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S.I. LIST OF SYMBOLS

Here we provide a list of symbols appearing in the main text of this Letter.
A(X) Spatial part of the separable solution for §P(X,T)
A\(X) Same as A(X), the subscript recalls the A-dependence
B(T) Temporal part of the separable solution for §P(X,T)
B, (T) Same as B (T)7 the subscript recalls the A-dependence
co Capacity of the microfluidic chip inlet
c1 Magnitude of the pressure-dependent part of cg

co Magnitude of the constant part of ¢
C,(z) Linear combination of Bessel functions : C,(x) =Y (%) Ju(x) —Ja (%) Y, (z)
5 5

de Radius of inlet/outlet circles

E* Effective elastic modulus of the channel material (E* ~ Fy/0.5427(1 — 1/?))
Evy Young’s modulus of the channel material

h(z,t) Local channel height

H(X,T) Dimensionless local channel height (H = h/hy)

ho Undeformed channel height

J,(z) Bessel function of the first kind, of order v and argument z

L Channel length

P(X,T) Dimensionless pressure field in the channel

p(z,t) Pressure field in the channel

* Characteristic pressure scale (p* = E*hg/w)

p
po(t) Pressure at chip inlet

Poo Steady-state pressure at chip inlet

Py~ Dimensionless, steady-state pressure at chip inlet (Py oo = Po,00/P")
P, (X) Dimensionless, steady-state pressure profile in the chip

Pin(t) Pressure in the reservoir

Din,co  Steady-state pressure in the reservoir

q(t)  Flow rate at chip inlet

Goo Steady-state flow rate at chip inlet

Q>  Dimensionless steady-state flow rate at chip inlet Qoo = goo7c/D*

R Dimensionless inlet resistance defined by R = ro/r.

0 Hydraulic resistance of the flow sensor



Te Hydraulic resistance of the undeformed channel (r. = 12nL/wh3)

t Time

T Dimensionless time (T' = t/7.)

T Dimensionless inlet relaxation time defined by T = 79 /7
T Rescaled dimensionless time (T = II2T)

w Channel width

T Cartesian coordinate along the length of the channel

X Dimensionless Cartesian coordinate, along length the length of the channel (X = z/L)
X Rescaled dimensionless channel position (X = II(1 — X) + 1)

Xo Rescaled channel inlet position, X'O =II+1

Y Cartesian coordinate along the width of the channel

Y, (z) Bessel function of the second kind, of order v and argument z

z Cartesian coordinate along the height of the channel

Q) Integration constant, arising from the resolution of AA(X' )

8 Prefactor for the asymptotic, power-law description of the II-dependence of \s (\s ~ 32I17)
~ Exponent for the asymptotic, power-law description of the II-dependence of \s (A\s = B2I17)

Opin,  Pressure drop amplitude in the reservoir
0P(X,T) Dimensionless excess pressure compared to the steady state (0P(X,T) = P(X,T) — Py (X))

Fluid viscosity

A Eigenvalue of the perturbation analysis
As Smallest eigenvalue of the perturbation analysis
v Poisson’s ratio of the channel material

II Shifted, dimensionless pressure (Il = (1 + Py »)* — 1)
Te Characteristic time scale of the microchannel (7. = 12nwL?/h3E*)
T Transient relaxation time of the microfluidic system

Volume of fluid stored in the pressure sensor

Q. Volume of air trapped in the pressure sensor



S.II. RAW SIGNALS FOR pi.(t), po(t) AND ¢(t)

In Fig. S1 are shown examples of raw signals pi,(t), po(t) and ¢(t). For part (a) is shown the response of a setup
containing the flow sensor and pressure controller only. Part (b) displays the response of the full setup containing the
pressure controller, flow sensor, pressure sensor and microfluidic chip.

With the flow sensor only, i.e. a system without any compliant elements, the response is quasi-instantaneous; in
contrast, in the presence of a soft channel and pressure sensor, the system relaxes exponentially to its steady-state
upon a pressure change. Exponential fits of the data, shown under the experimental curves in part (b), allow for
determinations of 7y and plateau values pg o and go. for each pressure step at the controller.
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Figure S1. Raw experimental data pin, po and g as a function of time (a) without chip connected and (b) with a 200 pm-wide
chip connected. Thicker lines on (b) show exponential fits of the data.



S.III. UNSCALED FLOW-RATE-VS-PRESSURE DATA

Figure S2 shows the steady state flow rate ¢, as a function of the steady state pressure pg o, for compliant channels
of different width. Unlike the rigid case, the pressure-vs.-flow-rate relation is super linear, and can be rationalized
with the elastohydrodynamic model described in the main Letter:

(1+p§)’j°>4—1]. (S1)

The data are well fitted by this model, as indicated by the solid lines of Fig. S2, which allow to extract an experimental
measurements of p* and 7.
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Figure S2. Raw ¢oo-vs.-po,cc data for channels of different widths. The solid lines are fits according to Eq. S1 (¢f. Eq. 5 in the
main text), p* and r. being the fitting parameters.



S.IV. SCALING LAWS FOR v AT HIGH AND LOW P,

The relation describing the experimentally measured, transient relaxation time, 7¢, is given by Eq. 8 of the main
Letter: 7¢ = 7c/(AsI1%), where s depends on the variables II, R, 7. We also recall that II = (1 + Py )* — 1, and
R and T are dimensionless parameters describing the resistance and characteristic time scale of peripheral sensors.
Furthermore, )\ is the smallest solution of Eq. 7 from the main Letter, this latter equation determining all the allowed
values of A\, and recalled here:
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We furthermore have XO =1+ITandC, (;1;) = Y% (%) Jl,(a',‘) —J% (%) Y, (x) This equation is solved numerically
in the general case, as exemplified in Fig. S3 for two different values of II and the noted values of R, 7.

To the best of our knowledge there is no general analytical solution for A; however, asymptotic scaling laws can be
determined in the limits of small and large II.

Small-II regime: First, we assume an asymptotic power-law solution, As ~ B2II7, when II goes to zero, with
B and ~ assumed to be independent of II. Here we demonstrate the physical intuition described in the main Letter
that suggests v = —2 and thus a time scale independent of the pressure; we also provide an implicit relation for the
constant prefactor 3.

For II < 1, we have X, ~ 1; inserting the power-law ansatz, furthermore, the left-hand side of Eq. S2 can be
approximated as:

_ SN U g1
LT (Tﬁn fm) ok (TﬁH ﬁHH;) : (S3)
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For the right-hand side of the eigenvalue relation Eq. S2, and as is suggested by the data of Fig. S3(a), we assume

that A\s = oo when IT — 0. Under this hypothesis, we have the argument of the Bessel functions \AXOS/g — 00,

such that we can use the asymptotic developments of Bessel functions at infinity. Namely, for any complex number
2t J(2) m (/2 cos (z— 4 — Z) and Y, (2) & /2 sin (2 — & — T). Using these formulas, the definition of C,, and
basic trigonometric sum identities, we obtain:
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Figure S3. Numerical resolution of Eq. 7 of the main Letter, with (a) {II,7,R}={0.1,2,0.1} and (b) {II,7,R}={10,2,0.1}



Thus we have:

1 MX5/8 sin %\/X 1—X5/8 -z s
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Developing the argument inside the cotan function, we have %\A (1 — X05/8> ~ —BI'2, and finally combining
Eq. S2, S3 and S4 we obtain:

1

R (TBHH';/ I ) A2 cotan (BHH'%) . (S5)

To satisfy the hypothesis that 3 is independent of II, it must be that v = —2, verifying the assumption that Ay — oo
when IT — 0. Then assuming equality of the limits of the two sides of Eq. S2, we obtain the following equation on .

T % — RBcotan(B) — 1 = 0. (S6)

This equation always has a positive solution for 8 € [0, 7], provided R > 0. Thus the scaling hypothesis is valid, and
we have 7q = 7./3°.

Large-II regime: We now turn our attention to the large-II case. Again we assume a power law behavior of
the form A =~ B2II” when II goes to infinity. Due to the vanishing resistance of the channel on large deformation, it
is expected that 7y ~ ﬁ — 0 at large II; therefore, we assume that v > —2. In this case v/ AII — oo, and we have:

1 1 T 1
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Substituting the power-law behavior for g in the right-hand-side of Eq. S2, we obtain:
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Then, combining Eqs. S2, S7 and S8, we have:
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As in the small-T case, Eq. S9 suggests that v = —5/4 > —2 (the latter inequality as initially assumed) is a solution
for the power-law ansatz; it thus remains to verify the independence of 8 from II.

~ 5/8
Choosing the value of v thus suggested, we have %XG / — % in the large pressure limit. Furthermore, as also

suggested by the data in Fig. S3, we use developments of the Bessel functions as A goes to zero for large II. Therefore,
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such that we finally have:
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With v = —5/4 as suggested by Eq. S9, combining Eqs. S2, S7, and S10 and using the uniqueness of the limit, we
obtain the following condition on S in the large-pressure limit:

7, 1+ (%)
=P= i, (%> . (S11)
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A simple analysis of the function z — J_;/5(2)/J4/5(2) shows that Eq. S11 always has a real solution, which validates

the hypothesis on the scaling. We finally have 7, = 7.I173/4/3% = TC/(ﬁz.P(ioo) for large pressures, as suggested in the
manuscript.



S.V. FLOW SENSOR CALIBRATION

In Fig. S4 is shown the steady-state response of the flow sensor, i.e. ¢o, as a function of pi, o, as taken from the
plateau values of the data in Fig. S1(a). The data is well described by a straight line of slope 2.40 nL/ min /mbar,
which corresponds to a hydraulic resistance of 2.50 & 0.01 kPanL~!. This value is consistent with the resistance of a
capillary of internal diameter 25 um and length 2.4 cm, used with a fluid of viscosity 1.0mPas. The linearity of the
data also indicates the negligible compliance of the flow sensor in the accessible range of pressures.
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Figure S4. Flow sensor calibration: g, as a function of pin,. for the case of a pressure controller and flow sensor only. The
solid black line is a linear regression of the data, the slope of which provides a measurment of rg.
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