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significantly better especially in the clinically accepted range of 2 mm and this makes



Abstract-Accurate and robust cephalometric image analysis plays an essential role in orthodontic diagnosis, treatment assessment and surgical planning. This paper proposes a novel landmark localization method for cephalometric analysis using multiscale image patch-based graph convolutional networks. In detail, image patches with the same size are hierarchically sampled from the Gaussian pyramid to well preserve multiscale context information. We combine local appearance and shape information into spatialized features with an attention module to enrich node representations in graph. The spatial relationships of landmarks are built with the incorporation of three-layer graph convolutional networks, and multiple landmarks are simultaneously updated and moved toward the targets in a cascaded coarse-to-fine process. Quantitative results obtained on publicly available cephalometric X-ray images have exhibited superior performance compared with other state-of-the-art methods in terms of mean radial error and successful detection rate within various precision ranges. Our approach performs I. Introduction WO-DIMENSIONAL (2D) lateral cephalograms are radiographs that are usually utilized for orthodontic diagnosis, treatment assessment and surgical planning. Anatomical landmark localization is a fundamental step in the process of cephalometric quantization and evaluation. Landmarks superimposed on X-rays are commonly employed to measure (i.e. distances and angles) the human skull and analyze the spatial relationships among teeth, facial skeleton and soft tissue profile. Traditionally, manual annotation requires domain-specific expertise, which is time consuming and tedious. In addition, discrepancies among inter-and intra-observers must be taken into account. A fully automatic system that can accurately and robustly identify cephalometric landmarks would help to overcome time consumption and inconsistencies within and across observers. However, an automatic landmark detection remains a challenging and unresolved problem due to the complexity in cephalometric structures. Overlapping structures and limited image quality also lead to inaccurate landmark localizations. In addition, the morphological variations between individuals aggravate the difficulties in designing a fully automatic anatomical landmark localization system that is capable to face the clinical requirements (i.e. accuracy within a 2 mm range). To impulse more active research in this area, Wang et al. [START_REF] Wang | A benchmark for comparison of dental radiography analysis algorithms[END_REF] organized the ISBI grand challenge for automatic detection and analysis in dental X-ray images.

In recent years, both heatmap and coordinate regression methods based on convolutional neural networks (CNNs) have shown significant performance for landmark localization on less annotated medical images. Heatmap-based approaches [START_REF] Zhong | An attention-guided deep regression model for landmark detection in cephalograms[END_REF][START_REF] Chen | Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting[END_REF][START_REF] Payer | Regressing heatmaps for multiple landmark localization using CNNs[END_REF][START_REF] Payer | Integrating spatial configuration into heatmap regression based CNNs for landmark localization[END_REF][START_REF] Oh | Deep anatomical context feature learning for cephalometric landmark detection[END_REF] predict the Gaussian heatmaps for landmarks from which the greatest values allow determining their truly locations. Instead of regressing image-to-image dense heatmaps, coordinate-based approaches directly predict 2D coordinates for landmarks. In general, heatmap-based methods achieve higher estimation accuracy than coordinate-based methods with complex and high-dimensional nonlinear mapping. While coordinate-based methods can be trained in an end-to-end and structural knowledge can be expressed directly, novel approaches [START_REF] Li | Structured landmark detection via topology-adapting deep graph learning[END_REF][START_REF] Gilmour | Locating cephalometric X-ray landmarks with foveated pyramid attention[END_REF] have demonstrated that they possess similar localization performance.

Although landmark localization on medical images has achieved great success with a surge of CNNs, the existing methods reported still suffer from some limitations and drawbacks. First, the X-ray image size is very large and memory limitations oblige most methods to resize the input image which inevitably leads to the down-sampling quantization errors. Second, preprocessing or postprocessing is required to improve the localization accuracy and robustness. Third, landmarks are not independently located at the image and are constrained by other landmarks. This structural knowledge has not been fully exploited so far.

To address the aforementioned questions in some degree, we propose an end-to-end trainable network combined with three-layer graph convolutional networks (GCNs). Multiscale image patches with the same size are hierarchically sampled from the Gaussian pyramid instead of inputting a full resolution image or sampling from the original image. Displacements of multiple landmarks are simultaneously estimated by three-layer GCNs, in which the dependencies between them are effectively expressed, the positions of the predicted landmarks being then iteratively updated. The main contributions of our work are as follows.

1) The multiscale context information can be well preserved by hierarchically sampling image patches with the same size from the Gaussian pyramid. 2) Spatialized features are generated with an attention module that involve both local appearance features and shape information, allowing implicit geometric constraints to be learned in the processing of GCNs.

3) The spatial relationships between landmarks are effectively established with three-layer GCNs, and our model can utilize the learned structural knowledge to suppress the presence of false positives due to complex craniofacial deformities and poor image quality. 4) Quantitative results on a reference lateral cephalogram dataset demonstrate the advantages of the proposed approach in terms of mean radial error and detection rate when compared with other state-of-the-art techniques. The rest of the paper is organized as follows. In Section 2, related works are briefly sketched. In Section 3, we describe the architecture of the proposed method and training details for automatic localization of cephalometric landmarks. Section 4 presents our experimental results and compares the proposed method with other advanced landmark localization methods. The effects of the key elements involved in our method are analyzed by a series of ablation studies. An analysis of the model complexity of the proposed method is also provided. Conclusions and perspectives are drawn in Section 5.

II. RELATED WORKS

Numerous methods have been developed for accurate and robust cephalometric landmark detection. We characterize here the conventional methods proposed so far and review the state-of-the-art methods based on CNN architectures.

A. Conventional Methods for Craniofacial Landmark Localization

A considerable number of approaches have been reported in the literature for automatic localization from 2D lateral X-rays. They are summarized below.

Knowledge-based approaches: Image enhancement and edge detection techniques are coupled with prior explicit anatomical knowledge in [START_REF] Forsyth | Assessment of an automated cephalometric analysis system[END_REF][START_REF] Desvignes | First steps toward automatic location of landmarks on X-ray images[END_REF]. These methods can only detect landmarks that lie on edge and often fail to produce satisfactory results with radiographic images in the presence of noise and varying image quality.

Model-based approaches: Some works using local appearance around a certain landmark have been proposed to solve these problems. Hutton et al. [START_REF] Hutton | An evaluation of active shape models for the automatic identification of cephalometric landmarks[END_REF] employed an active shape model (ASM) to reduce the delineation time before manual adjustment by an orthodontist. Saad et al. [START_REF] Saad | Automatic cephalometric analysis using active appearance model and simulated annealing[END_REF] improved the localization performance by using an active appearance model (AAM) with simulated annealing on the benchmark provided by [START_REF] Hutton | An evaluation of active shape models for the automatic identification of cephalometric landmarks[END_REF]. However, both methods suffer from disadvantages: 1) a proper initialization is required; 2) the exact positions of the landmarks remain ambiguous because of the presence of similar structures in cephalograms.

Template matching approaches: Cardillo et al. [START_REF] Cardillo | An image processing system for locating craniofacial landmarks[END_REF] used pattern matching based on grayscale morphological operators to directly identify all landmarks. Grau et al. [START_REF] Grau | Automatic localization of cephalometric landmarks[END_REF] utilized an edge detector to determine the location of significant structures and then look for a precise position of each landmark using pattern matching. Although these methods yielded accurate location results when compared with model-based methods [START_REF] Kaur | Automatic cephalometric landmark detection using Zernike moments and template matching[END_REF], only a small number of anatomical landmarks can be detected due to the limited number of templates.

Random forest-based approaches: Ibragimov et al. [START_REF] Ibragimov | Automatic cephalometric X-ray landmark detection by applying game theory and random forests[END_REF] extracted Haar-like features of each landmark and applied the random forest algorithm for localization. Lindner et al. [START_REF] Lindner | Fully automatic cephalometric evaluation using random forest regression-voting[END_REF] used random forest for the classification of local appearance and a statistical shape model for exploiting spatial associations. Random forest-based techniques have shown the effectiveness for classification and regression tasks, and the latter method won the first place in the 2015 ISBI grand challenge.

Hybrid approaches: Some researchers tried to improve the localization performance by integrating some of the above methods. Yue et al. [START_REF] Yue | Automated 2-D cephalometric analysis on X-ray images by a model-based approach[END_REF] employed Canny edge detection for a subset of the landmarks and pattern recognition for the remaining ones, an ASM being then used to refine these landmark candidates.

Although they have achieved promising results, these conventional methods were not able to accurately and robustly locate the landmarks needed by the clinicians for cephalometric quantization and treatment planning. A comprehensive comparison between the methods reported in [START_REF] Ibragimov | Automatic cephalometric X-ray landmark detection by applying game theory and random forests[END_REF] and [START_REF] Lindner | Fully automatic cephalometric evaluation using random forest regression-voting[END_REF] and the proposed method will be shown in Section 4.

B. Deep Learning Methods for Anatomical Landmark Localization

Recently, deep learning methods have been introduced to learn task-specific feature representations and capture contextual relationship and achieved the superior performance to handcrafted features in traditional methods. Landmark localization based on deep learning has achieved significant advances in computer vision, especially in the field of human pose estimation [START_REF] Zhang | Distribution-aware coordinate representation for human pose estimation[END_REF] and face alignment [START_REF] Kumar | LUVLi face alignment: Estimating landmarks' location, uncertainty, and visibility likelihood[END_REF]. They can roughly be divided into heatmap and coordinate estimation methods for automatic localization of cephalometric landmarks.
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Heatmap-based methods usually encode the pseudo-probability of a landmark by means of a Gaussian function with a fixed variance. The high responses in the predicted heatmaps are regarded as locations of predicted landmarks. Payer et al. [START_REF] Payer | Regressing heatmaps for multiple landmark localization using CNNs[END_REF] explored a fully convolutional network in an end-to-end trainable network for multiple landmark localizations. To improve robustness and accuracy, they [START_REF] Payer | Integrating spatial configuration into heatmap regression based CNNs for landmark localization[END_REF] suggested a spatial configuration network, dealing either with 2D or 3D medical images, that integrated and optimized an objective function with learnable heatmap peak width. Zhong et al. [START_REF] Zhong | An attention-guided deep regression model for landmark detection in cephalograms[END_REF] presented a two-stage U-Net, in which the global stage predicts coarse positions while the local stage identifies fine locations of landmarks. Chen et al. [START_REF] Chen | Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting[END_REF] introduced an attentive feature pyramid module to extract semantically enhanced fusion features and achieved higher detection accuracy. Recently, Oh et al. [START_REF] Oh | Deep anatomical context feature learning for cephalometric landmark detection[END_REF] employed a deep anatomical context feature learning method to learn much deeper semantic features of cephalograms and improved the localization accuracy.

Coordinate-based methods have not been fully exploited due to intrinsic visual ambiguity and high-dimensional nonlinear mapping problems compared with heatmap regression methods. Gilmour et al. [START_REF] Gilmour | Locating cephalometric X-ray landmarks with foveated pyramid attention[END_REF] regressed the relative displacement of each landmark from multiscale image patches in a coarse-to-fine manner and obtained encouraging results on a 2D public cephalogram dataset. But they did not consider the spatial relationships between landmarks. Additionally, they independently trained the network for each anatomical landmark, and the number of models equaling to that of anatomical landmarks leads to millions of trainable parameters. Li et al. [START_REF] Li | Structured landmark detection via topology-adapting deep graph learning[END_REF] presented a topology-adapting deep graph learning integrated with local information and global shape features that resulted in satisfying landmark identification. While their method fed a resized image into the network, texture details were lost without reversibility. Zeng et al. [START_REF] Zeng | Cascaded convolutional networks for automatic cephalometric landmark detection[END_REF] estimated the cephalometric landmarks' positions using three independent regression steps but the localization performance is relatively poor on the 2015 ISBI challenge benchmark.

Classification-based methods are also exploited for localization tasks. Chen et al. [START_REF] Chen | Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks[END_REF] jointly combined random forest, CNNs and shape model to localize vertebrae in spine CT. The random forest algorithm is utilized for coarse localization and the shape regression model is employed for postprocessing. Arik et al. [START_REF] Arik | Fully automated quantitative cephalometry using convolutional neural networks[END_REF] also used an additional step based on a shape model to refine the skeletal landmarks' coordinates yielded by CNNs for recognition of the extracted image patch. Such an approach leads to a huge computing time when based on sliding windows. More recently, reinforcement learning was introduced for landmark detection, but the procedure requires huge training data and heavy computational complexity [START_REF] Alansary | Evaluating reinforcement learning agents for anatomical landmark detection[END_REF].

III. METHOD

In this section, we introduce the proposed cephalometric landmark detection architecture as shown in Fig. 1. The framework consists of multiscale image patch sampling, spatialized feature generation and three-layer GCNs for coordinate decoding. Different scales of image patches with the same size around a certain point are hierarchically sampled from the Gaussian pyramid to avoid large memory requirement without sacrificing local details. Then, these sampled patches are stacked and passed through our modified ResNet34 to extract representative CNN features. We generate the spatialized features that contain both local appearance features and shape information with the incorporation of an attention module, permitting implicit structural knowledge to be effectively learned in the presence of large morphological variation and poor image quality. Finally, we feed spatialized features into three-layer GCNs with learnable edge weights to output the estimated displacements for the multiple landmarks. All landmarks are progressively moved toward the desired targets with such a stepwise displacements' estimation.

A. Multiscale Image Patch Sampling

A whole cephalometric X-ray image cannot be directly input in a network because of its large size and the subsequent computational complexity and memory requirements it conveys. On one hand, sampling techniques may sacrifice local details in image and lead to suboptimal localization performance. On the other hand, conventional pyramid methods without sampling will still increase the burden of computational complexity for graphic hardware. Based on the properties of human vision enhancing critical information around a focal point while discarding less important regions in image by using a near log-polar law [START_REF] Traver | A review of log-polar imaging for visual perception in robotics[END_REF], we obtain image patches from the Gaussian pyramid at different levels around a current landmark by sampling and interpolating them into a ACCEPTED MANUSCRIPT / CLEAN COPY 64×64 format to preserve multiscale context information as shown in Fig. 1. In the proposed method, we breakdown the original image into M successive images, and the number of levels is given as

2 log (min( , )) M h w b       (1) 
where      returns the nearest integer less than or equal to that element. h and w represent the height and width of input image, respectively. The constant b is chosen in such a way to make the input size greater than +1 2 b . The Gaussian pyramid is built through the well-known blur kernel w with standard deviation  as 0.75, and w  is the normalized version of w by dividing the sum of all elements in the kernel, as given by [START_REF] Burt | The Laplacian pyramid as a compact image code[END_REF] 2 2
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where , u v denotes the offset in the horizontal and vertical axes, Down indicates the down-sampling operation with a decimation factor of 2 along both directions, 0 G is the input image, and * denotes convolution.

In our detection framework, we sampled 64×64 image patches around a certain location from six different levels of the Gaussian pyramid via a differentiable bilinear interpolation [START_REF] Jaderberg | Spatial transformer networks[END_REF]. All sampled patches are stacked and fed into our modified ResNet34 to extract representative CNN features.

B. Spatialized Feature Generation

ResNet34 [START_REF] He | Deep residual learning for image recognition[END_REF] is a deep residual network widely employed to extract representative features. The main components consist of convolutions, pooling, batch normalization, rectified linear unit (ReLU), and residual module. Different from the original framework, the input is a monochrome image, hence the weights of the second channel in the first convolutional layer of ResNet34 are chosen in our modified network. The stride of the first layer is changed from 2 to 1. The latter three layers and fully connected layers are discarded to fit our localization network. Finally, the size of the output feature maps E of our modified network is 256×8×8 when inputting an image with size of 64×64. Our network is trained in an end-to-end manner to adjust the weights of ResNet34 pretrained on ImageNet for image recognition to extract adaptable CNN features.

Output feature maps only involve local appearance information but lack of shape representations. The shape variation model is essential for locating landmarks since their positions on the skull are relatively stable [START_REF] Yue | Automated 2-D cephalometric analysis on X-ray images by a model-based approach[END_REF]. Previous work [START_REF] Li | Structured landmark detection via topology-adapting deep graph learning[END_REF] regarded displacement vectors between the current landmark and other neighbors as shape features. In our work, a shape feature ( , ) kx ky f f is computed via the integral method reported in [START_REF] Sun | Integral human pose regression[END_REF] to combine self-attention map k att with x and y coordinate channels into a single point, where the coordinate values are kept within the scaled area through a factor 4 division. Channel-wise appearance feature kE f is calculated by the mass center of the feature map. Therefore, the 3-vector spatialized feature k f is formed from the spatial shape along two directions and the appearance feature information in the kth feature map and can be expressed as [START_REF] Gilmour | Locating cephalometric X-ray landmarks with foveated pyramid attention[END_REF] 

kx k k y k y x k kE x f f a t t xy y k Ex y f                           f (3)
where ( , ) k att x y is the probability at spatial location (x, y) in the kth channel of E and plays the role of an attention module to compute the weights of representative features. It will depict large activation values in the feature map and suppress other less important features and is computed by means of a softmax operation through each feature map k E

8 8 1 1 exp( ( , )) 1, 2,..., 256 ( , )= , exp( ( , )) k k k y x E x y k att x y E x y     (4) 

C. Graph Convolutional Networks

CNNs can only handle grid-like structural data, while no-grid structure data commonly occurred in real practice, such as node classification [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF], point segmentation [START_REF] Lei | SegGCN: Efficient 3D point cloud segmentation with fuzzy spherical kernel[END_REF], and diagnosis of major depressive disorder [START_REF] Kong | Spatio-temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity[END_REF]. GCNs are employed in our work to solve these intractable problems through graph representation learning, which can effectively extract high-level features from nodes as well as their neighborhoods by using a message passing scheme or a node aggregating method, while preserving the dependency relationships between internal nodes.

Despite the fiducial landmarks on skull being affected by dentofacial pathologies or deformities, their morphological features in long ranges are relatively stable, and geometric constraints commonly exist among these significant points. Therefore, we introduce GCNs to build correspondences between cephalometric landmarks. Our model can utilize the learned structural knowledge to suppress the presence of false positives in order to deal with the complex craniofacial anomalies and poor image quality. In our graph construction, spatialized features generated from L certain landmarks are modeled as L node representations, where L is the total number of landmarks, each node has L-1 neighbors, and the edge ij a represents the spatial relationship between the two nodes i and j.

A spatial GCN is applied in the localization framework and represented in three parts: learnable connectivity weight matrix between landmarks

L L   A  , node features L C   F  and learnable weight matrices ' 2 , C C   1 W W 
, where C and C denote respectively the dimension of the input and output feature vectors. The generated next layer of the graph is defined as [START_REF] Li | Structured landmark detection via topology-adapting deep graph learning[END_REF] ( )

  1 2 F FW +AFW (5) 
The first term is responsible for extracting high-level node representations, while the second term adaptively aggregates ACCEPTED MANUSCRIPT / CLEAN COPY information flow from its neighbors through a learnable connectivity square matrix A, which is initialized to 1/L according to the number of nodes. Thus, new node representations F are updated through a linear combination integrating the nonlinear ReLU activation function . By recursively performing message passing at each node, the latent spatial relationships between them are effectively learned for better inferring the displacements of the predicted landmarks.

In our implementation, we stack spatialized features k f from channel 1 to 256 at different scales and flatten them into node representations F of the graph with size 256 3 M   for each landmark. The coordinate decoding process is performed with three-layer GCNs, the dimension of graph node representations being reduced to 512, 128, and the final output with 2 neurons regresses the estimated 2D displacements. Additionally, a dropout of 0.25 is applied to avoid the overfitting problem and increase the generalization capability of the model following each of the first 2 graph convolutional layers. Noting that the regressed displacement may be positive or negative and the ReLU activation function is removed in the last GCN.

D. Training

In the training phase, the next iteration updates the current estimation based on multiscale image patches sampled from the Gaussian pyramid. Then our model can learn to estimate the optimal displacements to the targets at every iteration by using a cascaded coarse-to-fine regression manner under a supervised way. When given another batch of images and ground truths, 10 iterative steps are conducted repeatedly to update the positions of multiple landmarks for further performing augmentation. Initial point locations are randomly sampled from a normal distribution with the mean and variance calculated from annotated training data. The next positions of the predicted multiple landmarks are updated simultaneously by ˆ  x x o, where o are the predicted offsets, namely the outputs of the last GCN. In the inference phase, the initial locations of landmarks are set to the mean of annotations of training data. Three iterations are enough to reach convergence while preserving its high discriminative capability as demonstrated in Section 4.E.2. The model guides the predicted landmarks to move to the targets in a cascaded coarse-to-fine manner.

Our objective is to minimize the loss between the locations of ground truth predefined fiducial landmarks x and predicted landmarks x . The loss function for L landmarks is directly computed by the L1 norm

1 1 1 ˆ( , ) L l l l L      x x x x (6) 

IV. IMPLEMENTATION AND RESULTS

We evaluate our model on the publicly available cephalometric X-ray images and analyze the landmark-level performance of the proposed model. Both training and test images are labeled with 19 anatomical landmarks. 

A. Dataset

Four hundred cephalometric X-ray images from 6 to 60 years old patients proposed in the 2015 ISBI grand challenge [START_REF]Dataset for Cephalometric Landmark Localization[END_REF][START_REF] Wang | Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: A grand challenge[END_REF] are used. As advised by the organization, 150 images for training and the other 250 images for testing (test dataset being arbitrarily decomposed into subsets 1 and 2 with 150 and 100 images, respectively). We take the mean of the two medical experts' annotations provided by the organization as ground truth. The original cephalogram size is 2400×1935 with a pixel spacing of 0.1 mm along both directions. An example of lateral cephalometric radiograph with 19 anatomical landmarks and their anatomical names are displayed in Fig. 2. Red and blue solid circles indicate hard and soft tissue landmarks, respectively.

B. Implementation Details

All experiments were conducted on a server using a GPU (i.e., Nvidia GeForce RTX 2080Ti, 11 GB), and an Ubuntu 18.04 platform equipped with 64 GB RAM. Coordinates were all normalized to be within [-1, 1] for training and inference. The Adam optimizer with an initial learning rate of 0.0001 and batch size of 2 was used to optimize the model, reduced by a factor of 0.5 every 30 epochs. To avoid overfitting phenomena due to the lack of training data, we performed data augmentation including rotation ([-15, 15] degrees) and scaling ([0.95,1.05] times) along two directions. All data augmentation operations followed a uniform distribution within the predefined intervals. The open-source toolbox PyTorch was employed in our implementation.

C. Evaluation Metrics

The point-to-point error is computed by the Euclidean distance between the location of the ground truth , n l

x and the estimated position , ˆn l x . For L landmarks in N images, the mean radial error (MRE) and associated standard deviation (SD) are directly computed by x n,l -xn,l 2 (7)

SD = 1 √ NL -1 N n=1 L l=1 xn,l -MRE 2 (8) 
Note that low MRE and SD values mean a sound landmarking performance. The successful detection rate (SDR) is calculated with the percentage of the predicted landmarks within various ranges of a certain radius r, such as 2 mm, 2.5 mm, 3 mm, 4 mm, and is defined by

SDR = {(n, l)| x n,l -xn,l 2 ≤ r} NL × 100% (9) 
where | | counts the number of predicted landmarks that are inside a certain radius r for all test images.

D. Comparison With State-of-the-Art Methods

The learning curves of our approach are depicted in Fig. 3, including loss and localization error on training and validation data through training epochs. As it can be seen from this figure, our model drops quickly in the first 10 epochs, and the localization error approximates 1 mm over all 19 landmarks after 40 epochs on test dataset 1.

TABLE I COMPARISON WITH STATE-OF-THE-ART METHODS USING THE METRICS OF MRE ON TEST DATASETS

To verify the effectiveness of the proposed method, we compare our method with random regression forest methods [START_REF] Ibragimov | Automatic cephalometric X-ray landmark detection by applying game theory and random forests[END_REF], [START_REF] Lindner | Fully automatic cephalometric evaluation using random forest regression-voting[END_REF], and deep learning methods [START_REF] Payer | Integrating spatial configuration into heatmap regression based CNNs for landmark localization[END_REF], [START_REF] Zeng | Cascaded convolutional networks for automatic cephalometric landmark detection[END_REF], [START_REF] Arik | Fully automated quantitative cephalometry using convolutional neural networks[END_REF], [START_REF] Qian | CephaNet: An improved faster R-CNN for cephalometric landmark detection[END_REF]- [START_REF] Urschler | Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization[END_REF]. Experiments were conducted on test dataset 1 and 2, and the quantitative evaluation results on MRE of our approach and other state-of-the-art methods are shown in Table I. SDR is also reported to evaluate the robustness of each method when given a certain error range in Table II. Note that the results of the competing methods are taken from their original papers. The best results are marked in bold.

It is observed that our approach consistently performs better than random regression forest methods [START_REF] Ibragimov | Automatic cephalometric X-ray landmark detection by applying game theory and random forests[END_REF], [START_REF] Lindner | Fully automatic cephalometric evaluation using random forest regression-voting[END_REF] and deep learning methods [START_REF] Zeng | Cascaded convolutional networks for automatic cephalometric landmark detection[END_REF], [START_REF] Park | Cephalometric landmarks detection using fully convolutional networks[END_REF] on MRE evaluation criterion as shown in Table I. In comparison with the best competing method [START_REF] Zeng | Cascaded convolutional networks for automatic cephalometric landmark detection[END_REF], the improvement in MRE is near 0.3 mm for two test datasets, demonstrating a very significant increase in accuracy. Our proposed approach achieves 1.19 mm on MRE on all test datasets (250 images) and behaves better than all competing methods as listed in Table I.

We extended this comparison with other advanced methods described in [START_REF] Payer | Integrating spatial configuration into heatmap regression based CNNs for landmark localization[END_REF], [START_REF] Arik | Fully automated quantitative cephalometry using convolutional neural networks[END_REF], [START_REF] Qian | CephaNet: An improved faster R-CNN for cephalometric landmark detection[END_REF], [START_REF] Urschler | Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization[END_REF] for SDR using different precision ranges and the results confirm the superiority of our approach in terms of reliability. As shown in SDRs on Table II, our model yields the highest SDRs (87.93%, 92.42%, 95.68%, 98.32%) within the precision ranges of 2 mm, 2.5 mm, 3 mm, 4 mm over test dataset 1. A similar observation is shown on test dataset 2. This demonstrates that the proposed method has a strong robustness to landmark misidentification. These results also show that the data distribution in the training set is more consistent with subset 1. In particular, the performance within 2 mm shows a large relative improvement of 6% over the second best technique on all test datasets. It is worth mentioning that an error range of 2 mm is clinically accepted as reported in the literature [START_REF] Wang | Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: A grand challenge[END_REF]. In other words, our method has a potential application in computerized cephalometry and orthognathic surgery.

Fig. 4 displays 4 randomly selected examples of detection results of our framework using the test dataset 2. As it can be seen from this figure, although we find that the detected landmarks are not perfectly aligned with the ground truths, they are very close. The zooms provided for two regions show that 'sella' landmarks are better located than the 'upper lip' ones due to less complex anatomical structures. Even it is hard to precisely detect them, they can be nevertheless identified with a high successful rate thanks to the learned spatial relationships between these landmarks. More detailed localization results for the all landmarks are reported in Table III. The worst cases concerning some landmarks are clinically recognized as challenging cases, such as 3 (orbitale), 6 (supramentable) on hard tissue and 13 (upper lip), 16 (soft tissue pogonion) on soft tissue.

E. Ablation Studies

A set of ablation experiments are carried out to validate the effectiveness of various modules involved in the proposed method. All comparisons are conducted on unseen test dataset 2.

1) Number of Multiscale Levels:

To compare the performance throughout different scales (i.e., 2, 4, 6), we report the MREs and SDs on 19 landmarks individually after 3 iterations. The results are shown in Fig. 5, we can clearly see that the largest scale method achieves lower MRE and SD when compared with the 2 and 4 levels methods on most landmarks. This points out a strong capability in robust and accurate landmark identification. Such observation is intuitively consistent with the human retina system where a large receptive field would help the model to ACCEPTED MANUSCRIPT / CLEAN COPY guide the landmarks to approach the targets more accurately as the number of iterations increases.
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) Number of Iterations:

In practice, the model may converge to the optimal position after a few iterations due to its powerful discriminative ability. Table IV compares MRE and SDR for multiple landmark localization in different iterations. As illustrated in Table IV, our model obtains the best MRE after 10 iterations. The localization accuracy is significantly increased in the first 3 iterations and much less between 3 and 4 iterations with only 0.02 mm improvement. In contrast, the SDR within the error range of 2 mm begins to decrease after 3 iterations. Therefore, we set the number of iterations to 3 to achieve a good balance between localization performance and time efficiency.

To better visualize the path of a landmark moving toward the target location, we randomly select two test images from test dataset 2 and plot the trajectories of 'sella' and 'lower lip' landmarks (i.e., hard and soft tissue respectively) in Fig. 6. Our proposed network learns the optimal search path from the initial location to the target location after approximately 3 iterations. The step length becomes extremely small as the iteration number increases. As depicted in the first row in Fig. 6, the landmark continually approximates the optimal location with the increase of iterations. In the last row in Fig. 6, we observe that the landmark goes far away from the target position after one iteration because the target position of 'lower lip' is hard to be discriminated from the background due to their local similarities.

3) Shape Information and Local Appearance: In our model and implementation above described, the graph signal is composed of shape information and local appearance. We decouple them for studying their respective performance for localization. As it can be seen from Table V, the use of local appearance leads to a better performance than shape feature according to SD evaluation. The localization performance is further improved by jointly integrating both on MRE and SD evaluation metrics.

4) Effectiveness of GCNs: Fully connected neural networks (FCNNs) are a common strategy for direct coordinate regression, so we replace GCNs with FCNNs to evaluate the contribution of the proposed module. We compare FCNNs with two variants, global FCNNs and local FCNNs, respectively. More precisely, 1) in global FCNNs, spatialized features over all 19 landmarks are concatenated and connected to three fully connected layers to regress 38 dense outputs; 2) for local FCNNs, spatialized features of each landmark are connected to three fully connected layers to regress 2 outputs.

From the comparison results listed in Table VI, we see that our GCNs consistently achieves satisfactory performance on both MRE and SD. Thanks to message passing between nodes allowing the structural information to be effectively exploited, the module is more robust to face large variations and poor image quality compared with FCNN-based methods. In addition, weight sharing in nodes could largely reduce the parameters brought by fully connected layers which is important for model complexity.

F. Model Complexity Analysis

We quantitively evaluate the model complexity in terms of 1) #params, i.e., the number of parameters of the whole ACCEPTED MANUSCRIPT / CLEAN COPY Fig. 6. Trajectories of 'sella' and 'lower lip' landmarks over 10 iterations are shown in the first and last rows. We have the trajectories in the yellow rectangular region enlarged for a better view. The location is labeled with a red cross, the path is annotated with a red line, and the corresponding number of iterations is marked in red font. The distance error over iterations is shown on the right graphics. Localization errors finally changed to 0.30 mm and 1.06 mm after 10 iterations. Readers are referred to the web version of this paper. network; 2) runtime in GPU. Both representative competing methods are used for comparison with our method: the first one is the heatmap-based regression approach [START_REF] Payer | Integrating spatial configuration into heatmap regression based CNNs for landmark localization[END_REF] and its code is publicly available [38], the other is a coordinate-based regression approach and its results are drawn from [START_REF] Zeng | Cascaded convolutional networks for automatic cephalometric landmark detection[END_REF]. Table VII shows the comparison results.

Although spatial configuration network [START_REF] Payer | Integrating spatial configuration into heatmap regression based CNNs for landmark localization[END_REF] requires less parameters and has comparable runtime to our model, the localization performance is still inferior as shown in Tables II andVII. It is worth mentioning that the results reported in [START_REF] Zeng | Cascaded convolutional networks for automatic cephalometric landmark detection[END_REF] are achieved on a NVIDIA GTX Titan X GPU using a cascaded three-stage regression networks. So, our model significantly outperforms it with respect to runtime and only requires one fifth fewer total parameter quantity. These results prove that our approach exhibits a good balance between landmarking accuracy and time efficiency and has a real potential in real-time clinical application.

V. CONCLUSION

In this paper, we have proposed a trainable end-to-end network for cephalometric landmark identification enabling a real-time application in clinical diagnosis. Multiscale patches hierarchically sampled from the Gaussian pyramid are used as inputs to preserve rich context information. We combine local appearance and shape information into spatialized features with an attention module to enrich node features in graph, allowing implicit geometric constraints to be effectively learned in order to face complex craniofacial abnormalities and poor image quality. Multiple landmarks on cephalometric X-ray images are efficiently detected with a cascaded coarse-to-fine search mode simultaneously, and their spatial relationships are processed by three-layer GCNs. Compared with other state-of-the-art methods, our proposed model achieves the best performance in terms of MRE and SDR on various error ranges. For instance, in the clinically accepted range of 2 mm, our approach significantly performs better. This model has thus a sound potential to address cephalometric analysis and treatment planning.

Presently, most landmark localization methods in cephalometric radiographs rely on supervised learning, and an extensively large number of training datasets need to be manually annotated by medical experts. In the future, weakly supervised [START_REF] Dong | Teacher supervises students how to learn from partially labeled images for facial landmark detection[END_REF] and semi-supervised learning techniques [START_REF] Honari | Improving landmark localization with semi-supervised learning[END_REF], [START_REF] Huang | ACE-Net: Fine-level face alignment through anchors and contours estimation[END_REF] should be considered for accurate and robust landmark detection on less annotated training data.

Fig. 1 .

 1 Fig. 1. Overview of the proposed architecture. Main modules include multiscale image patch sampling, spatialized feature generation and graph construction. Here, we show the identification process of 2 of 19 landmarks with 6 levels.

Fig. 2 .

 2 Hard and soft tissue landmarks are annotated with red and blue solid circles, respectively. The names of 19 cephalometric landmarks are reported on the right side.

Fig. 3 .

 3 Fig. 3. Training on cephalometric X-ray images. Left and right y-axes denote loss and localization error, respectively. Solid curves denote loss, and dot curves denote landmark error on training and validation data.

Fig. 4 .

 4 Fig. 4. Qualitative results for 4 randomly selected images from test dataset 2. The labelled and detected landmarks are marked in red and blue, respectively. For a better viewing, local regions of 'sella' and 'upper lip' are zoomed in yellow boxes.

Fig. 5 .

 5 Fig. 5. Localization performance is presented as an error bar. The y-axis indicates MRE±SD in mm, while the x-axis specifies different landmarks with 2, 4 and 6 levels.
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