in two different environments as detailed in the following
subsections.

A. Scenario 1: Stationary IoT node

The first experiment is carried out by placing the end
node in a fixed position without moving it to have stationary
channel conditions. Hence, the CSI shapes are almost identical
across the whole experiment duration of ≈ 8.8 hours and
800 steps (each algorithm transmits 800 packets), as shown
by the received power level in Figure 4. Each CSI shape is
acquired by averaging the ESP values at each frequency band
fi independently every 200 steps. Moreover, the frequency
selectivity of this CSI is clear, particularly at 867.3MHz with
a deep fade of more than 10 dB depth. These unequal channel
qualities across the frequency bands fi could be exploited
using the proposed algorithm QoC-A.

As depicted in Figure 5, the performance of UCB
(α = 0.6), and QoC-A (α = 0.6 and β = 0.2), i.e. with
ESP in the linear scale as the quality observation gi(n) that
is shown in Algorithm 2, are compared against the uniform
frequency allocation. As promised in the previous sections,
all the learning algorithms outperform the uniform frequency
allocation. On the other hand, the final average reward
obtained using the QoC-A policy outperforms the UCB
policy, as manifested in Figure 5a. Accordingly as shown in
Figure 5b, the cumulative regret obtained for all the methods
preserve the same performance rank over the whole packet
index n with final total lost packets of 32, 39 and 132, while
using the proposed algorithm QoC-A, the classical UCB, and
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the uniform frequency allocation, respectively.

As shown in Table V, QoC-A policy outperforms all the
other algorithms by a total number of successfully transmitted
packets of 768 over 800, which is actually 4.1 times fewer
packet losses than the uniform frequency allocation. This in-
dicates that the proposed policy QoC-A is exploiting properly
the channel quality to converge faster. Hence, it does not need
to lose some time to acquire this knowledge before learning
actually ends.

867.1 867.3 867.5 867.7 867.9 868.1 868.3 868.5
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Fig. 4: Stability of the CSI shape throughout the 800 steps
(one CSI every 200 steps) in the stationary scenario.

TABLE V: Number of successfully transmitted and lost pack-
ets in the stationary scenario

Algorithm Succeed Lost Success rate
Uniform 668 132 83.5%
UCB 761 39 95.1%
QoC-A 768 32 96.0%

B. Scenario 2: Non-Stationary IoT node

For analyzing the behavior of MAB learning policies in a
non-stationary scenario with an abrupt changing environment,
the end node is moved during the experiment across three
different positions to have unconstant channel conditions. As
shown in Figure 6, the CSI shapes are different across the
whole experiment duration of ≈ 6.6 hours and 600 steps
(each algorithm transmits 600 packets). Again, each CSI
shape is estimated by averaging the ESP values every 200
steps at each frequency band fi independently. Although all
the locations are indoor, nevertheless, a progressive reduction
is observed in the received power across locations 1 to 3.
This reduction is reasonable as the end node goes deeper
inside the building from location 1, i.e. behind the window
as shown in Figure 3c, to location 3. Moreover, the CSI
shape which is represented in location 1 shows fades of
≈5 dB, especially at 867.1MHz and 868.5MHz, while the
best channel quality is obtained at 867.9MHz. The opposite
behavior is obvious in the CSI shapes of locations 2 and 3
whose best channel conditions are almost around 868.1MHz,
868.3MHz and 868.5MHz. While they have degradation in
the channel quality at 867.9MHz, contrary to the CSI of
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(a) Average reward over 800 steps.
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(b) Cumulative regret over 800 steps.

Fig. 5: Result of the algorithms against the uniform frequency
allocation (non-learning) in the stationary scenario.

location 1. These abrupt changes in the channel qualities from
one location to another could be learned using the proposed
algorithm DQoC-A.

In this non-stationary environment, identifying the abrupt
change in the reward distribution with reduced delay should
be the ability of an optimal policy. As shown in Figure 7,
the performance of UCB (α = 0.6), QoC-A (α = 0.6 and
β = 0.2) and DQoC-A (α = 0.6 , β = 0.2, λ = 0.98
and λg = 0.90) are compared against the naive frequency
allocation. For both the QoC-A and DQoC-A algorithms,
the linear scale of the ESP value is utilized as the quality
observation gi(n). Moreover, the discount factor λ is equal to
0.98 in the DQoC-A policy, while λg is set to 0.90 to acquire
more rapidly the most recent ESP values, which follows a
log-normal distribution from the channel shadowing when the
end node moves and subsequently to converge faster. Motions
of the end node are represented by the two breakpoints at step
index n = 200 and n = 400 in which an abrupt change in the
reward distribution is indicated. Before the first breakpoint (at
n = 200), the evolution of the cumulative regret is almost flat
using any algorithm. This is a reasonable behavior as most of
the frequency bands fi at location 1 have relatively high ESP
values and low packet losses. While after the first breakpoint
(at n = 200), DQoC-A achieves significantly lower regret
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and higher average reward than QoC-A and UCB policy in
this non-stationary environment.

As shown in Table VI, DQoC-A policy outperforms all the
other algorithms by a total number of successfully transmitted
packets of 520 over 600, which is 2.4 times fewer packet losses
than the uniform frequency allocation. This is plausible due to
the inclusion of the discount factors (λ and λg) in the DQoC-
A calculation, so it wastes significantly less time than QoC-
A to identify an abrupt change (at n = 200 or n = 400)
in the channel conditions. While the UCB and QoC-A are
prevented to adapt quickly to changes as the old rewards have
a higher influence on them. In other words, all the learning
algorithms converge to the optimal mean reward in the long
run, but DQoC-A policy benefits from less dependency on past
observations.
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Fig. 6: Evolution of the CSI shape throughout the 600 steps
(one CSI every 200 steps) in the non-stationary scenario.

TABLE VI: Number of successfully transmitted and lost
packets in the non-stationary scenario

Algorithm Succeed Lost Success rate
Uniform 405 195 67.5%
UCB 487 113 81.2%
QoC-A 497 103 82.8%
DQoC-A 520 80 86.7%

VII. ADDITIONAL REMARKS ON THE ALGORITHMS’
CONFIGURATIONS

The aforementioned results confirm the feasibility of
utilizing the proposed policies to achieve lower packet losses
in different scenarios. However, the parameters of all the
proposed learning algorithms should be adjusted based on
the environment’s conditions. Thus, the exploration factor
α is chosen depending on the channel conditions in terms
of channel qualities or presence of interference signals [32].
Furthermore, the influence of the optimal choice of α is
higher as the number K of channels increases, and less as it
decreases. In the case of a small number of arms, choosing
the value of the exploration factor α does not influence the
policy performance much. In the opposite case, if the number
of arms to explore is large, the choice of this factor will

Packet

(a) Average reward over 600 steps.

Packet

(b) Cumulative regret over 600 steps.

Fig. 7: Result of the algorithms against the uniform frequency
allocation (non-learning) in the non-stationary scenario.

have a greater influence. If, for example, the chosen alpha
parameter is deviated from the optimal value for a large
number of arms to be explored, significant degradation in
performances may be observed. Hence, the algorithm will then
have either a tendency either to over-explore or to over-exploit.

On the other hand, the discount factors (λ and λg) values
should be adjusted based on the requirements of the potential
application. Thus, they will regulate properly the amount of
dependency on the old observations to track an abrupt change
in the reward distribution. For example, if an IoT node sends
one packet every a fixed short time, therefore, the discount
factors in the DQoC-A algorithm should be close to one to
benefit also from the older observations as the environment is
stationary over such a short horizon of time, and vice versa.

VIII. CONCLUSION

This article introduces a decentralized learning technique
to mitigate the channel impairments in the IoT signal
propagation. Thus, the proposed QoC-A policy could learn
a proper frequency allocation based on the channel quality,
i.e. ESP, as an extra observation to avert using the channels
whose quality is poor. Besides, another DQoC-A policy is
proposed to adapt rapidly to any change in the channels’
conditions, as a result of the IoT node motion for example. To
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demonstrate the low complexity of these proposed algorithms
and the feasibility of implementing them on the IoT device
side, at a very low cost of implementation and no protocol
overhead, a real experiment campaign is carried out in the
city of Rennes. Consequently, the results show that QoC-A
has a more optimized and accelerated learning process than
the classical UCB policy, and then it has lower packet losses
at the end of the process. On the other hand, DQoC-A policy
converges faster than QoC-A policy in the non-stationary
scenario, thanks to the discount factor in DQoC-A algorithm
which decreases the dependency on the old observations
gradually.

For future work, these proposed reinforcement learning
algorithms could be implemented to decrease the packet losses
in the potential IoT applications. Thus, the configurations of
the implemented policy should be adjusted based on the given
conditions. It would also be interesting to conduct long-term
evaluations of the behavior of the proposed algorithms with
new practical measurements. Using a greater number of nodes
in more conducted experiments, the feasibility of using these
learning algorithms in highly interfering scenarios could be
investigated. Over and above, we are currently conducting
measurements to calculate the amount of energy consumed
by an IoT device with and without executing the proposed
algorithms.
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